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ABSTRACT

The second order pseudopotential theory is applied to the
calculation of stacking fault energies for the noble metals and
their alloy systems with tin and zinc. The theory fails to simulate
the known experimentxl values and the failure is linked to the

failure of the characteristic shape function, which 1is inherent to

the calculations.
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INTRODUCTION

While a singularly perfect cryst:1 may be aesthetically inter-
esting, it 1s important to ralize that almost all the unijue
properties of a solid material arise from impertections in the
crystal structure. furthermore, the study of defects in materials
is a tool for the testing of the predictions of crystalline theory.
One relatively simple defect, and one that is well suited tc simple
analysis, is that of the stacking faults. Efecond order pseudopoten-
tial theory has been applied with some success to the calculation of
stacking fault energies in simple metals. However, when the taeory
has been applied to Copper? it has failed to obtain the experimental
results. This paper examines the application of the theory to other
noble metals, namely to silver and gold. Of particular attention
is the variation of the stacking fault en- rgy with the electron to
atom ratio, Z. This alloving situtation is the area where the

descrepancy has been most apparent.

Format follows style of Nuclear Technology,




THEORY

A. Stacking Faults and Crystal Structure

Two types of important, metallic crystals, hexagonal close-
packed and face centered cubic, consist of planes of hexagons with
one plane located in the valleysites of the adjacent planes. The
arrangement of atoms into a hexagonal plane leaves six valley sites.
(See Figure I) Three of these sites constitute the placement of
the next plane of atoms. For example, in Figure 1, if the aton
centers of the original plane are designated as A, then the atom
centers of the next atomic plane can be located with its atom
centers on either the B locations or on the C locations. Therefore,
two different orientations of the planes exist. In one orientation,
the first plane is designated A, the second plane, B, and the third
layer occupies the C lattice sites. This sequence is called A-B-C
stacking and is characteristic of the face centered cubic structure.
(F C C) (See Figure II) The second pnssihle orientation of the
planes occurs when the third plane of atoms is located directly
above the first layer in the lattice site designated A. This type

of stacking sequence is found in hexagonal close-packed structures.

(H C P) (See Figure II)

A stacking fault then, occurs whenever one of the planes in a
normal space lattice shifts, causing an irregularity in the stack-
ing sequence. In the FCC type structure there are three distinct
forms of the stacking fault: the intrinsic fault, the extrinsic

fault, and the twin, or mirror fault. (See Figure III) The
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intrinsic fault involves the removing of a plane, or partial plane
of atoms from the lattice. The extrinsic fault is an added plane
of atoms inserted into the lattice structure. The twin fault is

a bit more complicated, involving a snift of an entire subcrystal,
from the A-B-C-A-B-C sequence of tse normal lattice, to an A-B-C-B-
A-C-B., On either side of the fault line i< a perfect subcrystal of

the proper stacking sequence.

B. Energy Relationships

In examining the energy relationships of metallic structures,
it is important to keep in mind some basic facts about the atomic

nature of metals. Unlike covalent or ionic bonding structures,

FIGURE I: Schematic Representation of Lattice Planes
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metals have a free electron gas--that is, the outer, valence
electrons are free to move tnrousghout the lattice. Most metals
have rather low ionization energies reflecting low electron affini-
ties. Covalent bonds between metal atoms, then, do not leac to
energetically favorable bonding states. Contrary to this logic
however, metals form very strong and stable structures. The key
to the stability of the metallic bond is found in the relatively
free nature of the electroa gas. Consider for simplicity, two
ions with a single electron between them. (See Figure 1V) The
potential energy of each iocn due to the electron, consists of two
components: a coulombic, attractive energy betwecen the positive
jon and the negative electron, and a repulsive energy due to the
interactions of the free electron with the core electrons of the

jon. This repulsive energy is due partly to the coulombic force

FIGURE II: Stacking Sequences
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INTRINSIC EXTRINSIC

faulted normal faulted normal
A A A A
B B B B
C C C C
— A B ]
B A A
C B B
A A C C

TWIN FAULT

tw Q » m® Q W »
Q = W Q W

FIGURE III: Types Of Stacking Faults

between like charges, but at short range, the Pauli Exclusion
Principle becomes dominant. The Pauli Exclusion Principle states

that two electrons can never occupy the same quantum state., If

then, the energy of the electron is plotted vrs. the distance from
the ion, as in Figure V, it can be seen that the negative, attrac-
tive energy component follows Coulombs law of electrostatics and

is Jjust -Z~e2/r. : The repulsive force arises quickly at the radius
of the afom, and causes spike increases in the enersy, one for each
core electron shell. The net result of these two contributions 1is

slightly attractive and therefore the electron gas, that is, the
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sharing of free electrons by several atoms, results in a significant

favorable energy contribution to tne stability of the crystal.

C. Pseudopotential Theory

In order to calculate the stacking fault enersgies of a crystal, it
is necessary to 2xamine these energy relations in light of more
recent developments from gquantum theory. While the ion cores
account for about 15% of the vclume of the crystal, the free elec-:
trons are extremely transparent both to the cores and to other free
electrons. Basically, there are two explainations of this behavior.
First, wave theory holds that waves are free to propagate 1in an
orderly, periodic array. Thus, the free electron waves avoid
interaction with the ion cores. The second exvlaination is that

the Pauli Exclusion Principle innibits the interaction of free

electrons with themselves.

The free elizctron model, however, fails to explain some very

FIGURE IV: Electron Energy Contributioas

e () s

electron

Ion Ion

Ut = de + U-i

repulsive attractive

-6



important characteristics of crystals., When the wave number, k, is
plotted against energy, €, the plot is continuous to infinity. (See
Figure VIa) However, in a lattice structure, Brags reflection of
the electron wave occurs and energy values for which the wave
equation is insoluble arise. This causes band gaps to occur in the
quantum structure. (See Figure VIb) Small band gans, as are fouand
in metals, result from a weak scattering potential.© This, however,
does not imply that the actual atomic potential is wezk, but ratner
just that the scattering potential is weak. It is convienent, then,
to replace the actual potential by an effective potential wnich

results in the same scattering power.2 This is the pseudopotential.

FIGURE V: Electron Energy vs. Radius
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The Fourier transform of the pseucopotential into q space is equal
to one half the magnitude of the band ;f,ap.2 If the pseudopotential
is just a measure of the scattering pctential of the ion, then it
may be considered as just the average of the spiked, repulsive
energy within the boundries of ro in Figure V.

While the pceudopotential accounts for electron~-ion interactions,
the relationship between the electrons themselves are considered via
a correction factor. Known as a screening function, G, it is a
dielectric function which describes the response of the clectron

gas to the perturbation caus=d by the ion cores,

FIGURE VI: Band Structure of Metal Crystals
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FORMULATION

A. The Calculation=zal Model

Two mathematical models have been proposed to calculate stack-
" fault energies; a g-space formulation and an asyptotic, real-space
formulation. Both models ascume that the stacking fault enersy, ¢,
can be expressed as a sum of the interactions of nedighboring planes

of atoms, or:

o0
Y =ay N@Y(an) (1)
=2

i

A characteristic function designating the
interaction between planes. Depends on the
planer spacing ,h, and tne plane number,n.

where: ]V(nh)

Vo R T £ A~ ~ o - N
1unctiodon 10r eacn p.rant

X - . , S ) N
N(n) = A welghting

[
"

A constant for a given alloy and composition.,

The g-space formulation uses an entirely numerical characteristic
function calculated from the Fourier transformed--q-space--—consider-
ations.5 The asymptotic model is based on real space planer inter-
actions rather than numerical functions.6 According to the

: . 6 . .
Blandin-Friedel-Saada formulation, the planer interactions can be

expressed as sinusoidal functions of the distance between the plane
in question and the actual fault plane. This theory is known as
the asymptotic theory because it further assumes that for n=2 and

greater, the function has reached its asymptotic value.

The series function is dependent upon the valance electrons per

atom ratio, Z, and includes the weighting function, N(n). For

Q-



intrinsic faults and for Z>Zc:l.10, Leribaux7 gives the function as:

oo
¢ B ;E: sin(3n®) _ sin(3n-1)6 (2)
B n::l Bn (3“"1—)
where:9:5.67(22/3-22‘/3)]/2 (3)

Since sinusoidal serles such as equation 2 are difficult to evaluate,

‘
Blandin et al  use an analytical calculation:

AW
i
NG)

(€ i._ 2 ) = ) 2
[}(O+ 3 ) - €(®+ 3 Z]+ 5 £(e) (&)

«Q
e
where: (?(8) = E Egiiﬁl = -log 2}sin(®&/2) (5)
n=1
and: £(8) = -0 0 <o =T (6)
> L e
= (-~ 8) = T 8 —=
3 (e< 3
b
= (27~ 9) —3——<O<2rr
The 'a' coefficient for intrinsic faults is the pseudopotential
calculation of the energy of an atomic plane, and is given as:7
Oékz Yo
A — > E—(zc/z)z/ﬂ (7)
(2m-'z
where: kF = wave number of the Fermi Surface.
2
7217}22 W(2k,.)
oL = ‘ 3 (8)
[amc - G(zkﬂa'
F F
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W(ka) is the screened pseudopotential form factor.
G(EKF) is the self consistent screening function that
accounts for the effects of the electron-elec-

tron interaction of the electron gas.

Using the free electron metal mode]7

2 7z . (1/3)
kF = (3 gfﬁ (9)

where: JZ = the average atomic volume of the alloy.

Thus, for Z )ZC, the intrinsic stacking fault energy can be calculated

as:

Y, = a ¢ (10)
where @ is from equation (3) and 'a' is from equation (56).

For the case where Z(Zc a little different calculation is used.

The stacking frult energy 1is:

J’i = a' ¢ (1)
K 2
where: a' :es—gg“g-((ZC/Z)-l)% (12)
(2m -z
-20 -39 56 -60
@ = - 5 + € 5 P 5+ = > (13)
(2) (3) (5) (6)°
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0 = 5.67(2(:(2/5) ~ 2(2/5))% (14)

and where the other values are defined as before.

’ B. Input Data

The actual calculations were conducted using the computer
program listed in Appendix I, The screening function used was for

~

7
a typical monovalent metal"6 and was 0,60. The values of W(2k)
Q ... 8 i d ) . S
and are from Moriarty or Heind as summarized in Table 1,
Both the pseudopotentials and the atomic volumes used were weichted

by the relative concentrations of the alloy, using the following

formulas:

~~
)

\n

~7

- [ 1 - 1y r‘tf N\
w(2k) = cB \JéexF) + (1 CB)WA(K“F}

S

cBSLB+ (1-c3) S,

where: CB = concentration of the base metal.
WB(ZkF) = pseudopotential of base metal.
WA(EKF) = pseudopotential of alloying element.
JlB = atomic volume of base metal.

&2% = atomic volume of alloying element.

-]l2-



TABLE 1

KNOWN INPUT INFORMATION

METAL PSEUDOPOTENTI AL ATOMIC VOLUME VALENCE
Copper 0.1246 79.68 1

' Go1d” 0.10415 114 .4 1
Silver' 0.07495 115.1 1
Zinc' 0.0k 102 .65 2
Tin* 0.025 230.75% L
"From Moriarty(8)
e Herne T
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RESULTS

The stacking fault enerpgies for seven alloy systems were
calculated, namely: Copper-Zinc, Copper-Tin, Gold-Zinc, Gold-Tlin
* Silver-Zinc, Silver-Tin, and Aluminum-Zinc., The results are shown
in Figures VII-XTI, and Figure XIV. The aluminum-zinc curve is
shown to show the ability of second order tuneory to predict the
stacking fault energy of simple metals and in this respect it does
quite well. The calculated fault energies in all the curves, are
plotted from the formulas developed earlier, (Blandin et'al)6 and
are compared to experimental results. The experimental numbers
come from the sources indicated on the figures as they were reviewed
by Gallagher? No experimental values were available for the gold-
alloy systems or for the aluminum-zinc system. Table 2 summarizes
the experimentsl and calculated values in the case of the pure
metal, The experimental information consists of the best values

from Gallagher.9

TABLE 2

STACKING FAULT wNERGIES OF PURE METALS

METAL CALCULATED EXPERIMWNTAL
Copper ‘ -31,72 55

Gola -23%.06 50
Silver -11.95 2.7
Aluminum 251 .0k 200

L
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DISCUSSION AND CONCLUSI

A. Pure Metals

Blandin et a1  have suggested that the
noble metals by pseudopotential tneory migh
reversing the sizgn of the coefficient anin
this device to thz values in Table 2, the a
the calculated values being a bit lower tha
However, the trends of the stacking fault e

noble metals are similar in the calculated

if the sign reversal 1is adooted.

B. Material Constant

+
LiLT

2]

The alloy systems however, provid
here the results are completely hopeless.
exhibited very similar curves (Figures VI -

family resemblence.

Furthermore, the curve

XII) shows the same resulis as found by ler

ONS

problems of treating tne
t be solved by simply
equation (8). Apvlying
greement is close, with
n the experimental,
within the

nergie

S

ancd experimental values

madal
meaoel

b and
L1

o
{94 [C R4 R0

et 5 1
tEST i 1

411 three noble metals
XII) indicating a strong
(Figure

for Copper-Zinc,

ibaux? The differences

in the cnlculated energy is mainly one of magnitude rather than

shape. The Copoer systems show the larsgest

Gold and then Silver. The magnitude of the

value of 'a' or 'a'' in equations 9 and 10.

curves for silver and gold, two metals with

are compared, 1t is easily seen tnat the ps

controlling factor in determining the amplitude of the curves,

is interesting to note that the ordering of

to amplitude on the calculated curves, is t

% -

.
=-c.

amplitude followed by
energy is determined by
Furthermore, if the
similar atomic volumes,
eudopotential is the

iLig
magnitude with respect

he same as the order of



the experimental values of Table 2. Since this magnitude is based
on the pseudopotential, it is likely that the pseudopotential concept

could be used to explain differences in the stacking fault energy of

o alloys.

C. Characteristic Shape Functions

It is the general shape of the curves however, that is tne most
distressing problem., The tneory predicts that the shape function
of equation 10, @, will determine the gzeneral trend of the curves.
As can be seen by comparing the shape function plot (Figure XIII)
with the other curves, the shape is indeed dominated by f. Further-
more, a kink exists in all the curves at 2 = Zc = 1.14 as noted by
Leribaux? This kink is inherent in the calculations and fails to

appear anywhere in tne experimental curves.

D. Conclusions

Therefore, it would se=m that the second order pseudopotnetial
theory as presented here fails not only for copper as suggested by
Leribaux7, but for noble metals in general. Also, wnile changing
the sign of the & constant (equation 7) may produce results in
fairly close agreement witn the experimental values for the pure
metals, it fails for the alloy systems. The curve shapes of the
noble metal-alloy systems resembles in no way the experimental
values and a mere reversal of sign is insignificant in eliminating
the problem., Rather, the problem seecms to be inherent in the

calculation of the charateristic shape function.
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APPENDIX I

BASIC COMPUTER PROGRAM FOr CALCULATING STACKING FAULT ENERII®S

* 10 REM A CALCULATION OF STACKING FAULT ENERIIULS
20 REM TEXAS A&M UNIVERSITY UNDURGRADUAIE Fg1107%S3 PROGRAM

30 REM SPRING 1977

LO REM GuNE CAMrACK-=-NUCLEAR sNGINZ<RING

50 R&M

60 REM

70 REM

80 REM

90 REM X8=OUTPUT UNIT NUMZER

100 REM Z=ELECTRON/ATO4 RATIO

110 REM M=CRITICAL 2

120 REM W1=PSEUDOPOTENTIAL OF BASE METAL

130 REM W2=PSEUDOFOT<NTIAL OF ALIOYING ELsMENT
140 REM W3=PSEUDOPOTZNTIAL AVERAGE FOR ALLOY
150 REM G=G(2K)=SELF CONSISTENT SCRILNING FUNCTION
160 RiM K=WAVE NUMBZR

170 REM C=CONC:ZNTRATION OF BASE METAL

180 RuM P=PI

18C REM 2=ALPHA

200 REM A=SMALL A

210 REM R=SMALL GAMMA

220 REM Bl=A-PRIME FOR Z<2

230 REM T=TH&TA FOR 25%ZC

240 REM S=THETA FOR 2Z<7C

250 REM V=PHI FOR Z<4C

260 REM 01=O0OMEGA=ATOMIC VOLUMS OF THE BA3SE METAL
270 REM 02=0MEGA=ATOMIC VOLUME OF ATIOYING ELSHMeNT
280 R:EM 03=0MZ3A=AVARAGS ATOMIC VOLUME OF THE ALLOY
290 REM J(Z)=STACKING FAULT ENERGY

200 REM

310 REM

320 R&SM ALL INPUT MUST BE IN ATOMIC UNITS

330 REM

30 REM

350 DISP "ENTSR OUTPUT UNIT NUMBzR";

360 INPUT K8

370 DISP "ENT:ZR AT. VOL. OF BASE METAL";

280 INPUT 01

390 DISP "PSEUDOPOTENTIAL OF BASE METAL";

LOO INPUT W1

L10 DISP "ENTER VAL<SNCE OF BASE METAL";

420 INPUT N1

430 DISP "<NTER AT. VOL. OF AILOY ELEMENT";
4LO INPUT O2

450 DISP "PSKUNOPOTHNTIAL OF AILOYY:

26~



L60 INPUT W2

470 DISP "ENTER VALENC: OF AL1OY ELEMENT";
L8O INPUT N2

L9o DISP "ENTER G(2K)";

500 INPUT G

510 P=3%,141592654

520 M=1,14

. 530 DIM J(1)0)

540 DIM V(6)

550 DIM M$(1)

560 DISP "ENTER BCUNDRIES OF 2, STEP";
570 INPUT E,D,H

580 FOR Z=E TO D STEP H

590 C=(z-N2)/(J1-N2)

600 03%=C*01+(1-C)*02

610 K=(3*P4+2 *7/03)4(1/3)

620 W3=C*Wl+(1-C)*W2

630 Q=(72*Pr3*212*W302)/((2*P*K-G)t2)
640 IF Z <= M THEN 800

650 T=5.67*(24(2/3)-M#(2/3))900.5

660 A=(Q*K12)* ((1-((M/2)N2/3)))10.5)/((2*P)13*Z42)
670 IF T<(2*P/3) THEN 720

680 IF T< (4*P/3) THEN 700

690 IF T<(2*P) THEN 740

700 F=P-T
710 GO TO 760
720 F=-T

730 GO TO 760

240 F=(2*P)=-T

750 B3=-10G(2*(ABS(SIN((T+(4*P/3))/2))))
760 B2=-10G(2* (ABS(SIN((T+(2*P/3))/2))))
770 R=(((3) 0.5)/6)*(B3-B2)+(0.5*F)

780 J(2Z)=A*R

790 GO TO 880

800 Bl:(Q*K¢2)*(((M/Z)f(2/3)-1)f0.5)/((2*?)13*zf2)
810 S=5.67*((MM2/3)-2%(2/3))10.5)

820 U=0

830 FOR N=2 TO 6

840 V(N)=B1*(EXP(-N*S))/(N 2)

850 NEXT N

860 U==2*V(2)+3*V(3)-5*V(5)+6*V(6)

870 J(2)=U

880 J(2)=J(2)*1556194.,021

890 FOR N=O TO Z STEP 0.1

900 IF Z=1+N THEN 930

910 NEXT N

920 GO TO 9Lo

930 WRITE (K8,*)"//2=";2;GAMMA="5J(2);"8RGS/5Q.CM"
940 NEXT Z

950 END



