
MOBILE COMPUTING AND COMMUNICATION

Solutions for aNoisy Environment

A Senior Thesis

By

Dominique Kilman

1996-97 University Undergraduate Research Fellow

Texas A&M University

Group: ELECTRICAL ENGINEERING/COMPUTER SCIENCE

Mobile Computing and Communication

Solutions for a Noisy Environment

Dominique Kilman

University Undergraduate Fellow, 1996-1997

Texas A&M University

Department ofComputer Science

APPROVED /7I>./_.,;/f.
Fellows Advisor� •

HonorsDirecto�Mv�k_[tU�J

Mobile Computing and Communication Solutions for a Noisy Environment.

Dominique Marie Kilman (Nitin H. Vaidya), Computer Engineering, Texas

A&M University.

Abstract

Business people today need an effective mobile computing system. This means that

modern network systems must be comprised ofboth wired and wireless links Current

transmission control protocols (TCP) implementations have been designed to work well in

a wired environment in which error rates are very low and packet losses can be attributed

to network congestion. In a wireless environment, there are higher error rates usually due

to noise in the air. The loss due to congestion assumption is no longer correct in this

environment. Current TCP implementations can not distinguish between a congestive loss

and a wireless loss. Several strategies are currently being investigated to improve current

TCP performance. One ofthe best candidates for common use is the Snoop Agent. The

focus ofmy research has been to compare current TCP implementations with TCP

combined with the Snoop Agent. Using a wireless test bed, the two implementations will

be analyzed and tested to gauge their performance. Throughput and transmission times

will be gathered and evaluated.

Mobile Computing and Communication

Solutions for a Noisy Environment

The computing industry today is moving quickly towards the need for reliable

mobile communication techniques. Industry is shifting towards a mobile office in which

business people move from customer to customer, rarely staying in a central office.

Access to e-mail, messaging services, and the Internet are needed by business persons and

industry while traveling and at home. The usual access to internet and network services is

through a leased telephone line modem in the home or a LAN connection within an office.

A LAN is defined as a local area network. This type ofnetwork traditionally covers a

small area and is very fast. While traveling, individuals are unconnected and unproductive

because of their inability to access network services. Much research is being done in the

area ofwireless mobile communication, but many problems must be overcome before

these ideas can be marketed in the main stream.

A History ofWireless

The first documented use ofwireless communication was in 1901. Guglielmo

Marconi, an Italian physicist demonstrated a ship to shore communication method using

Morse Code. Since Marconi, wireless communication has increased distances and

improved performance.

1

One of the first forms of "modern" wireless communications was the cordless

phone. The cordless phone has very limited mobility, within a few rooms, but it has

excellent performance within this limited range. Paging is also a form ofwireless

communication. Because of the one-way nature of pagers, many people do not consider

them to be a communication device. Several companies are investigating the idea of two

way pagers. This would allow the receiver ofa page to respond to a page without

needing to find a phone. The advent of cellular phones brought a greater range to wireless

communication. With a cellular phone, individuals could receive calls anywhere within the

United States, if their service was nationally supported. Even cellular systems which

worked only within the city were a great improvement in the mobility of business people.

These phones allow individuals to travel while remaining in touch with their office.

Today, wireless LANs are available for computer users, but their performance as

compared to wired LANs leaves much to be desired. Slow connection times and error

prone systems leave most mobile computer users frustrated and wanting more.

CurrentWireless Technology

There are many forms ofwireless communication in use today. Cordless phones,

pagers, and cellular phones are a type ofwireless communication. Cellular technology has

made great advances in allowing mobility in phone conversations. The problem with these

technologies are their limitations. Cordless computer connections are limited to the

2

building in which their base resides. Cellular phones are more mobile, but voice and signal

quality is lost. With both technologies, there is a loss of security and privacy.

Cellular Modems

Two forms of cellular communication are used today in computer communication :

circuit-switched cellular transmission and cellular digital packet data (CDPD). Circuit­

switched cellular communication works by connecting a cellular phone to a cellular

modem. The modem is then connected to a notebook computer. Cellular modems are

easy to use because they are (from the users standpoint) the same as any telephone

modem. The charges are by-the-minute and can be cost effective for large data transfers.

Small data files or e-mail attachments would be less cost effective because of the small

amount of information sent. Cellular modems are versatile: they offerRJ-ll connectors to

allow traditional land-line connections. Unfortunately, most cellular transmissions occur at

the relatively slow rate of 7200 bps because faster transmissions result in more errors.

These same modems can offer speeds of 14.4 kbps, but this speed is generally only

available when a land-line is used. Cellular modems are also prone to static and

interference which will introduce more error. This can cause a slow down in transmission

time. Cellular modems, like cellular phones, are easy to intercept. Because of this, there

is very little security when information is sent. It would be safer to send any important or

confidential data on a traditional land-line. Cellular modems do not offer much

compatibility;, costs are high and battery usage is poor. As a cellular user moves from one

cell to another, the signal can weaken as the signal is transferred between the two cells.

3

CDPD

CDPD is a two way digital packet switching technology. CDPD uses traditional

existing cellular phone structures. Data files are broken into packets and sent over the

cellular network during the natural pauses that occur in human conversation. Because of

the complexity of this system, it is hard to implement and may not work as well as

expected. There have also been some problems with getting cellular services, application

developers, and device manufacturers to work together to provide a seamless integrated

package. With CDPD, transmission times are expected to be fast, possibly up to 19.2

kbps. Because of the packet technology, data transmission should be more reliable, cost

effective, and secure than circuit-switching cellular. CDPD combines the data and voice

capabilities into one device. This is a plus when considering cost effectiveness.

Radio Modems

Another way of implementing wireless is through radio transmission.

Geographical areas are divided into cells. Each of these cells has a base station - a radio

tower capable of sending and receiving data packets - which has a wired connection to

every other base station, usually using telephone wire. To send information, the radio

modem wirelessly sends a signal to the base station. The base station locates the intended

receiver and sends the information to the base station located within the receiver's cell.

The receiver's base station then wirelessly transmits the signal to the receiver if it is

another wireless user, or sends the signal over wire if the receiver has a wired connection.

As with cellular modems, the signal can weaken as the signal is handed from one cell to

4

another. Radio transmissions are digitally encoded; this allows for greater security than

cellular communication. Transmission costs are based on packets, not time; therefore, it is

less expensive to send e-mail attachments and other relatively small files. Radio waves are

also less susceptible to interference than cellular connections, allowing for greater

reliability. There are some drawbacks to radio transmissions. Since all users are sharing

the same bandwidth, transmission times can be slow, usually less than 2400 bps. Radio

transmission can only be used with e-mail applications. Batteries can last for up to 2

hours, but take 12 hours to recharge once they are used up. These modems are also

expensive and usually, large making them a poor choice if the goal is mobility.

Paging

Paging is also a form ofwireless communication. Paging provides one way

communication, usually allowing only receipt of information. Pagers are lightweight and

users can get news and information 24 hours a day by calling toll-free 800 numbers.

Messages are transmitted quickly and have very few errors. New technology involving

two-way paging has become available in the past year. This would allow the individual to

send and receive messages. The pagers are capable of transmitting and receiving only

small alphanumeric messages; however, so large amounts of data cannot be transmitted.

Wireless Local Area Networks

Wireless Local Area Networks (WLANs) are another form ofwireless

communication. A wireless LAN sends information over radio waves or uses infrared

light. The obvious limitation ofusing infrared is the small distances needed to

5

communicate. The IEEE P802.11 Wireless LAN project is supposed to go to the

standards board for approval in 1996[6]. When standards are set, greater advancements

may be made in getting cooperation between different companies.

Network Protocol

The way in which computers communicate is called networking. Such

communication is implemented using network protocol. This protocol is implemented

using a layered approach as shown in figure 1 ..The approach shown below is the Open

Systems Interconnection Model developed by the International Standards Organization for

the network protocol. Some approaches use more or less layers depending on the

interpretation of each layers' duties. Each layer, except for the first, only communicates

with the layers directly above and below itself An individual layer acts as if it is

communicating with its peer layer at the other host. Each layer is essentially buffered from

changes in other layers. The only thing that must remain stable in each layer is how the

layers communicate with each other. The way each layer processes the information it

receives or sends has no effect on the other layers. This layering method also allows

different protocols to communicate. By the time the information is truly sent, the only

thing being sent are pulses. The receiving host can process this information in any way

appropriate to retrieve the information.

6

Application

P .-esentati 0n

Session

Tre nep o rt

Netwo.-k

Data I Link

Physical

FTP, Telnet

XDR

RPC

TCP,UDP

IP

Ethernet,
Token Ring

Wires

Figure 1 [13]

The first layer (starting from the bottom) is the physical layer. This layer involves

the way in which an electrical, optical, or wireless pulse is transmitted from one host to the

next. This layer can involve wire, fiber optic cable, or wireless signaling devices (satellite,

radio or microwave). The physical layer, also, converts bits received from the upper

layers into the signal at the generator and then converts the signal back to bits at the

receiver.

The second layer shown is the link layer also called the data-link layer or network

interface layer. This layer involves logically transmitting bits from one location to another.

Addressing and error detection is performed at this layer.

7

The next layer up is the network layer. At this layer, the data are treated as

packets. Information is also seen as end-to-end, meaning that the information is not sent

and forgotten. Acknowledgments are sent and received to keep one host informed about

the actions of another. The network layer is not concerned with ordering of packets or

even if all packets arrived. The network layer only cares whether or not something arrived.

The purpose of this layer is to hide the messiness of differing link and physical layer

requirements from the upper layers. The most common protocol in the network layer is

the Internet Protocol (IP). Other possible protocols are Internet Control Message

Protocol (ICMP) and Internet Group Management Protocol (IGMP).

End to end messaging is performed in layer 4, the transport layer. This layer

provides a flow of data between two hosts. The Transmission Control Protocol or TCP is

often used here. User Datagram Protocol (UDP) is also used in the transport layer. The

transport layer acknowledges the receipt of packets, accepts acknowledgments from the

other end and distributes the packets to the appropriate applications. The transport layer

determines when retransmission is needed. Flow control is also implemented at this layer.

The session layer and the presentation layer are usually not implemented in most

networks. The purpose of the two layers is to control or manage the session and to

change the format of the information being sent or received. A session is a single

connection between two hosts for a specified duration oftime. For example, one file

transfer is a session. The format of one machine is often not compatible with the format

on the one with which it is communicating. The presentation layer interprets the format

8

and changes it to one that is readable. Instead of having a program to change from every

format to every other format, a network format has been implemented. Each machine has

a program to change from its format to the network format. When messages are sent,

they are changed to network format. The receiver gets the message, and translates the

message from network format to its own format. The network format means that every

machine needs only two programs: one to change to network format, and one to change

from network format.

The last layer of the network protocol is the application layer. This layer handles

the details of a particular application. If all other layers work properly, the application

layer can ignore the details and simply provide user interface. Some examples ofTCP/IP

applications are Telnet, File Transfer Protocol (FTP), Simple Mail Transfer Protocol

(SMTP) and Simple Network Management Protocol (SNMP).

TCP

Transmission Control Protocol is a layer four protocol. TCP is used to implement

end-to-end messages, meaning that the entire message is sent from one host to another.

TCP also performs error detection and correction. TCP also helps to determine the rate

at which information is sent by employing time outs and round trip time estimates. These

functions will be explained in the next section. TCP is one of the protocols which causes

problems in wireless. The TCP protocol was designed to work with wired connections.

Wired connections have high bandwidth and little error in the transmission. Wireless

9

connections, on the other hand have low bandwidth and a high amount oferror in their

transmissions. Efforts are being made to alter the TCP protocol so that it is more reliable

when used in wireless data transmissions. There are many other factors involved in TCP

transmissions.

How TCPWorks

TCP works by accepting streams of data from local processes such as FTP. TCP

then breaks the data into distinct. Each message is then sent as an IP datagram. An IP

datagram is what the third layer calls the information that it sends. At the receiving end,

TCP receives an IP datagram and reconstructs the original stream of data from this

datagram. Both the sender and the receiver must agree on end points called sockets. To

obtain TCP service, a connection must be explicitly established between a socket on the

sender and a socket on the host using socket calls. Socket calls are listed in Appendix A.

One socket can be used for multiple connections at one time.

Windowing is a way in which TCP can send more than one message at a time.

When TCP sends a message, it must wait for an acknowledgment from the receiver before

it can discard this message. Another TCP device is the time-out. Every time a message is

sent, a time out timer is started. If the timer goes off, the message must be re-sent. This

time out ensures that TCP does not wait for an indefinitely long period of time for an

10

acknowledgment. In the original TCP protocol, TCP would send a single message and

wait for the acknowledgment before trying to send another. This wastes time because the

sender must remain idle while waiting for an acknowledgment. The windowing

implementation lets the network designer specify a certain window size that may be sent.

The sender can then transmit the first message and start sending the next message without

needing to wait for the acknowledgment of the first. Time outs are still used on each

message that is sent. The sender can transmit up to the window size (n) number of

packets before it has to wait for an acknowledgment. Once an acknowledgment has been

received for the first packet, the window can be incremented by one. See figure 2.

Window of5
I

ICD 2 3 4 516 7 8 9 10 11 12 13 14 15

11 @3 4 516 7 8 9 10 11 12 13 14 15

IX2@4 516 7 8 9 10 1112 13 14 15

�
1 12 3 @ 5 617 8 9 10 11 12 13 14 15

Circled message is being sent I X over

message means sender has recieved

acknoledgment.

Figure 2

Windowing can cause several problems in the receipt of data. For example, the

receiver has the problem ofmessages being received out oforder. A message can be lost

while in transit to the receiver. With windowing, the next message will be sent regardless

ofwhether the first arrived. Messages can arrive out of order even without losing the first.

11

Because each message travels separately through the network, each one can take a

different path. Some paths may take longer than others. Therefore, message two may

arrive before message one because message two took a shorter, faster path.

Most systems are designed so that an acknowledgment will only be sent if all the

previous packets have arrived. For example, ifmessage one, two and five have arrived, an

acknowledgment will be sent for message two, but not message five. Because of this

feature, the sender may time out on messages three and up. The sender will re-send

messages three through five. The receiver already has message five, therefore it now has a

duplicate message. See figure 3 for clarification. Most receivers will discard the

duplicate. Some researchers are working on a way to send selective acknowledgments.

The goal is to send an acknowledgment telling the receiver exactly which messages have

arrived as opposed to the cumulative acknowledgment currently sent. This would help to

eliminate the problem of duplicate messages. Duplicate messages may also occur if the

acknowledgment sent by the receiver gets lost in the network.

G)@3 @@®7 8910

Packets 1,2,4.5.6 received
ACKs will be sent for 1 and 2

1213 4 5 6 718 9 10

Packets 3 through 7 are resent
Receiver will get duplicates of 4, 5, 6

Figure 3

12

When messages get lost in a wired system, the usual cause is congestion. When a

network system gets congested, some of the routing devices will discard random messages

to lighted the load on the system. When this happens in a wired system, the best action the

sender can take is to slow down the rate at which messages are being sent. How much the

receiver should slow down is open to debate. TCP works offof the assumption that all

losses are due to congestion and much research time has been spent determining how to

slow down and speed up the send rates. TCP tries to avoid congestion initially by using a

slow start algorithm. The sender and receiver negotiate a maximum segment size initially,

for example SK. If the sender knows that more than 4K will clog the network, it will set

the maximum to 4K instead. This segment size is used to initialize a congestion window.

The sender will then send a segment of the negotiated maximum size. If this segment is

received and acknowledged before time out, the sender increases the congestion window

size by one more segment. Now, as each segment is acknowledged, the congestion

window is increased by one maximum length segment. If the congestion window is one,

one packet is sent. When the acknowledgment is received, the congestion window is

increased by one and is now two. Next, two segments are sent. When both of the

acknowledgments arrive, the congestion window will be increased by two. The

congestion window is now four. In effect, as each set of segments is sent and

acknowledged on time, the congestion window is doubled. The Internet provides another

parameter to alleviate congestion when it occurs called the threshold. The threshold is

initially set to 64K. Whenever a time-out occurs, the threshold is divided by two and the

congestion window is reset to one maximum size segment. The slow start algorithm is

used to build up the congestion window, but the window can become no larger than the

13

threshold. From this point on, the congestion window grows linearly by one. See figure 4

for an illustration.

Internet Congetion Algorithm

"i' 35
Q)

} 30
.5!
� 25
J
e

'g 20

3
§ 15

i
g 10
e

B 5

40 .

Time-out

........-l

Transmission tlumber

Figure 4 [13]

The estimate of the round trip time is also open to debate. The round trip time can

be set to a constant value or dynamically calculated during connections. A dynamic

calculation should yield better performance because the system will automatically react to

changing network traffic and conditions. When making a dynamic estimate, should all

packets sent out be used in the estimate? When packets are lost due to congestion, should

their times be used in the estimate of the round trip time, or should these times be ignored?

When congestion is high on a network, many packets may be discarded. If these values

are used in the round trip time estimate, the time can be unnecessarily high. If these times

are thrown out, will this cause the time to be too low? Because the round trip time is used

14

as the time-out value, unnaturally high or low values will cause degraded network

performance. Values that are too high will reduce throughput and slow down the system.

Throughput is the number ofbytes, or kilobytes sent per second. Values that are too low

will cause a large number ofmessages to be discarded. This will also decrease throughput

and slow down the entire network. Phil Kam discovered this problem and offered a

simple solution: do not use any times from messages that must be retransmitted in the

round trip time calculation. Round trip times are measured starting with the time a

message is sent and ending when the acknowledgment for that packet is received at the

sender. After round trip times are calculated, time-outs can be determined dynamically

using the round trip time (RTT). The most common function used today in TCP

connections is Time-out = RTT + 4*D and D = aD + (1 - a). In this formula, a is usually

7/8. These formulas can be attributed to Jacobsen [13].

TCP was designed to work well in a wired environment. In a wired environment,

the error rate is low and the bandwidth is high. Under these conditions, a valid

assumption is that all message loss is due to congestion. In a wireless environment, most

message loss is due to errors and noise within the connection. Because there are many

factors such as radio waves, weather, and other wireless devices around a wireless signal,

errors are very common. When an error occurs, the message is corrupted and will be

discarded by the receiver. For this reason, enhancements must be added to TCP to

improve its performance in wireless connections.

15

Current Research and Methods

In the April 1995 issue ofPersonal Communication [8], Donald C. Cox discusses

each of the current mobile devices in depth. He explains the advancements and limitations

of all of these devices and the trend in mobile communication towards low-tier Personal

Communication Services (peS). Cox indicates that the current difficulty in organizing

wireless computing is within the computer industry which views wireless as a plug-in

interface card. The computing industry has not given the idea sufficient consideration or

research for wireless to be a feasible option at this time.

The December 1995 issue of IEEE Personal Communications [4] has an article

detailing a proposed architecture and future vision for a nomadic computing system. Some

of the issues addressed are file caching and problems with changing connection methods.

The nomadic computing environment must be adaptable. All modes of connection should

be possible, and the computer should, of course, be portable. The change from connecting

with a LAN, through a Modem, and possibly a wireless connection causes considerable

design complications. The article also discusses several methods for testing the

performance of the proposed nomadic systems. Examples of two of the primary

components of the system - Instant Infrastructure Protocol and File Replication are also

given.

16

Trial Systems

Several systems are currently being researched to improve the performance ofTCP

is a wireless network connection.

Split Connection

There are several ideas currently being researched to try and improve TCP for

wireless networks. One of these ideas is to split the connection. Indirect-TCP [1] uses

this approach. The network connection is divided into a wired and a wireless portion. In

a split system, classic TCP can be used on the wired portion. A new version ofTCP is

used on the wireless connection. This will separate the wired portion from the problems

associated with wireless networks.

Fast Retransmission

The fast retransmission approach deals only with the delays involved in handoffs

from one base station to another. Fast retransmit works by having the mobile host send a

threshold number of duplicate acknowledgments to the sender. TCP at the sender will

immediately reduce the window size and start retransmitting from the first duplicate

acknowledgment. Unfortunately, this approach only affects the problems occurring during

handoffs, not the error characteristics inherent in the wireless link.

17

Link Level Retransmission

Another improvement being researched is the link-level retransmission approach.

In this approach, the wireless link implements a retransmission protocol along with

forward error correction at the link level. Studies have shown, however, that this and

other independent retransmission protocols can actually degrade performance. The

advantage of an independent transmission protocol is that it can improve the reliability of

communication with out affecting any of the higher layers.

I-TCP

One system currently being tried at Rutgers University to improve TCP for

wireless links is I-TCP (Indirect TCP).[1] I-TCP works by splitting the wireless

connection into two separate interactions: one between the mobile host (WI) and its

mobile support router (MSR) wirelessly and one from the MSR to the fixed host (FH) in a

wired connection. All of the specialized TCP enhancements occur on the wireless link,

The other connection can use traditional TCP with no problems. The MSR acts in the

same manner as a cell station in a cellular phone connection. As the mobile host moves

around, the mobile connection is transferred from one MSR to another. The fixed host is

completely isolated from the handoff and is, therefore, unaffected by the switch. The

throughput was measured under four different cell configurations: 1 No moves; 2 Moves

between overlapped cells; 3 Moves between non-overlapped cells with 0 seconds between

cells; 4 Moves between non-overlapped cells with 1 second between cells. Tables 1 and 2

show performance in local area networks and wide area networks.

18

Connection No Moves Overlapped Non-overlapped Non-overlapped

Type Cells cells, 0 sec cells, 1 sec

RegularTCP 65.49 KB/s 62.59 KB/s 38.66 KB/s 23.73 KB/s

I-TCP 70.06 KB/s 65.37 KB/s 44.83 KB/s 36.31 KB/s

Table 1: LAN [1]

As can be seen in Table 1, overall 1-TCP performed slightly better than regular

TCP in a LAN situation. In the first two cases, regular TCP was expected to perform

better because of the overhead needed to establish two connections. The reason 1-TCP is

thought to perform better is the FH gets more uniform round trip times using I-TCP.

Connection No Moves Overlapped Non-overlapped Non-overlapped

Type Cells cells, 0 sec cells, 1 sec

Regular TCP 13.35 KB/s 13.26 KB/s 8.89 KB/s 5.19 KB/s

I-TCP 26.78 KB/s 27.97 KB/s 19.12 KB/s 16.01 KB/s

Table 2: WAN [1]

As shown in Table 2, I-TCP performed significantly better than regular TCP in a

WAN situation. The differences between the two systems are more obvious because of

the relatively long round trip delays inherent in a wide area network. Losses in the

wireless link will have a significant effect on the throughput because of these long delays.

19

Snoop

The Snoop [3] protocol being researched at the University ofCalifornia at Berkley

monitors every packet that passes through the TCP connection in both directions. A

cache is maintained with TCP segments that have been sent, but not acknowledged.

Packet losses are detected by either a time-out occurring or a specified number of

duplicate acknowledgments being received. The snoop agent will retransmit the packet if

the packet resides in the cache. The snoop agent will then suppress the duplicate

acknowledgments. This protocol is classified as a link layer protocol which takes

advantage ofthe knowledge of the transport protocol. The advantage is that packets are

retransmitted locally, avoiding congestion delays from the sender.

Selective Acknowledgments

Another idea being researched is the idea of selective acknowledgments, [3]

SACK. In this system, acknowledgment would be sent per message with an identifier. An

acknowledgment could be sent using the normal contiguous form, but it would include the

packet that caused the SACK to be sent. Using this information, the sender can create a

bitmask ofpackets that have been received. The Internet Draft proposes that each SACK

contain information about three non-contiguous blocks of data which have been

successfully received. Each block could be described by its starting and ending address.

SCPS-TP

The MITRE Corporation, Gemini Industries, NASA, and the Department of

Defense have developed a set of extensions for TCP to be used in satellite

20

communications: the Space Communications Protocol Standards - Transport Protocol

(SCPS-TP)[14]. Many of these enhancements can be applied to improve TCP

performance on wireless links. The loss assumptions are set differently each time

according to the network environment being used. Instead of a default assumption of

congestion causing loss, error could be the default loss assumption in a wireless link. The

assumptions could be adjusted when the sender communicates with a different client, or

the mobile host uses a wired connection. SCPS-TP implements selective negative

acknowledgments. This option serves the same purpose as the selective acknowledgments

scheme discussed earlier, but it is implemented differently. This option provides the

sender with more details oflost packets. SCPS-TP uses a different start up scheme

sometimes referred to as TCP Vegas. This scheme increases the congestion window size

more slowly, and tests the throughput gain after each increase to avoid any congestive

losses. SCPS-TP performs well in a high delay system with high error rates. This design

is good for satellite communication because of the large delays incurred when sending data

to and from a satellite. SCPS-TP would also be a good candidate for a split network

connection. The ability to use selective acknowledgments and distinguish between

wireless and congestive losses could greatly enhance wireless TCP performance. Despite

these advantages, SCPS-TP contains a significant number of changes to classic TCP;

therefore, the majority of fixed hosts would be unable to benefit from it. According to its

authors [9], SCPS-TP requires a great deal of tuning since it is very sensitive to round trip

times.

21

MyWork

The work that I did this semester involved TCP Reno and SNOOP TCP. These

two schemes are implemented in the wireless lab in Bright. The lab contain a mobile host,

a fixed host, and a base station, see Figure 5.

VVired Connection

Revelle
Fixed Host

Verdi
Base station

Figure 5

Error Injection

Because of the stability of the lab environment, a program was used to inject errors

into data transfers between the three machines. This error injection was necessary to test

the performance ofTCP Reno versus snoop. The setup was tested using a bit error model

implementation. The bit error model used was obtained from DC Berkley. The program

22

can use either a Poisson-distributed bit error or aMarkov model. In my experiments, I

always used the Poisson distribution.

The Poisson model can damage a single byte or create burst errors which will

damage several packets in a row. One copy of the model runs on the mobile host to

damage data packets, and another runs at the base station to damage the

acknowledgments. Either the IP checksum or the TCP checksum is modified to introduce

an error. Which checksum is modified depends on where the error occurs in the packet.

This error in the checksums will force either the TCP or IP layer to discard the packet.

The model then calculates the interval in bytes between injected error just injected and the

place that the next error should occur. A table of 50,000 exponentially distributed

integers is maintained to determine the interval. A number is randomly selected by the

model and then scaled by the mean error rate. This scaled value is then used to determine

the interval between errors. The mean error rate is a variable which can be changed by the

experimenter.

The model does not exactly represent the way in which error would occur in a real

situation, but the Poisson distribution is effective because it has a variance equal to its

mean. As a result, errors are distributed unevenly.

Test Sender Program

The test sender application program allows users to send test data from the fixed

host to the mobile host. The user can select a destination machine address and port

23

number. The default machine is Chopin, the mobile host; the default port number is 9, the

discard server on a UNIX machine. The discard sever appears like a regular TCP receiver

to the sender, but it throws away every packet it receives. This will let the user send data

repeatedly without overloading the destination machine. The test sender program also lets

the user to enable a debugging option which will collect information on all of the data

sent. Enabling the debugger will create a record of incoming packets and the state of the

TCP control block. This information can be examined later using trpt. The program also

records the transfer time to the nearest millisecond. A copy of the test sender source code

is included in Appendix B.

Configuration Program

The wireless configuration program allows the user to check and set the error

model parameters and TCP enhancement features. This program allows the user to

choose whether snoop and the error model are enabled or disabled. Other features such as

the mean error rate and the burst error rate may be modified with this program. I used the

program to change the mean error rate to compare the performance ofTCP with and

without snoop. The source code for the wireless configuration program is included in

AppendixB.

Testing

In my tests, I used the mean error rate to compare TCP Reno and the snoop

enhancement. Using the configuration program, I chose to enable the error model.

Without running snoop, I varied the mean error rate. The mean error rate determines the

24

scaling factor which determines the interval between errors. A mean error rate of20,000

implies there will be an error approximately every 20,000 bytes. The mean error rate was

varied between 25,000 and 95,000. Figure six shows the transfer time versus the mean

error rate for TCP Reno.

Reno TCP

o 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Error Rate

Figure 6

As can be seen in the figure, TCP transfer times become very large as the mean

error rate becomes small. 2,000,000 bytes are being sent on each test. A mean error rate

of 10,000 would yield a transfer time offive or more minutes which is unreasonable in a

computing environment. Each mean error rate value was tested between ten and twenty

times to get a good average value. The actual test data is included in Appendix A.

The snoop agent was then enabled, and the same test runs were performed. Figure

seven shows the average transfer times for the snoop implementation versus the mean

error rate.

25

Snoop TCP

12�����====-=�==��=
11.8 ��-������@;;;;;�=

11.6 �����H+i

11.4 +.44��*i'

� 11.2 --t;:;:;:;:;:;:;:;:;:;:;:;:�:;:;:;:;

S 11 tggggglill¥.i#.@�@@�@$;g�@@ggmW.mg®'#'l@@wW4I$4WwwlB.lliillill&illiliill£jill� 10.8 +
til 10.6 �,:,:,:,:,:,:,�,:,:,:,:,:,:,:,:,:,:,;,:,:,:,:,:,;

10.4 ��&.
10.2
10

o 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

&ror Rate

Figure 7

The times using the snoop agent were much better than TCP. The times varied

less and remained lower. Figure eight shows a plot of the throughput of TCP with and

without snoop.

TCP vs. Snoop

0.2

0.18
0.16

- 0.14
:::r

0.12c.
.s::.
0) 0.1:::r
0 0.08...

.s::.
0.06....

0.04
0.02

0

8
g
to

a
a
a
lO
"<t

a
a
a
to
(")

a
a
a
lO
N

a
a
a

¥2

a
a

g
m

a
a
a
to
co

to
(")
to
to
(!)

Mean Error Rate

Figure 8

26

As shown in the graph, snoop TCP performs at a higher and more consistent rate.

TCP's performance degrades rapidly as the interval between errors increases. Snoop's

performance degrades a little, but in comparison, this degradation seems minimal.

FutureWork

As time permits, I would like to adjust the duplicate acknowledgment values for

the snoop protocol. In theory, a lower value for the duplicate acknowledgments should

improve the throughput. The value currently used is three. If this value was decreased, I

think that performance would be improved.

Future Ideas

An article in Byte magazine [5] shows how sometimes the entertainment industry

can predict the future. In the TV series "Get Smart", main character Maxwell Smart is

often show as having a telephone in his shoe. Research atMIT is involved with developing

a PC small enough to fit into the heel of a shoe. This wearable PC is designed to help

record anything the user might ever possibly need. A head mounted camera is used along

with a microphone to record everything the user wants. Wireless options such as a global

positioning system and cellular modem are included in the PC. Because of the large

amount of storage capacity needed, a server is the ideal place to put the information

gathered. This is the reason the wireless modem was included. Other technologies include

using human skin to act as a transport medium for an Ethernet network. In an actual trial,

27

the information from one person's business card was transmitted to another person just

through the act of shaking hands.

Conclusion

The ability to communicate without being tied down is a dream of society.

Everyone wants to be able to work while reclining in bed, or at their favorite beach.

Cellular technology seems to be the most promising avenue of expansion to meet this goal.

Because of the already popular cellular phone, implementing CDPD seems to be the best

way to begin wireless implementations. Before this system can become reliable enough to

use everyday and by everyone, the TCP protocol must be adapted to handle wireless data

transfers with an acceptable degree of reliability. The snoop agent has proven to work

well in a laboratory environment. This enhancement may allow users more freedom in

their movement. At this point, snoop seems to be the answer to many ofTCP' s

performance problems. More tests should be run outside of the laboratory to determine

the real performance of snoop.

28

'BihIiograpIiy

[1] A. Bakre and B. R. Badrinath, "I-TCP : Indirect TCP forMobile Hosts", Department

ofComputer Science, Rutgers University, October 1994.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, "Improving TCP!IP performance

overWireless Networks", Computer Science Division, University ofCalifornia at Berkley,

November 1995.

[3] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, "A Comparison of

Mechanisms for Improving TCP Performance over Wireless Links", Computer Science

Division, University ofCalifornia at Berkley, August 1996.

[4] R. Bargrodia, W. Chu, L. Kleinrock and G. Popek, "Vision, Issues, and Architecture

for Nomadic Computing,
" IEEEPersonal Communications, vol. 2, no. 6, December

1995.

[5] N. Baron, "Get Smart - Wear a PC" Byte, v. 21, March 1996.

[6] T. E. Bell, J. A. Adam, and A. J Lowe, "Communications", IEEE Spectrum, January

1996, pp. 30-41.

[7] S. Biaz, M. Mehta, S. West, and N. H. Vaidya, "TCP over Wireless Networks Using

Multiple Acknowledgments", Department ofComputer Science, Texas A&M University,

January 1997.

[8] D. Cox, "Wireless Personal Communications: What is it?," IEEEPersonal

Communications, vol. 2, no. 2, April 1995.

[9] R. C. Durst, G.1. Miller, and E. 1. Travis, "TCP Extensions for Space

Communications", Proceeding ofMOBICOM '96, pp. 15-26, November 1996.

[10] J. A. Martin, "The Wireless Wanderer", PC World, v.12 August 1994.

[11] A. Seybold, "Wireless Mobility?", Andrew Sybold's Outlook on Communications and

Computing, October 1995.

[12] W. R. Stevens, TCPIIP Illustrated, Volume J The Protocols, Addison-Wesley

Publishing, New York, 1994, pp.2-3.

[13] A. S. Tannenbaum, Computer Networks ThirdEdition, Prentice Hall PTR, Upper

Saddle River, New Jersey, 1996, pp. 28-36.

[14] S. M. West, "TCP Enhancements for Heterogeneous Networks", Department of

Computer Science, Texas A&M University, March 21, 1997.

Appendix A

Data Files

Socket Calls

Primitive
SOCKET
BIND
LISTEN

Meaning
Create a new connection end point
Attach a local address to a socket
Announce a willingness to accept connections; giv
queue SIze

Block the caller until a connection attempt arrives
Actively attempt to establish a connection
Send some data over the connection
Receive some data from the connection
Release the connection

ACCEPT
CONNECT
SEND
RECEIVE
CLOSE

[13]

Reno TCP

Reno TCP

Mean Error Rate 95000 90000 85000 80000 75000 70000 65536 60000

Transfer Time (s) 11.947 11.101 15.17 21.006 17.931 15.203 28.59 14.92
Transfer Time (s) 11.191 13.687 16.919 13.884 17.269 12.204 19.812 17.894
Transfer Time (s) 11.409 12.24 9.98 17.34 12.58 14.05 18.098 21.821
Transfer Time (s) 12.118 11.026 10.064 10.103 12.394 16.648 13.663 13.967
Transfer Time (s) 13.747 9.915 17.779 21.208 12.697 18.8 13.944 14.58
Transfer Time (s) 12.595 13.994 10.064 13.702 11.444 19.691 23.784 12.728
Transfer Time (s) 12.82 15.258 12.03 22.859 14.217 29.997 19.569 14.102
Transfer Time (s) 10.125 13.922 18.353 12.739 22.249 19.019 16.543 16.827
Transfer Time (s) 14.232 15.418 10.074 18.07 20.692 18.547 14.817 23.635
Transfer Time (s) 16.523 12.917 12.432 15.138 13.936 21.334 26.911 22.606
Transfer Time (s) 13.469 12.317 25.444 14.104
Transfer Time (s) 12.424 16.595 12.076 14.733
Transfer Time (s) 16.781 12.274 24.853 19.34
Transfer Time (s) 16.564 23.454 32.649 18.276
Transfer Time (s) 14.318 13.698 14.29 16.541
Transfer Time (s) 34.519 . 16.737 16.382 24.9
Transfer Time (s) 14.097 15.388 16.682 20.384
Transfer Time (s) 12.232 14.331 9.975 31.071
Transfer Time (s) 18.416 15.894 12.467 15.336
Transfer Time (s) 9.923 15.126 12.91 17.561

Mean Error Rate 95000 90000 85000 80000 75000 70000 65536 60000

Avg Transfer Time 12.6707 14.61105 13.2865 16.09315 15.5409 18.16105 19.39885 17.308

Reno TCP

55000 50000 45000 40000 35000 30000 25000

16.335 22.343 29.974 38.9 45.422 49.161 59.434

21·987 16.221 28.683 31.534 54.347 39.383 83.603
23.946 23.277 33.577 30.99 50.385 33.783 53.844
25.952 19.915 31.847 23.786 34.626 42.946 59.358
13.834 12.933 25.957 28.548 17.682 54.343 97.458
13.735 26.748 21.826 31.987 14.402 45.53 78.602
15.27 29.564 24.547 32.139 31.598 42.365 77.587
14.535 23.293 16.991 30.66 25.347 64.29 44.738
18.923 25.148 16.815 28.54 45.701 62.914 62.96
21.196 25.256 58.453 34.85 36.56 33.236 53.831

24.281 17.402 75.453
27.891 34.919 63.606
23.361 42.35 69.747
27.562 27.977 52.317
38.266 27.511 37.899
16.868 29 36.799
19.275 23.189 63.366
29.317 33.765 49.501
22.158 32.395 50.851
20.94 37.702 67.581

55000 50000 45000 40000 35000 30000 25000
18.4813 23.73085 28.867 30.9072 35.607 51.75355 67.1415

Snoop TCP

Snoop

Mean Error Rate 95000 90000 85000 80000 75000 70000 65536 60000

Transfer Time (s) 10.215 10.08 11.158 10.254 10.116 10.167 10.327 10.484
Transfer Time (s) 10.106 10.204 10.101 10.583 11.932 10.252 10.302 10.542
Transfer Time (s) 10.623 10.845 10.053 9.976 11.333 10.524 10.643 11.061
Transfer Time (s) 10.019 10.093 10.455 10.565 10.222 10.042 10.06 10.296
Transfer Time (s) 10.03 10.091 10.234 10.053 10.628 10.556 10.66 10.248
Transfer Time (s) 10.418 10.086 10.377 10.512 10.267 10.3 10.311 10.158
Transfer Time (s) 10.255 10.163 10.033 10.285 10.001 10.269 10.262 10.398
Transfer Time (s) 10.058 10.007 10.258 10.152 10.084 10.752 10.203 10.252
Transfer Time (s) 10.742 10.213 10.062 10.091 10.403 10.095 10.198 10.448
Transfer Time (s) 10.188 10.382 10.064 10.499 10.165 10.27 10.786 10.193
Transfer Time (s) 10.726 9.9 10.133 10.057 10.061 10.371 10.128 10.412
Transfer Time (s) 10.041 10.063 10.77 10.141 10.171 10.017 10.581 10.595
Transfer Time (s) 10.291 10.543 10.04 10.104 10.397 10.235 10.342 10.879
Transfer Time (s) 10.074 10.042 10.03 10.304 10.386 10.157 10.404 10.33
Transfer Time (s) 10.11 10.014 10.057 10.318 10.025 10.181 10.158 10.576
Transfer Time (s) 10.271 10.307 10.139 10.036 10.316 10.052 10.077 10.442
Transfer Time (s) 10.623 10.661 10.063 10.067 10.145 10.219 10.46 10.136
Transfer Time (s) 10.196 10.028 10.044 10.703 10.336 10.229 10.188 10.632
Transfer Time (s) 10.078 10.18 10.2 10.395 10.204 10.161 10.128 10.772
Transfer Time (s) 10.271 10.034 10.314 10.241 10.325 10.582 10.089 10.107

Mean Error Rate 95000 90000 85000 80000 75000 70000 65536 60000

Avg. Transfer Time 10.26675 10.1968 10.22925 10.2668 10.37585 10.27155 10.31535 10.44805

SnoopTCP

55000 50000 45000 40000 35000 30000 25000

10.375 10.898 11.014 10.751 11.261 11.127 11.839
11.022 10.264 10.655 10.328 10.791 11.888 11.813
10.606 10.547 10.568 11.896 11.117 11.915 11.145
10.943 10.826 10.612 10.772 10.825 11.673 12.367
10.476 10.6 10.324 11.266 12.433 11.232 13.275
10.48 10.609 11.074 10.818 11.477 11.219 12.144
11.567 10.76 10.452 11.033 10.882 11.35 12.522
10.385 10.668 11.112 11.12 11.581 10.864 11.669
11.13 10.973 11.135 11.449 11.052 12.115 12.044
10.79 10.806 10.758 10.739 11.331 11.109 12.02

10.664 10.187 10.629 10.593 11.632 12.259 11.383
10.809 10.678 11.026 10.689 10.806 11.666 11.19
10.173 10.428 10.283 10.856 11.837 12.223 12.235
10.437 10.22 10.366 10.775 10.705 10.963 11.674
10.139 10.458 11.071 11.555 10.893 11.55 11.901
10.696 10.676 10.642 10.82 11.102 11.518 12.043
10.492 10.639 10.82 10.378 10.968 10.952 11.591
10.363 10.704 11.011 10.279 10.807 12.572 12.061
10.887 10.381 10.584 11.546 11.165 10.928 11.854
11.124 10.597 10.725 10.625 11.094 12.614 12.645

55000 50000 45000 40000 35000 30000 25000
10.6779 10.59595 10.74305 10.9144 11.18795 11.58685 11.97075

AppendixB

Program Files

/***********••••••• **.****** •• *.***********.***********************************
* *

*

*

•

..

*

*

..

*

*

•

*

*

..

*

*

*

*

*

stephen west
swest@cs.tamu.edu
Test Sender Program

*

*

*

*

*

*

*

*

*

•

*

*

*

*

*

*

*

*

Directions: This file must be compiled as follows:

> cc -0 test_sender test_sender.c
or

> cc -0 test_sender test_sender.c -lsocket -lnsl

Reference: Internetworking with TCP/IP, Douglas E.
Comer David L. stevens Vol. 1,111
UNIX Networking Programing, stevens

Department of Computer Science
Texas A&M University
College Station, TX 77843-3112

Affiliation:

**************************.***/

#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#ifdef _AIX
#include <sys/select.h>
#endif
#include <sys/socket.h>
#include <sys/file.h>
#include <sys/ioctl.h>

#include
#include
#include
#include
#include
'#include
Ttinclude
#include
#include

<netinet/in_systm.h>
<netinet/in.h>
<netinet/ip.h>
<netinet/ip_var.h>
<netinet/ip_icmp.h>
<netinet/udp.h>
<netinet/tcp.h>
<netdb.h>
<ctype.h>

#include <stdio.h>
#include <errno.h>
#include <string.h>

#define TCP_TAMU_STATS

#define INPUT_LINE 80
#define TEST_ARRAY_SIZE 2000000

/* --------------------------- Function Prototypes -------------------------- */

int main_menu(void);
int tcp_stats_menu(void);
void send_test_data(void);
void sys_err(char *str);
void sys_msg(char *str);
void test_array_init(void);
long timediff(struct timeval lasttime);
int write_n(int fd);

/**
*

* This program is used to send a stream of data from the local machine to a

remote machine using a TCP connection. The performance obtained during the
* transfer can then be measured both at the sender and the receiver.
*

**/

char Test_Array[TEST_ARRAY_SIZE];
char dest_machine[INPUT_LINEJ = "chopin-wv";
int dest_port=9;
int enable_stats=O;

maine)
(

int response=O, sub_menu_selection=O;

/*
* Initialize the array structure used for sending transfers.
*/

test_array_init();

while(response != 1){
response = main_menu();
switch(response) {

case 1:
break;

case 2:

sys_msg("FEATURE NOT IMPLEMENTED IN SENDER PROGRAM");
break;

case 3:

send_test_data{);
break;

case 4:
sub_menu_selection = tcp_stats_menu();
switch (sub_menu_selection)(

case 1:
break;

case 2:
enable_stats = 1;
sys_msg("\n\n\t TCP stats collection enabled \n");
break;

case 3:
enable_stats = 0;
sys_msg("\n\n\t TCP stats collection disabled \n");
break;

default:
sys_err("Invalid Sub-Menu Response Returned");
break;

.

}
break;

default:
sys_err("Invalid Main Menu Response Returned");
break;

system{ "clear") ;

/**
*

* The function main_menu displays the main menu for the wireless
* configuration program.
* Input: User Selections
* Output: Menu Number Related To The User's Selection
*

**/
int main_menu(void)
{

int response=Oi

while ((response < 1) I I (response > 4» (
system("clear");

printf("\n\n\n\t\t TCP NETWORK TEST PROGRAM \n");
printf("\t\t\t Main Menu \n\n\n");
printf("\t 1) Exit the Program\n");
printf("\t 2) Set/Check TCP Enhancements - Not Needed at Sender\n");
printf("\t 3) Send Test Data\n");
printf("\t 4) Set/Check TCP Statistics\n");
printf("\n\n\t Enter Selection (1 - 4) --> ");

scanf("%d", &response);

return response;
]

/**
*

* The function tcp_stats_menu allows the user to enable and disable tcp
* statistical collection via tcp_trace(). Once stats collection is enabled,
* it will be used for each transfer until it is disabled. The user must
* be careful not to overfill the stats buffer within the kernel during a
* transfer. The buffer'is circular and has a size of 2000 packets currently.
* After each run in which stats are collected, trpt should be run to store
* the stats to a file.

.

* Input: User's Choice
* Output: Menu Item, Number Selected By The User
*

**/
int tcp_stats_menu(void)
(

int response=O:

while«response < 1) I I (response> 3»{
system("clear");
printf("\n\n\n\t\t TCP NETWORK TEST PROGRAM \n");
printf(�\t\t TCP Statistics Menu \n\n");
if(enable_stats 1)

printf("\t TCP stats collection: Enabled\n\n\n");
if(enable_stats 0)

printf("\t TCP stats collection: Not Enabled\n\n\n");
printf("\t 1) Exit to the main menu\n");
printf("\t 2) Enable tcp stats collection \n");
printf("\t 3) Disable tcp stats collection \n");
printf("\n\n\t Enter Selection (1 - 3) --> H);

scanf("%d", &response);

return response;

/**
*

* The function send test data is the heart of the program. It sends a set of
* test data to the remote machine and records the transfer time and amount of
* data sent. A menu is displayed which askes the user if they want to use
* the default settings, or enter new ones. Any new settings entered by the
* user will become the new default. If the enable_stats flag is set, socket
* debugging is also turned on within the kernel so that tcp_trace() will
* capture sender tcp statistics during the transfer. This data can then be
* examined with the trpt program. Socket debugging is on a per connection
* basis. Therefore, it must be re-enabled for each transfer. When the
* socket is closed, the debugging will automatically be turned off for that
* socket.
* Input: User's Menu Choices and Destination Machine Name & Port Number
* Test Data to Remote Hachifle and Transfer Time '& Size
*

**/
void send_test_data(void)

{
struct sockaddr_in dest_addri
char hostname[100], hostaddr[100]:
register struct hostent *hP:
int debug_enable, debug_len:
int option, option_len:
int sockfdi

int response1-0, response2=0:
struct timeval start_time:
�ong transfer_time_useci
double transfer_time_sec:
int bytes_written:

system("clear")i
printf("\t\t TCP NETWORK TEST PROGRAM\n")i
printf("\t Destination Machine Selection Menu\n\n"):

printf("\t Default dest. machine: %s \n", dest_machine);
printf("\t Default dest. port number: %d \n", dest_port);
if(enable_stats == 1)

printf("\t TCP stats collection: Enabled\n\n\n");
if(enable_stats == 0)

printfC"\t TCP stats collection: Not Enabled\n\n\n"):

/*
* Get the destination machine from the user and try and convert it using
* gethostbyname() function.
*/

while«response1 < 1) I I (response1> 3»[
printf{"\t 1) Exit the Program \n");
printf{"\t 2) Use the default settings \n");
printf("\t 3) Change the default settings.\n");
printf("\n\t Enter Selection (1 - 3) --> H);
scanf("%d", &responsel);

if(response1 == 1)
return;

else if(respOnse1 == 3)[
printfc"\n\t Enter destination machine name -->" dest_machine):
scanf("%s", dest_machine);

J

if«hp = gethostbyname(dest_machine)} == NULL) [
printf("\n\n\t Unable to find destination machine \"%s\"\n",

dest_machine):
printfC"\t 1) Re-enter the destination machine name\n");
printf{"\t 2) Abort the transfer\n"):
printf("\t Enter Selection (1 - 2) --> H);
scanf("%d", &response2):

while{(hp == NULL) && (response2 !=2»[
printfC"\n\t Enter destination machine name -->" dest_machine);
scanf("%s", dest_machine):
ifC{hp = gethostbyname{dest_machine)} == NULL) [

printf{"\n\n\t Unable to find destination machine \"%s\"\n",
dest_machine);

printf("\t 1) Re-enter the destination machine name\n");
printf("\t 2) Abort the transfer\n");
printf{"\t Enter Selection (1 - 2) --> "}:
scanf{"%d", &response2);

if(response2 2}
return:

strcpy(hostname,hp->h_name)i
strcpy(hostaddr,cchar *)inet_ntoa(*(struct in_addr *)hp->h_addr»;

/*
* Get the destination port from the user.

*/

if(responsel -- 3)(
printfC"\t Enter the dest port number --> ")i
scanf C"%d",

.

&dest_port) ;

ifccsockfd - socket(AF_INET,SOCK_STREAM,O» < 0)(
sys_msg("Socket Error - Aborting Transfer");
return;

dest_addr.sin_addr.s_addr = inet_addrChostaddr)i
dest_addr.sin_port - htonsCdest_port);
dest_addr.sin_family = AF_INETi

/*
* Set socket option to monitor tcp variables and record them
* in the buffer.
*/

if(enable_stats == 1)(
debug_enable = 1;
if(setsockopt(sockfd, SOL_SOCKET,SO_DEBUG,(char *) &debug_enable,

sizeofCdebug_enable» < 0)
printf("\t Unable to Set Socket to Debug Mode!\n"};

debug_enable = 0;
debug_len = sizeof(debug_enable)i
if(getsockopt(sockfd,SOL_SOCKET,SO_DEBUG,(char *) &debug_enable,

&debug_len) < 0)
printf("\t Unable to Get Socket Debug Status!\n");

if(debug_enable == O}
printf("\t SO_DEBUG Not Set to 1!\n");

else

printf("\n\t SO_DEBUG Successfully Turned On.\n"};

/*
* Start the timer and open the connection.
*/

printf("\t Starting transfer ... If);
fflush(stdout};

gettimeofday(&start_time, NULL);

if(connect(sockfd,(struct sockaddr *)&dest_addr, sizeof(dest_addr)} < 0)(
sys_msg("\t Unable to connect to Destination - Aborting Transfern);
return;

bytes_written write_n(sockfd);

close(sockfd);

/*
* Finished with transfer. Calculate amount of data sent and transfer time .

.... ,
-'/

transfer_time_usec = timediff(start_time);
transfer_time_sec = «double) transfer_time_usec}/lOOOOOO;

printf("%d Bytes sent \n", bytes_written);
printf("\t Total Transfer Time = %6.3f Seconds\n", transfer_time_sec);

sys_msg("");

}

/**
*

* The function sys_err takes a string and displays it for the user.
* Then it terminates the program with the error. It is intended to be used
* with fatal errors which must terminate the program, not for program
* warnings.
* Inputs:
* Outputs:

Error Message
Message to The Screen

*

**/
void·sys_err(char *str)
(

printf("%s\n",str);
exit(!}:

/**
*

* The function sys_msg takes a string and displays it for the user. It then
* pauses until the user presses the return key. Unlike sys_err, it is not
* intended to be used with fatal errors. It displays non-fatal errors and
* other general information.
* Inputs: Error Message
* Outputs: Message to The Screen

**/
void sys_msg(char *str)
{

int response;

printf("%s\n",str);
printf("\t Press the return key to continue\n"):
response getchar(};
response = getchar();

/**
*

*

The function test_array_init fills the array of characters called
Test_Array with character values in the range of 48-122 (decimal). This
is 0 - z in terms of characters. The idea was to have easily recognized
printable characters in case they are ever printed to the screen.

Input: Empty Array
Output: Initialized Array

*

*

*

*

*

*

**/
void test_array_init(void)
{

int i;
char j=48;

for(i=O; i < TEST_ARRAY_SIZE; i++)[
Test_Array[iJ = j;
j++;
if(j > 122)

j = 48;

/**
*

* The timediff function checks the time that has elapsed during the transfer.
* Input: None
* Output: The time interval in microseconds
*

**/
long timediff(struct timeval lasttime)
(

struct timeval curtime;
long cur=O, lastcO;

gettimeofday(&curtime, NULL);
cur=(curtime.tv_sec%10000)*1000000+curtime.tv_usec;
last=(lasttime.tv_sec%10000)*1000000+lasttime.tv_usec;

return (cur-last);

/**
*

* The function write_n is a more robust method of writing a message to a
* socket. It takes into account the fact that the write system call will
* not necessarily write the entire length of the buffer. Therefore, it
* loops until the entire message has actually been written.
* Inputs: Socket Descriptor
* Outputs: It Returns the Number of Bytes Actually Written
*

**/
int write_n(int fd}
{

int nleft, nwritten=O;
char *output_ptr = &Test_Array[O];

nleft = TEST_ARRAY_SIZE;
while(nleft> 0)(

nwritten = write(fd, output_ptr, nleft);
nleft -= nwritten;
output_ptr += nwritten;

}
return(TEST_ARRAY_SIZE - nleft); /* return >= 0 */

/**
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

stephen west
swest@cs.tamu.edu

Wireless Configuration Program

*.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Directions: This file should be compiled as follows:

> cc -0 config_wireless config_wireless.c

Reference: Internetworking with TCP/IP, Douglas E.
Comer David L. stevens Vol. 1,111
UNIX Networking Programing, stevens

Affiliation: Department of Computer Science
Texas A&M University
College Station, TX 77843-3112

**/

#include <stdio.h>
#include<sys/types .. h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<arpa/inet.h>
#include <netdb.h>
#include <errno.h>
#include <sys/time.h>
#include <netinet/tcp.h>

/*
* Removing this definition causes only those operations which may be
* performed at the mobile host to be displayed on the main menu.

*/
#define BASE_STATION

/* --------------------------- Function Prototypes -------------------------- */

int ackp_enable_disable{int choice);
void error_enable_disable(int choice);
void error_model_disp_params(void);
int error_model_menu{void);
void error_set_burst_size(void);
void error_set_mean_rate(void);
void error_set_model_type(void);
void error_set_timer_gran(void);
void error_set_TRANSO(void);
void error_set_TRANS1(void);
int main_menu(void);
int snoop_enable_disable(int choice);
void sys_err(char *str);
void sys_msg(char *str);
int tcp_model_menu(void);

/**
*

* This program is used to set parameters at the base station and the mobile
* host. It creates a dummy socket and then uses that socket to make
* getsockopt() and setsockopt() system calls. These calls read and write
* values from/to global variables defined in the kernel which control the
* error injection model and tcp performance improvement options.
*

**/

int Dummy_Fd; /* The dummy socket required to get/set sock options */

maine)
[

int response=O, sub_rnenu_selection=O;

/*
* Assign a dummy TCP socket so that we are able to use setsockopt() and
* getsockopt() to change error model and tcp model parameters and then
* verify that the parameter was correctly set.
*/

if«Durnmy_Fd - socket(AF_INET,SOCK_STREAM,O» < 0)
sys_err("\t Dummy Socket Call Failed"):

/*
* This is the main program loop.
*/

while(response !- 1){
response - main_menu():
switch(response) {

case 1:
break:

case 2:
sub_menu_selection error_model_menu();
switch (sub_menu_selection)[

case 1:
break:

case 2:
error_model_disp_params(};
break:

case 3:

error_enable_disable(l};
break;

case 4:

error_enable_disable(O};
break;

case 5:

error_set_mean_rate(};
break;

case 6:
error_set_model_type(};
break:

case 7:
error_set_TRANSO();
break;

case 8:
error_set_TRANS1():
break;

case 9:
error_set_timer_gran();
break:

case 10:
error_set_burst_size();
break:

default:
sys_err("Invalid Sub-Menu Response Returned");
break;

}
break:

case 3:
sub_menu_selection = tcp_model_menu():
switch(sub_menu_selection)[

case 1:
break;

case 2:

snoop_enable_disable(1);
break;

case 3:

snoop_enable_disable(O);
break;

case 4:

ackp_enable_disable(l):
break:

case 5:

ackp_enable_disable(O);
break;

default:
sys_err("Invalid Sub-Menu Response Returned");
break:

}
break:

default:
sys_err("Invalid Main Menu Response Returned");
break;

}
system("clear");
close(Dummy_Fd):

/**
*

.

* The function ackp_enable_disable looks at the parameter choice and if it
* is 1, the ackp code is enabled for incoming packets. If choice is 0, the
* ackp code is disabled for incoming packets. The option is called
* TCP_SNOOP_ACKP_ENABLE within the kernel and it sets the global variable
* snoop_ackp_enable defined in snoop.c
*

.

Input: User's Choice (Enabled/Disabled)
* Output: Updated Kernel Value for Enabling/Disabling Ackp
*

**/
int aCkp_enable_disable(int choice)
[

int ackp_enablei
int option_leni

if(choice == 1){
ackp_enable = 1;
if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_ACKP_ENABLE,

(char *) &ackp_enable, sizeof(ackp_enable» < O){
sys_msg("\n\t Unable to Enable Ackp Option at Basestation!");
return:

}
aCkp_enable = 0:
option_len = sizeof(ackp_enable):
if (getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_ACKP_ENABLE,

(char *) &ackp_enable, &option_len} < O){
sys_msg("\n\t Unable to Get Ackp Enabled/Disabled Status!"}:
return;

if(ackp_enable I}
sys_msg("\n\t Ackp Option Has Been Enabled at Basestation!"}:

else
sys_msg("\n\t Error: Ackp Was Not Turned On Within The Kernel"):

}
else{

ackp_enable = 0;
if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_ACKP_ENABLE,

(char *) &ackp_enable, sizeof(ackp_enable» < 0)(
sys_msg("\n\t Unable to Disable Ackp Option at Basestation!"):
return:

}
ackp_enable = I:
option_len = sizeof(ackp_enable):
if(getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_ACKP_ENABLE,

(char *) &ackp_enable, &option_len) < O){
sys_msg("\n\t Unable to Get Ackp Enabled/Disabled status!");
return:

if(ackp_enable 0)

sys_msg("\n\t Ackp Option Has Been Disabled at Basestation!");
else

sys_msg("\n\t Error: Ackp Was Not Turned Off Within The Kernel");

/**
*

* The function error_enable_disable looks at the parameter choice and if it
* is I, the bit error model is enabled for incoming packets on the wireless
* link. If choice is 0, the bit error model is disabled for incoming packets
* on the wireless link. The option is called TCP_SNOOP_BER_DISABLE within
* the kernel and it sets the global variable ber.disable defined in ber.c and
* ber.h
* Input: User's Choice (Enabled/Disabled)
* Output: Updated Kernel Value for Enabling/Disabling Error Injection
*

**/
void error_enable_disable(int choice)
(

int error_disable;
int option_len;

if(choice == 1){
error_disable = 0;
if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BER_DISABLE,

(char *) &error_disable, sizeof(error_disable» < O){
sys_msg("\n\t Unable to set Error Model to The On State!");
return;

}
error_disable = 1;
option_len = sizeof(error_disable);
if (getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BER_DISABLE,

(char *) &error_disable, &option_len) < 0)(
sys_msg("\n\t Unable to Get Error Model Enabled/Disabled status!");
return;

if(error_disable == 1)
sys_msg("\n\t Set Option Error - Error Model Was Not Turned On");

else

sys_msg("\n\t Error Model Has Been Enabled!");
}
else(

error_disable = 1;
if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BER_DISABLE,

(char *) &error_disable, sizeof(error_disable» < 0)(
sys_msg("\n\t Unable to set Error Model to The Off State!");
return;

}
error_disable = Oi
option_len = sizeof(error_disable)i
if (getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BER_DISABLE,

(char *) &error_disable, &option_len) < 0)(
sys_msg("\n\t Unable to Get Error Model Enabled/Disabled Status!");
return;

if(error_disable == 0)
sys_msg("\n\t set Option Error - Error Model Was Not Turned Off");

else

sys_msg("\n\t Error Model Has Been Disabled!");

/**
*

* The function error_ffiodel_disp_params creates a display screen showing the
* current settings for each of the bit error model parameters. It is a read

'*

*

*

*

only screen.

Input:
Output:

None
prints Values of All Kernel Bit Error Models to Screen

**/
void error_model_disp_params(void)
{

int err_option, option_len;

system("clear");
printf("\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n");
printf("\t\t Current Error Model Values \n\n\n");

option_len = sizeof(err_option);
if (getsockopt(Durnmy_Fd, IPPROTO_TCP,TCP_SNOOP_ERRPROBO,(char *)

&err_option, &option_len) < 0)
sys_msg("\n\t Unable to Get ERRPROBO!\n");

printf("\t ERRPROBO \t = \t %d\n", err_option);

option_len = sizeof(err_option); .

if(getsockopt(Durnmy_Fd, IPPROTO_TCP,TCP_SNOOP_ERRPROBl,(char *)
&err_option, &option_len) < 0)

sys_msg("\n\t Unable to Get ERRPROBl!\n");
printf("\t ERRPROBI \t = \t %d\n", err_option);

option_len = sizeof(err_option);
ifcgetsockopt(Durnrny_Fd, IPPROTO_TCP,TCP_SNOOP_BER_MODEL,(char *}

&err_option, &option_len) < 0)
sys_msg("\n\t Unable to Get BER_MODEL!\n");

if(err_option == 0)
printf("\t BER_MODEL \t \t Poisson\n");

else
printf("\t BER_MODEL \t \t Markov\n");

option_len = sizeof(err_option);
if(getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_TRANSO , (char *)

&err_option, &option_len} < 0)
sys_msg("\n\t Unable to Get TRANSO!\n");

printf("\t TRANSO \t = \t %d\n", err_option);

option_len = sizeof(err_option):
if(getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_TRANSl, (char *)

&err_option, &option_len) < 0)
sys_msg("\n\t Unable to Get TRANSl!\n");

printf("\t TRANSI \t = \t %d\n", err_option);

option_len = sizeof(err_option):
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_TIMERGRAN, (char *)

&err_option, &option_len) < 0)
sys_msg("\n\t Unable to Get TIMERGRAN!\n"):

printf("\t TIMERGRAN \t = \t %d\n", err_option);

option_len = sizeof(err_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BURSTRATE, (char *)

&err_option, &option_len) < 0)
sys_msg("\n\t Unable to Get BURSTRATE!\n");

printf ("\t BURSTRATE \t = \t %d\n", err_option);

option_len = sizeof(err_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_BER_DISABLE, (char *)

&err_option, &option_len) < 0)
sys_msg("\n\t Unable to Get BER_DISABLE!\n");

if(err_option == 0)
printf("\t BER_DISABLE \t \t False (Injecting Errors)\n");

else

printf("\t BER_DISABLE \t \t True (Not Injecting Errors)\n");

sys_msg("");

/**
*

* The function error_model_menu creates a menu screen which allows the user
* to choose an error model parameter to change. The user may also choose to
* view all of the current settings or to exit without doing anything.
* Input: None
* Output: The Menu Option Selected By The User
*

**/
int error_model_menu(void)
(

int response-Oj

while«response < 1) II (response> 10»(
system("clear") ;
printf("\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n"):
printf("\t\t Error Model Menu \n\n\n"):
printf("\t 1) Exit to Main Menu\n"):
printf("\t 2) Check Status of Bit Error Parameters \n"):
printf(n\t 3) Enable Error Injection \n");
printf("\t 4) Disable Error Injection \n"):
printf(n\t 5) Change Mean Bit Error Rate (ERRPROBO) \n"):
printf(n\t 6) Change Bit Error Model (Markov or Poisson) \n"):
printf("\t 7) Change Markov TRANSO \n"):
printf(n\t 8) Change Markov TRANS1 \nn);
printf(n\t 9) Change Error Model Timer Granularity \n"):
printf("\t 10) Change Error Burst Size \n"):
printf("\n\n\t Enter Selection (1 - 10) --> "}:

scanf("%d", &response):

return response;

/**
*

* The function error_set_burst_size allows the user to choose the number of
* packets in a row which will be injected with errors. The default is a
* single packet. The option is called TCP_SNOOP_BURSTRATE within the kernel,
* and it sets the global variable ber.burst_rate defined in ber.c and ber.h.
* Input: User Entered Burst Size
* output: Updated Kernel Value for Burst Size
*

*�+.***/
void error_set_burst_size(void)
{

int response=O:
int err_option=O;
int option_len:

while ((response < 1) I I (response > 2» [
system("clear"):
printf("\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n");
printf("\t Set Error Model's Packet Burst Size \n");
printf("\t\t Default Burst Size is 1 packet \n\n\n");

option_len = sizeof(err_option)i
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_BURSTRATE,{char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Get Burst Size! \n");
return;

}
printf("\t Current Burst Size = %d packets \n\n", err_option};

printf("\t 1) Exit to Main Menu \n");
printf("\t 2) Change Burst Size \n");
printf("\n\n\t Enter Selection (1 - 2) --> ");

scanf("%d", &response);

if(response == 1)
return;

else(
printf("\n\n\t Enter New Burst Size --> H);
scanf("%d", &err_option);

if(err_option < 1)(
sys_msg("\n\t Burst Size Must Be Greater Than or Equal to 1")i
return;

if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BURSTRATE,
(char *) &err_option, sizeof(err_option» < 0)(

sys_msg("\n\t Unable to Change Burst Size!");
returni

err_option = Oi
option_len = sizeof(err_option)i
if {getsockopt{Dumrny_Fd, IPPROTO_TCP , TCP_SNOOP_BURSTRATE, (char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Read New Burst Sizel\n");
return:

}
if(err_option == 0)

sys_msg("\n\t Set Option Error - Burst Size Was Not Changed"):
else(

printf("\t New Burst Size = %d packets\n\n" , err_option):
sys_msg{""):

/**
*

*

...

*

...

...

*

- *

*

*

The function error_set_mean_rate allows the user to choose the mean number
of bytes between errors. The default value of 65,536 means that one out

every 65,536 bytes will have an error injected or roughtly one out of
every 45 packets. The option is called TCP_SNOOP_ERRPROBl within the
kernel, and it sets the global variable ber.error_prob[l] defined in ber.c
and ber.h.

Input:
Output:

User Entered Mean Error Rate

Updated Kernel Value for Mean Error Rate

**/
void error_set_mean_rate{void)
{

int response=O:
int err_option=O:
int option_len:

while { (response < 1) I I (response > 2» [
system("clearn):
printf("\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n");
printf("\t set Error Model's Mean Error Rate \n");
printf("\t Default Rate is 1 Per 65536 Bytes \n\n\n"):

option_len sizeof(err_option);
if (getsockopt{Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_ERRPROBO,{char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Get Mean Error Rate (ERRPROBO)l\n");
return:

}
printf("\t Current Mean ErrOr Rate

err_option);
1 error per %d bytes\n\n",

printf("\t 1) Exit to Main Menu\n"):
printf("\t 2) Change Mean Error Rate\n"):

printf("\n\n\t Enter Selection (1 - 2) --> H);

scanf("%d", &response);
)

if{response -= 1)
return;

else{
printf("\n\n\t Enter New Mean Error Rate --> ");
scanf("%d", &err_option);

if(err_option < 1){
sys_ms9("\n\t Mean Error Rate Must Be Greater Than or Equal to 1");
return;

)

if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_ERRPROBO,
(char *) &err_option, sizeof(err_option» < 0)(

sys_msg ("\n\t Unable ,to Change Mean Error Rate!");
return;

err_option = 0;
option_len = sizeof(err_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_ERRPROBO,(char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Read New Mean Error Rate!\n");
return;

if(err_option == 0)
sys_msg("\n\t Set Option Error - Mean Error Rate Was Not Changed");

else(
printf("\t New Mean Error Rate 1 error per %d by tes\n\n" ,

err_option) ;

sys_msg("");

/**
*

*

-*

*

*

*

*

*

*

The function error_set_model allows the user to choose between a straight
Poisson error model or a Markov error model with both good and bad states.
The default is a Poisson error model. The option is called
TCP_SNOOP_BER_MODEL within the kernel, and it sets the global variable
ber.model defined in ber.c and ber.h.

Input: User Entered Model Type
Output: Updated Kernel Value for Model Type

**/
void error_set_model_type(void)
{

int response=O;
int err_option=O;
int option_len;

while«response < 1) I I (response> 3»(
system("clear");

.

printf{"\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n");
printf{"\t\t Choose The Type of Error Model \n");
printf("\t\t Default Model is Poisson \n\n\n");

option_len = sizeof(err_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP , TCP_SNOOP_BER_HODEL, {char *)

&err_option, &option_len) < 0)(
.

sys_msg{"\n\t Unable to Get Model Type! \n");
return;

if(err_option �= 0)
printf("\t Current Model Type poisson \n\n");

else
printf("\t Current Model Type = Markov \n\n");

printf("\t 1) Exit to Main Menu \n");
printf("\t 2) set Model Type to Poisson \n");
printf("\t 3) Set Model Type to Markov \n");
printf("\n\n\t Enter Selection (1 - 3) --> ");

scanf("%d", &response);
)

if(response -= 1)
return;

else if(response == 2){
err_option at 0;
if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BER_MODEL,

(char *) &err_option, sizeofcerr_option» < 0)(
sys_msg("\n\t Unable to Change Model Type!");
return;

err_option = 1;
option_len = sizeofcerr_option);
ifcgetsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_ERRPROBO , (char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Read New Model Typel\n"):
return:

}
if(err_option == 1)

sys_msg("\n\t set Option Error - Model Type Not Set to Poisson"):
else

sys_msg("\n\t New Model Type = Poisson"):
}
else{

err_option = 1;
if(setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_BER_MODEL,

(char *) &err_option, sizeof(err_option» < 0)(
sys_msg("\n\t Unable to Change Model Typel"):
return;

err_option = 0;
option_len = sizeof(err_option);
if (getsockopt(Dumrny_Fd, IPPROTO_TCP,TCP_SNOOP_ERRPROBO,(char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Read New Model Typel\n");
return;

}
if(err_option == 0)

sys_msg("\n\t Set Option Error - Model Type Not Set to Markov");
else

sys_msg("\n\t New Hodel Type = Markov");

/**
*

* The function error_set_timer_gran allows the user to choose the timer
* granularity used by the error model in microseconds. The default is
* 100,000 microseconds or 100 milliseconds. This parameter is used only by
* the Markov model. The option is called TCP_SNOOP_TIMERGRAN within the
* kernel, and it sets the global variable ber.time_granularity defined in
* ber.c and ber.h.
* Input: User Entered Timer Granularity
* Output: Updated Kernel Value for Timer Granularity
*

**/
void error_set_timer_gran(void)

int response-=O:
int err_option=O:
int option_len:

while ((response < 1) I I (response > 2» (
system("clear");
printf("\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n"):
printf("\t set Markov Model's Timer Granularity \n"):
printf("\t Default Gran. is 100000 microseconds \n\n\n"):

option_len - sizeof(err_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_TIMERGRAN,(char *)

&err_option, &option_len) < O){
sys_msg("\n\t Unable to Get Mean Timer Granularity! \n"):
return:

}
printf("\t Current Timer Granularity = \d microseconds \n\n",

err_option):

printf("\t 1) Exit to Main Menu\n")i
printf("\t 2) Change Timer Granularity\n"):
printf("\n\n\t Enter Selection (1 - 2) --> "):

scanf("\d", &response)i
]

.

if(response == 1)
return;

else{
printf("\n\n\t Enter New Timer Granularity --> ");
scanf("\d", &err_optiOn)i

if(err_option < 1)(
sys_msg("\n\t Timer Gran. Must Be Greater Than or Equal to 1");
return;

if (setsockopt (Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_TH1ERGRAN,
(char *) &err_option, sizeof(err_option» < O){

sys_msg("\n\t Unable to Change Timer Granularity!");
return;

err_option = 0;
option_len = sizeof(err_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_TIMERGRAN, (char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Read New Timer Granularity!\n");
return;

if(err_option == 0)
sys_msg("\n\t set Option Error - Timer Gran. Was Not Changed");

else(
printf("\t New Timer Granularity = %d microseconds \n\n",

err_option) ;

sys_msg("II);

/**
*

* The function error_set_TRANSO allows the user to set the Harkov model's
* TRANSO parameter. The default is 30. The option is called
* TCP_SNOOP_TRANSO within the kernel, and it sets the global variable
* ber.trans_perc[O] defined in ber.c and ber.h.
• Input: User Entered TRANSO
* Output: Updated Kernel Value for TRANSO

*

**/
void error_set_TRANSO(void)
{

int response-Oj
int err_option=O;
int option_len;

while«response < 1) I I (response·> 2»(
system("clear") ;
printf("\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n");
printf("\t\t Set Markov Model's TRANSO Value \nn);
printf("\t\t Default Value is 30 \n\n\n");

option_len = sizeof(err_option);
if(getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_TRANSO,(char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to TRANSO! \n");
return;

}
printf("\t Current TRANSO Value = %d \n\n", err_option);

printf("\t 1) Exit to Main Menu\n");
printf("\t 2) Change TRANSO\n");
printf("\n\n\t Enter Selection (1 - 2) --> ");

scanf("%d", &response);
}

if(response == 1)
return;

else[
printf("\n\n\t Enter New TRANSO Value --> ");
scanf("%d", &err_option);

if(err_option < 1)[
sys_msg("\n\t TRANSO Must Be Greater Than or Equal to 1");
return;

if(setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_TRANSO,
(char *) &err_option, sizeof(err_option» < O){

sys_msg("\n\t Unable to Change TRANSO Value!");
return;

err_option = 0;
option_len = sizeof(err_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_TRANSO,(char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to Read New TRANSO Value!\n");
return;

if(err_option == 0)
sys_msg("\n\t Set Option Error - TRANSO Value Was Not changed");

else[
printf("\t New TRANSO Value = %d \n\n", err_option);
sys_msg(tllI);

/**
*

* The function error_set_TRANS1 allows the user to set the Harkov model's
* TRANSl parameter. The default is 30. The option is called
* TCP_SNOOP_TRANSI within the kernel, and it sets the global variable
* ber.trans_perc[l] defined in ber.c and ber.h.
* Input: User Entered TRANSl

*

*
output: updated Kernel Value for TRANS1

**/
void error_set_TRANS1{void)
(

int response-Oj
int err_option-O;
int option_len;

while{{response < 1) II (response> 2»(
system("clear");
printf{"\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n");
printfC"\t\t Set Markov Model's TRANS1 Value \n");
printfC"\t\t Default Value is 70 \n\n\n");

option_len - sizeofcerr_option);
if (getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_TRANS1, {char *)

&err_option, &option_len) < 0)(
sys_msg("\n\t Unable to TRANS1! \n");
returni

}
printf{"\t Current TRANS1 Value = %d \n\n" , err_option);

printf{"\t 1) Exit to Main Menu\n")i
printf{"\t 2) Change TRANS1\n")i
printf("\n\n\t Enter Selection (1 - 2) --> H);

scanf("%d", &response)i

if(response == 1)
return;

else(
printf("\n\n\t Enter New TRANS1 Value --> It);
scanf("%d", &err_optiOn)i

if(err_option < 1)(
sys_msg("\n\t TRANS1 Must Be Greater Than or Equal to 1");
return;

if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_TRANSl,
(char *) &err_option, sizeof(err_option» < 0)(

sys_msg("\n\t Unable to Change TRANS1 Value!It);
return;

err_option = 0:
option_len = sizeof(err_option):
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_TRANSl,(char *)

&err_option, &option_len) < O){
sys_msg(n\n\t Unable to Read New TRANS1 Value!\nn);
return:

if(err_option == 0)
sys_msg("\n\t Set Option Error - TRANS1 Value Was Not Changed"):

else(
printf("\t New TRANS1 Value = %d \n\n", err_option);
sys_msg("");

/**
*

*

*

*

*

The function main_menu displays the main menu for the wireless

configuration program
Input: User Selections

Output: Menu Number Related To The User's Selection

**/
int main_menu(void)
I

int response=Oi

#ifdef BASE_STATION
while«response < 1) I I (response> 3»(

#else
while({response < 1) I I (response> 2»(

#endif
system{ "clear") ;
printf{"\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n")i
printf{"\t\t\t Main Menu \n\n\n");
printf("\t 1) Exit the Program\n")i
printf("\t 2) Modify Error Model\n");

#ifdef BASE_STATION
printf("\t 3) set/Check TCP Enhancement Options\n");
printf("\n\n\t Enter Selection (1 - 3) --> H);

#else
printf("\n\n\t Enter Selection (1 - 2) --> ");

#endif

scanf("%d", &response);
}

return response;

/**
*

* The function snoop_enable_disable looks at the parameter choice and if it
* is 1, the snoop code is enabled for packets traversing the wireless link.
* If choice is 0, the snoop code is disabled for packets traversing the
* wireless link. The option is called TCP_SNOOP_DISABLE within the
* kernel and it sets the global variable snoopstate->disable defined in
* snoop.c and snoop.h
* Input: User's Choice (Enabled/Disabled)
* Output: Updated Kernel Value for Enabling/Disabling Snoop
*

**/
int snoop_enable_disable(int choice)
[

int snoop_disable;
int option_len;

if (choice == 1){
snoop_disable = 0;
if{setsockopt{Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_DISABLE,

(char *) &snoop_disable, sizeof(snoop_disable» < 0)(
sys_msg{"\n\t Unable to Enable Snoop Option at Basestation!");
return;

J
snoop_disable = 1;
option_len = sizeof{snoop_disable);
if (getsockopt{Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_DISABLE,

(char *) &snoop_disable, &option_len) < 0)(
sys_msg("\n\t Unable to Get Snoop Enabled/Disabled Status!");
return;

if(snoop_disable == 1)
sys_msg ("\n\t Error: Snoop Was Not Turned On \H thin The Kernel");

else
sys_msg("\n\t Snoop Option Has Been Enabled at Basestation!");

}
else[

snoop_disable = 1;
if (setsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_DISABLE,

(char *) &snoop_disable, sizeof(snoop_disable» < 0)(

sys_msg("\n\t Unable to Disable Snoop Option at Basestationl");
return;

}
snoop_disable = 0;
option_len = sizeof(snoop_disable);
if (getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_DISABLE,

(char *) &snoop_disable, &option_len) < O){
sys_msg("\n\t Unable to Get Snoop Enabled/Disabled Status!");
return;

if(snoop_disable _m 0)
sys_msg("\n\t Error: Snoop Was Not Turned Off Within The Kernel"):

else
sys_msg("\n\t Snoop option Has Been Disabled at Basestation!");

]
]

/**
*

* The function sys_err takes a string and displays it for the user.
* Then it terminates the program with the error. It is intended to be used
* with fatal errors which must terminate the program, not for program
* warnings.

Inputs:
Outputs:

Error Message
Message to The Screen

*

*

*

**/
void sys_err(char *str)
[

printf("%s\n",str);
exit(l);

/**
*

*

*

*

*

*

*

*

The function sys_msg takes a string and displays it for the user. It then

pauses until the user presses the return key. Unlike sys_err, it is not
intended to be used with fatal errors. It displays non-fatal errors and
other general information.

Inputs: Error Message
outputs: Message to The Screen

**/
void sys_msg(char *str)
{

int response;

printf("%s\n",str);
printf("\t Press the return key to continue\n");
response getchar();
response = getchar():

/**
*

* The function tcp_model_menu allows the user to choose what enhancements if
* any to add to the tcp/ip protocol suite.
* Input: User's Choice
* Output: Menu Item Number Selected By The User
*

**/
int tcp_model_menu(void)
{

int response=O;
int snoop_disable;
int ackp_enable;

int option_len;

while ((response < 1) I I (response > 5» (
system ("clear") ;
printf("\n\n\n\t\t WIRELESS CONFIGURATION PROGRAM \n");
printf("\t\t Enhancement Options \n\n\n");

snoop_disable=O;
option_len = sizeof(snoop_disable);
if (getsockopt(Dummy_Fd, IPPROTO_TCP, TCP_SNOOP_DISABLE, (char *)

&snoop_disable, &option_len) < 0)
sys_msg("\n\t Unable to Get Snoop Enabled/Disabled Status!\n");

if(snoop_disable == 0)
printf("\t Snoop Is Currently Enabled at The Basestation\n\n");

else

printf("\t Snoop Is Currently Disabled at The Basestation\n\n");

ackp_enable=O;
option_len = sizeof(ackp_enable);
if (getsockopt(Dummy_Fd, IPPROTO_TCP,TCP_SNOOP_ACKP_ENABLE,(char *)

&ackp_enable, &option_len) < 0)
sys_msg("\n\t Unable to Get Ackp Enabled/Disabled Status!\n");

if(ackp_enable == 0)
printf("\t Ackp Is Currently Disabled at The Basestation\n\n");

else
printf("\t Ackp Is currently Enabled at The Basestation\n\n");

printf("\t Note: Snoop must be enabled for Ackp to work\n\n");

printf("\t 1) Exit to Main Menu\n");
printf("\t 2) Enable Snoop Option at Basestation\n");
printf("\t 3) Disable Snoop Option at Basestation\n");
printf("\t 4) Enable Ackp Option at Basestation\n");
printf{"\t 5) Disable Ackp Option at Basestation\n");
printf("\n\n\t Enter Selection (1 - 5) --> ");

scanf("%d", &response);

return response;

