
Application of a Systolic Array in a

Geometry Engine for Computer Graphics

Derek T. Spears

Undergraduate Honors Fellows Program, 1989-90

Texas A& l'vl Universi ty

Electrical Engineering Department

�
\
\

Advisor

onors Director

I. ABSTRACT

The increase in size and complexity of scient ific and engineering datasets

has dictated the need for efficient Computer Graphics systems for visualiza­

tion. Such graphics systems require high speed transformation of vertices

and high speed rendering. A high performance transformation processor is

proposed here for inclusion in a total graphics system. The processor will

incorporate a systolic architecture and extensive pipelining to achieve high

throughput.

TABLE OF CONTENTS

Chapter Page
I. ABSTRACT i

II. INTRODUCTION 1

2.1 Graphics Fundamentals 1

2.2 Computer Architectures 4

2.3 Systolic Arrays 6

III. DESIGN APPROACH

3.1 Criteria 9

3.2 Systolic Array Schedule and Optimizations 10

3.3 Design 12

3.4 Internal [viAe pipelining 14

3.5 Clipping 18

3.6 Rendering 23

IYT. RESlTLTS 24

V. CONCLUSIONS AND DISCUSSION 26

11

I. INTRODUCTION

2.1 Graphics Fundamentals

Graphics processing can be divided into three major stages, transforma­

tion and clip, rendering, and display. In the transformation stage, the points
which comprise a polygon are transformed in 3-space by a 4x4 matrix-vector

multiplication. This matrix operation allows any polygon to be translated,
rotated or scaled, thus allowing the user to reposition it anywhere in 3-space.
The rendering stage of the processor shades the polygon based on lighting and

color models and passes this data to the Display stage which contains video

memory and drawing hardware which allows the polygon to be viewed on the

screen. The focus of this paper is the optimization of the transformation and

clip stage.

The transformation of polygons, as stated earlier, is controlled by a 4x4

transformation matrix. Translation, Rotation, and scaling operations are

able to be performed with specified matrices [1]. This matrix acts upon

the x, y and z coordinates of the vertices which compose the polygon. The

general format is shown in figure 1. This matrix applies to all points in

three-space. In addition to points, polygons require surface normals, used in

lighting calculations, to be transformed also. Since only direction information

is important for normals, only rotation matrices are interesting. The rotation

matrix is only 3x3 and therefore normal transformations can be limited to a

3x3 matrix.

More than one transformation matrix is typically used to orient an 0b­

ject onto a screen. In addition the Global Transformation l\Iatrix, the model

must also have the View Transformation Matrix applied. This matrix cor­

rectly places the model within a specified view volume. If t he model has

a hierarchical structure as in PHIGS (Programmers Hierarchical, Interac-

1

[
all a12 a13

1]r 1 a21 a22 a23
lxy.:lj = [xy.:lj

a31 a32 a33

a41 a42 a43

General l'vlatrix Representation

[1 J ;'1]
Translation Matrix

o

Sy
o

o 1]
Scaling Matrix

[1
0 0

1] [
coso 0 -sinO

1] [
coso si nO 0

1]coso sinO

+
1 0

-r
cosO 0

-sinO cosO 0 cosO 0 1

0 0 0 0 0 0

X, Y, and Z Rotation Matrices

Fig. 1 Transformation Matrices

tive Graphics System) [2], different branches of the hierarchy may have Lo­

cal Transformation Matrices. To find the correct transformat ion matrix for

each individual polygon, the respective matrices must be mult i plied together.
Since matrix multiplication is not associative, the concatena t ion order spec­

ified by the application must be followed.

Clipping occurs when the polygon falls outside of a defined view volume.

2

........
_---­

...........•
.

y
z

lLx
Parallel Projection

.

.
.

..
.

.
.
.

.
.

...
.

.

.

..

.

..

Perspective Projection

Fig. 2 View Volumes

3

Two types of projections are used in polygon viewing (Figure :2 y. The paral­
lel projection defines a unit cube starting at the origin 0,0.0 and extending
in the positive unit axis directions. Perspective projection defines a view

volume with a back plane at z = 1, front plane at z = :min 1 and sides at

y = ±:, x = ±: (3]. The particular viewing environment used is defined by the

user application. If a polygon falls completely outside of the viewing volume,

it is rejected from being being rendered and displayed. If it falls completely
within the viewing volume, it is accepted without modification and passed
on to the rendering and display stages. If the polygon straddles any of the

viewing boundaries, it will have to be clipped according to the intersection

equations and the new points passed on to the remaining stages.

2.2 Computer Architectures

The design of computer graphics systems has closely followed the path of

the development of supercomputing systems. In both worlds, the following
three types of architectures exist. The earliest of such architectures is the

scalar architecture (SISD,or Single Instruction Single Data). Scalar proces­

sors are the simplest design in which a single processor performs one operation
at a time in a serial manner. In this type of system, the amount of time to

complete a task is the number of operations multiplied by the amount of time

per each operation.

An extension of the single, scalar processor is multiple or parallel pro­
cessors (MIMD, or }vIultiple Instruction :\1ultiple Data) (3). If t he problem
can be divided up into many independent tasks, then a speedup roughly pro­

portional to the number of processors used can be obtained. In real life.

dependencies between processes do occur (i.e. Task 2 depends on the answer

currently being computed in Task 1) and the performance increase drops

accordingly. Such data dependencies require synchronization between pro-

4

cessors to maintain the integrity of data. If the .tasks are truly parallel. the

time to completion is simply the number of operations multiplied by the time

per operation divided by the number of processors. When data dependen­
cies do exist, performance tends to be less than this linear relationship due

to wait states invoked by synchronization overhead. This non-linear perfor­
mance degradation is known as Amdahl's Law, which states that the speedup
, S(n), over a scalar processor to be

n

S(n) = 1 + (n - 1)1'1

where f is the fraction of non-parallelizable tasks and n is the number of

processors (5). Graphics Transformations have been shown to be inherently

parallel due to the fact that each polygon is independent. in that the order

of processing polygon transformations is not important [11].
A third type of high performance architecture is the vector processor

(SlMl) or Single Instruction, Multiple Data) [4]. Vector processors imple­
ment a more fine-grained form of parallelism in which each processor con­

tains multiple functional units, and where each functional unit is an adder,

multiplier or other type of simple operation. These functional units can be

chained together in a pipe so that the answer from the first functional unit

can be used by the second in its computation. In example, the vector triadic

equation

could be solved by performing the operation D, = Ai X B, In the multiply
functional unit and the accumulate operation Xi-1 = Di-1 -+- C -1 in the adder

functional unit during the same clock cycle. In this way� one operation per cy­

cle can be realized, providing the vector pipe can be filled. However, the time

to solution for one element is still two cycles with added overhead for storage

5

in the pipe. Again, the problem of dividing our task into smaller. indepen­
dent tasks is presented. As in :vlIMD architectures, performance degradation
occurs as the fraction of serial code increases.

2.3 Systolic Arrays
An efficient pipelined approach to the matrix-vector multiplication prob­

lem is the Systolic Array. The Systolic Array is a very specialized vector

pipeline in which each of the processors is a very specialized cell, such as a

multiply-add cell. According to Kung,

A systolic system is a network of processors which rhythmically

compute and pass data through the system. Physiologists use the

word" systole" to refer to the rhythmically recurrent contraction of

the heart and arteries which pulse blood through the body. In a

systolic computing system, the function of a processor is analogous
to that of the heart. Every processor regularly pumps data in and

out, each time performing some short computation, so that a regular
flow of data is kept up in the network [6].

Figure 3 shows a linearly connected array appropriate for the matrix-vector

problem [7]. Each processor is multiply-add cell. With intelligent scheduling,
this approach can produce one result per cycle.

The systolic array has several advantages over conventional approaches
to matrix operations. The systolic array is very simple in t ha t it has no u:

control unit. This reduces operational overhead and increases performance.
This simplicity of the processing elements (PE's) also reduces area occupied

by the processor and makes it possible for an array to fit 011 a single chip.
The inherent regularity of the systolic array makes for sim ple design and

implementation. A processing element needs only to be designed once and

then replicated and connected to create the array. With these benefits in

6

A41

A31

A21

A 11

fv1AC

A42

A32

A22

A12

A43

A33

A23

A13

MAC fv1AC

Fig. 3. Linearly Connected Array

7

A44

A34

A24

A14

fv1AC

mind, it seems a logical choice to adapt a systolic array to the specific problem
in computer graphic's of geometrical transformations.

8

DESIGN APPROACH

3.1 Criteria

In order to begin design of the systolic based transformation engine, sev­

eral design criteria must be est ablished.

• The processor must be able to sustain a high transformation rate. Tar­

geted performance is on the order of 30 million transformations per sec­

ond (10 million triangles per second), or roughly an order of magnitude
increase over current systems .

• The processor should be compact and regular enough to be easily imple­
mented in silicon using current technology. 3 micron C1/lOS will be used

for comparison purposes .

• The processor must be easily scalable to a parallel system.

Typical computer graphics processors handle their transformations in 32

bit floating point arithmetic. The need for this much precision stems from

problems such as scaling objects out of existence due to lack of precision. Ac­

cording to the IEE-754 floating point standard, numbers between 1.18 x 10-38

to 3.40 X 1038 can be represented [8]. This provides the necessary precision and

the 1EEE-754 standard i a logical choice for the base numeric representation
due to its acceptance in the general computer marketplace.

Due to size and complexity restraints, previous systolic systems have re­

lied on fixed point numbers. Floating point calculations have been handled

by off-chip processors [9]. This methodology does not meet t he requirements

stated, in that we will not be able to fit the entire processor on a single

chip. However, advances in solid state technology have made it feasible to

implement floating point arithmetic on a small enough scale so that sev­

eral functional units could reasonably fit on a chip. A design proposed by·

9

Jeyadevan implements the IEEE- 7.54 floating point standard in a multiply­
add configuration. This cell was chosen to be the the basic multiply-add
cell (�IAC) for this design because of the wide acceptance of the IEEE-7.54

representation and the need for floating point accuracy.

3.2 Systolic Array Schedule and Optimizations

The incorporation of this :NIAC into a systolic pipeline requires a schedule

for I/O operations. A schedule for linear arrays shown by Kung [7] allows

one result to be generated each cycle (Figure 4). This particular schedule

will reverse the order of the input vector to z: Y .x for reasons which will

be discussed concerning clipping. In optimizing this schedule for the general
transformation matrix, it can be seen that the last column of the general
matrix is always composed of three zeros and a one (Figure 1). The purpose

of this column is to preserve the one in the last element of the vector. Since

this one is a constant, it can be held internally and not actually loaded via

the input stream. This will allows us to do away with the last column of the

transformation matrix. Therefore, we have eliminated four multiplications
and three additions. In the actual design, the one in the vector is hardwired

into the last processing element. In further optimizations, complexity of

polygons is restricted to the simplest case, the triangle. Complex surfaces

can be tessellated from triangles so limiting the processor to this primitive
will not prove too restrictive [10].

The data provided to this linear array will come from from a specialized

memory commonly referred to as a Display List (DL). The DL keeps track

of polygons and their affiliated transformation matrices. The transformation

matrices are expected to be stored after concatenation so t hat they my be

used as the correct transformation matrix for the triangle. These matrices

may be pre-computed by a host processor. This approach will remain efficient

10

Ts

To

PEl

(x)

PE2

(y)

PE3

(z)

PE4

(1)

Fig.4. Optimized Schedule for Transformation Processor Systolic Array

as long as the number of triangles remains much greater than the number of

independent transformation matrices. In real-world applications this tends

to be true if the triangles do not all move separately. If a faster matrix com­

position is desired, matrices could be pre-multiplied with ort hogonal systolic

array on the Display List Controller.

As previously mentioned, the vector normals need to be transformed

with the same matrix as each of the associated points. However. translation

of the normal vectors is not desirable. Upon examination of t he transforma­

tion matrix, it can be seen that all translations occur in the last row of the

transformation matrix. The last row can therefore be deleted along with the

11

associated one in the last element of the vector. The new representation is

element per element similar to the original matrix.

[a11[xyz] = [xyz] a21

a31

Fig. 5. Vector Normal Transform Matrix

This transformation can either be handled by a separate, parallel three cell

systolic array, or use the same array as the vertices. Since chip size is a

concern, normals are transformed in the same array as the associated points.
This implementation also reduces I/O bandwidth since now we are only load­

ing three values for the input vector per cycle instead of 6 values.

Since a four element array is still being used, the fourth PE will be passed
a zero as the matrix multiplicand in order to keep from translating the vec­

tor normal. The net result is that the vector normal follow t he vertices

in a steady, uninterrupted stream. An alternate approach that was con­

sidered released vector normal values after the third PE. This would make

the first value of the vector normal become available on the output stream

at the same time as the final value of the vertice, thus doubling the nec­

essary output bandwidth. The net savings in calculation time would be

17% in such a design. The chosen design orders data linearly in the form

Zvert, Yvert, Xvert, Znorm, Ynorm, Znorm

3.3 Design
The overall design of the array is shown in Figure 6. Three of these

pipelines are run in parallel to provide the three vertices necessary for a

triangle. Since each of these vertices uses the same transformation matrix,

only one bus is needed for the matrix input stream. A simple command bus

uses only three bits to determine whether each data input IS an x, y or z

coordinate, whether the data is a point or normal vector, or whether the
12

--�--�---------------�

Fig. 6 Transformatiol)frocessor Architecture

data is invalid.

bit 2 bit 1 bit 0 Command

0 0 0 Data Invalid

1 0 0 Data Invalid

0 0 1 X point

1 0 1 X normal vector

0 1 0 Y point

1 1 0 Y normal vector

0 1 1 Z point

1 1 1 Z normal vector

Table 1 Commands

The command stream is propagated via latches through each processing
element so that the later sages of the processor are able to recognize the data.

A hardwired zero is fed into the accumulator of the first processing element

to clear the accumulator and a hardwired one is fed into the data multiplier
of the last processing element in accordance with the transformation matrix.

3.4 Internal MAC Pipelining

Pipelining in this processor can be expanded by adding pipeline stages

within the J\1AC. This means that the �IAC itself is subdivided into several

stages each having a fairly constant and consistent propagation delay. Care

must be taken in adding more stages to the pipeline in order to prevent

excessive growth in area of the cell due to latches involved in the pipeline.

Also, the design must find the optimum size of each pipeline unit to maximize

total latency time as well as clock cycle time. As shown in Figure 7, total

latency time from start to finish increases due to latch load delays with each

additional pipeline segment. Additional latency penalties can be incurred

14

Pipeline Statistics
1400�--�175

Total Latency
Pipeline Cell Delay1200 150

125

8,1)1) 100
0
-

0.>
0 \

':,1)1) \ 75

\

+1-11) 50

-
-

-

25

- - - - - - - - - - - - - - - - - -

I)�--------�--------�----------�--------�----------�O

10 20 30 40 50

Pipeline Stages

Fig.7 Pipeline Effects on Latency and Segment Delay

15

by having inconsistent pipeline segment delays. For instance, a unit with a

delay time of 20 is broken down into three stages with delay times 10, 6 and

4. The maximum delay is 10 dictating that the clock cycle must be at least

10. Therefore, stage 2 has 4 units of unused time and stage three has 6 units

of unused time. This contributes to an additional 10 units of latency time

incurred by mismatched pipeline delays. Also, delay time in each discrete

pipeline stage tends to become dominated by the latch, whose delay time is

constant, as the amount of pipeline segment delay time decreases. This curve

shows no appreciable benefit after approximately 15 pipeline stages for the

�1AC.

Selection of the optimum pipelining scheme began with finding the small­

est discrete functional unit within the tv1AC. Delay times are chosen in accor­

dance to Hwang's model. The 8 bit subtractor has largest delay time of any

block at 24 6.T. The subdivisions were chosen to keep the individual delays
as close to but less than 24 6.T as possible. Other considerations included

minimizing the amount of IIO paths to keep the latch count low. The sub­

divisions are marked on the MAC overview in Figure 8. The Braun Array

multiplier unit is capable of being pipelined between every row of adders as

seen in Figure 9 (hatched boxes represent latches). However, since the chosen

pipeline segment delay is 24 �T and the Full Adder delay is 6 �T, 4 rows of

Full Adders can fit in one pipeline segment. This gives five st ages of 4 Full

adders and one stage of 2 Full Adders. The final stage is comprised of Carry
Look-ahead adders to prevent carry-around delays and is cont ained in the

segment with the 2 Full Adders. Since the Braun Array is t he only element

in Level one with a delay greater than 24�T, the output busses of the XOR

and 8 bit CLA Adder must contain five additional levels of la t ches in stage

one to keep the data in the same level of the pipe as the Braun Array The

16

..

....

... to

_.,

_·1

• •

..
•

lilt

_·1

+
- ..

t
- ..

-.,

_.,

_.,

1

..

ca.,

•

• •

....­

..,... ...

.........-­
.....

--------�------------. .
•

•

--

--

•

....... ._.-

Fig.8 MAC Flow Chart

17

.

remaining subdivisions occur between levels 1 and 2, levels 2 and 3, levels 6

and 7 and levels 7 and 8.

3.5 Clipping
The decision to clip against a view volume is data-dependent in that it

requires x, y and z to decide whether clipping must be done. Since the systolic
schedule being used produces only one of the values per cycle, these values

must be accumulated. Due to the nature of the clipping criteria (Figure 10),

intelligent ordering of data can eliminate wait-states. It can be seen that if

two compares are to be made per clock cycle (greater than and less than for

each value of the vertice), the z value of the vertice is the only value that

is not data dependent in either parallel or perspective projection. Thus, if

data enters the clipping decision unit in the order z, y, x and the compare

unit delay time is less than 24 S'T: one compare can be made per cycle. In

the perspective case, z is stored and compared with =min, then y with z in the

next cycle, and finally z with z.

To determine a trivial acceptance, we can do a NOR of all the conditions.

If all three points are trivially accepted, then the entire triangle may be passed
without clipping. A bit per bit logical AND of a line will determine a trivial

rejection of that line. If one line is rejected, the remaining two need to be

clipped. If two lines are rejected, the remaining line needs to he clipped. A

rejection of all line allows the triangle to be completely disregarded. The

design of such a clipping criteria unit is shown in Figure 11.

If clipping is necessary, then the following parameterized equations can

be used to solve the intersection of the line and the plane boundary.

Yv = (Y2 - yl)t + Yl

18

A3 B3 A2 B2 A3 B1 A3 BO A2 BO A1 BO AO BO

AJ R6 AS A4 A3 A2 A1 RO

Fig.9. Pipelining in a Braun Array

19

l. Above View Volume u- > 1

2. Below View Volume u- < 0

3. Right of View Volume Xv > 1

4. Left ofView Volume Xv < 0

0. Behind View Volume Zv > 1

6. In Front ofView Volume z , < 0

Parallel Projection

l. Above View Volume Yv > ':v

2. Below View Volume Yv < -Zv

3. Right of View Volume Xv > =v

4. Left of View Volume z , < -':v

.J. Behind View Volume ':v > 1

6. In Front of View Volume ':v < ':min

Perspective Projection

Fig. 10. Clipping Criteria

In example, the clipping equations for the y = 1 in a parallel projection would

be derived by substituting 1 for Yv and solving for i .

t = _(l_-_Yl_)
(X2 - xI)

This value of t is then substituted in the above equations for .r, and Zv.

20

I
I

i
I

I
i
I

,

I
I
I
;

i
f

• .-......_._�I'"�,.....;ro��..........,..._...- _,.�.._���__.�_.�_.....,.,.�-�-.�_�

Fig. 11. Clipping Criteria Unit

21

_ _

(1 - yI)(':2 - ':1)
_

""'V
- + ""'1

(Y2 - yI)

and for y = z in a perspective projection

t =
(':1 - Y1)

(Y2 - yI) - (.:-.:1)

(X2 -xI)(':l -yI)
z , = + Xl

(Y2 - yI) - (':2 - z1)

(Y2 - Y1)(':1 - Yl)
v- =

() ()
+ Y1

Y2 - Y1 - z2 - Zl

These equations require four floating point addition/subtractions, one float­

ing point multiply and one floating point divide for the parallel case and

six floating point addition/subtractions, one floating point multiply and one

floating point divide for the perspective case [3].
Two possibilities exist for the solution of these clipping equations. A gen­

eral purpose floating point unit or a clipping pipeline could be implemented.
The clipping pipeline would contain and adder/subtractor, a divider and a

multiply adder chained together. The question of whether a pipeline is justi­
fied depends on whether or not enough data can be passed to the pipeline to

keep it full. If the number of actual clipped polygons remains high and con­

tinuous, a clipping pipe would efficient. In actuality, the number of polygons

clipped is usually small compared to the number of total polygons and all of

these clipping operations will not tend to happen frequently enough to fill a

pipeline.
A general-purpose floating point unit could be used to compute the in­

tersections. This unit would run slower than the transformat ion engine and

would inhibit performance if clip intersections needed to be calculated. Since

data would be leaving the clip calculations would now be delayed, triangles

leaving the transform and clip system would not be in the same order that

22

they entered. This is the same problem faced by parallel graphics systems

such as the Alliant GX4000 [11]. In order to keep data in order, the clipping
unit could halt the transformation pipe when a triangle needs to be clipped.
This would incur the clipping penalty to all triangles after the current one.

A solution that is used in parallel systems is to associate a data dependency

tag with each triangle. If rendering data (lighting models, etc ...) for that

triangle is different than the triangles that follow, the dependency tag could

be used to trap this condition and then halt the transform pipe. Otherwise

the triangle ire-inserted into the stream at a later time. This solution only
incurs the penalty to the remaining triangles if it is necessary. This solution

also has the added benefit of allowing easy extension of the single transform

processor to multiple transform processors.

3.6 Rendering
Before rendering can be done, the clipped triangle must then be projected

onto a 2D projection plane. This operation simply requires the stripping
of the z component in parallel projections. In perspective projections, the

following matrix is used [1].

In order to accommodate the performance of a high speed transform proces­

sor, rendering be able to be done at near the same rate as transformation.

The Triangle Processor INormal Vector Shader is a pipelined rendering sys­

tem capable of sustained 1 million shaded triangles per second. l� se of several

of these pipe in parallel leads to throughput rates of up to 5 million triangles

per second.

23

IV. RESULTS

Two versions of the transformation processor were considered. The sim­

pler version had no internal pipelining in the ivIAC. An improved version was

also considered with the proposed internal pipelining scheme of the l'vIAC.

The single pipelined version of the MAC has a total area of 7372 �A and

a total delay time of 1,56 tiT. The transformation pipeline utilizes twelve of

these units. In addition, each unit contains 1, 3 bit latch for the command

stream and 3, 32 bit latches for holding incoming data for the l'vIAC. Each of

these latches is a simple D type latch.

Instance Segment Delay � T Total Latency �T Area �A

MAC1 (no pipelining) 156 156 7372

MAC2 (11 stage pipeline) 24 264 12,352

D Latch - 7 6

Table 2. De lay and Area Parameters

The approximate total area for the non-pipelined 3-vertice transformation

processor

��otal = 12 x �:�ACI -r- 3 x 32 x 12 x ��atch + 3 x 12 x u�atch = 95,592

To compute actual area, �.4 is taken to be 25 x 25 microns. This gives an

effective area of .6 cm2, which while easily fit on a 1 cm2 chip. The number

of triangles per second non-pipelined :tv1AC if �T is taken to be .7,5 ns:

1 1

"6 (�jfACI + ��atch) X .75 X 10-9

1 1

"6 (156 + 7)(.75 x 10-9)
= 1.36million - triangles - per - second

The memory bandwidth required to supply this system is

6 triangles)(
vert -

norms)(.

)(
bytes Meqalnjt e s

(1.36 x 10 6.
l Smput - streams 4) = 260

sec ir ian q e stream sec

24

The pipelined version of the MAC gives a total area of

� �0 t a I
= 12 X � �1 AC 2

+ 3 X 32 X 12 X � �ate h
+ 3 X 12 X .3. �ate h.

= 155, 352

Actual area, sing �A of 25 x 2,5 microns squared is .97 cm2• The pipelined
�IAC's clock cycle time calculation is based on pipeline segment delays

1 1

6 (�¥ACI + ��atch) X .75 X 10-9

1 1

"6 (24 + 7) X .75 X 10-9
= 7.1million - triangles - -per - second

Total latency time has, however, increased from 1,56 to 264. This Increase

in latency is due in part to the delays caused by the latches themselves.

The latches cause a 77 �T increase in latency. The remains 79�T is due to

"wasted time" in various pipeline segments due to not utilizing the entire

24�T available. The memory bandwidth required to supply this system is

(
6 triangles)(vert - norms

(
.

)(bytes) Gigabytes
7.1 X 10 6.

l Tin.put - streams 4 = 1.2
sec trian.q e stream sec

25

V. DISCUSSION AND CONCLUSIONS

The non-pipelined version of the geometry engine produces only 1 million

triangles per second. Currently workstation technology is capable of provid­

ing the same performance. However, the systolic processor does fit on a chip
whereas the geometry stages of other processors tend towards several floating

point chips. With the extra room on the chip, a smaller normal vector trans­

formation pipe could be installed composed of three parallel systolic arrays

consisting of three PE's each. This would effectively double the speed of the

processor.

The internally pipelined approach shows more promise for real perfor­
mance benefits. Although slightly lower than design expectations, the 7 mil­

lion triangles per second is healthy performance for a single chip processor.

Because of its size, parallel methods such as those used in the GX4000 could

be implemented with the systolic processor. More aggressive chip technology,
such as 1 micron C�10S, could turn in even larger performance gains.

Unfortunately, due to the speed of the processor, the memory bandwidth

requirements are extraordinarily high. Liberal use of interleaved DL memory

systems could overcome this bottleneck. For instance, the memory bandwidth

per input stream is only 170 megabytes per second. Partitioning DL memory

off into separate regions for each vertice and each matrix row and use of

separate busses for each of these regions would make the memory bandwidth

problem more manageable.
The Triangle Processor INormal Vector Shader would be a n appropriate

rendering architecture for this type of transformation engine. The trian­

gle Processor could support the speed of the transforms and maintain high

throughput. The problem of high speed clipping is still a bot t leneck though.
If large amounts of polygons required clipping, the throughput of the graphics

26

system could be reduced dramatically. More investigation needs to be done

to alleviate this problem.
The systolic array geometry engine, with enough pipelining, provides

performance that is close to the criteria established. Due to its compactness,

it could show promise in a high speed graphics environment.

27

REFERENCES

[1] J.D. Foley, A. Van Dam, Fundamentals of Interactive Computer Graphics, Addison­

Wesley Publishing Co., Reading, Ma. pp. 255-277, 1983.

[2] S. S. Abi-Ezzi, A. J. Bunshaft, "An Implementers View of PHIGS",

IEEE Computer Graphics and Applications, pp. 13-22, Feb. 1986.

[3] J. D. Foley, A. Van Dam, Fundamentals of Interactive Computer Graphics, Addison­

Wesley Publishing Co., Reading, Ma. pp. 295-297, 1983.

[4] J. P. Hayes, Computer Architecture and Organization, McGraw Hill Book Co., New

York, New York, pp. 570-622, 1988.

[5] J. P. Hayes, Computer Architecture and Organization, McGraw Hill Book Co., New

York, New York, pp. 586, 1988.

[6] H. T. Kung, C.E. Leiserson, "Systolic Arrays ," Sparse Matrix Symposium,pp. 256-

282, 1978.

[7] S. Y. Kung, VLSI Array Processors, Prentice Hall, Englewood Cliffs, New Jersey, pp.

138-139,1988.

[8] J. P. Hayes, Computer Architecture and Organization, McGraw Hill Book Co., New

York, New York, pp. 196-198,1988.

[9] Y. Y. J. Leung, M. A. Shanblatt, "Systolic array simulation for quantification of

speed/area parameters," Simulation, pp. 295-300, June 1985.

[10] M. Deering, S. Winner, B. Schediwy, C. Duffy, N. Hunt, "The Triangle Processor and

Normal Vector Shader," ACM Computer Graphics, pp. 21-30, 1988.

[11] J. G. Torborg, "Parallel Processing Techniques Overcome Graphics Bottlenecks,"

Computer Technology review, Spring 1988.

28

