
An Intelligent System for the Design of Analog Integrated Circuits

John W. Miller

University Undergraduate Fellows, 1986-1987

Texas A&M University

Department of Electrical Engineering

College Station TX 77843

APPROVED

Honors Dir

11

An Intelligent System for the Design of Analog Integrated Circuits

Conventional CAD tools are brought into use late in the design process after much of

the functional operation of a circuit has been defined. A new type of design environment

must be created to aid the engineer from goal creation all the way to silicon fabrication.

Symbolic equation generation is an area of active research which will extend the applica

tion of computers earlier into the design process. A tool for equation development in an

interactive design environment is described. The system successfully meets the following
three constraints for a useful interactive symbolic analysis system. First, it is quicker than

an engineer at generating the equations. Like the engineer it is capable of handling large
circuits without an exponential growth in calculation time. Secondly, it produces equa

tions simplified in the same form as the design engineer would create by hand. Finally,

the entire system is easily modified and expanded by the design engineer personally. The

equation developing system is based upon the Norton equivalent circuit approximation.

Norton equivalence is used to keep the equations linear, to decouple the circuit into more

manageable building blocks, and because it results in equations similar to those developed

by engineers in hand analysis. A prototype system was implemented using a rule based

development program called CLIPS.I) The rule based system environment makes exten

sion to the system by non-programmers a simple task. This paper explains the motivation,

theory, and implementation of the symbolic analysis system.

1) CLIPS was developed by NASA and is available free of charge.

III

ACKNOWLEDGMENTS

I would like to thank my advisors Dr. Karan Watson and Dr. M.A. Styblinski
for their guidance and encouragement.

IV

TABLE OF CONTENTS

Page

ABSTRACT .

ACKNOWLEDGMENTS 1/l1,

LIST OF FIGURES . . .

CHAPTER I INTRODUCTION

CHAPTER II THE DESIGN ENVIRONMENT

• •••• V1,

1

2

A. Significance

B. Relation to the Current State of Knowledge
3

3

CHAPTER III A RULE BASED SYSTEM FOR CIRCUIT ANALYSIS 5

A. Linear Growth in Analysis Time

B. Equations in a Standard Form .

C. Flexibility and Expandability
D. Motivation for Developing the Algorithm
E. How the System Works

F. Example of Circuit Analysis . .

G. Resolution of Feedback Circuits

5

5

5

6

7

8

9

CHAPTER IV IMPLEMENTATION USING CLIPS 11

A. Circuit Representation
B. Rules

C. Adding New Buiding Blocks

D. Control of the Program . .

13

14

15

15

CHAPTER V LESSONS FROM THE PROTOTYPE 17

A. Problems with CLIPS
B. Directions for Further Development

17

17

v

TABLE OF CONTENTS (Continued)

Page

CHAPTER VI CONCLUSION. 21

REFERENCES 22

APPENDIX A. ANALYSIS OF A FEEDBACK CIRCUIT 23

APPENDIX B. SPICE ANALYSIS OF THE FEEDBACK CIRCUIT 29

APPENDIX C. REPRESENTATION OF A FEEDBACK CIRCUIT 31

APPENDIX D. PROGRAM LISTING FOR PHASE-l 32

VI

LIST OF FIGURES

Figure
1. The Design Process . . .

2. Cascades Building Blocks

3. Decoupled Building Blocks

4. Simple Three Stage Circuit

5. Resolution of Feedback Current
6. Generalized BJT Amplifier

Page
1

7

7

8

10

12
7. Calculated Norton Outputs

of Generalized Stage 12

1

I. INTRODUCTION

The design of an analog integrated circuit can be divided into two stages. The first

stage takes the circuit's requirements and goals and develops a circuit configuration. The

second stage starts with the configuration, and is completed with the printing of the circuit

masks used for production. Figure 1 shows an outline of the design process. The trend

in computer aided design (CAD) technology for integrated circuits has been to automate

this second stage of design. A new class of CAD tools is needed to aid circuit designers in

the first stage. Together with the CAD software available today, the new class of tools will

create a design environment to guide the engineer from goal creation all the way to mask

generation. In part, this extension of CAD earlier into the design process will require a

revolutionary rather than a gradual change in approach to software. The needed change is

to use heuristic as well as algorithmic approaches. Adding heuristic rules (rules of thumb)
to control a software system results in less certainty and less mathematical precision, but

this cost is inherent to the domain of ideas, symbols, and hypothesis found in the first stage

of the design process. Intelligent design is therefore the use of heuristics and algorithms
to bring out the power of today's hardware and software design tools.

Final
Circuit Subcircuits Circuit Lo v ou t. •

Goals and �
Subcircuit

� with known ;... Routillg,
and

- -

Subgoals Configurations Component and t'>1LlsY,

Requirements Dimensions Ge n e r a t. i nn

Stage One Stage Two ----I
Figure 1. The Design Process

Chapter II of this paper describes this design environment. This envisioned design
environment is the motivation for developing the software developed through this research.

Chapter III presents a prototype for one of the new tools: an expert system to generate

"paper and pencil" equations used by designers. Chapter IV describes how this prototype

was implemented using CLIPS. Chapter V tells the lessons learned from the prototype and

proposes a direction for development leading to "An Intelligent System for the Design of

Analog Integrated Circuits."

2

II. THE DESIGN ENVIRONMENT

Traditional CAD systems have been limited to helping with the last stage of analog

IC design because they have used only algorithmic approaches to solve problems. There is

no algorithm to determine what circuit configuration will work best to meet circuit goals.

There are, however, heuristics or rules of thumb. Heuristics and other reasoning strategies
can serve as the basis for an intelligent design system. A "first generation" intelligent

design systems will need to perform the following functions:

(1) It will prepare symbolic equations describing circuit specifications in terms of circui t

parameters.

(2) It will maintain a database of design goals. The system will be able to tell if an

analyzed design meets these goals.

(3) The system will be an intelligent front end to a set of supporting design tools such

as circuit simulators, layout tools, etc. This front end must prepare data and execute

these programs automatically when needed.

(4) It will store and use design expertise from a library of circuit descriptions. These

descriptions include design information such as the equations derived for the circuit [1].

The envisioned system can be clarified by example. Consider this scenario:

An engineer starts the system by telling it to begin an operational amplifier

design. The computer responds with a list of op-amps and asks if the user would

like to review the available designs. The designer chooses an op-amp and is

presented a circuit diagram and table of circuit specifications. The engineer

points to the specification for maximum offset voltage and lowers the value to 100

microvolts. The computer calculates and then replies that the differential input

stage must be redesigned. The engineer asks to see different input stages. The

engineer chooses one from a menu and asks to see an equation relating maximum

offset voltage to component values ...

By the end of the day, the computer sends the final circuit's mask descriptions

3

to the foundry for production. The new circuit information is stored in a design

library for future use.

Significance

The significance of improving computer aided circuit design technology is that it

will lower the cost and time of microchip design. Analog circuitry is designed nearly

the same way today as 15 years ago. Months are spent writing equations to explain
and learn the properties of just one circuit. Automating this step alone will drastically

improve productivity, shortening the IC design time from years to weeks or days. The

most important benefit for the electronics industry will be a faster pace of technological

development. Automated design systems will perform the work we already know well how

to do. This will increase the time engineers can spend on things we don't know how to

do. Another advantage to industry will be improved management of design projects. The

system will require a clear statement of goals and subgoals. The system must track the

attainment of these goals. This is a primary function of engineering management.

The design of an intelligent design system is also significant to the field of artificial

intelligence. Of interest to the AI community is the application of machine learning to

add circuits to the design library. The system could be taught to be creative in its spare

time. By this I mean it could make up random circuit "mutations," and see if they can

outperform human designed circuits. Improvements would be stored and used as the basis

for further mutation. This could lead to an evolution of increasing circuit performance.

This proposed design system also has a significance to other engineering fields. Ana

log circuitry, as the name implies, can model physical processes in general. Automatic

generation of circuit equations is very near to automatic generation of stress and strain

equations for a bridge, or reaction equations for a chemical plant for example. For this

reason, design advances in the electronics field will be quickly applied in other fields.

Relation to the Current State of Knowledge

The basis for the proposed design system is a circuit analysis program. The purpose

of this circuit analysis is to produce design equations and to explain cause and effect within

4

the circuit. This is not to be confused with a circuit simulator. Simulators, such as SPICE,

return numbers rather than equations for the outputs of a circuit [2]. These programs are

effective for checking the operation of a well understood circuit. SPICE cannot directly

provide the conceptual information required to improve a design. With INTOPT.SPICE

it is possible to adjust a parameter interactively while watching output [3]. This is another

tool which becomes useful when the designer fully understands the circuit. An interactive

SPICE program should be used as one tool within the intelligent design system. Once the

design decisions are made, an accurate SPICE simulation can be used to tune the circuit.

An important development for conceptual circuit analysis was the creation of MAC

SYMA [4]. MACSYMA is a program which can solve graduate level symbolic mathematical

problems symbolically. The algorithms from MACSYMA will need to be used in the pro

posed system to simplify equations for display to the engineer. Several systems have used

MACSYMA to develop design equations from a circuit description. SYN is a system using

symbolic manipulation with the theory of propagation of constraints [5]. Propagation of

constraints is a theory used to limit the number of equations developed from a circuit.

Simple calculations are performed first, and variables are chosen to minimize the length
of equations. SYN does not break down the circuits into subcircuits. For this reason, the

equation simplification algorithm is slowed to a halt as the circuit size grows.

5

III. A RULE BASED SYSTEM FOR ANALOG CIRCUIT ANALYSIS

A useful tool for equation development in an interactive design environment must

meet the following constraints: First, it must be quicker than an engineer at generating

the equations. Secondly it must return the equations in a form understood by the engineer.

Finally the system should be flexible enough to accept arbitrary user defined additions to

the circuit types available in analysis.

Linear Growth in Analysis Time

Previously reported symbolic equation generating systems have not succeeded in ob

taining a linear relationship between device count and analysis time. SYN for instance

limits the complexity of equations but still is slowed to a halt as circuit size increases. [6].
In contrast, an engineer can quickly derive the transfer functions of complex circuits by

utilizing information about well understood building blocks, and by making intelligent

simplifying assumptions.

Equations in a Standard Form

Engineers use the form of an equation to imply information about a circuit beyond the

algebraic relationships of the equation. For instance in calculating the gain of a cascaded

amplifier, each product in the equation is the gain of the individual stages. Putting the

equations in an "illogical form" drastically reduces their usefulness to the engineer. For

this reason building block circuit analysis should automatically include information about

how to form the equations describing the circuit.

Flexibility and Expandability

The design engineer must be able to add new structures to the known building blocks

or else the program would quickly fall out of use. Flexibility can be achieved in two ways.

One approach is to make the system so general that it is delivered with the power to analyze

any circuit. In contrast, the approach used in this research is to provide a system which

can analyze a small number of structures, but the structures can be added by the designer
in a simple way. The program can thus become a "note pad" of building block circuits the

6

engineer creates and stores for future reference. The system must be expandable in that

expansions can be made without slowing the analysis down significantly.

Motivation for developing the Building Block Algorithm

The most important feature of this algorithm is it produces simple linear equations.

Conventional circuit analysis programs use numerical methods which set up a matrix of

simultaneous equations. These programs then triagonalize the matrix, and solve for each

parameter. This approach cannot be performed symbolically for large circuits because the

computational burden of the matrix manipulations is too great. Another disadvantage
of solving simultaneous equations is the resulting formula is not in the same form as an

engineer would create with hand analysis. The purpose of the system is to explain cause

and effect within the circuit to the engineer. For this reason the algorithm was created to

return equations in the same form as the engineer would produce with hand analysis. The

algorithm accomplishes this without setting up simultaneous equations.

How the System Works

The analysis system is based on the theory of Norton equivalent circuits. The theory

states that any linear circuit as seen from the viewpoint of two terminals can be exactly

modeled by a current source and a resistance in parallel.

For non-linear circuits the system still uses the equivalence as a linear approximation.

A numerical system such as SPICE can later be used for refinement [3]. Simple models are

therefore used for understanding. Complicated models are used to confirm the simplifying

assumptions and for further refinement. The linear method is used by the system because

the purpose is to return symbolic equations. Nonlinear equations would quickly become

too complex for useful presentation to an engineer. The linear approach best satisfies

the goal of delivering useful explanation to the engineer of how the circuit behaves. This

coincides with the linear models used by engineers in "hand analysis" of circuits.

Note that the Norton equivalence is true no matter what load is placed at the terminal.

This fact is used to isolate circuit building blocks from one another by modeling them as

Norton circuits. Figure 2 shows four building block circuits connected to form a cascaded

amplifier.

7

Figure 2. Cascaded Building Blocks

Let Na,b indicate the Norton Equivalent of circuit a as seen by circuit b. This Norton is

a current Ia,b in parallel with a resistance Ra,b. The program starts analysis by decoupling
the circuits by finding each Norton equivalent. Starting at the input, N1,2 is found. Using

this value and the parameters for circuit two, N2,3 is found. Next N3,4 is found. Starting
now at the last building block N4,3 is found from the parameters of circui t four. Using these

values and circuit three N3,2 is found. Finally N2,1 can be calculated using the parameters

of circuit two and its load N3,2. Now that the behavior of the circuit interconnections are

known the circuit can now be viewed as independent building blocks as shown in Figure 3.

Stage 3

13,4,R3,4

rr8
R4,3,14,3

Stage 2

Figure 3. Decoupled Building Blocks

Questions of voltage or current values anywhere in the circuit can be directed to the

appropriate building block where simple equations can solve the localized problem.

8

Example of Circuit Analysis

The simple circuit used to demonstrate the algorithm is shown in Figure 4. A non

trivial example with feedback is shown in Appendix A. Appendix B. shows the SPICE

analysis of the same circuit.

R, = IOn

ll) = 20V _ '��-'_�-R�b�S�:�1 =

101�..__ _._�_R_�_=_4_0_·_:__1 n. zz: 200

IStage 1 Stage 2 Stage 3

Figure 4. Simple Three Stage Circuit

The Algorithm begins by finding the Norton Output of stage one:

N1,2 = R1,2 1111,2 = Raf! II (i) Amps

Next the parameter N1,2 is stored as a parameter of the second stage. The second stage

can now calculate it's Norton Output:

Now, starting at the output, the Nortons are found looking in from the previous stage:

N2,1 = Rbn II OAmps

Once every Norton has been found, voltages can easily be calculated. For example
the output voltage:

Note the algorithm returns an equation which is close to being simplified. When this

procedure is performed on difficult amplifier circuits, the answer is similar to the form an

engineer would create while doing hand calculations.

9

Resolution of Feedback Circuits

The following procedure uses the algorithm for cascaded building blocks to solve cir

cuits with feedback loops. Consider the following simple circuit with a feedback resistor R.

1. Break the feedback resistor Rfb and replace it with two current sources with equal

current. (The feedback resistance must be identified as the component which can

be removed to form a cascaded structure.) This new circuit is identical when the

current J in the new circuit is equal to the current through the feedback resistor in

the first circuit.

2. Determine the voltages Via., V1b, V2a., and V2b at the end of the current sources for

two different current values J«, Ji:

3. Calculate the true feedback current Jt as the solution of the three constraint equations:

m . Ja. + b = V2a. - Via.

m - Jb + b = V2b - Vib

m' Jt + b = Jt

The solution to these equations is equivalent to finding the intersection of the two

lines in Figure 5. The first two equations sample the linear relationship between any

assumed current and the resultant voltages in the circuit. The third equation is ohms

10

law appeanng as a line with a slope of RIb. The intersection represents the point
where the two circuits are identical.

4. Set the current source J equal to the true feedback current. The second non-feedback

circuit is now identical to the original feedback circuit. For non-linear circuits, this

method gives a linear approximation of the feedback current.

------------�---- J
i, i,

Figure 5. Calculation of True Feedback Current

By choosing Ja. = 0 and Jb = (Va.2 - Vad/RIb and defining Jc == (Vb2 - v"t)/RIb the

true feedback current can be simplified to:

11

IV. IMPLEMENTATION USING CLIPS

The author has implemented a knowledge based system for analog circuit analy

SIS. The first prototype was written with the ART software package running on a Texas

Instruments Explorer Computer [7]. The prototype returns approximate D.C. values for

currents, voltages, output impedances, and input impedances. This prototype can ana

lyze any number of cascaded amplifier stages. It can reason using Ohm's law, equivalent

circuits, infinite values (for resistances), and default circuit values. The second prototype

was implemented using CLIPS, an expert system development language which is essen

tially a subset of ART [8]. CLIPS is written in C and run on VAXes and on MS-DOS

based personal computers. The CLIPS prototype is also able to report midband AC gains.

The CLIPS prototype allows feedback structures in addition to simple cascaded build

ing blocks. With the addition of software to display equations, this program will return

symbolic equations for each value calculated by the system. This is important because

the equations were calculated using nearly the same methods an engineer might use in

"paper and pencil" symbolic calculations. The engineer can now have the computer take

care of the tedious hand calculations required to understand a design. This prototype

demonstrates how one of the tools for an intelligent design system can be realized.

The equations describing different building blocks are the task-specific knowledge
stored in the brains and notes of human expert circuit designers. This expertise is stored

in the expert system in the form of rules. To simplify the initial prototype the building
blocks where restricted to three types:

(1) BJT amplifier stages: either Common emitter, Common Collector of Common Base.

(2) Norton Circuits: a current in parallel with a resistance.

(3) Thevinan Circuits: A voltage source in series with a resistance.

The BJT stages are all represented by one Generalized Amplifier stage shown III

Figure 6. Figure 7 shows the calculated Norton outputs seen looking into the circuit of

Figure 6. Each type of BJT stage can be represented by setting the input and output in

the appropriate place.

12

.----------------�---------.

I
nc � Collector

."._ Emi t ter

Figure 6. Generalized BJT Amplifier Circuit

Base --+

u; II line II (Rnb II Rbb)/((3 + 1)Emitter ----t

Where Ib is calculated from this equation:

t, = (Rnb2(Inb + Vdd/Rbt) - ((Re II R-ne)Ine + "Vt,e)(l + Rnb2/RbJ)
-

Rnb2 + (1 + Rnb2 /RbJ)((3 + l)(Rne II Re)
A II B == (A . B) / (A + B) Rnb2 == n., " Rb2

Figure 7. Calculated Norton Outputs of Generalized Stage

13

Circuit Representation

A circuit is represented as a set of facts in the expert system database. Facts describing
one object are grouped together and given the same value in their second field. This is

similar to the groupings called schemata in the ART software package. For example the

parameters for the stage ce-1 in Appendix C are represented by the following facts:

(deffacts ce-1

(stages ce-1 irb irc 2);stage 2 has input irb and output irc

(instance-of ce-1 common-emitter)

(parameters ce-1 rt

(parameters ce-1 dc-O

(parameters ce-1 ac-O

rc

re

re

10000)

870)

0.000001)

;re is bypassed by a capacitor

(parameters ce-1 rt

(parameters ce-1 rt

(parameters ce-1 ac-O

(parameters ce-1 dc-O

(voltages ce-1 dc-O

(feedback ce-1 rt irb

rb1

rb2

bjt

bjt

n2

r-f 2))

100000)

17000)

100) AC-Beta

0.7 100) ;Vbe DC-Beta

12)

The parameter facts have five fields. The first field is the keyword "parameters."

The second field gives the name of the stage or circuit building block "ce-l." All facts

describing the same building block can be understood as comprising a data-structure. This

data-structure is used much like Schemata structures built into the ART environment. The

name of the datastructure "ce-1 "is placed after the keyword "parameters" to increase the

efficiency of pattern matching. The name of a datastructure is a variable within rule

patterns while the keyword is a constant. Putting the constant first reduces the number of

comparisons required to match a rule pattern with a fact. The third field tells the context

14

where the parameter is valid "rt, ac-O, dc-O." For instance ac-O tells the program the

parameter is valid for use in AC analysis. The -0 must be included because there can be

more than one AC context. RT stands for root. RT tells the system the parameter is valid

in any context. These "contexts" are similar to viewpoints used in the ART environment.

The fourth field is the name of the component "rb2." Finally the fifth field gives the value

of the component "17000." The sixth field is only used for components with more than

one value associated with them. For instance, BJT transisors have a value representing

the base to emitter voltage and a value for current gain.

Another type of fact which must be included in each building block begins with the

keyword "stages." The second field of this fact again gives the name of the building block

"ce-l." The third and fourth fields tell where the input and output from the building block

are located "irb ire." In this case the input is located at the base and the output at the

collector. The last field "2" tells that this building block is connected to stage 1 at the

input and stage 3 at the output. This fact is used to relate the Norton outputs of this

building block to the Norton loads appearing in adjacent building blocks.

The fact beginning with "instance-of" causes this building block to automatically

receive a set of facts associated with common-emitters. These facts include all the con

nectivity information within the circuit. This feature (called inheritance) keeps the user

from having to type in facts common to different building blocks. The inherited facts have

default values. For instance if no fact defining the value of Rb1 is found, then Rb1 will be

given the value infinity. (In this prototype infinity is just a very large number.)

Rules

The choice of the above circuit description was chosen to make rules easy to write.

The rules in CLIPS or ART can be viewed as many IF-THEN statements running at the

same time. The IF side of a rule is known as the left hand side (LHS). The THEN side

of a rule is the right hand side (RHS). An expert system is made up of rules and facts.

The rules LHSs have patterns which can match with facts in the database. If there is a

fact matching each pattern in the LHS then the RHS is executed. The commands which

can be executed in the RHS include ASSERT, and RETRACT. ASSERT adds a new fact

15

to the database. RETRACT removes facts from the database. For further explanation
see the ART or CLIPS users manuals [7 ,8]. Why is the CLIPS program used instead of a

string of IF-THEN statements in FORTRAN? Because the FORTRAN program would be

too slow to run even a very small expert system. CLIPS and ART use the Rete Algorithm
to solve the pattern match problem efficiently[9]. (Of course the RETE algorithm could

also be programmed in FORTRAN.)

Adding New Building Blocks.

Each building block is supported by three rules in the system. Conceptually the rules

have the simple form.

1. IF the input Norton load is known.

THEN calculate the Norton projected to the

following stage, add this to the facts

describing the following stage.

2. IF the output Norton load is known.

THEN calculate the Norton projected to the

preceding stage, add this to the facts

describing the preceding stage.

3. IF both the input and output Norton loads are known.

THEN calculate the Voltages at all nodes in the

building block.

The designer can add to the building blocks by following this template and filling in

the appropriate equations in the THEN side of the rules. This step of adding equations can

itself be automated by another system written in CLIPS. A system has already been written

to guide the user in formulating the rules, automatically adding the syntax details [10].
Another possible approach would be to use a SYN-like propagation of constraint algorithm
to develop the equations automatically when a new structure is introduced by the designer.

16

Control of the Program

The program is divided into four phases. There is always one fact in the database

beginning with the word "phase." Every rule has a pattern checking for this fact so that

the rule will only fire in the proper phase of the program. In the first phase the input

data is preprocessed. In this stage all the inheritance rules are used to create the facts

expected in the later phases. Appendix D lists the code for the program phase 1. The

second phase begins by solving for the feedback currents if there is a feedback loop. This

is done first because every other calculation is dependent on the feedback current. The

rest of the second phase holds the rules used to create the menu system. When the user

chooses an option from the menu, the rules in the second phase set up a goal and then

start the third phase. The third phase performs the Norton equivalent circuit analysis.

This phase includes rules holding the transfer function equations for the different building
blocks supported in this prototype. Phases four holds all the rules which calculate Voltages
and Currents. This phase follows phase three because the Norton equivalent loads on each

stage are required to calculate currents and voltages.

17

v. LESSONS FROM THE PROTOTYPE

Problems with CLIPS

The greatest limitation to CLIPS is there is no direct support for backward chaining

rules. Backward chaining is reasoning from a desired conclusion toward premises. The

CLIPS version performs all inheritance in the first program phase even for values which

will never be needed. The more elegant solution is to have a backward chaining rule

which causes a value to be inherited only when it is needed. The absence of support

for backward chaining caused the CLIPS version of the prototype to be less expandable

than the ART version. It is difficult to build a very large useful system without backward

chaining because goal directed control becomes the only way to keep the program from

performing unnecessary calculations. The CLIPS prototype uses partial goal direction by

stopping calculations when the value sought is found.

The great limitation of CLIPS which is most likely to motivate the purchase of ART

IS CLIPS does not have a well developed user interface. For example, ART can display

the user a justification network which shows how each fact in the database was created.

ART can also report which patterns in a rule are being matched and which are not. This

debugging tool is missing in CLIPS. This causes the programmer to waste more time

trying to determine why a rule is not firing. The problems with debugging a program in

CLIPS were minimized because the first prototype was developed with ART, so most of

the problems were worked out before the program was run on CLIPS.

Directions for Further Development

Part II of this paper described the design environment targeted for this expert sys

tem CAD tool. Several changes to the prototype must be implemented before it can be

used within a larger system. The purpose of the prototype is to quickly produce a work

ing system which proves the concepts to be used in the final product. For this reason,

compromises are made in the implementation of the prototype. For example, a prototype

usually has an incomplete user interface. These compromises must be well understood and

documented to prevent them from becoming part of the final delivered system.

18

One problem with the current prototype is the building block equations are stored as

rules rather than facts. This will make it more difficult to add equations for new building
blocks dynamically. All the rules with equations should be replaced with a goal directed

control algorithm:

IF there is a goal to find an unknown parameter � in the database

THEN (IF there is an equation in the database

THEN (IF

THEN Evaluate f and assert result as the value of Pi

Remove the goal to find Pi

ELSE Assert a goal to find each unknown parameter

in PI - Pn

ELSE Ask the user for the value of Pi)

ELSE Ask the user for another goal

The primary difficulty preventing implementation of this algorithm is the number of

parameters n is not constant. The author has not determined an acceptable method in

ART or CLIPS to have one rule bind a variable number of patterns. One solution would

to simply write a seperate rule for each possible number of parameters in an equation.

Three approaches for solving problems causes by the limitations of the expert system

building tool are:

(1) Add the required features to ART or CLIPS in a level lower language, such as in

LISP for ART or in C for CLIPS. This is risky because the additions are not likely

to be compatible with future versions of the development systems. Furthermore, the

uncompiled ART code in not available.

(2) Write a "wrap-around" Program which preprocesses the data, runs ART or CLIPS,

and then analyzes it before reporting the results to the user. For example, a program

19

written in C could take the equations describing building blocks and automatically

create all the rules which use these equations before running CLIPS. One problem

with this approach is it might slow down thesystem.

(3) The most difficult solution is to rewrite the expert system in a lower language. This

can result in the most efficient code because features of ART or CLIPS which are not

used do not have to be rewritten.

Another change needed in the prototype is to allow symbolic as well as numeric calcu

lation of equations. One way to do this is to replace all the mathematical operators with

functions which send the equations to a rational simplification algorithm. The program

MACSYMA could be called to perform this simplification. The problem of CLIPS not

allowing nested parentheses can be overcome by replacing parentheses by unique letter

combinations such as LP and RP instead of "(" and ")". An interface function between

the CLIPS operator and MACSYMA would be written in C to add parentheses for MAC

SYMA and replace them with LP and RP for CLIPS. One difficulty in using an external

program such as Macsyma is that some control over the form of the equations might be

lost. The Norton equivalent circuit algorithm returns equations in a form similar to the

forms created with hand analysis. A simplification algorithm is likely to destroy this form.

Another important addition needed in the prototype is to allow complex number

calculations. This change will require each operator to work with imaginary parts for each

number. This change should not effect the structure of the expert system.

The prototype currently allows no more than one feedback loop. This can be extended

to allow any number of feedback loops. For this to be done, the implementation of contexts

or viewpoints must be extended. It must be possible to sprout new viewpoints whenever

an unknown feedback current is discovered.

The final recommended change to the program is to change the input structure. The

present structure was chosen to make pattern matching in the rules as easy as possible.

In hindsight it appears that the pattern matching could have been accomplished with a

simpler circuit description. For this program to be useful it must be able to interface with

circuit descriptions more common to CAD systems. One solution to this problem is to use

20

an extension to the circuit description used by SPICE. A SPICE file puts one element on

an input line rather than one node. This SPICE information will have to be supplemented

with facts used to partition the circuit into building blocks. A compromise solution would

be to write a separate program which takes a SPICE circuit description of building blocks

and creates the description used in the prototype.

21

VI. CONCLUSION

A tool for equation development in an interactive design environment has been de

scribed. The system successfully meets the following three constraints for a useful inter

active symbolic analysis system. First, it is quicker than an engineer at generating the

equations. Like the engineer it is capable of handling large circuits without an exponential

growth in calculation time. Secondly, it produces equations simplified in the same form

as the design engineer would create by hand. Finally, the entire system is easily modified

and expanded by the design engineer personally. The equation developing system is based

upon the Norton equivalent circuit approximation.

A prototype system was implemented using a rule based development program called

CLIPS. The prototype returns correct AC and DC values for voltages, currents, output

impedances, and input impedances. This prototype was demonstrated using BJT amplifier

stage building blocks. The rule based system was used because it made extension to the

building blocks simple. This implementation in CLIPS successfully demonstrated the

algorithm for symbolic equation generation.

22

REFERENCES

[1] M.A. Styblinski, Interviews concerning the requirements of an intelligent design sys

tem, May 1986 - Feb. 1987.

[2] L.W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits",

Electronics Research Laboratory, University of California, Berkeley, Memorandum

NO. ERL-M520, May 9,1975.

[3] M.A. Styblinski, L.J. Opalski, "INTOPT.SPICE.O", pre-release version, Department

of Electrical Engineering, Texas A&M, July 1985.

[4] R. Bogen, et , al., "MACSYMA reference manual", MIT Project MAC, September

1974.

[5] J.D. De Kleer, G.J. Sussman, "Propagation of Constraints Applied to Circuit Synthe

sis", Circuit Theory and Applications, Vol. 8, pp.127-144, 1980.

[6] Ibid.

[7] ART Reference Manual, Inference Corporation, 1985.

[8] CLIPS Reference Manual Version 3.0, NASA: Mission Planning and Analysis Divi

sion's Artificial Intelligence Section, July 1986

[9] Charles L. Forgy, "Rete: A Fast Algorithm for the Many Pattern/ Many Object

Pattern Match Problem", Artificial Intelligence Vol. 19, pp.17-37, 1982.

[10] Wayne Hasty, "Knowledge Acquisition System for CLIPS (KASC), A Help System to

Create CLIPS Rules", Masters of Electrical Engineering Project, Dept. of Electrical

Engineering, April 1987.

23

Appendix A. Analysis of a Feedback Circuit

The circuit used to demonstrate the analysis is a two stage amplifier with feedback of

the type shunt-series.3) In shunt-series feedback, current from the signal at the output is

converted to a voltage which is subtracted from the input voltage.

l
RL

t
� -\

RFB

Stage 1
Stage 2 Stage 3 Stage 4

This circuit was analyzed with Vs = 1V, R, = lOKOhms� RbI = lOOKOhms, Rb2

17KOhms. ReI = lOKOhms, ReI = 8700hms. Rc2 = 8KOhms, Re2 = 1.3KOhms. RL

lKOhm. and Rf = lOKOhms.

3) Taken from "Microelectronic Circuits" by Sedra and Smith, page .5.58

APPENDIX A (Continued) 24

CLIPS (V3.2a 01/09/87)
CLIPS> (load "analyse.")
CLIPS> (load "Cedra-ckt.")
CLIPS> (reset)
CLIPS> (run)

Starting fb-inheritance

Starting dc-l test

viewpoint- dc-l vi v2 are 1.03022242 1.59551072

viewpoint- dc-2 vi v2 are 1.03022242 1. 59551072

Starting ac-l test

viewpoint- ac-l vi v2 are -64.26095581 0.17346773

viewpoint- ac-2 vi v2 are 4077.12182617 -11.00382614

Cascaded Amplifier Circuit Analysis Root Menu

1- Exit to Clips>
2- D.C. analyze circuit stage
3- A.C. analyze circuit stage

2

Please Choose the stage Number to Analyze

1- stage: source-l

2- stage: ce-l

3- stage: ce-2

4- stage: load-l

3

dc Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Currents

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

2

The dc Norton Equivalent seen at the input of stage ce-2 is

0.0053313mAmps and 1.3130e+05ohms.

APPENDIX A (Continued) 25

de Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Current s

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

3

The de Norton Equivalent seen at the output of stage ce-2 is

0.71536756mAmps and 8000ohrns.

de Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Current s

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

4

de Currents in Circuit stage ce-2

The de Current into Terminal rb1 2 is -1.0270e-15 mAmps
The de Current into Terminal rb1 1 is 1.0270e-15 rnAmps
The de Current into Terminal rb2 2 is -1.7302e-16 rnAmps
The de Current into Terminal rb2 1 is 1.7302e-16 rnAmps
The de Current into Terminal re 2 is -0.79247880 rnAmps
The de Current into Terminal re 1 is 0.79247880 rnAmps
The de Current into Terminal rc 2 is -0.78463244 mAmps
The de Current into Terminal rc 1 is 0.78463244 rnAmps
The de Current into Terminal bjt 3 is -0.79247880 rnAmps
The de Current into Terminal bjt 1 is 0.78463244 rnAmps
The de Current into Terminal bjt 2 is 0.00784632 rnAmps
The de Current into Terminal r-f 1 is -5.652ge-17 rnAmps

APPENDIX A (Continued) 26

dc Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Currents

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

5

dc Voltages in Circuit stage ce-2

The dc Voltage at Node n2 is 12 Volts.

The dc Voltage at Node nO is 0 Volts.

The dc Voltage at Node nl is 1.73022223 Volts.

The dc Voltage at Node n4 is 1.03022242 Volts.

The dc Voltage at Node n3 is 5.72294044 Volts.

dc Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Current s

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

6

Circuit stage ce-2 has the following parameter values

Element bjt has value 0.7 100

Element r-f has value 1.0000e+19

Element rc has value 8000

Element re has value 1300

Element rb2 has value 1. 0000e+19

Element rbl has value 1.0000e+19

Element ire has value 5.652ge-20 1.0000e+19

Element irc has value o 1.0000e+19

Element irb has value 0.00018087 10000

APPENDIX A (Continued) 27

dc Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Currents

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

7

Circuit stage ce-2 has the following connections

Terminal rb2 2 is connected at node nO

Terminal re 2 is connected at node nO

Terminal ce 2 is connected at node nO

Terminal rb2 1 is connected at node n1

Terminal rb1 2 is connected at node n1

Terminal bjt 2 is connected at node n1

Terminal rb1 1 is connected at node n2

Terminal rc 1 is connected at node n2

Terminal rc 2 is connected at node n3

Terminal bjt 1 is connected at node n3

Terminal re 1 is connected at node n4

Terminal ce 1 is connected at node n4

Terminal bjt 3 is connected at node n4

dc Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Currents

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

1

APPENDIX A (Continued) 28

Cascaded Amplifier Circuit Analysis Root Menu

1- Exit to Clips>
2- D.C. analyze circuit stage
3- A.C. analyze circuit stage

3

Please Choose the stage Number to Analyze

1- stage: source-1

2- stage: ce-1

3- stage: ce-2

4- stage: load-1

3

ac Circuit Analysis of stage ce-2

1- Return to Root Menu

2- Show Input Norton

3- Show Output Norton

4- Show Current s

5- Show Voltages
6- Show Component Values

7- Show Node Connections

8- Analyze different stage

5

ac Voltages in Circuit stage ce-2

The ac Voltage at Node n3 is 0.75136518 Volts.

The ac Voltage at Node n4 is -0.98187023 Volts.

The ac Voltage at Node n1 is -1.00880289 Volts.

The ac Voltage at Node n2 is 0 Volts.

The ac Voltage at Node nO is o Volts.

APPENDIX B 29

SPICE ANALYSIS OF THE FEEDBACK CIRCUIT

DC Analysis using a Linear Model

.SUBCKT DCBlT 1 2 3

* 1 2 3 IS COLLECTOR BASE EMITTER

VBE 2 3 DC 0.7

Fl 1 3 VBE 100

.ENDS

*TWO STAGE CIRCUIT

VOD 2 0 DC 12

VS 5 0 AC 1

RS 5 6 10K

CS 6 1 100UF

RBll 2 1 lOOK

RB21 1 0 17K

RE1 4 0 870

CEl 4 0 100UF

RCl 2 3 10K

X1DC 3 1 4 DCBlT

RE2 14 0 1.3K

RC2 2 13 8K

X2DC 13 3 14 DCBlT

CL 13 7 100UF

RL 7 0 lK

RF 14 8 10K

CF 8 1 100UF

.END

Results

Nl

N4

N14

1.5955 Volts, N2

0.8955 Volts, N8

1. 0302 Volts

12.0000 Volts, N3

1.0302 Volts, N13

1. 7302 Volt s

5.7229 Volts

APPENDIX B (Continued) 30

SPICE ANALYSIS OF THE FEEDBACK CIRCUIT

AC Analysis

Node Function

1 base of ce-l

2 vdd

3 collector of ce-l and base of ce-2

4 emitter of ce-l

13 collector of ce-2

14 emitter of ce-2

.SUBCKT ACBJTl 123
* 1 2 3 IS COLLECTOR BASE EMITTER

VB 2 4 AC 0.0

RPI 4 3 3679.6035

Fl 1 3 VB 100

.ENDS

.SUBCKT ACBJT2 1 2 3

* 1 2 3 IS COLLECTOR BASE EMITTER

VB 2 4 AC 0.0

RPI 4 3 4779.30762

Fl

.ENDS

1 3 VB 100

*TWO STAGE CIRCUIT

VDD 2 0 DC 12

VS 5 0 AC 1

RS 5 6 10K

CS 6 1 100UF

RB11 2 1 lOOK

RB21 1 0 17K

REl 4 0 870

CEl 4 0 100UF

RCi 2 3 10K

XlAC 3 1 4 ACBJTi

RE2 14 0 1.3K

RC2 2 13 8K

X2AC 13 3 14 ACBJT2

CL 13 7 100UF

RL 7 0 lK

RF 14 8 10K

CF 8 1 100UF

Results

Nl

N14

4.057E-03

9.781E-Ol
Volts, N3

Volts

1.018E+00 Volts, N13 7.486E-Ol Volts

APPENDIX C 31

Representation of a Feedback Circuit

circuit EXAMPLEA.CLP

This is a description of a specific common emitter circuit

This Circuit is from page 558, Sedra and Smith

(deffacts source-1

(stages source-1 nil ir2 1) ;first stage has output at ir2

(instance-of source-1 nort-eq)
(parameters
(parameters
(feedback

source-1 ac-O

source-1 ac-O

source-1 rt ir2

i-thev 0.0001)
rs 10000)

r-f 2»

(deffacts ce-1

(stages ce-1 irb irc 2) ;second stage has input irb and output irc
(instance-of ce-1 common-emitter)

(parameters ce-1 rt rc 10000)
(parameters ce-1 dc-O re 870)
(parameters ce-1 ac-O re 0.000001) ;bypassed by capacitor
(parameters ce-l rt rbl 100000)

(parameters ce-l rt rb2 17000)
(parameters CE:-l ac-O bjt 100)
(parameters ce-1 dc-O bjt 0.7 100)

(voltages ce-l dc-O n2 12)
(feedback ce-1 rt irb r-f 2»

(deffacts ce-2

(stages ce-2 irb irc 3)
(instance-of ce-2 common-emitter)

(parameters ce-2 rt rc 8000)
(parameters ce-2 rt re 1300)
(parameters ce-2 ac-O bjt 100)
(parameters ce-2 dc+O bjt 0.7 100)
(voltages ce-2 dc-O n2 12)
(feedback ce-2 rt ire r-f 1)
(parameters ce-2 dc-O r-f le19) ;cap in series

(parameters ce-2 ac-O r-f 10000))

(deffacts load-l

(stages load-l ir2 nil 4)
(instance-of load-l nort-eq)
(feedback load-l rt ir2 r-f 1) ;also connected at ce-2 ire

(parameters load-l dc-O i-thev 0)
(parameters load-l dc-O rs le19) ;cap in series

(parameters load-1 ac-O rs 1000»

APPENDIX D 32

PROGRAM LISTING FOR PHASE-l

" ,

" , phase-1.clp
" , These rules

" , phase-1
" , phase-2
" , phase-3
" , phase-4
" ,

prepare incoming data for the other rules

creates inherited facts, removes wrong default values

asks user for a goal
calculates value requested in goals
reports the value and returns to phase 3

(defrule start-phase-1
?x <- (initial-fact)

=>

(retract ?x)
(assert (phase 1»)

(defrule inherit-1 "an object with 'is-a' inherits 'is-a' "

(phase 1)
(is-a ?new-object ?old-object)
(is-a ?old-object ?older-object)

=>

(assert (is-a Tnew-object ?older-object»)

(defrule inherit-2 "instances inherit everything except 'is-a' slot-types"
(phase 1)
(instance-of ?new-object ?old-object)
(?slot-type&: (! (eq ?slot-type is-a»

?old-object ?slot $?value)
=>

(assert (?slot-type ?new-object ?slot $?value»)

(defrule inherit-3 "instances

(phase 1)
(instance-of
(is-a

=>

get 'instance-of' instead of 'is-a' "

?new-object ?old-object)
?old-object ?older-object)

(assert (instance-of ?new-object ?older-object»)

(defrule create-dc-ac-vp-parameters "ac&dc inherit from rt (root) vp"
(declare (salience -20»
(phase 1)
(instance-of
(?p ?obj ect rt
(test (II (eq

(eq
(eq

?obj ect ?old-obj ect) ; only for instance

$?x)

?p parameters) (eq ?p currents) (eq ?p vOltages)
?p nort-out) (eq ?p remove-defaults) (eq ?p defaults)

?p feedback»)
=>

(assert (?p ?object ac-O $?x»
(assert (?p ?object dc-O $?x»)

APPENDIX D (Continued) 33

(defrule no-more-inheritance "keeps removed defaults from being reinherited"

(declare (salience -200»
?x1 <- (phase 1)

=>

(retract ?x1)
(assert (phase 1 b»)

(defrule remove-defaults-explicit "input file says remove-defaults so do it"

(declare (salience -30»
(phase 1 b)
(instance-of ?new-obj ect ?old-obj ect) .do only for instances

?x1 <- (defaults ?new-object ?vp ?component $?values)
?x2 <- (remove-defaults ?new-object ?vp ?component)

=>

(retract ?x1 ?x2»

(defrule remove-defaults-implied "parameter already has a value so"

(declare (salience -30» ;remove all defaults before use-defaults

(phase 1 b)
(instance-of ?new-object ?old-object) ;do only for instances

?x1 <- (defaults ?new-object ?vp ?component $?values)
(parameters ?new-object ?vp ?component $?x)

=>

(retract ?x1»

(defrule use-defaults "if value is unknown then assign it the default"

(declare (salience -40»
(phase 1 b)
?x <- (defaults ?new-object ?vp ?component $?values)
(instance-of ?new-object ?old-object) ;do only for instances

=>

(retract ?x)
(assert (parameters ?new-object ?vp ?component $?values»)

(defrule start-phase-2 "phase 1 is over when the agenda is empty"
(declare (salience -10000»
?x <- (phase 1 ?bc)

=>

(retract ?x)
(assert (phase 2»)

APPENDIX D (Continued) 34

(defrule start-fb-inheritance

(declare (salience -1000»
?x1 <- (phase 1 b)
(feedback $?) ;if there is feedback

=>

(retract ?x1)
(printout crlf "

(assert (phase 1 c»)
Starting fb-inheritance" crlf)

(defrule fb-create-ac-parameters
(phase 1 c)
(instance-of ?obj ect ?old-obj ect) ; only for instance

(?p ?obj ect ac-O $?x)
(test (I I (eq ?p parameters) (eq ?p currents) (eq ?p voltages)

(eq ?p nort-out) (eq ?p feedback»)
=>

(assert (?p ?object ac-1 $?x»
(assert (?p ?object ac-2 $?x»)

(defrule fb-create-dc-parameters
(phase 1 c)
(instance-of ?obj ect ?old-obj ect) ; only for instance

(?p ?obj ect dc-O $?x)
(test (II (eq ?p parameters) (eq ?p currents) (eq ?p voltages)

(eq ?p nort-out) (eq ?p feedback»)
=>

(assert (?p ?object dc-1 $?x»
(assert (?p ?object dc-2 $?x»)

