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Abstract

A previously developed correlation that predicts, the pipe

friction loss for drag reducing polymer solutions in turbulent pipe

flow is made more rigorous' and general by' relaxing some of the

assumptions made in the development of the original correlation.

The resulting improved correlation has 15� better precision, follows

the trends in the data better, and furnishes enhanced support for

the energy dissipation model used to develop the correlation. An

attempt was made to extend the model to enable the prediction of

a maximum drag reduction asymptote by incorporating a linear

viscoelastic model having a high shear limiting viscosity. The

result was successful in qualitatively predicting maximum drag

reduction, but was' not quantitatively consistent with observed

drag reduction data ..
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Background

-

Adding a small quantity of a soluble high molecular weight

polymer to a liquid in turbulent flow can substantially reduce the

friction, loss experienced by the solution.1,2,3,4,6,6 Although the

mechanism by which this drag reduction occurs has not been

.establtshed, a recent study by Darby and Chang 7 explains it as a

natural consequence of energy dissipation and storage by tur�ulent

eddies in the viscoelastic fluid. A model was developed which

demonstrates that the energy stored by the elastic properties of

the polymer solution in turbulent flow represents energy 'that

would otherwise be dissipated by viscous properties. Hence, the

reduction in friction results from this storage of energy by the

elastic properties, of the solution, requiring less energy input -to the

fluid to sustain the flow.

ChangS used the above mentioned model to' develop a

correlation that predicts the turbulent friction loss 01 the dilute

polymer solution from a knowledge of the nonlinear vtscoelasnc
,\ "

,

./ '

properties in generalized dimensionless form. ,Chang's correlation

requjres a knowledge of the rrtctton loss in the Newtonian solvent

and three rheological parameters for the 'solution. A linear

,-

Maxwell model is used to define a relaxation time for the

, , vtscoelaetic solution, altbough the .actual solution exhibits nonlinear

6



behavior. This is later accounted for by defining the relaxation

time to be a function of shear rate. ·The correlation is valid for

both fresh and shear degraded solutions of various concentrations

of Separan AP-30 polyacrylamide in dist1lled water over a wide

range of pipe sizes. The friction factor, which includes a term to

account for- energy storage by the solution elastic properties,

reduces to the usual Fanning friction factor for Newtonian fluids.

The fluid rheological parameters (t, 0, 110, 11m) which enter into

the' model can be evaluated from apparent viscosity, Tl, versus

shear rate data, as shown in Figure 1 (from Chang and Darby').
I

The characteristic time constant of the fluid, t, is the reciprocal of

the shear rate where the transition from low .snear Newtonian to

non-Newtonian behavior occurs. The Q parameter equals % of the

negative of the slope of the linear portion of the curve, 110 is the

zero shear viscosity, and T)m is the high shear limiting viscosity.

The apparent viscosity data show that shear
_
degradation

lowers the zero shear vtscositv by an order of magnitude, -and
.

�
J

.

\
"

increases the shear rate at which transition trcrn low shear

Newtonian behavior to non-Newtonian behavior occurs by more

.

than one order of magnitude. Shear degradation has essentially no

effect on Q or the high shear limiting viscosity.

_Typi_cal friction loss datal for various Separan AP-30
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I
polyacrylamide solutions in a smooth stainless steel pipe with a

'diameter of 0.460 centimeter appear in Figure 2 as the Fanning

friction factor versus the Reynolds number using the solvent

viscosity. Tbe data show that the greatest degree of drag

reduction occurs for' the most dilute shear degraded solutions10,11

and that the friction loss for the solvent (water) alone may be

represented by the Blasius or Colebrook12 equations.

Assuming a linear viscoelastic Maxwell model to describe the

solution viscoelastic properties, the friction factor for the polymer

solution relative to the friction factor of the Newtonian solvent is

predicted to be

f = f /(1 + N2 )1/2p s DE

where the Deborah number (NDE) is a dimensionless characteristic

eddy frequency, equal to wp� J where wp is the characteristic

frequency of the most :-_dissipatlve turbulent eddies, and A is the

fluid relaxation time. The function (1+N2DE)1/2 can be thought .or
.

./

\
"

as an' "energy storage function" which accounts for the energy

t sta�ed by the elastic properties of polymer solution.

First order characteristics of the dissipative: eddies for both

"

Newtonian solvent and polymer solution were used to determine an
,

.
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approximate expression for the eddy frequency of the Newtonian

solvent:

w = O.0166[8V/D] NRES3/8 (2)

Approximating.w by 8v/D in the denominator of the expression for

the Deborah number in the form presented by Darby11

NDE = 1\ wp =

(�)

gives:

3/8 1/2
O. 0166 N�NRES < ..... $ /'rIo)

( 1 + N�2 )114 (4)

where N). = 8V'/\/D, NRis = pVD/�, and NREP = pVD/rb'.

Due to the assumptions involved in its derivation, inpluding
.

\
"

./

linear viscoelastic properties and the apprcximanon for w, this "

theoretical expression for' the Deborah number is only an

approximation. However, using 'this equatton as a basis for

correlating drag reduction data, with the numerical coefficient and

exponents determined by regresston. analysis, yielded

9



0.34 0.237
0.0867 N(\NRES <.... $ Ino)

( 1 + N(\2 )0.33 (5)

This equation correlated all of the data, for three concentrations of

both fresh and degraded solutions in six tube sizes, with a

correlation coefficient of r2 = O. 956. The . result is shown in

Figure 3, which shows the range of data and the model correlation.

ObjectIves

The purpose of this study is to investigate the extent to which

the above model and correlation for drag reduction can be

improved by relaxing some of the approximations made in the

original development. The specific approximations to. be evaluated

are:
-

1; Neglecting the effect of Reynolds number onthe .\,'
-

./

frequency of the dissipative eddies for a Newtonian

fluid (1. e. equation (2»;

2. Using the Maxwell model to define the properties of

the linear viscoelastic fluid.

10



Also, observations have indicated that a maximum asymptote for

, drag reduction exists, as described by Virk13. An attempt will be

; made to modify and extend the model to enable the prediction of

this maximum drag reduction asymptote.

Development

Eddy Frequency

Relaxing the approximation for 'the frequency of the dissipative

eddies by substituting the entire expression given by equation (2)

into the expression' for the Deborah number (3) results in

3/8 1/2
0.0166 I\J(\ NRES (""$ IT} 0 )

[1+ (0 0166 I\J N 3/8 )2 ]1/4. (\ RES
(6)

, -

In order to fit the model to the data, the numerical values of .0166

in the numerator, .0166 in the denominator, 3/8, 1/4, 1/2- were
\

"
.

./

replaced by parameters A, B, b, c, d, respectrvetv, which were >'

determined by regression of equation (6) with the data of Chang.

Both linear and nonlinear regression techniques were used to

evaluate the, regression parameters. In order to use the linear

!
. l _,
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technique, equation (6) was transformed into

The �REG" procedure available on the fourth release of the

Statistical Analysis System (SAS) was then exerctsed for vartous

arrangements of the above equation. Equation (6) was also used,

In linear and nonlinear form, with the nonlinear procedure "NLIN"

available on SAS, using both the Guass-Newton and Marquardt

iteration methods. Selecting the' result that best fit the data

yielded

N
. 375

( I )
. 296

o . 05557 N?o. RES tJ. s rt 0

-

[1 + (0 00777 N N 3/8 )2 ].262. ?o. RES

(7)

Comparison of r2 or F values between the original correlation

and the new correlation is not possible since these statistics are not

available in the "NUN" statistical summary. However, comparison
\ '

- ',/
.'

"

of the residuals and sum of squares is a possible measure of

improvement. The corrected total sum of least squares for the

new correlation . was 25.4, a 84� improvement 'when compared to

,
-

. I the 159.7 tor-the original correlation. The exponents in equation (7)

12



show better agreement with the exponents of the theoretical

expression (equation (6)) than do these of equation (5), and, in all
, i

I

cases, the standard error in the parameter estimates improved.

Table 1 compares the parameter estimates between the

correlations.

Table 1: Comparison of Regression Parameters

Parameter
Theoretical Value in Value in Percent

Value Eqn.5 Eqn.7 Improvement

A 0.0166 0.087 0.034 519.5

st 0.0166 - 0.0018 -

b 3/8 0.34 0.315 9.3
�

c 1/4 0.33 0.262 21.2

d 1/2 0.237 0.296 11.8

t
parameter B does not exist in equation (5)

The "Percent Improvement" is the degree .by which the parameter

in equation (7) is closer than the parameter in equation (5) to the

theoretical value of that parameter from equation (6).

Another measure of the relative goodness of fit,' is the
\

"

comparison of the friction factor plots (fp V1 + N2DE versus NRES)

between the original correlation (equation 5) and the new

correlation (equation 7). Comparing the r2 for figure 3 (.6896)

13



to the r2 for Figure 4 (.7920) indicates a 15� improvement in

i precision. Figure 4 is also qualitatively better than Figure 3 since

the cloud of data points is better centered, fits tighter, has less

curvature, and follows the trend of the Colebrook line better.

Thus, 'including the dependence of the dissipative eddies on the

solution Reynolds number has increased the accuracyor the

correlation considerably, and 'has also provided enhanced support

for the model leading to 'equation (6).

Viscoelastic Model

The previous model assumed, that the relaxation time for the

dilute polymer solution could be defined by the linear viscoelastic

Maxwell model. When generalized by incorporating the no?l1near
co-rotational derivative to follow continuous deformations, the

Maxwell model predicts shear thinning behavior, but does not

predict the high shear limiting viscosity observed in' the apparent

viscosity function for the solutions. This makes replacement or the
\

"
.

/

Maxwell model with a Jeffreys model attractive, since the Jeffreys /

model accounts for the high shear limiting viscosity by including a

retardation time constant.

In generalized form the Jeffreys model can be written:

14



"t'ij + i\D 't ij
Dt (8)

"
.,_ DLloo)n2-lJ

DtI :
1

where � is the retardation time constant equal to 'l\flcliTto· The

Jeffreys model predicts a complex viscosity (rt = fl' - jrl") as

follows:

(9)

The expression for the Deborah number based on the rate of energy

dissipation per unit mass for any linear Viscoelastic fluid is given

by

/ (10)

which, using equation: (9) for the Jeffreys model, becomes

,

/

\
"

(11)

I
- I

{

!
'-,.',-
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The friction factor for the polymer solution (fp) relative to that for
I

,

'

.the solvent (fs) is, therefore:

tp 1 + Af..2W�
t;

=

{1+ W�A2,+ �2)+(AA2w�)2}1/2
2

1 + NDENv
(12)

=

[1+ N;E( 1 + N�) + N�ENJ ]1/2

where NDE = WpA , Nv = Tlr:t/Tlo = AJA . From equation (12), the

friction factor ratio exhibits a minimum With respect to Deborah

number, indicating that this equation predicts "a maximum, drag

reduction asymptote ("D.R. = [1-(fP/fs )].100� ). As demonstrated

in Figure 5, which i� a plot of fplfs versus NDE rrom equation (12)

, ,-

for a series of constant values for Nv, this agrees qualitatively

with the phenomenon observed by'Virk. However, equation (12) is

not quantitatively consistent With the observed data in that values

of NDE determined from this equation and the data for fP/fs are

not realistic.
\

"
,

./

I An expression for the Deborah Number based on the Jeffreys

, model can be derived by folloWing the original development. 8,11
-

I

The most dissipative eddy frequency for the Newtonian solvent14 is

given approximately by:

16



[2]1/2 V
w =

9 D JfNBE (13)

Substitution of the Blasius equation, f = O.07�1/(NRE)1/4 , into the

above equation produces

w = O.0166(8V/D)NRE3/8 (14)

as the expression for the most dtsstpatrve eddy frequency.. By

analogy an expression similar to equation (13) is assumed for the

polymer solution:

w. =

P [2]1/2 V
9" D n; NBEP (15)

Combination of equattons (12), (13) and (15) results in:
. .

I number for the solvent based on the limiting Newtonian viscosity.

17
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i

Rearrangement of equation (14) as 1 = O.0166(8V/Dw)NRE3/8, and

I multiplying by the definition of Deborah number gives
I

as an alternate expression for the Deborah number. Substitution

of equation (16) into equation (17) produces the following expression

for the Deborah number based on the Jeffreys model pr ,d· ",,":,,,, .:

(18)

where NA = 8V"A/D, '<Up � 8V/D, � = "Arta/'1o = "ANv Placing this

equation into dimensionless form

(19)

\
"

.

./

I where Nv = rta/TJo � �s/flo .' Hence, the correlation for the Deborah

number should have the following form:

18



NDE=
·b c 2)QA N,:.,NRE Nv (1 + N,:.. Nv.

[ 2( 2) 4 2]d1+ N,:.. 1 + Nv +N,:.. Nv
(20)

where A .a.b,c, and d are regression parameters. Nj\ is evaluated

from rheological properties by Nj\= [(1+Nt)Q - 1] 1/2
, where

The procedure would be to determine values of NDE from the

friction loss data fplfs by solving equation (12) for NDE for each

data point. The resulting values could be fit by equation (20) by

regression to determine the regression parameters, Solving

equation (12) for the Deborah number is equivalent to finding the

inverse function of (12). Unfortunately, this "inverse" function

does not map from real space into real space for the grvendomain

of the input friction factor ratios, but instead maps from real

space to complex space. Examination of equatton (12) reveals the

reason for this problem.

\
"

Ana.lysls of the Jeffreys Hodel Based Deborah Number Expression

Equation (12) from the above analysis based upon the Jeffreys

model is. repeated below:

19



(12)

Equation (12) can be rearranged as follows:

4

.

52 Nv - [:p]2r1 + N� ]} 1 _[;p]2N + N2 t 9 t
+. s = 0 (21)DE DE

2 r. [1p]2] 2 r. [1p.]2 ]NVL1 -

19 NVt_1- . 19

After letting Y = NDE2, equation (21) becomes y2 + bY + c = 0 ,

which is a quadratic in Y. The solutton of the quadratic for Y

(and hence NDE) is real if and only if b2 - 4c � O� Thus,

� 0
.

- (22)

must be satisfied if NDE is to be real. SOlving this equation for fp/fs

gives
\

"

(25)

20



where the positive root of equation (23) is taken since f.Jfs must be

i

positive. If the positive root of -/4Nv2 is taken, then equation (23)

says that fplfs � 0 , which is trivial. Taking the negative root of

-/4Nv2, equation (23) becomes:

(24)

Equation (24) mandates that the minimum friction factor' ratio

that will still give real Deborah numbers occurs when equation (24)

is an equality. From the properties of the stx polymer solutions,

the right hand side of equation (24) was evaluated and is shown in

Table 2, along with the minimum values of fP/fs observed for these

solutions. Examination of Table 2 points out the incompatibility of

the data and the mo?el: the data for the- shear degraded solutions

indicate values of fP/f� le�s than the minimum ratio allowed by

equation (24) for NDE to be real. \
"

.

./

.
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Table 2: Comparison of Minimum fP/fs Ratios

Solution
Min ratio Min ratio

(ppm.)
allowed observed

by Eqn. 24 in data

100 fresh 0.214 0.220

250 fresh 0.179 0.228

500 fresh 0.149 0.312

100 sheared 0.645 0.205

250 sheared 0.552 0.228

500 sheared 0.597 0.257

Attempted ModIfications

Two alterations of equation .(12) were tested in order to

determine whether or not the Jeffreys model could be made to

predict real valued Deborah numbers and whether or not a

correlation based upon the Jeffreys model .could be 'made

quantitatively consistent With the data.

Equation (24) and the shape of the curves in Figure 5 suggested

that an adjustable scaling parameter (�), which would lower the
- './' '-

fri�tion factor ratio predicted by the model to 'that observed in the

r- data, be inserted into equation
".

(12). The exact manifestation of

the, scaling parameter � in equation (12) was 'selected in order to

keep the mathematics of the subsequent development manageable.

22



For one such case, equation (12) becomes

.

(25)
[ 4 2 .

2 4 4 '2 ]1/21+ � Nmc(1 + NV) + � NDENv

Following the previous argument from equation (21) to equation

(24) yields an analogous relationship for the minimum allowable

friction factor ratio.

(26)

Since Nv is known, � may be found by solving equation (26) once a

method for finding fJfs that is consistent with, but independent

of, Chang's data has been created.

One method may be derived as follows. Virk's empirical

equation for the maximum drag reduction asymptote, which is

consistent with the maximum drag reduction trom Chan�s _ data,
, \

"
-

-

/ ....

m�y be used as an expression tor the minimum 'Value of fp:

fp =
1

[ 19 log (N RE fi) - 32. 4 ] 2
(27)

23



- !he /fin the right hand side of equation (27) may be replaced by

an equation of the same form as the Blasius equation

(28)

where a and b are determined by best fit to Virk's maximum drag

reduction asymptote in the turbulent region.

substitution for Jf in equation (27) results in:

Making this

(�9)

The Deborah number may now be evaluated by the following

method: 1) Calculate fp from equation (29) and the friction {actor

for the Newtonian solvent fs from either the Colebrook equation

_

(fs= O.41*[loge(NREs/7)T;"2 ,) or the Blasius equation; 2) from

Nv, which is known for each solution, and fplfs ,_ c�lculat� "'� -trom

equation (26); 3) using this,�, calculate NDE from equation (25)

Real values for the Deborah number for all, of the solutions

were successfully obtained by this scheme; However,
,

these

I numbers _,we�e of_an ur:tacC?_eptable lE�gn���de �nd trend. That Is,

24



the Deborah number would be expected to be on the order of

,

0 < NDE < 10, since a purely viscous fluid has a Deborah number of

zero, and should increase with increasing Reynolds number, since

larger Deborah numbers imply greater energy storage' by the

elastic, properties (i. e. drag reduction) . The Deborah numbers

ranged from 100 to 103 when either the Colebrook or the Blasius

equation was used for fs. For all of the solutione, the Deborah

number found by this method decreased with increasing R.eynolds

number, which is opposite to the trend predicted by the models

and correlations described previously.
�

The second alteration was an attempt to weight the

importance of the 11" term of the complex viscosity, which is

equivalent to putting a weighting factor on the elastic properties of

the soiutron. For thIs alteration, the energy per unit mass of the

linear viscoelastic fluid becomes

(50)

.

/'
,

\
\

\

where �. is the weighting factor. With this modification, equation

(12).becomes

25



(31)
[ 2

( 2 2 2 2) 4 2 ]1/21+2NDENv 1-�)+�NDE(1+Nv +NDENV

and the criterion for the minimum allowable trtctton factor

analogous to equation (24) is'

(32)

The Deborah numbers obtained by using' equations (31) and

(32) in the procedure outlined earlier suffered the same problems

as before, but to an even greater extent.

With these and the previous results in mind, it is concluded

that a correlation based on the linear viscoelastic ,Jeffreys model

.cannot be made quantitatively consistent with the data 9Y the

procedures reported herein. It is recommended that alternative

models that display the proper qualitative behavior ( 1. e. utilizing

the high shear limiting, viscosity and being able to predict the

maximum drag reduction asymptote) be mvesngated.
'

,

./

\
"
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Summary

An improved version of an existing generalized correlation that

predicts the pipe friction loss of drag reducing polymer solutions

has been developed. This correlatton accounts for the reduced

energy dissipation observed in the viscoelastic solutions by including

a dimensionless Deborah number, which represents the energy

storage by elastic deformation in the turbulent eddies, in the

expression for the friction factor. By using an expression for the

frequency of the dissipative eddies for a Newtonian fluid which is

more rigorous than used previously, the precision of the correlation

<,

was improved 15". Also, the values of the exponents calculated

for the improved correlation agree more closely with the

theoretically predicted exponents than the previous correlation.

These results provide enhanced support for the model leading to the
r

correlation's development.

The final correlation requires only a knowledge of friction loss

-

for the Newtonian solvent for a given flow. rate and tube diameter

and three rheological parameters of the polymer :solution,-, .whtcn
,

\
"

can be obtained directly from the apparent viscosity function. Use /

of the correlation is demonstrated below:

For example, a fresh 100 ppm Separan AP-30 solution is to be

pumped in a ,0.25 meter smooth horizontal pipe at a velocity of 1

27



meter/second. Calculate the friction factor for the polymer solution

and the percent drag reduction.

1. The rheological parameters are evaluated

from apparent viscosity versus shear rate

'data. As read from Figure 1: 110, the low

shear viscosity = .1113 Pa-s; n = (1-n)/�,
where (n-1) is the slope of the linear

portion of the curve in the intermediate

shear rate range, = .266 ; t , the reciprocal

of the shear rate where the low shear

viscosity and the linear portion of the curve

in the intermediate shear rate range

intersect on the figure, = 11.89 sec.

2.From the specified diameter and velocity,

the dimensionless groups Nt, N� , NaEs ' NOE "

fp, fs' are calculated.

(8)(4nn/s)(11.89'sec)
(0.5 m)

= 761

N" =: [(1 + Nt2)Q - 1 f/�
= [(1 + (761)2)"266 - 1 ]% = 5.754,

\
"

.

./

N ,=:DVp= .�5m NS9C2
RES �s' .-O�O�1�P�a�--s������----T-k-g-rn--

= 2.5 K 105

28



N.:S75'( / ).2960.05557 Nn RES ..... s flo

[1 + (O 00777 N N 3/8 )2 ].262. n RES

= (.05357)(5.754)( 2. 5 X 105).375 (. 001/.1113}296
[ 1 + «.00771)(5.154)( 2.5 x 105).375i ]"262

= 2.218

.41 .41
=

[loge( 2 . 5 x 105 /1)] 2

Thus, addtng 100 ppm of Separan AP-30 achieves, 59% drag

reduction as compared to the solvent alone.

Although it has the proper qualitative characteristics, the use

of the linear Jeffreys - model to define the energy storage in the

viscoelastic fluid fails to produce an equation which can represent

the data quantitatively. Analysis reveals that' the predictions

based on the Jeffreys model are inconsistent with the amount of

drag reduction observed in the data, and the model cannot be

manipulated to correct this behavior.

29



Notation

-

A, B, a, b, c, d - regression parameters

D - pipe diameter, m

D/Dt - -Jaumann or co-rotational time derivative, s-1

"D. R - percent drag reduction

e - energy dissipation per unit mass, w/tg

f - Fanning Friction Factor

n - power law flow index

NRE - Reynolds number

N� - dimensionless relaxation time

Nt dimensionless fluid time constant, 8VrjD

Nv - dimensionless viscosity ratio, f)a/flo�

V - average tube velocity, m/s
-

Vo amplitude of oscillating velocity, m/s

scaling or weighting parameter

� , - relaxation time constant, s

�2 retardation time constant, �na/f)o

�lj - rate of strain tenser; a-1

30
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t - time constant of polymer solution, s

p - density kg/m3

11 - apparent viscosity, Pa-s

T)
*

- complex viscosity, Pa-s

T)I - real part of complex viscosity, Pa-s

T)" - imaginary part of complex viscosity, Pa-s

IJ
- Newtonian viscosity, Pa-s

1:'.. - shear stress tensor, Pa
IJ

w frequency of oscillation, s-1�

- rheological parameter related to slope of curve in the
intermediate shear rate range of apparent viscosity
versus shear rate data

subscripts

p - polymer solution

s - solvent

- I

31
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FIGURE 1: APPARENT VISCOSITY OATA FOR SEPARAN AP-30 SOLUTIONS
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FIGURE 2: FANNING FRICTION FACTOR VERSUS
SOL VENT REYNOLDS NUMBER
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FIGURE 4: FRICTION FACTOR PLOT
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FIGURE 5: PLOT OF EQUATION (10)
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