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INTRODUCTION:

Pattern recognition, as used in this paper, reflects a technique of

machine data analysis. In this capacity the machine receives the raw

data, processes it for the purpose of separating the important features

from the background, and fLna l.Ly makes a decision which it bases on these

features. For most purposes the decision is categorical (i.e. does com­

pound A contain nitrogen?; is a particular peak indicative of an arginine­

guanine complex, etc.). Since the author has an independent interest in

the application of pattern recognition to the analysis of mass spectro­

metry data, this vehicle will be used to describe the techniques of

applying pattern recognition in the laboratory. It should be kept in

mind that these techniques may be applied to any data source that meets

or·can be made to meet the machine data format.
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, LITERATURE REVIEW

Pattern recognition (PR) is a technique of machine data analysis.

At this time it is difficult to formulate a more precise definition, since

PR seems to mean somthing different to each author. This de1ima is graph-

ica11y demonstrated in an article by Verhagen (1). He states, "A survey •.

••• of definitions and descriptions, taken from the literature, concerning

the terms: patern; recognition; pattern recognition; and related terms •••

appear not to have an identical meaning with different authors." With

this state of affairs it is necessary to risk a couple of definitions so

that pattern recognition may be discussed in general.

Grenander in his "Foundations of Pattern Analysis" presents an

excellent definition of what consititutes a pattern (2).

"By patterns we shall understand the following. Starting
from a set of objects (called images) and a set of rules

by which we can transform an image into others, we shall

say that two images are similar if one can be transformed
into the other by applying some of our rules successively.
By a pattern we could mean a class of mutually similar

images."

Closely allied with Grenander's definition of a pattern is Sebestyen's

concept of PRe In his excellent work "Decision-Making Process in Pattern

Recognition" he states:

"PR is a process of decision making in which a new input is
recognized as a member of a given class by comparison of its
attributes with the already known pattern of common attributes
of members of that class."

In view of the diversity of PR literature this author feels that it

is wise to narrow the survey to those applications of PR that deal with

information processing in the laboratory. This limit is sufficiently

I
broad as to place no restriction on the techniques used by the researcher.

I
I

The choice of PR technique is very sensitive to the format and



source of the data. This is made very clear in Calvert and Young's text

"Classification, Estimation and Pattern Recognition"(4). This volume

coordinates the techniques developed by industry and researchers to over-

. come PR problems in their area. The basic theory of operation of each

technique is explained in detail, though the reade�is advised 'to consult

the primary sources once a method has been selected. The references cited

in this work are excellent and thoroug� being the most up to date of all

texts consulted. The reader seeking only a superficial knowledge of PR

is advised to read a short, but concise article by L.R. Carlson, et al (5)

which covers much of the material in Calvert and Young's book. The detail

is not near as complete, yet the reader undoubtedly profits from his dis­

cussion of PR techniques. On a more practical tangent J.B. Justice and

T.Le Isenhour rate the effectiveness of six different PR techniques on

their ability to extract information from a set of mass spectra (6). Of

the methods examined, the K-nearest neighbor and the Binary Pattern class­

ifier were given the highest marks. Also discussed was the application of

data transformations to improve the performance and predictive ability of

these two methods. Data transformations improve the sensitivity of the

classifier by extracting features from the raw data. Features may be

considered a subset of the pattern that allows the pattern to be class­

ified. In general they are functions of the measurements and have a lower

'dimensionality than the raw data. This lower dimensionality aids in

classification and reduces the size of the data base. Feature extraction

theory is treated very thoroughly in Calvert and Young's book (4) and an

example of application is given in P.C. Jurs article (17). It should be

: noted that the ideal feature set will contain the same amount of informa-

I . �----_._---_._-----_.·_-- ..
- ---,-------- --. ---- ----- - ------- -- -.-----.�-- -------- - _ .. _- _' ••
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tion as the original data set.

There exist many techniques that could be applied to the analysis of

mass spectra, but most of these demand large data bases and extensive use

of the computer for their proper function. Such requirements are a great

. disadvantage when the data originates from a new source such as the Plasma

Desorption Mass Spectrometer (PDMS) developed by R.D. Macfarlane and

D.Fe Torgerson (21). Here the principal inconvenience is the large dimen-

sionality which leads to the two disadvantages cited above. It is there-

fore thought wise to adopt the conclusion reached by Justice and Isenhour

that the' K-nearest neighbor and the binary pattern classifier give the

best results for data of this type. This decision is justified as both

methods are linear, non-parametric decision machines that do not assume

knowledge or existance of distribution statistic beyond the requirement

of linear separatability. Even this requirement may be relaxed under

certain conditions as explained in N.M. Frew, et aI's article on the

application of piecewise-linear pattern classifiers to mass spectra (22).

These two methods fall into a larger collection of methods (or

machines) known as linear pattern classifiers. They should be very

attractive to the reasearcher that can not justify a rigerous statistical

app�oach, but could support a decisi6n to train a pattern classifier.

The requirements of these machines as well as the theory and development

that supports them can be found in two small bookds authored by men who

did the most to forward their progress.

The first book is Learning Machines by N.J. Nilsson (7). This is

the most often cited work this author has encountered and it is somewhat

, a classic in the field of PRo In this work Nilsson outlines the various
I

\

types of linear pattern classifiers and gives detailed discussions on the
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methods used to train them. The second text is authored by G.S. Sebestyen.

In his book Decision-Making Processes in Pattern Recognition, while the

author develops some of the linear pattern classifiers, his greatest con­

tribution to the field deals with data and feature transformations (8).

This work was originally written for communications engineers but has since

found a place in many a researcher's library if its citation frequency is

a good indicator as such. Both books share a common virture of clarity

,and compactness (less than 180 pages) not found in the other works.

There is also a third text edited by J.T. Tou and R.H. Wilcox, which

contains' many articles that are often cited by writers in the PR field.

This work: Computer and Information Sciences, appeared in 1964 after a

symposium sponsored by the U.S. government "to fill a gap in the informa­

tion sciences created by WW II." The text was also used as a reference at

the office of Naval Research.

The literature of the K-nearest neighbor technique that deals with

its application to laboratory data is rather limited. This is due to the

large number "knowns" that must be retained for classification purposes.

While this method is excellent for the identification of postal "ZIP"

codes, it fails to be employable in the laboratory for economic reasons •

. The K-nearest neighbor method was formulated by Fix and Hodges (10,

11); reviewed by Nilsson (7), Sebestyen (8) and T.M. Cover with P.E. Hart

(12). While laboratory applications are few (25,36,37), the K-nearest

neighbor method does have an extensive literature in the communications

field. Nilsson has shown how this method is actually a special case of

the more general Binary Pattern Classifier.

The Binary Pattern Classifier was concieved in 1943 by McCulloch and
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Pitts (13) as a mathematical model of the neuron and was shelved for

I

almost eighteen years until Rosenblatt (14) 'placed it on a more rigorous

mathematical basis. It was also Rosenblatt who first suggested that it

could be used to classify patterns. Early literature on the Binary

Pattern Classifier bears the name Rosenblatt gave it, the Alpha-Perceptron;

this should be kept in mind when surveying the literature. Of the two

techniques, this one seems to be the most applicable. It has the virtue

of simplicity and versatility. Further, it has a well developed litera­

ture in the field of laboratory applications. In the arena of mass

spectra applications a great bulk of material is availabl� due to the

combined efforts of P.C. Jurs, T.L. Isenhour, and B.R. Kowalski. These

three men have a virtual monopoly on the application of Binary pattern

classifiers (BPC's) to the analysis of I.R., N.M.R. and Mass spectra.

Their accomplishments with this machine have been rather impressive. It

has been possible to predict the molecular formula of an unknown with an

accuracy of 88 to 90% (15,16). Determination of molecular structure of

compounds containing only C;N,O, and H, has been accomplished using low

resolution mass spectra without recourse to theory (17,18,19). During

the course of the experiment it was possible to obtain predictive capa­

bility of 98% (18) by the use of a Commitie machine (see Nilsson ref.7)

and 95% with the faster Branching tree technique (19).

Other articles that deal with the application of the binary pattern

, classifier to spectral data are; Jurs use of it to classify and interpret

l.R. (23); the use of the BPC to simulate the spectra of small organic

molecules (26); the combination of the BPC with the method of least

! Squares in the development of discriminant functions (24). An assumption

l ..
------------------.---- .. _. - . __

- -_. ---------00 _o
.

__ ,
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which is inagral to the use of PR to mass spectra is: similar compounds

have similar spectra. This has been demonstrated in part by all the

articles cited above and also by K.L.H. Ting, et aI, who used mass spectra

-

to classify drugs into groups of sedatives or tranquilizers (25). His

group used the K-nearest neighbor method first with a dimensionality of

539, which proved difficult to employ and then with data sets of reduced

dimensionality. Mapping on to two dimensions was also explored though the

, results are rather dubious since they rely on a supervisor to oversee the

mapping. It has also been possible to' combine layers of BPC' s into a

machine that can grasp its situation. "To be concrete, th� machine can

correctly recognize patterns having multible meanings as O("Oh" or zero)

as the situation may demand." It would seem that the machine accomplishes

this feat by increasing the dimensionality of the data (or pattern) and

weighing these added dimensions rather heavily. Takashi Nagano also gives

an explanation fo!" the machines behavior and insight into the trai.ning

methods used on layered machines (27). A non-academic application of the

BPC of some intrest is discussed by J. Felsen. Felsen spent some time

applying the BPC to stock market forcasting with some impressive results.

The success of the machine is due to its ability to reduce information

that is-to complex for the human mind to handle into a form that may be

comprehended. This reduced information may then serve as the basis for

investment decisions (28).

Having a pattern classifier is often not enough. The K-nearest

neighbor method, for example, is very effecitve on data of any dimension;

but its storage requirements force one to decide against it. A machine

that could select the important features from the data base and in so

doing reduce the memory demand, would make this a more prac�ical



alternative. In any case a reduction in dimensionality will have an ex-

celerating effect on the machines performance, regardless of type. For

this reason, it is worthwhile to review some of the literature on feature

selection. The referance of first choice is Calvert and Young's text (4).

Other articles which deal with this problem are those by Jurs which deal

with the application of the BPC and the Fourier transform to efficient

feature selection (29,30). C.H. Chen explores a recursive computational

procedure for feature selection (31). He states in his conclusions that

under certain conditions a significant savings in computer time may be

obtained by using this algorithm. Finally, if the pattern,is thought to

represent a signal that is received through a noisy channel then some of

the techniques developed by the communications engineers may be employed.

Under these conditions texts such as G. Raisbeck's Information Theory (36)

or articles like S.A. Kassam's Asymptotically Robust Detection of a

Known Signal in Contaminated Non-Gaussian Noise (32).

There are several other PR methods that have been used in the study

of mass spectra. One of the most impressive of which is Factor Analysis.

Factor Analysis was developed originally for the study of data that came

from psycological studies where the relationships between the results and

the stimuli are not lucid. As Jurs' describes Factor Analysis;

"The lineraly independent dimensions are determined by Factor

Analysis, a multivariate statistical method for studying the
nature of high dimensionality data from a large experimental
data set. The dimensions are initially the eigenvector solution
that diagonalizes a correlation matrix of the experimental vari­
ables (the mass spectra). This eigen vector solution may then
be rotated to clarify the interpretation of the dimensions with

respect to the masses (33)."

In his conslusions Jurs stated that it was possible to establish a clear

. relationship between functional groups and the mass spectra. Another
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article which came out only ���e�tly deals with the application of factor

analysis to predict physical properties. In his article D.G. Howery ex­

plains how this type of statistical analysis is used and gives several

examples where it has been used by researchers in the laboratory (34).

The fitting of high order polynomials is a PR method that has

found use in modeling environmental systems (3).

Carl Djerassi is another researcher who has applied learning mach­

ines to the analysis of mass spectra. His field of interest centers on

the study of spectra by relating the spectra to various chemical compounds

on the basis of predicted fragmentation patterns (35).

The last few r�ferences are cited out of a desire for completness.

The deal with techniques for coding mass spectra for the purpose of future

comparison (i.e. matching). Stanley Grotch appears to be the expert when

it comes to developing search routines and his two articles on the subject

are often cited by aurhors in the PR field (39,40). P.C. Jurs has also

written an article on the application of hash coding to obtain optimum

searching of information files (38).

The conclusion of this review is: Pattern Recognition has shown to

be effective in the study of mass spectra. It has sufficient power to

become an important analytical tool in the hands of the research scientist

and will become more common as computer technology becomes more refined

and sophisticated.
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THEORY:

Pattern recognition is a process that has reached a very high level

of sophistication in nature. Every animal is skillful in the recognition

of food, and, where necessary, members of the opposite sex. This func­

tion is performed automatically and without conscious thought by: observ­

ing the environment, subdividing it into sets of known images, and then

! weighing these images in terms of their relative importance to the prob­

lem at hand (i.e. food, shelter, protection, etc.).

This process can best be understood by imagining a young man, who is

looking for his wife in a large crowd. He stands there a� the edge and

scans each face. Without thinking he compares each individual to a

cognitive image of his love, then at some instant the realizes that the

face he was looking at matches the image in his mind. Unknown to this

man, he has made a series of measurements on each person. The mode of

dress, or the length of hair was, perhaps the first item compared. If

these matched, his mind would proceed further, looking at more subtle

details, such as: eyes, nose, chin, etc. This process of comparison

and elimination was continued until all the important and unique char­

acteristics of the image of his love and the person he was viewing,

agreed. At that instant he realized that he was looking at her. This is

an example of a very sophisticated pattern recognition process.

Granted, it may be absurd to compare a simple thing like boy meets

girl to the more mechanical aspects of pattern recognition, but it does

serve to illustrate a point; animals and people are capable of recogniz­

ing elements or patterns in their environment. If it is assumed that

there is nothing divine about this process, then it should be possible to
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devise a machine that would mimic this function, if only in a limited way.

Machines capable of such 'intelligent' processes would become indispens­

able in the analysis of data. The diagnosis of heart conditions from EKG

data or the identification of the components in a mixture from a spectro­

scopic study, are examples where this procedure has been employed with

excellent results. *(4)

Consider, for example the situation of a research chemist trying to

determine the structure of an unknown compound. There are galaxies of

tests that could be run to give the desired information, but they all

take time and skill that he may not have. One way to avo�d this situation

is to employ some of the more powerful analytical methods which are very

simple to run (i.e. I.R., N.M.R., or Mass Spectrometry). These methods

gi�e accurate results that contain a great deal of information, but they

have the disadvantage of telling the researcher too much at one time. The

output issued from these machines could be compared to several tables of

physical data on the sample, printed on transparency film and then stack­

ed on top of one another. This may sound odd but it is certainly what

happens when data is gathered from these devices. As a consequence, these

devices are not employed to their fullest extent. Often, only one or two

pieces of information can be extracted from the maze of result; but this

is not due to a defect in the device; it is a failure of the researcher.

In theory, it is possible to devise a machine that will separate the

data into categories that are meaningful to the researcher. Such a mach­

ine is called a pattern classifier and the process that is employs is

* As an aid to the reader, this author will use the field of mass spectro­

metry to relate the techniques of pattern recognition in a simple manner _
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called pattern recognition. When data is fed into this machine, it is

scanned in much the same way as the man surveyed the faces in the crowd.

Important facts are noted until a sufficient number are acquired to ident­

ify the compound. It should be noted that the method of 'acquiring the

facts' is all that separates the different techniques because the pattern

recognition procedure is versatile and can be used on any data that meets

its input format. For the sake of brevity, this paper will cover only

two of the many methods that fall under the heading of pattern recogni�

tion. These two techniques are: the k-nearest neighbor method, which

was developed from the Euclidian distance formula, and th� binary pattern

classify, which was developed from an exploitation of the vector dot pro­

duct. It should be noted that these methods require large training sets

and are nonparametric; hence, it is very difficult to establish as error

estimate. (7) Still it is believed that their speed and ability to handle

non-linear multic.:Ltegorical data more than compensates for these draw­

backs.

The overall process of pattern recognition can be broken down into

several steps. The first is the acquisition of raw data. The data is

then transformed into vector format which is suitable to the pattern

classifier. This vecotr may then be processed to enhance specific fea­

tures (this step is called processing and is optional). The resulting

vector is then fed into the machine and processed to give a result. For

most laboratory purposes the result will be a classification of the un­

known into one or more known groups. Figure 1 outlines the overall

layout of the machine.
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DATA INPUT FORMAT:

The normal input format for pattern recognition is the pattern vec-

tor. To generate the pattern vector for a mass spectrum, it is necessary

to seiect an interval size that is on half the desired resolution and then

calculate the absolute frequency for each interval. Next this table of

absolute frequency is normalized to give the relative frequency in terms

of the mass spectrum; if an interval size of I AMU was used, each interval

would contain the normalized valu� of the ion flux at that mass and the

resultant sequence could be written:

x = (xl,x2,x3, .•. xri)
Where X symbol for the sequence (or pattern vector).

x. = the intensity of the ith interval (relative frequency). The

subscript, in this case, is equal to the corresponding mass for
the interval.

This resultant sequence is the pattern vector. The pattern vector is un-

iquely determined from the mass spectrum and can represent the mass spec-

trum without information loss.

Transforming the mass spectrum into a vector permits the application

of vector analysis to the problem of pattern recognition.
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K-NEAREST NEIGHBOR:

The decision rule for the K-nearest neighbor method is: Given sever-

al categories, each composed of a set of known compounds represented by

their vectors, than an unknown will be classified into a particular cate-

gory that has the lowest mean scalar difference between it and the vectors

of that category_

di <dj:t:i
The scalar difference between two vectors is given by the Euclidian

(1)

,

distance formula:

(2)

Where: xk'
= the kth component of the unknown pattern vector

Ikj= the kth component of the jth known vector.

Therefore, when two mass spectra are very similar they will have a vector

difference of low magnitude. In practice, it is often more useful to have

a decision rule that is based on an absolute maximum, than one based on a

relative minimum. Such a rule may be derived from the above rule by sim-

pIe manipulation. If the above expression is squared and expanded then

the following results:

di2 =L:(Xk-Ikj)2
=L:(Xk2_2XkIk/)

2 2
9: xk -22: xkI jk+L: I jk

(3)

Now, it is recalled that the vector dot product is defined to be:

(4)
I

By incorporation of the vector dot product into equation three a simpli-

i fied equation results:

(5)
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By rearrangement a new function may be defined;

(X) = - (d2-"X,·X:) /2

(6)

A further simplification will result if the augmented vectors for X and

If_are formed. The augmented vectors are:

X*=(xl,x2,x3,··,Xn,1)

r*j=(Il.,I2.,I3., .. ,I .;�r.·I)
J J J nJ J j

'This new function has its greatest value when X=IJ. (Le.K. (X)=�I. '1.)
J J J

The corresponding decision rule is: X is placed in that category which

(7)

has thtgreatest mean value for the function Kj(X). That is:

-1 -. -1
(Mk )L:Kjk(X) «Mt�k ) L:KjteX) (8)

Where: Mk the number of elements in the kth category

j = a dummy variable of summation.

This rule also has the advantages: greater speed during execution and

lower storage requirements.

One of the disadvantages of the K-nearest neighbor method is the

assumption that all intervals are of equal value for each category. In

the laboratory this may not be the case. Some intervals may have values

that deviate greatly. While others may have values that are very compact.

The same may be said of the categories. In one group the points may be

clustered very tightly together, and in another group these points may be

dispersed. Under these conditions a vector X may actually belong to group

1, which is very dispersed, but may be classified into group 2, which is

very dense and thus, gives a high Kj (X)_.
This condition of varying density may be corrected by weighing the

intervals in such a manner to produce a constant density cluster. The



mechanism for this weighing is a coordinate transformation which mini­

mizes intra-cluster distances while maximizing the inter-cluster distance

(care is taken to prevent the trivial transformation) (8).

-------- -- ----------- .. ---___j
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BINARY PATTERN CLASSIFIER:

The binary pattern classifier is a classification machine that gives

a positive one (+1) if the unknown compound is to be classified as a mem­

ber in the group of knowns that possess the characteristics for which the

machine was trained and a negative one otherwise. The two principle as­

sumptions used to derive this machine are:

(1) Compounds that have similar physical characteristics will have

certain peak characteristics in common.

(2) These Similar characteristics will cause the compounds mass

spectrum to cluster in the pattern space in a linearly separable

fussion.

The first assumption appears to have been validated by K.L.H. Ting and

co-workers in a series of drug studies where physiological properties were

correlated to mass spectrum shape (25). They were able to classify sev­

eral unknowns into their drug classes based on mass spectrum alone. The

second assumption has been validated by P. C. Jurs, B.R. Kowalski, and

T.L. Isenhour. Their work with the binary pattern classifier has enabled

them to determine the carbon number, elemental composition, and presence

of functional groups (17,18, 19).

Some of the advantages of the binary pattern classifier are:

(1) its ability to be trained to recognize small portions of

mass spectrum that relate to the class automatically.

(2) automatic weighing procedure which selects those features of

importance.

(3) fast classification.

(4) may be operated in a supervised or unsupervised manner.
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(5) binary pattern recognition may be layered and/or combined to

give results for data sets that are not convex.

The main disadvantage is the need for a large training set if the results

are to be meaningful.

Calvert and Young demonstrated that the pattern classifier will con­

verge for any training set that has fewer elements than the pattern vector

has dimensions (4). The pattern classifier will only be practical if it

has been trained on such a large set, that it contains a representative

sample of real wor�data. The effect of this disadvantage can be mini­

mized if the machine is updated after each classification. Such a pro­

cedure will peroit the user to employ the machine in a secondary capacity

until it has obtained the ability to properly classify the data. The

machine therefore becomes more precise, the more it is used.

To aid in the understanding of the binary pattern classifier, it

will be assumed that for a given mass spectrum it is only necessary to

.

look at two of its many components (XI'XZ) to determine the presence of

arginine e Now, if the plane of all possIb l.e values of XI'XZ is drawn

and the cluster of compounds that do not contain arginine are lebeled 'B'

and the two assumptions of the binary pattern classifier are fulfilled,

then figure 3 results. Assumption two permits a line to.be drawn, that

separates the plane into two regions. If the decision rule is modified

to classify the unknown into one category or the other depending in what

region the unknown appears, then the equations for the binary pattern

classifier may be derived as follows. If the equation for the separating

line is:

(9)

__ .. __ _. _. .- .. _._ - .. -_. .. __ J



LINEARLY SEPARABLE CLASSES BEFORE (a) AND AFTER (b)

AUGHENTATION

.+;9.3.

2Q.

(a.)

.J

(b) .
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then it is apparent that the locus of the line's point set can be given

equally well by the vector dot product:

N'R + d = a =

aXl + bX2 + d &1(10)

Where: N

R

This equation could be further simplified if the augmented vectors of N

and R are formed, such that X* = (xl,x2,1) and W = (a,b,d). Equation 10

becomes:

Equation 11 is the basis for the binary pattern classifier. If the dot

product is negative, then the unknown is placed in category 'B'. If the

result is positive, the it is placed in category 'A'. The procedure can

be demonstrated if X*�is set equal to the augmented mass spectra of an

arginine containing compound. If the dot product is formed, the result

will be positive and the compound will have been judged to contain argin-

ine.

This method can be applied to any number of features simply by in-

creas Lng the number of dimensions in the pattern vector and the weight

vector such that:

.

and,

X* = (xl,x2, ••• ,xn,1)
W = (wl,w2, •.• ,wn,wn+l)

(lla)

(lIb)

where: x*

W

the augmented pattern vector

the weight vector .

The procedure for the calculation of W, so that all the known vec-

tors in the training set are properly classified, has been devised by

Nilsson and employed by P.C. Jurs, et aI, in the classification of mass

j spectra.
The procedure is relatively s.LmpLe and is presented without

proof below.
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The primary step in the learning procedure is the formation of a

training set should have an associate set where in the elements contain

(represent) the proper classification of all elements in the training set.

The learning phase of the routine requires that several passes be

made across the training set to optimize 'W'. Each pass through the set

results in a new 'W*' which is more capable of separating the clusters

from each other. The optimization procedure is:

(12a)

when the dot product W·X* is incorrectly negative, and

w* = W-cX* (12b)

when the dot product W·X* is incorrectly positive. The coefficient "c"

is a number to be determined by one of several methods and its function is

to insure that the vector X*, which was incorrectly classified by W will

be properly placed by W*. This procedure will converge only Lf the

Pattern Group , H!" - (X X X X)" s I" rl bl *-

1, 2' 3'···'·� 1 1nea y separa e. To effect

the procedure the weight vector W is optimezed on the training set "�",

where the elements of "S" are members of the pattern group placed in

random sequence ad infinitum, i.e., and element X occurs an infinite

number of times in S. The procedure is terminated whe W correctly class-

ified all the elements in the set X.

Should the event occur that the raw data set is not linearly separ-

able, it may be possible to effect some form of preprocessing on the data.

Preprocessing will rearrange the data to yield clusters that are separ-

able. The type of processing used will depend on the data, but in most

cases it is some form of co-ordinate transformation, (8,17). As the gain

* any time N N+1 'the procedure will converge.
�/r
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onstant "c" can have a great effect on the speed at which the procedure

converges, the different methods for determing fC' should be expanded.

Nilsson gives several methods for the calculation of 'c' •

. One method determines that 'c' which is just sufficient to result in

proper classification of X*i. To meet this constraint "c" must satisfy

one of the equations:

o = (W+cX*)-X* (13a)

if W·X* is erroneously nonpositive or,

o = (W-cX*)-X* (13b)

is W-X is erroneously non-negative. From the above two equations it is

apparent that c is the next integer larger than:

abs(W-X)/X-X (14)

Nilsson also claims (with proof) that this method for calculating c will

result in the same weight vector W that would develop if c were set equal

to one at the onset. This procedure results in swifter convergence_

(For greater detail read chapt. 4 of ref. 7).

P.C. Jurs outlined one method (fractional correction) that gave

excellent results on a wide range of categories (18). But first it is

necessary to explain a variation of the BPC method employed by Jurs.

The decision surface for "most" BPC's is a hyperplane which has.zero

thickness, but Jurs has found that a hypersheet of finite thickness gives

results which excel those of the hyperplane. The reason for this better

,performance, is the constraint that all points along the decision surface

,must be offset from it by some distance d=z. The hyperplane surface re­

�quired only that the elements of the clusters not reside on the surface.

!This configuration would give erroneous results if a borderline point of

l__ .. _._. ... . . .. _ c_.... • .. _. ·_ ... .. __ .. _ .--- ... -----------.-.----.- --.-.-- .... ----- .. ---.- ------.
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one category shifted, due to random variation, into the region of another

category. The hypersheet avoids these Mrandom" complications somewhat.

The mechanics of the hypersheet decision surface for a sheet of

thickness 2z are: X is placed in category one if k z or if k -z X is

placed in category two; for the case -z#k#z, the vector X is not class­

ified. When using this method on spectral data he found that the larger

thickness gave better results (18).

The advantages of the hypersheet decision surface can be enhanced

even further when it is paried with the fractional correction method for

evaluating the constant'd (equ.13). This constant and the correction

routine, i.e. equ.13, control the rate at which the weight vecotr con­

verges to its final value. Correction of the weight vector after each

error results in a vector that is very slow in convergence, because the

first few corrections result in a vector that is only a fraction closer

to the ideal or correct value. The correction procedure only guarantees

that the vector previously misclassified, will be properly classified by

the new weight vector. The procedure does not claim that the new weight

vector will correctly classify those vectors that came before, nor will

it stand a better chance of that vector just missed correctly. It is the

"law of averages
,. that guarant.ee s that, if and only Lf , the clusters are

linearly separable will the process converge after a suitable number of

trials, and then its classification ability is only as good as the set it

was trained from.

The method of fractional correction is one method that will reduce

the number of weight vectors that must be tried before the final value is

I reached. This method was outlined in Nilsson's book Learning Machines
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and has been improved on by Jurs, so that it will yield a series of weight

vectors that converge rapidly to the final value. This is desirable be-

cause the first training vectors result in vast changes in the form of

the weight vector that must be overcome in subsequent training cycles.

The number of these cycles can be reduced if the effect of the training

vectors can be equalized. With fractional correction all the patterns

missed during a pass will contribute equally to the development of the

weight vector.

The procedure for fractional correction requires that the weight

vector be split up into two sets of components; a positive class �
p

represented by the vector,

Wp = (Wpl,Wp2'Wp.3'··· ,wpn+l)
and the negative class Wn, represented by the vector,

(lSa)

(lSb)

When a pattern is to be classified the sum of Wp and Wn'is used,

(16)

thus the calculation of discrimanent value, k, becomes,

(17)

The classification of Xi is made as before.

The first step of the procedure is to .form two summations,

� = Ek.
]

(18a)

and

(18b)

where K is the sum of those dot products that were actually positive but.
, p

misclassified, and � is the sum of those dot products which were members

: of the negative class but were classified positive. When these sums have
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been obtained the new values of Wp and Wn are calculated by the equations:

W'
P (19)

where Xj is the set of patterns that were positive, but classified nega-

tive, and

(20a)

and

(20b)

.

The process is repeated until all the kj's are exhausted. This same

method is used to calculate the new components of Wti, with the only

changes being:

(2la)

and

. (2lb)

The constant, 1.5, is an emperical parameter that is adjusted to yield the

fastest cycle time, i.e. the greatest speed of convergence. The new

weight vector W'=W'+W' is then formed and used to classify all the spectra,p n

are classified without error.

It is of interest to note that expansion of the factor fici produces

the following result:

(22)

If this equation is inserted into equation and the appropriate summation

terms inserted, an equation for Wf, the final weight vector, results.

(23a)

rearranging terms

Wf
= W + r , 3 / l: W • Xi )) l: ( (W.Xi - z )

2Xi /Xi 0 Xi ) (23b)

iIf z is set equal to zero, then Wf becomes;
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Wf = W .;.3 Z;(W·Xi)Xi/Xi·Xi
At this point it is noted that (W·Xl)/Xi·Xi is the term that Nilsson used

(24)

to calculate the constant c in the training procedure for the binary

pattern classifier, with the absolute value function replaced by two

separate equations for Wp and Wn• Jurs has, therefore, taken the basic

binary training routine and developed a method that converges more rap-

iedly to the same weight vector W.

Some of the advantages of the fractional correction routine as

described here are: Both methods converge to the same weight vector; the

weight vector is modified by all misclassified training vectors at one

time; and the inclusion of the thickness constant z produces a machine

of greater resolution.

The hypersheet may be used in the training method outlined by Nilsson

if the constant c is calculated by the equation:

c = abs(z-W·X·)/X;·X.� .... �

The constant c is then used in Nilsson's training routine as before.

Some characteristics of the BPC are: The weight vector may be

initialized to any set of values; but it has been found most convenient

to set all the wi's equal to I ( ), though Jurs outlines a method for

calculating a "superior" starting value that involves analysis of the

features of those elements in the pattern group prior to effect in the

optimalization procedure ( ). The value of the constant "e" may be

,calculated in several different ways. And, finally, several BPC may be

joined together to form a greater, somewhat more flexible machine that

does not require that the data be convex.
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