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Abstract

In manufacturing systems, there exists a trade-off between speed and accuracy.

The faster a system is allowed to move, the higher the rate of production, however this is

at the expense of decreased quality. This project attempts to develop a hardware/software

digital control system to optimize this relationship for a two-axis manufacturing platform

using a fuzzy logic speed control algorithm.

The fuzzy logic speed controller maintains accuracy by reducing the tracking speed

around sharp comers. This action has been compared to the thought process of a person

driving a car down a winding road. When the road begins to turn sharply, the driver

reduces the speed to maintain control of the vehicle, but as the road begins to straighten

out, the driver once again increases the speed of the automobile. Just like a human

operator, the SelfPaced Fuzzy Tracking Controller has the ability to optimize tracking

speed based on the current conditions of the path it is following.

The development of the control system was based on the following need

statement: to develop an accurate control system for a two-dimensional positioning

system, using the Motorola 6811 microcontroller, a software implementation of the Self

Paced Fuzzy Tracking Controller, and the Aerotech X-Y table. The system was required

to perform several functions, including path storage and generation, current motor status

sensing, local position control, fuzzy logic speed control, and actuator signal conversion.

Many of these functions were incorporated into hardware components, which resulted in a

multi-processor control system with one dedicated to each motor, and a Motorola 6811

microcontroller to coordinate data transfer.
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I. Introduction

In manufacturing systems, there exists a trade-off between speed and accuracy.

The faster a system is allowed to move, the higher the rate of production, however this is

at the expense of decreased quality. This project attempts to develop a hardware/software

digital control system to optimize this relationship for a two-axis manufacturing platform

using a fuzzy logic speed control algorithm. The purpose of the fuzzy logic controller is

to maximize the speed that the system is allowed to move while at the same time

minimizing the incurred contouring error.

Following a basic discussion of the fundamentals of fuzzy logic, Section III gives

an introduction to the theory of operation of the fuzzy logic speed controller which was

incorporated into the control code. Section IV provides an overview of the existing

system hardware which was used in the experiment, including the two-axis positioning

system, the electric motors and the position encoder system, and the Motorola 6811

microcontroller used to run the control software.

Section V presents an overview of the needs and requirements of the system,

including detailed discussions of the systems which must be included in the final design

and methods to realize these systems. The following two sections deal with the specific

details involved in the development of the hardware and software system used to drive the

motors. Finally, Section VIII gives a summary of the results of the experiment.



II. Introduction to FuzzyLogic

Is a temperature of 80 °F warm or hot? Within the confines ofBoolean logic,

where a proposition is either true or false, it would be a difficult to come to a satisfactory

conclusion. On the other hand, fuzzy logic is multi-valued, where instead of being totally

true or false, it is possible to be partially true and partially false at the same time. So an

acceptable reply to a fuzzy logic system would be “some ofboth”. To gain a better

understanding of fuzzy systems, one must be familiar with the basic concepts associated

with fuzzy logic. Fuzzy logic processing proceeds in three basic steps: fuzzification, rule

evaluation, and defuzzification.

The first step in fuzzy logic processing is fuzzification. In this step, the input

variables are transformed from “crisp” inputs to “fuzzy” inputs. A “crisp” number is one

that would occur in the real world. For example, a “crisp” temperature would be 80 °F.

First, fuzzy labels must be assigned to cover the range of all possible values applicable to a

system variable, also known as the universe of discourse for a variable. Figure 1 shows a

possible fuzzy label assignment for a temperature input variable.

Cool Warm Hot

40 50 60 70 80 90 100

Temperature (F)

Figure 1: Possible Fuzzy Labels for a Temperature Input Variable

2



Next, membership functions are established to give numerical meaning to each fuzzy label.

A membership function defines the range of input values that correspond to a label. Fuzzy

membership functions do not define cut-off points where a label applies fully on one side

and not at all on the other, as is the case in Boolean logic. Instead they define a region

where a particular fuzzy label gradually changes from being fully applicable to completely

inapplicable. A set of possible membership functions for the temperature system is shown

in Figure 2.

Figure 2: Conventional vs. Fuzzy Set Definition

A membership function for a given label specifies the degree ofmembership for each

possible input value. For example, from the above figure it can be seen that a temperature

of 80 °F has a degree ofmembership of 0.5 in the fuzzy label WARM, and a degree of

membership of 0.5 in the fuzzy label HOT.
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The second step in fuzzy logic processing is rule evaluation. In this step, fuzzy

logic rules are evaluated to determine what control action should be taken for a given set

of inputs. Just as in Boolean logic, fuzzy decisions are made by evaluating sets of if-then

statements. However, instead of each statement being absolutely true or false, it may be

true or false to varying degrees. The syntax for fuzzy logic rules is:

IF antecedent 1 AND antecedent 2... THEN consequent 1 AND consequent 2...

where the antecedents and consequents compare a variable name with a fuzzy label as in:

antecedent 1 = Temperature is HOT

The numerical value associated with each antecedent is defined as the degree of

membership of the input variable in the fuzzy label specified in the antecedent statement.

Since multiple rules may be true at the same time, the fuzzy logic processor must

determine the strength of each rule by looking at he value of the antecedents. If there is an

“AMD” statement connecting two antecedents, then the fuzzy processor will use the

minimum value of the two antecedents as the rule strength. Once a value for rule strength

has been assigned to each rule, the next step is to determine the fuzzy output. This is

accomplished by comparing the rule strength of all rules that specify the same output

action. Intuitively, ifmultiple rules apply, the one that is the most true will dominate the

output. The multiple rules are combined to determine a single fuzzy output for each fuzzy

label. This process is repeated for every membership function for output variables

specified in the antecedents of fuzzy rules. For example, ifTemperature were an output

variable for the control system, there would be a single output from the rule evaluation

step for the fuzzy labels COOL, WARM, and HOT.
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In the final step of fuzzy logic processing, known as defuzzification, all of the

values obtained from rule evaluation are transformed into a single value. This process can

be thought of as transforming the fuzzy outputs to a single “crisp” output for the system.

The degree ofmembership value for a fuzzy label is mapped into its membership function

for the variable. This process is repeated for all fuzzy labels, and a weighted average

technique is used to determine the “crisp” output of the system.
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III. SelfPaced Fuzzy TrackingController

The objective of the Self Paced Fuzzy Tracking Controller is to maintain

contouring accuracy while minimizing the time required to complete a given path. The

SelfPaced Fuzzy Tracking Controller maintains accuracy by reducing the tracking speed

around sharp corners. This action has been compared to the thought process of a person

driving a car down a winding road. When the road begins to turn sharply, the driver

reduces the speed to maintain control of the vehicle, but as the road begins to straighten

out, the driver once again increases the speed of the automobile. Just like a human

operator, the Self Paced Fuzzy Tracking Controller has the ability to optimize tracking

speed based on the current conditions of the path it is following.

Input variables to the fuzzy tracking controller include the current tracking speed

of the motors (v), the current curvature of the path (c), and the change in curvature (cc),

where:

cc = (previewed curvature - current curvature)

The output of each rule is in terms of a relative change in velocity, and the velocity for the

next step is determined by:

v(n+l) = v(n) + cv(n)

where v(n+l) is the new velocity of the motors, v(n) is the previous velocity, and cv(n) is

the change in velocity as determined by the SelfPaced Fuzzy Tracking Controller. The

smaller the current curvature of the path, the faster the tracking speed may be set. Thus,

as the curvature becomes smaller, the preview distance for calculating previewed

curvature should be increased to allow sufficient time to plan the tracking velocity.
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The control rules for the SelfPaced Fuzzy Tracking Controller are derived from a

human’s driving behavior. For example:

if v is S and c is M and cc is NS then cv is PS

This control law states that if the path is slowly straightening out (cc is NS) then slightly

increase the speed (cv is PS). Twelve fuzzy logic rules are developed for the Self Paced

Fuzzy Tracking Controller which cover the entire range of the system’s operation. For

computational efficiency, the rules are divided into two sub-sets based on whether the

curvature of the path is increasing or decreasing. From this division, only six of the twelve

rules need to be evaluated for a given situation.
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IV ExistingHardware

From the beginning of the project, two pieces of hardware are specified to be used

in the final design and implementation of the system: the Aerotech X-Y table, and the

Motorola 6811 central processing unit.

A. Positioning Table

The X-Y positioning table consists of two stages with the top stage mounted on

top of and perpendicular to the bottom stage. A schematic diagram of the two-axis

positioning system is shown in Figure 3.

Figure 3: Two-Axis Positioning System Configuration

Each stage has a length of24 inches, allowing a 24 inch by 24 inch usable workspace.

Mounted at the ends of each stage are optical limit switches, used to sense when the
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positioning stage has reached the limit of travel. This signal can be used to terminate

power to the motors once the switch is tripped.

1) Drive System

The motors used for the X-Y table are Aerotech model 1075 DC permanent

magnet servo motors. This particular model is capable of a maximum rotational speed of

5000 rpm, and is capable of a continuous power output of 140 watts. Attached to the

motor by a flexible coupling is the shaft which the table rides on. Moving the table from

one end of the shaft of the other requires 158 revolutions of the shaft, corresponding to a

shaft pitch of 0.158 in/rev.

2) Position Encoder System

Also connected to the motor shaft is the rotational encoder system. The encoder

translates the rotational motion of the motors into an electrical signal to be interpreted by

the controller. The Datametric Sinewave Encoder, which is the model used on the

Aerotech motors, has a resolution of 200 pulses per revolution, which corresponds to

0.00079 inches per pulse for a single encoder line. The encoder has three output signals:

SIN, COS, and MARKER. The SIN and COS signals are sinusoidal waveforms with an

amplitude of 0.5 volts, and a DC offset of+2.5 volts. The MARKER signal is an absolute

position signal which pulses to a logic low state once per revolution.

B. Motorola 6811 Microcontroller

The Motorola 6811 is a single-chip programmable device, known as a

microcontroller. This particular chip has a bus speed of 2 MHz, and an on-chip memory

bank of 8 Kbytes ofROM, 256 Bytes ofRAM, and 512 Bytes ofElectrically-Erasable-
9



Programmable-Read-Only-Memory (EEPROM). Five input/output ports are provided on

the Motorola 6811, however this project is only concerned with Ports B, an output only

port, and Port C, an eight bit input/output port. For development and testing of programs

for the microcontroller, Motorola provides the Evaluation Board, or EVB. The EVB

essentially the Motorola 6811 microcontroller with a collection of support chips to

provide increased flexibility to develop and test application programs. This is the product

that the control software for this project was developed and tested on.
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V Control SystemNeedAnalysis

The development of the control system was based on the following need

statement: to develop an accurate control system for a two-dimensional positioning

system, using the Motorola 6811 microcontroller, a software implementation of the

Self Paced Fuzzy Tracking Controller, and the Aerotech X-Y table. In its barest

form, this project involves development of an interface between the path data, stored in

the Motorola 6811, and the Aerotech X-Y table. The control system required for the

project involves dual levels of control. On one level, the system must have a position

control system to allow it to accurately move from point A to point B. On the other level,

the system must include a software implementation ofHuang and Tomizuka’s SelfPaced

Fuzzy Tracking Controller to set the appropriate motor speed for given path conditions.

A schematic diagram of the dual level controller is shown in Figure 4.

Path Path
f> SPFTC £> Motors—>

Database Generator

Local
Controller4>

Figure 4: Schematic Diagram ofDual Level Controller

In order to fulfill the need statement, the system can be broken down into five main

sub-systems: Path Data Storage, Current Motor Status, Local Position Control, Fuzzy

Logic Speed Control, and Actuator Signal Conversion.
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A. Path Storage and Generation System

The Path Data Storage system is a means of storing arbitrary path data. This

function may be implemented in one of several ways, due to the trade-offs involved given

the memory and speed limitations of the Motorola 6811. One possibility would be to

store an arbitrary, complex path as a collection of geometric shapes, and subroutines could

be stored in the memory of the EVB to produce those shapes when called on. For

example, one routine could move the X-Y table in a line given two endpoints, and another

could create an arc given a radius, center point and beginning and ending angles. This

novel idea would definitely be an ideal way to store a very complex path in a minimal

amount of space, however decoding the path in real-time would consume an excessive

amount of processor time.

Another solution, which would not require quite as much processing time would

be to discretize the path into a list of (x,y) points. This way the controller would only

have to move the x-y table from one point to the next, but there exists one primary

difficulty that could arise from such a tactic, the memory limitations of the EVB.

Discretizing a complex path into a list of points would certainly occupy a large amount of

memory, and memory would certainly become the limiting factor to the complexity of the

path. There are advantages to both techniques. While one would provide a compressed

path storage medium and as much accuracy as the user requires, the other would most

certainly reduce the amount of processing required at each step, which would in turn

speed up the motion of the system.

As a compromise between the two extremes, the path could also be stored as an

analytic approximation of the path, such as spline based or some other functional based
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approximation. For instance, would be used in which case, only coefficients a,

would be stored. From here, one generic subroutine could be implemented to evaluate

fi(x) given the values of / and x. This approach would consume less memory than the

tabular approach, and use less processing time than the subroutine approach, but it would

only be an approximation of the true path. Regardless of the method used to store the

data, there must be a method to derive a set of desired (x,y) coordinates lying on that path

separated by a constant arc length. All of this data must be readily available, since it is

frequently accessed by several of the other sub-systems.

B. CurrentMotor Status System

As the name implies, the function of the Current Motor Status system is

continuously monitor the status ofboth the x- and y-motors. In addition to keeping track

of the position of each motor, the Current Motor Status system must know the velocity of

each motor as well as other vital parameters such as limit switch activation and locked

rotor conditions. Accomplishing this task involves an interface with the shaft encoders

and limit switches ofboth motors, a pair of accumulators to count the number of pulses

received, and a precise timing device. The timing device will allow the Current Motor

Status system to compute the time rate of change ofmotor position, or velocity, of each

motor. A locked rotor condition could be detected by sensing when the position of the

motor is constant, or the time rate of change ofmotor position is zero.
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C Local Position Control System

The Local Position Control system is primarily concerned with moving the

Aerotech X-Y table from point A to point B, and correcting for any error incurred along

the way. In order to accomplish this task, an interface must be in place to facilitate easy

access to the information generated by the Path Data Storage system. This information

will be used to assign the desired x- and y-coordinates of the table at a particular point in

time. Additionally, the position control system must know its own location in real-time.

This involves an interface with the Current Motor Status system to receive up to date

information about the position of each motor at any instant of time. Finally, the Local

Position Control system will involve a control algorithm will be used to compensate for

any error between actual and desired positions of the x- and y-motors by way of the

Actuator Signal Conversion system.

D. Fuzzy Logic Speed Control System

The next component of the control system is the Fuzzy Logic Speed Control

system. Based on the Self-Paced Fuzzy Logic Controller for Two-Dimensional Motion

Control, this system selects a maximum speed for the motors, based on current path

conditions, in order to minimize tracking error. Again, the fuzzy controller would require

an interface with the Path Data System in order to determine current path conditions, such

as: current path curvature and upcoming change in path curvature. Additionally, the fuzzy

controller would have to interface with the Current Motor Status system to obtain

information about the current speeds of the motor. Based on the fuzzy logic rules, the
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controller would select an appropriate incremental change in speed, which would be

output to the motors via the Actuator Signal Conversion system.

E. Actuator Signal Conversion System

Finally, the Actuator Signal Conversion system is required to convert the digital

output signals from the processor into analog signals which can be used by the motors.

These signals must also be amplified significantly in order to drive the large motors of the

Aerotech X-Y positioning system.

F. Conceptual Designs:

Two possible configurations arise when considering fulfilling the requirements of

the design. The first is a total software implementation of the system, and the second is a

combination hardware/software system. Before an appropriate structure for the system

can be determined, the project need statement must be reviewed. The system must be able

to correct for any error encountered while tracking, it must have the ability to follow an

arbitrary two-dimensional path, and it must use the SelfPaced Fuzzy Tracking Controller

algorithm for determining motor speed. Next, the limitations of the Motorola 6811 must

be assessed. The 6811 has a limited amount of processing power, therefore the fewer

calculations required the more smoothly the system will run. Keep in mind that the 6811

is responsible for controlling both the x- and y-motors, and in order for their motion to

appear simultaneous the control program must be very streamlined. Another limitation of

the 6811 is the small amount ofmemory available on which to store programs and data.

Minimizing the number of routines in the control code will both streamline the operation

of the program and consume less of the available memory. In light of the limitations of the
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central processing unit selected for this project, it was decided to move as many

operations as possible offof the processor and onto integrated circuit hardware

components. The processes which were able to be moved form the central processing unit

to integrated circuit components, as well as the selection of the IC components will be

discussed in the following section.
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VI. HardwareDevelopment

This section of the report contains the final design of the hardware to interface the

Motorola 6811 with the motors, component selection and component functions, and the

final circuit schematic diagram. As stated previously, the decision to develop a

combination hardware/software control system resulted in moving several of the intended

functions of the system off of the central processing unit into sub-processors. The

functions which were able to be achieved using integrated circuit components were:

current motor status monitoring system, local position control system, and the actuator

signal conversion system. A complete circuit diagram is shown in Appendix A.

A. LM628 Precision Motion Controller

Recently National Semiconductor Corporation released a new integrated circuit

designated the LM628 Precision Motion Controller. The LM628 is a dedicated motion-

control processor designed for use with a single DC servo motor which provides an

incremental position feedback signal, such as the Aerotech motors used in the X-Y table.

Note that the LM628 is only capable of controlling a single motor; in the final design two

LM628 chips had to be used. In effect, this single chip accomplishes two of the three

previously mentioned functions which were incorporated into hardware, the current motor

status system and the local position control system. While this component simplified

several aspects of the design, it also created some complications by requiring new

interfaces between the Motorola 6811 and the shaft encoders from the motors. A block

diagram of a typical LM628 application is shown in Figure 5.
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Figure 5:TypicaI System Block Diagram

The host processor communicates with the LM628 through an input/output (I/O) port to

facilitate programming the desired trajectory and the local position controller. The

LM628 includes an 8-bit output port to interface with an external digital-to-analog

converter to produce the signal that is amplified and applied to the motor. An incremental

encoder provides feedback for closing the position servo loop. In operation, the LM628

subtracts the actual position (feedback position) from the desired position, and the

resulting position error is processed by the local position controller to drive the motor to

the desired position.

1) Position Feedback Interface

The LM628 interfaces to a single motor via an incremental encoder, or in the case

of the Aerotech X-Y table, the shaft mounted encoders. The chip is equipped with three

18



inputs: two quadrature signal inputs, and an index pulse input. The quadrature signals are

used to keep track of the absolute position of the motor. Each time a logic transition

occurs at one of the quadrature inputs, the LM628 internal position register is incremented

or decremented accordingly. This provides four times the resolution over a single encoder

input line. A diagram of the quadrature input to the LM628 Precision Motion Controller

is shown in Figure 6.

B

A

i

1 ! 2 ! 3 ! 4 }<h- State! 1 ! 2 ! 3 ' 4

to— Index Pulse

Figure 6: Quadrature Encoder Input Signals

The direction that the motor is traveling in is determined by observing the order that the

state transition between the two quadrature inputs occurs. Table 1 displays the logic used

by the Precision Motion Controller to determine the direction ofmotion.

Table 1: Quadrature Encoder Direction Logic

States B A

1 1 0

2 1 1

3 0 1

4 0 0

1 1 0

2 1 1
3 0 1
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When the logic states appear in the order 4, 3, 2, 1, the A signal leads the B signal and the

motor is turning in the clockwise direction (defined as positive by the LM628). On the

other hand, when the states appear as 4, 1, 2, 3, then the B signal is leading the A signal

and the motor is turning in the negative direction.

The interface with the motor shaft encoders is one of the areas where additional

circuitry had to be implemented. The signals from the encoders are sinusoidal waveforms

with a DC offset of2.5 volts and an amplitude of 0.5 volts. The LM628 defines a logic

high state as a voltage greater than or equal to 2.4 volts. Unfortunately, a logic low state

can only be guaranteed below 0.4 volts, with the area in between as an undefined region.

In order to obtain a reliable interface between the LM628 and the shaft encoders, an

additional integrated circuit had to be installed.

To allow a compatible interface between the shaft encoders and the LM628, the

sinusoidal encoder output must transformed into a quadrature signal which varies between

0 volts and +5 volts. All four encoder channels were able to be changed using National

Semiconductor Corporation LM339 Low Power Low Offset Voltage Quad Comparator

chip. Applying the encoder output signal to the positive input of one of the four

comparators, and applying +2.5 volts to the negative input, the comparator has an output

of+5 volts when the positive input is greater than the negative input, and the chip has an

output of 0 volts when the positive input is less than the negative input.
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2) Trajectory Generation

The trajectory generator computes the desired position of the motor versus time.

In the case of this project, the host processor (the Motorola 6811) specifies acceleration,

maximum velocity (from the Fuzzy Logic Speed Control system), and final position (from

the Path Data Generation system). The LM628 uses this information to affect the move

by accelerating as specified until the maximum velocity is reached, or until deceleration

must begin to stop at the specified final position. At any time during the move, the

maximum velocity and/or the target position may be changed, and the motor will

accelerate or decelerate accordingly.

3) PID Compensation Filter

To achieve the requirements of the Local Position Control system, the LM628

uses a digital implementation of the classical three term controller to compensate the

control loop. The motor is held at the desired position by applying a voltage to the motor

that is proportional to the position error, plus the integral of the error, plus the derivative

of the error. The following discrete-time equation illustrates the control performed by the

LM628:

n

u{n) = kp • e(n) + ki • 'T^ejri) + kd • \e{n') - e(rT - 1)]
A/=0

where u(n) is the motor control signal output at sample time n, e(n) is the position error at

sample time n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are

the gains for the proportional, integral and derivative terms respectively.
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4) Host Processor Interface

The host processor interface is the link between the Motorola 6811 and the

LM628. The 8-bit asynchronous parallel input/output is achieved through a technique

known as strobed I/O. This entails signaling pins on the Precision Motion Controller to let

it know that data is available, or that data is being requested. A command is sent to the

LM628 in the following manner: first the command code is sent from the host computer to

the LM628, then a number (from one to seven) of two-byte data words are sent from the

host computer to the LM628, or vice versa depending on the nature of the command.

There are four main functions performed by the host processor interface: writing

commands to the LM628, reading the status bit of the LM628, and writing and reading

data from the LM628.

The host processor writes commands to the LM628 via the host I/O port when the

Port Select (PS) input pin is logic low. The desired command code is applied to the

parallel port line of the host computer (OUT), and the Write (WR) input pin is strobed.

When writing command bytes, it is necessary to first read the status byte, and check the

state of a flag called the “busy bit”. When the busy bit is logic high, no command write

may take place. A timing diagram of a typical command write is shown in Figure 7.
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Figure 7: Command Byte Write Timing

The host processor reads the status byte in a similar manner. When the PS input pin is

logic low, the Read (RD) pin is strobed, and status information remains valid as long as

RD is low. Shown in Figure 8 is the timing diagram for a typical status byte read

operation.

x<^^

PS x<^^

\ /RD

< DoloOUT Valid

Figure 8: Status Byte Read Timing

Writing and reading data to and from the LM628 are done with the PS input pin

logic high. These writes and reads are always a number (from one to seven) of two-byte

words, with the first byte of each word being the more significant. Each byte requires a

write (WR) or a read (RD) strobe. When transferring data words, it is necessary to first

read the status byte and check the state of the busy bit. Timing diagrams for typical read

and write data commands are shown in Figure 9 and Figure 10 respectively.
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Figure 10: DataWord Write Timing

Again, the host processor interface is the source of numerous complications due to

incompatibilities between the Motorola 6811 and the LM628. First of all, the Motorola

6811 has only one 8-bit bi-directional data port. Since the 6811 will be responsible for

controlling two LM628 chips, a complex switching scheme was developed to use the

single I/O port on the Motorola 6811 to interface with both of the LM628 chips. In order

to physically implement this interface, five bits of an eight bit output only port on the

Motorola 6811 were dedicated to control signals. These five control bits are: X/Y Select,

Read/Write, Port Select, Read Strobe, and Write Strobe. The X/Y Select bit is used to

select between communication with the x- or y-motor. As the name implies, the

Read/Write bit determines the direction of the communication between the two

processors. The Port Select pin is used exclusively by the LM628 to determine what type
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of signals are being requested (commands/data), and the Read and Write Strobe pins are

also exclusively used by the LM628 and their function will be discussed in the following

paragraph.

Another complication arose when trying to interface the strobing capabilities of the

Motorola 6811 with the LM628 chips. In this case, the Motorola 6811 had one output

strobe and one input strobe, while the LM628 require two independent output strobe pins

in order to operate the read and write pins. To overcome this difficulty, National

Semiconductor Corporation’s 74LS123 integrated circuit was installed. The 74LS123 is

capable of generating dual independent output pulses from a few nano-seconds to

extremely long duration. The Read and Write Strobe command bits were connected to

this device to generate the read and write strobe signals. When the output bit goes

through a transition from logic low to logic high, the chip outputs a pulse which lasts for a

pre-determined length of time. The pulse duration is set through the selection of a resistor

and capacitor to use in the 74LS123 circuit. For this project a 100 kQ resistor and a 100

pF capacitor were used to generate a pulse which lasts 5.5x103 ns.

B. Interfacing the LM628 to the Motorola 6811

As stated before, interfacing the two LM628 chips to theMotorola 6811 with a

single eight bit input/output port created many problems. In order have the capability to

communicate with both motors simultaneously, a complex switching scheme was

developed. The plan which was implemented involves two National Semiconductor

Corporation 74LS245 Octal Bus Transceiver integrated circuits for communication from

the Motorola 6811 to the LM628 chips. Also, two National Semiconductor Corporation
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74LS257 2-Data Selector/Multiplexer integrated circuits were used to allow

communication from the LM628 chips to the Motorola 6811.

1) Communicationfrom the Motorola 6811 to the LM628

The 74LS245 Octal Bus Transceiver is designed for asynchronous two-way

communication between data busses. This particular integrated circuit was selected

because of its isolation capability. Depending on the logic state of the Enable pin (pin 19),

the device either allows communication across the bus, or isolates the bus as if it were

removed from the circuit. The following table summarizes the operation of the Octal Bus

Transceiver:

Table 2: Function Table for Octal Bus Transceiver

Enable (G) Direction Control Operation
B data to A busL L

IsolationH X

H = high level, L = low level, X = irrelevant

The direction control pin of each transceiver was permanently grounded to achieve

a logic low state, while the Enable pin was connected to the Read/Write output pin on the

Motorola 6811. When the Read/Write pin is logic low, the Motorola 6811 is in Write

mode, and the Octal Bus Transceiver allows communication from the Motorola 6811 to

the LM628. On the other hand, when the Read/Write pin is logic high, the transceiver

goes into isolation effectively removing the components from the circuit.

Notice that the hardware does not have the capability to turn on one transceiver

and not the other. Communication from both LM628 chips simultaneously is avoided
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through the use of the Chip Select pin on the LM628. The Precision Motion Controller

chip only permits communication with the host computer when the Chip Select pin is at a

logic low state. To allow only one controller to communicate at a time, the X/Y Select

pin on the Motorola 6811 is connected directly to the LM628 for the x-motor, while its

inverse is connected to the LM628 for the y-motor. Thus, when X/Y Select is logic low,

the Chip Select pin is logic low at the x-motor and logic high at the y-motor allowing

communication with the x-motor and not the y-motor. When the X/Y Select pin is logic

high, the reverse is true.

2) Communicationfrom the LM628 to the Motorola 6811

The 74LS257 2-Data Selector/Multiplexer is designed to select between two

inputs for a single output signal. Each 74LS257 chip is capable of accepting four sets of

input bits and producing four outputs. Because of this, two chips were used, with the top

four bits of each LM628 host I/O port is connected to one data selector, and the bottom

four bits are connected to the other. The following table summarizes the operation of the

2-Data Selector/Multiplexer integrated circuit:

Table 3: Function Table for 2-Data Selector

Output
Control

Select Input A Output YInput B

H X X X Z

L L LL X

L L XH H

L H X L L

L H X H H

H = high level, L = low level, X = irrelevant, Z = isolation
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First of all, the select pin (pin 1) was connected directly to the X/Y Select pin on

the Motorola 6811. Thus, when the X/Y Select pin is logic low, the 2-Data selector uses

input A, which is connected to the x-motor. On the other hand, when the X/Y Select pin

is logic high, the chip uses input B, which is connected to the y-motor. The Read/Write

pin on the Motorola 6811 is first put through an inverter and connected to the Output

Control of the 2-Data Selector. When Read/Write is logic low, the Motorola 6811 is in

write mode, and the inverse signal, logic high, puts the selector in a high impedance state,

isolating it from the circuit. On the other hand, when Read/Write is logic high, the

Motorola 6811 is in read mode, and the inverse signal, logic low, allows the chip to select

the A or B input channel. This allows the LM628 to send data to the Motorola 6811.

Notice that when the Octal Bus Transceiver is in a high impedance state, the 2-Data

Selector is active, and vice versa. This ensures that the hardware may only perform one

operation (read or write) at a time. The following table illustrates the function of each

control bit by showing he state of each affected device at both logic states of the bits.

Table 4: Summary of Control Bit Functions

Pin Logic Low Logic High
X/Y Select X-Motor State Y-Motor State

CS Low on LM628-X
CS High on LM628-Y
Input A (LM628-X) Selected

CS High on LM628-X
CS Low on LM628-Y

Input B (LM628-Y) Selected
Read/Write Write Mode (6811 to LM628)

Transceiver in Active State
Read Mode (LM628 to 6811)
Transceiver in Isolation St.
Selector in Active StateSelector in Isolation State

Port Select Write Commands to LM628
Read Status Bit

Read Data from LM628
Write Data to LM628
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C Digital to analog conversion and signal amplification

The final component of the interface between the Motorola 6811 and the Aerotech

X-Y table is the connection between the LM628 chips and the motors. The Precision

Motion Controller chip is equipped with an eight bit output port for connection with a

digital to analog converter. The digital output of the LM628 varies from $00 to $FF in

hexadecimal, with $00 being full speed counter-clockwise, $80 being zero speed, and $FF

as full speed clockwise. The digital to analog converter changes this digital signal to an

analog signal to drive the motors. The output from the digital-to-analog converter is a

low-current signal, and to drive the large motors of the Aerotech X-Y table, the analog

signal must be power amplified. This is accomplished using a National Semiconductor

Corporation LM675 Power Operational Amplifier. Using such a device not only provides

reliable signal amplification, but also includes several safety features built into the device.

The LM675 has short circuit protection as well as thermal protection which could prevent

costly damage to the table motors and the LM675 device.

29



VII. Control SoftwareDevelopment

Before going into the development of the control software, it is necessary to

review the function structure of the software system. As shown in Figure 11, the system

is responsible for storing path data, and generating an array of (x,y) points from this data.

LM628

Path Data

Storage
Path

SPFTC
Generator

LM628

Figure 11: Control Software Schematic

The code must also compute path parameters such as current path curvature and change in

path curvature. Velocity of the motors must be specified using the Self Paced Fuzzy

Tracking Controller algorithm, and finally the control software must interface the

Motorola 6811 with both of the LM628 Precision Motion Controller chips to transmit

data. From this list of system functions and the limitations of the Motorola 6811

microcontroller, two driving requirements emerge for the control code. First, the code

must be streamlined; the fewer calculations and operations the code must perform, the

better. Second, the control software must be compact such that it will fit an a minimum

amount ofmemory.
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A. Design Selection

1) Programming Language

Based on the functions of the system, and the design requirements, several

decisions were made in the development of the software to better fulfill the requirements.

First, assembly language was chosen for the control software language. Using this

language allows the programmer to fully optimize the code, since he/she has absolute

control over the processor. The program must be developed in a logical step by step

process, where nothing is assumed. This approach lends itself to the problem at hand,

because the higher degree ofprogrammer control allows for better optimization of system

resources.

2) Path Data Storage andPath Generation

In order to minimize the number of calculations required at each iteration of the

control loop, the path generation function was removed. To replace this sub-system, the

path is stored in the Motorola 6811 memory as an array, as illustrated in Table 5:

Table 5: Path Data Storage Format

Current
Path

Curvature

Change in
Path

Curvature

Increment
in X-

Position

Increment
in Y-

position

X-Velocity
Scaling
Factor

Y-Velocity
Scaling
Factor

Cl CCi Vxl Vy,AXi AYj
C2 CC2 Vx2 Vy2ax2 ay2

Cn ccn VxnAXn AYn

The parameters which are stored in the path data array are the increment in the x- and y-

position to move from the current position to the next position, the current path curvature,
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the change in path curvature based on the preview distance, and the x- and y- velocity

scaling factors. The position is stored as an incremental position for two reasons: 1)

instead of storing a full 32 bit position, the position increment may be stored as an eight

bit number reducing the number ofmemory bytes required to store the path, and 2) the

incremental position aids in decomposition of the overall velocity, as determined by the

SelfPaced Fuzzy Tracking Controller, into individual velocities for the x- and y-motors.

3) SelfPacedFuzzy Tracking Controller Implementation

The third and final change implemented to achieve the requirements of the

software design was to reduce the SelfPaced Fuzzy Tracking Controller algorithm to a

two-input, single-output system. Although the SelfPaced Fuzzy Tracking Controller was

reduced to a more simplified version, the basic theory behind the controller is still in place.

Instead of three input variables, the modified fuzzy controller only has two, curvature and

change in curvature. Also, instead of the output variable being a relative change in

velocity, it is an absolute velocity. These changes minimize the number of steps involved

in the fuzzy controller routine to decrease code size and increase speed of code operation.

The rule base for the modified SelfPaced Fuzzy Tracking Controller is shown in the

following table:

Table 6:RuIe Base for Modified SPFTC

C

S LM

Ss L M

CC M SM M

SS SL
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Fuzzy rules are derived from the above table as illustrated by the following example:

if c is S and cc is S then v is L

which states that if the path curvature is small and is not changing much in the preview

distance then the velocity is large.

B. Path Parameter Calculations

In the operation of the control software system, multiple real-time calculations

must be performed to determine the conditions of the path at a given instant of time. The

first ofwhich is the current curvature of the path. For a path where the y-coordinate may

be represented as a function of the x coordinate, the path curvature is calculated by:

c(x) = ^l + [fix)]2
Another calculation which must be performed at each iteration of the control code is the

decomposition of the velocity specified by the SelfPaced Fuzzy Tracking Controller

algorithm into appropriate velocities for the x- and y-motors. Using the incremental

changes in the x- and y-position and a few trigonometric relationships, the decomposed

velocity is found by:

V,-1
= V sin tan

VyS

( vx
y=V cos^tan 1 -yJ

C ControlSoftware Flowchart

The operation of the control system software may be divided into two sections: 1)

the hardware initialization section, and 2) the control loop.
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1) Initialization Section

The hardware initialization section is responsible for initializing both the Motorola

6811 microcontroller and the LM628 Precision Motion Controller chips, and a flowchart

for the initialization code is shown in Figure 12.

Initialization

\k

Reset Hardware

\l/

Initialize
Motorola 6811
Microcontroller

\y

Initialize
LM628s

\i/

Figure 12: Flowchart for Initialization Section ofControl Code

The first set of operations in the control code must define the areas of the Motorola 6811

memory that the control code will use. This includes definition of system variables,

memory locations to store program code and path data, memory location of the stack, and

initialization of system pointers such as the path data pointer. Following the Motorola

6811 hardware initialization, the LM628 chips must be initialized. The first command to

be sent to both chips is the Reset LM628 command. This command results in setting the

PID filter coefficients, the trajectory parameters, the motor position counters, and the
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motor control output to zero. After this command, the Load Filter Parameters

command must be executed on both motors to set the PID filter coefficients for the

Precision Motion Controllers. Once the filter parameters have been loaded into the

LM628 buffers, the Update Filter command must be sent to make the new filter

parameters valid. This command completes the initialization section of the code.

2) Control Loop

Following hardware initialization, the software system falls into a control loop

which is executed repeatedly until the desired path is complete. A flowchart for the

control loop software is shown in Figure 13.
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SPFTC
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to Motors

LastNo
Data
Point?
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Figure 13: Flowchart for Control Loop Operation

The first operation in the control loop is to reference the stored path data to obtain

parameters for the position increment in the x- and y-direction, the current curvature at

that point, the previewed change in curvature, and the scaling factors to decompose the

velocity set by the SelfPaced Fuzzy Tracking Controller. Once these parameters have

been read, the SelfPaced Fuzzy Tracking Controller subroutine is called to determine the

set speed for the motors. The assembly code for the SelfPaced Fuzzy Tracking

Controller was developed using a computer package called FIDE. This allows the
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programmer to input membership functions in graphical form and fuzzy logic rules in

natural language terms, and the package will convert the rules and membership functions

into an assembly code routine for the Motorola 6811. Once the SelfPaced Fuzzy

Tracking Controller subroutine outputs a velocity, the scaling factors are used to change it

into a velocity for the x- and y-motors. Finally, all of this data is assembled, and the Load

Trajectory Parameters command is sent to the LM628 chips followed by the path data

for that iteration of the control code. Once this command and all data has been sent to the

buffers of both motion control chips, the Start Motion command is sent to better

synchronize the motion of the system. At this stage, the control code tests to determine

whether the end of the path has been reached, and either stops or jumps back to the

beginning of the control loop.

The control software is written with a modular, top-down approach which utilizes

as many subroutines as possible. This reduces the size of the control code by using

portions of the code again and again. For example, the code sequence to send a command

to the motors is implemented in a subroutine. Whenever the control software needs to

write a command to the LM628, it pushes the code for the command onto the stack and

calls the write command subroutine.
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VIII. Experimental Results

In the end, the control software was developed in three separate stages, each

incorporating new commands and greater levels of complexity. Stage one, which is listed

in Appendix B, is a simple program which would command the Precision Motion

Controller chips to reset, and then continuously read the current motor position from the

device. The main function of this program was to test the operation of the system

hardware, ensuring that data could both be read from and written to the LM628. The next

program, denoted Stage II and shown in Appendix C, is written to tune the system

operation. This program performs a reset on one of the LM628 chips, loads a

proportional gain into the controller, and move a set distance of ten inches. This

technique, known as tuning the PID controller through observing the response of the

system to a step input, is commonly used to obtain the best response from a controller.

Once the best gains for the PID control algorithm have been selected, the third stage of

the program, listed in Appendix D, could be implemented. This program is the full

version of the control program, which is able to track an arbitrary path of (x,y) points and

includes the fuzzy control routine to set the desired motor speed based on the current path

conditions.

Unfortunately, the system hardware did not even pass the first stage of software

development. The code itselfwas valid, and the microcontroller was producing the

appropriate signals, however, the LM628 Precision Motion Controller chips were

determined to be damaged. Upon performing a hardware reset on the chips, they are

designed to display a particular code at the host communications port, which indicates that
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a successful chip reset has been performed. Also, the motor output port which connects

to the digital-to-analog converter is supposed to automatically reset to the “zero” value of

$80 in hexadecimal. Neither the successful reset code not the “zero” motor output were

observed in the hardware. Based on this, it was concluded that the hardware was

defective, and unfortunately could not be replaced within the time frame of this project.

Despite the failure of the Precision Motion Controller chips, it was possible to

observe the successful operation of the remaining system hardware. Using an

oscilloscope, the levels of the Read/Write, Port Select, and Read and Write strobe control

bits were observed. From this observation, all of the software functions were working

properly, and well within the specifications of the Precision Motion Controller device.

This project is intended to be the background material for a master’s thesis project.

Once the control system is up and running, it will provide a performance benchmark in

terms of speed and accuracy of the two-axis positioning system. From there, different

system configurations using microcontroller of various speed and accuracy will be used to

determine the optimum motion control configuration. This optimum configuration would

be that which provides the greatest level of speed and accuracy while at the same time

being cost efficient.
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AppendixA. Experimental CircuitDiagram
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AppendixB. Stage I Control CodeListing

Equates - Registers will be addressed with Ind,X mode**

*

/Starting address for register block
/Output port B
/I/O port C
/Port C direction Control
/POSITION DATA (C000-C003)
/COMMAND DATA

$1000
$1004
$1003
$1007
$C000
$C004

♦REGBAS EQU
PORTB EQU
PORTC EQU
DDRC EQU
POSIT EQU
COMM EQU

*** Start of program

Prog starts in EVB RAM at $C005
Top of User's stack area on EVB

$C005
#$0047
#$1000
#$00
COMM

WRCOM

#$0A
COMM

WRCOM

#$C000
RDATA
RDATA

LOOP

ORG
LDS
LDY

RESET MOTOR
PUSH ONTO STACK

WRITE COMMAND
READ POSITION Command
STORE COMMAND
WRITE COMMAND
RESET DATA STORAGE POINTER
READ FIRST 2 BYTES

READ LAST 2 BYTES
INFINITE LOOP TO READ POSITION

LDAA

STAA
JSR
LDAA
STAA

LOOP

JSR
LDX
JSR
JSR
BRA

♦Subroutine to
BUSY LDAA

STAA
LDAA
STAA

TEST BSET
BRCLR

BCLR

test busy bit (X-only)
#$00
DDRC

#$08
PORTB

$04,Y,$02
$03,Y,$01,GO
$04,Y,$02
TEST

$04,Y,$02

All port C lines to input
SET PORT C TO INPUT

X/Y=L, R/W=H, PS=L, RD=L, WR=L
STORE PORTB CONFIG
STROBE READ PIN
IF BUSY BIT CLEAR, EXIT LOOP
CLEAR READ STROBE
LOOP BACK AND TEST AGAIN
CLEAR READ STROBE

BRA

BCLRGO
RTS

Write Commands to LM628 (X-Only)
RETREIVE COMMAND

♦Subroutine to
WRCOM LDAB

LDAA

STAA
LDAA
STAA
STAB
BSET
BCLR

COMM

#$FF
DDRC

#$00
PORTB

SET PORT C TO OUTPUT

X/Y=L, R/W=L, PS=L, RD=L, WR=L
STORE PORTB CONFIG
PUT COMMAND ON PORT C
STROBE WRITE PIN
CLEAR WIRTE STROBE PIN
TEST BUSY BIT

PORTC

$04,Y,$01
$04,Y,$01
BUSYJSR

RTS

*** Subroutine
RDATA LDAA

STAA
LDAA
STAA
BSET
LDAA
BCLR
STAA

to Read Data from LM628 (X-only)
#$00
DDRC

#$0C
PORTB

$04,Y,$02
PORTC

$04,Y,$02
$00,X

SET PORT C TO RECEIVE

X/Y=L, R/W=H, PS=H, RD=L, WR=L
SET COMMAND BITS

STROBE READ PIN
LOAD RESULT FROM LM628
CLEAR READ STROBE
STORE
INCREMENT ADDRESS POINTER
STROBE READ PIN

INX

$04,Y,$02BSET
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LDAA
BCLR
STAA
JSR

PORTC

$04, Y,$02
$00,X
BUSY

;LOAD RESULT FROM LM628
;CLEAR READ STROBE
;STORE IN ADDRESS
;TEST BUSY BIT
;INCREMENT ADDRESS POINTERINX

RTS ;

42



Appendix C. Stage II ofControl CodeListing

** Equates - Registers will be addressed with Ind,X mode
*

*regbas EQU
PORTS EQU
PORTC EQU
DDRC EQU
COMM EQU

EQU
GAIN EQU

EQU
EQU
EQU
EQU

*** RAM Variable Assignments
*** Start of program

$1000
$1004
$1003
$1007
$C000
$C001
$C003
$C005
$C007
$C00B
$C00F

;Starting address for register block
Output port B
I/O port C
Port C direction Control
LOCATION FOR COMMAND STORAGE
LOC FOR FILTER CONTROL WORD
LOC FOR PROPORATIONAL GAIN
POSITION CONTROL WORD

ACCELERATION
VELOCITY
POSITION

FCW

PCW
ACCEL
veloc
POSIT

$C013
#$0047
#$C001
#$1000
#$00
COMM
WRCOM

*** DEFINE BITS IN MEMORY

;Prog starts in EVB RAM at $C000
;Top of User's stack area on EVB

ORG

LDS

LDX
LDY
LDAA
STAA

RESET MOTOR
PUSH ONTO STACK
WRITE COMMANDJSR

#$0008 ;FILTER CONTROL WORD
FCW

#$00FF ;PROPORTIONAL GAIN
GAIN

#$002A ;POSITION CONTROL WORD
PCW

#$0000 ;TOP BYTES OF ACCELERATION
ACCEL

#$0025 ;BOTTOM BYTES OF ACCELERATION
ACCEL+02

#$0002 ;TOP BYTES OF VELOCITY
VELOC

#$BB0D ;BOTTOM BYTES OF VELOCITY
VELOC+02
#$0000 ;TOP BYTES OF POSITION
POSIT

#$CE40 ;BOTTOM BYTES OF POSITION
POSIT+02

LDD
STD
LDD
STD
LDD
STD
LDD

STD
LDD
STD
LDD

STD
LDD
STD
LDD
STD
LDD
STD

*** END PARAMETERS
LDAA
STAA

#$1E
COMM

;LOAD FILTER PARAMETERS Command

;WRITE COMMAND
/WRITE FILTER DATA
/WRITE DATA
/UPDATE FILTER COMMAND

WRCOM
WRDATA
WRDATA

#$04
COMM
WRCOM /WRITE COMMAND

*** END INITIALIZATION SECTION
#$1F /LOAD TRAJECTORY COMMAND
COMM

JSR
JSR
JSR
LDAA
STAA
JSR

LDAA
STAA
JSR WRCOM

WRDATA
WRDATA
WRDATA
WRDATA
WRDATA

/WRITE COMMAND
/WRITE DATA
/WRITE DATA
/WRITE DATA
/WRITE DATA
/WRITE DATA

JSR
JSR
JSR
JSR
JSR
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JSR WRDATA
WRDATA

#$01
COMM
WRCOM ;WRITE COMMAND

;ENDLESS LOOP

WRITE DATA

WRITE DATA

START MOTION COMMAND

JSR

LDAA

STAA
JSR
BRA ENDEND

*** SUBROUTINES

*STROBE READ PIN
RDSTR BSET

BCLR
$04,Y,$02
$04,Y,$02

;STROBE READ PIN
;CLEAR READ STROBE BIT

RTS

*STROBE WRITE PIN
WRSTR BSET

BCLR
$04,Y,$01
$04,Y,$01

;STROBE WRITE PIN
;CLEAR WRITE STROBE BIT

RTS

*TEST BUSY BIT OF LM628-X
BUSY #$00

DDRC

#$00
PORTB

;A11 port C lines to input
;SET PORT C TO INPUT
;SETUP PORTB

LDAA
STAA

LDAA

STAA
JSR RDSTR

$03,Y,$01,TEST
TEST ;STROBE READ PIN

;TEST AGAIN IF BUSY BIT HIGHBRSET
RTS

*WRITE DATA TO THE LM628-X
WRDATA
*** NOTE THAT BYTES TO SEND MUST BE AN EVEN NUMBER!!!

#$FF
DDRC

#$0C
PORTB

$00,X

LDAA
STAA
LDAA

STAA
LDAA

;SET PORT C TO OUTPUT

;SET COMMAND BITS
;LOAD DATA
;INCREASE COUNTER
;PUT DATA ON PORTC
;STROBE WRITE PIN
;RETREIVE DATA
;INCREASE COUNTER
/PUT DATA ON PORTC
/STROBE WRITE PIN
/TEST BUSY BIT

INX
STAA PORTC

WRSTR

$00,X
JSR
LDAA
INX

PORTC
WRSTR
BUSY

STAA
JSR
JSR
RTS

*WRITE A COMMAND TO THE LM628-X
WRCOM LDAA

STAA

LDAA
STAA
LDAB
STAB

#$FF
DDRC

#$08
PORTB

/SET PORT C TO OUTPUT
/SET UP CONTROL BITS

COMM
PORTC
WRSTR
BUSY

/RETREIVE COMMAND
/PUT COMMAND ON PORT C
/STROBE WRITE PIN
/TEST BUSY BIT

JSR
JSR
RTS
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AppendixD. Stage IIIControl CodeListing

** Equates - Registers will be addressed with Ind,X mode
*

Hegbas Equ
Portb EQU
PqrTC EQU $03
E>t>lRC EQU $07

Starting address for register block
Output port B

Input/Ouptut port C
Data Direction port C

$1000
$04

CoUNTX EQU
county equ

$DFF0
$DFF7

*** RAH Variable Assignments

Start variables in EVB RAM (upper$D000
half)

ORG

Half-cycle delay (in 0.5pShdly 2RMB

increments)
PWMPlP
PWMDC1
PWMDC2
IC1DUN
XC1MOD

1% of PWM period (1 to 256 cycles) Ex 10-7
Duty cycle for PWM signal at OC2 pin
Duty cycle for PWM signal at OC3 pin
flag: 0-not done,1-pulse measured
s/w mode flag: FF-off,0-lst,1-last

1RMB
1RMB
1RMB

1RMB
1RMB

edge
OVCNT1 Overflow count (upper 8-bits of1RMB

result)
Pulse Width in cycles (16-bits)
Temp for H6TOD8 (3 bytes)
Time of first edge (16-bits)
Period in cycles (16-bits)
Temp for conversion (16-bits)
Freq in Hex (16-bits)
Pulse Width (16-bits hex)
Decimal result buffer (8 bytes

RESl
HTEMP
FRSTE
PERC
TEMPI
FREQH
HPW
DBUFR

2RMB

3RMB

2RMB
2RMB
2RMB
2RMB
2RMB
8RMB

ASCII)
* Some routines use only first 5 bytes of DBUFR
PWMPER RMB Period of PWM signals in (cycles)

OC2 high offset (calculated)
OC2 low offset (calculated)

2
OFFHI RMB
OFFLO RMB

2
2

$cooo Prog starts in EVB RAM at $C000ORG
SEI

*End initialization section
LDAA #$00
PSHA
LDAA #$00
PSHA
JSR
JSR
LDX

LOOP LDAA
STAA

Initialize motor command

Initialize motor command

Write command to x&y motors
Load filter parameters x&y

Reset path data pointer
Load path curvature data

Set up SPFTC invar c
Increment data pointer

Load change in curvature data
Set up SPFTC invar cc
Increment data pointer
Fuzzy speed setting routine

Load Vx scaling factor
Increment data pointer
Store contents of IY register

Reset IY register

WRXY
LFIL

#$0000
$B7FF,X
$INPUTS+00

INX

$B7FF,X
$INPUTS+01

LDAA
STAA
INX
JSR SPFTC

$B7FF,XLDAA
INX
PSHY

#$0000LDY
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Find Vx component of velocity
Load Vy scaling factor

Increment data pointer
Find Vy component of velocity

Reset original contents of IY
Output desired motion

Start motion command

JSR
LDAA

DECOMP

$B7FF,X
INX
JSR
PULY
JSR
LDAA
PSHA
LDAA
PSHA
JSR
BRA

DECOMP

OUTPUT

#$01

#$01 Start motion command

Write command to x&y motorsWRXY
LOOP

DECOMP Subroutine to decompose Velocity into Vx and Vy
$OUTPUT+00 Put velocity in acc B

Multiply and keep top 8 bits
Velocity scaling factor

LDAB
MUL

LDAB
MUL

#$F1

$VELOC,Y Store in memorySTD
INY
INY
RTS

SPFTC

; For AVMAC11 Macro Assembler,
; the following 3 lines should be included without comment symbol:
; PUBLIC INPUTS, OUTPUTS, FIU
; DEFSEG variables, ABSOLUTE
; SEG variables

ORG $00
; c is stored in the INPUTS+00
; cc is stored in the INPUTS+01
INPUTS RMB $02
; v is stored in the OUTPUTS+00
OUTPUTS RMB $01
TVLST RMB $09
IN_BUF RMB 1
MF1_REG RMB 1
MF2_REG RMB 1
AND_REG RMB 1
OR_REG RMB 1
TUH_REG RMB 1
TUL_REG RMB 1
SUH_REG RMB 1
SUL_REG RMB 1
OUT_REG RMB 1
BUF_REG RMB 1

ORG $D000
MF_OFF EQU $D000
IMFPTR

FDB MFl
FDB MF2
FDB MF3
FDB MF4
FDB MF5
FDB MF6
FDB MF7
FDB MF8

MFl
FCB $01
FCB $03
FCB $00
FCB $20
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FCB $FF
FCB $80
FCB $00
FCB $00
FCB $FF

MF2
FCB $02
FCB $03
FCB $00
FCB $20
FCB $00
FCB $80
FCB $20
FCB $FF
FCB $FF

MF3
FCB $00
FCB $03
FCB $00
FCB $00
FCB $00
FCB $80
FCB $20
FCB $00
FCB $FF

MF4
FCB $01
FCB $03
FCB $00
FCB $20
FCB $FF
FCB $80
FCB $00
FCB $00
FCB $FF

MF5
FCB $02
FCB $03
FCB $00
FCB $20
FCB $00
FCB $80
FCB $20
FCB $FF
FCB $FF

MF6
FCB $00
FCB $03
FCB $00
FCB $00
FCB $00
FCB $80
FCB $20
FCB $00
FCB $FF

MF7
FCB $00
FCB $01
FCB $00
FCB $00
FCB $FF
FCB $FF

MF8
FCB $00
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FCB $01
FCB $80
FCB $00
FCB $FF
FCB $FF

FIU
JSR INIT
LDAA INPUTS+$00
STAA IN_BUF
LDAB #$01
JSR MF_SUB
STAA TVLST+$00
LDAB #$02
JSR MF_SUB
STAA TVLST+$01
LDAB #$03
JSR MF_SUB
STAA TVLST+$02
LDAA INPUTS+$01
STAA IN_BUF
LDAB #$04
JSR MF_SUB
STAA TVLST+$03
LDAB #$05
JSR MF_SUB
STAA TVLST+$04
LDAB #$06
JSR MF_SUB
STAA TVLST+$05
LDAA TVLST+$02
STAA AND_REG
LDAA AND_REG
STAA OR_REG
LDAA TVLST+$05
STAA AND_REG
LDAA TVLST+$01
JSR MINl_OP
JSR MAX2_OP
LDAA TVLST+$05
STAA AND_REG
LDAA TVLST+$00
JSR MIN1_0P
JSR MAX2_OP
LDAB #$00
JSR DFZ_C
LDAA TVLST+$03
STAA AND_REG
LDAA TVLST+$01
JSR MIN1_0P
LDAA AND_REG
STAA OR_REG
LDAA TVLST+$04
STAA AND_REG
LDAA TVLST+$01
JSR MIN1_0P
JSR MAX2_OP
LDAA TVLST+$04
STAA AND_REG
LDAA TVLST+$00
JSR MINl_OP
JSR MAX2_OP
LDAB #$80
JSR DFZ_C
LDAA TVLST+$03
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STAA AND_REG
LDAA TVLST+$00
JSR MIN1_0P
LDAA AND_REG
STAA OR_REG
LDAB #$FF
JSR DFZ_C
JSR DIV_SUB
LDX #$00
LDAA OUT_REG
STAA OUTPUTS,X
RTS

MINl_OP CMPA AND_REG
BCC MIN1_E
STAA AND REG

MIN1_E
MAX2 OP

RTS
LDAA AND_REG
CMPA OR_REG
BCS MAX2_E
STAA OR REG

MAX2_E
DFZ C

RTS
LDAA OR REG
MUL
TAB
CLRA
ADDD TUH_REG
STD TUH_REG
CLRA
LDAB OR_REG
ADDD SUH_REG
STD SUH REG
RTS
LDD TUH_REG
LDX SUH_REG
FDIV
BCS DIV_1
XGDX
STAA OUT REG

DIV SUB

RTS

DIV 1 CLR OUT REG
RTS
CLR TUL_REG

CLR TUH_REG
CLR SUL_REG
CLR SUH REG

INIT

RTS
ASLB

SUBB #$2
CLRA
ADDD #MF_OFF
XGDX
LDX $0,X
LDAA $0,X
STAA MFl REG

MF SUB

INX
LDAA $0fX
STAA MF2_REG
LSL MF1_REG
LSL MF2 REG
INX

MF 1 XGDX
ADDD #$3
XGDX
LDAA $0,X
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LSR MF1_REG
LSR MF2_REG
CMPA IN_BUF
BLO MF_1
LSR MF1_REG
BCS MF_2
JSR MF_S2
ADDB MF1_REG
BCC MF_4
LDAB #$FF

MF 4 TBA
RTS

MF S2 DEX
LDAA $0,X
STAA MF1_REG
LSR MF2_REG
BCC MF_3
JSR MF_S1
LSRD
LSRD
LSRD
LSRD
TSTA

BEQ MF_7
LDAB #$FF

MF_7
MF 3

RTS
JSR MF SI

TSTA

BEQ MF_5
LDAB #$FF

MF_5
MF SI

RTS
DEX

LDAA $0,X
STAA MF2_REG

LDAA IN BUF

DEX
SUBA $0,X
LDAB MF2 REG

MUL
RTS
JSR MF_S2
STAB MF2_REG
LDAA MF1_REG
SUBA MF2_REG
BCC MF_6
LDAA #$0

MF 2

MF 6 RTS
RTS

♦Subroutine OUTPUT - Used to send desired path values to the *motors
$B7FF,X Load Delta Y valueLDAAOUTPUT

Increment position counter
Put Delta Y on stack

#2 and #3 bit of Delta y

INX
PSHA

#$0000LDD
PSHD
LDAA
PSHA

#1 bit of Delta y

#3 and #4 bits of velocity

#2 bit of velocity

#1 bit of velocity

#$00

#$0000LDD
PSHD
LDAA
PSHA
LDAA
PSHA

$VELOC+03

$VELOC+02
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Motor control wordLDD #$0009
PSHD
LDAA #$0A
PSHA
LDAA #$IF
PSHA
LDAA $B7FF,X

# of bits to be sent

Load Trajectory Command

Load Delta X value
Increment position counter
Put Delta X on stack

#2 and #3 bit of Delta x

INX
PSHA

#$0000LDD
PSHD
LDAA #$00
PSHA
LDD #$0000
PSHD
LDAA $VELOC+01
PSHA
LDAA $VELOC+00
PSHA

#1 bit of Delta x

#3 and #4 bits of velocity

#2 bit of velocity

#1 bit of velocity

#$0009 Motor control wordLDD
PSHD
LDAA #$0A
PSHA
LDAA #$IF
PSHA

# of data bits to be sent

Load Trajectory Command

Write Load Traj. Comm to X
Write Traj. Data to X
Write Load Traj. Comm to Y
Write Traj. Data to Y

JSR WRX
JSR WRDX
JSR WRY
JSR WRDY
RTS

Used to write command to the x motor♦Subroutine WRX
WRX

LDAA #$xx
STAA PORTB
JSR WRCOM

Set up LM628 configuration
Put it on port B
Write the command

RTS

♦Subroutine WRY - Used to write command to the y motor
WRY

LDAA #$xx
STAA PORTB
JSR WRCOM

Set up LM628 configuration
Put it on port B
Write the command

RTS
♦Subroutine WRXY - Used to write a command to both x and y motors
WRXY

Write command to x motor
Write command to y motor

JSR WRX
JSR WRY
RTS

♦Subroutine WRDX - Used to write data to the x motor
WRDX

LDAA #$XX
STAA PORTB
JSR WRDATA
RTS

♦Subroutine WRDY - Used to write data to the y motor
WRDY

LDAA #$XX
STAA PORTB
JSR WRDATA
RTS
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♦Subroutine WRSTR - Used to strobe the Write pin
WRSTR BSET

BCLR
$04;#$08
$04;#$10

STROBE WRITE PIN
CLEAR WRITE STROBE BIT

RTS

♦Subroutine BUSY - Used to test the busy bit
BUSY PORTBLDAA

SAVE LM628 CONFIGPSHA
LDAA
PSHA
LDAA
STAA
BCLR
JSR
BRSET
PULA
STAA
PULA
STAA

DDIRC
SAVE PORT C CONFIG

#$00
DDIRC

PORTB;#$20
RDSTR

SET PORT C TO INPUT
SET PS PIN TO LOW
STROBE READ PIN

PORTC;#$01,TEST TEST AGAIN IF BUSY BIT HIGH
TEST

DDIRC RESTORE PORT C CONFIG

RESTORE LM628 CONFIGPORTB
RTS

* Subroutine WRCOM
WRCOM PULB

STAB
JSR
JSR
RTS

Used to write a command to a LM628
RETREIVE COMMAND
PUT COMMAND ON PORT C
STROBE WRITE PIN
TEST BUSY BIT

PORTC
WRSTR
BUSY
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