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ABSTRACT

Mathematicians use divided difference equations

to solve problems which have only a discrete set of

possible values. This research is concerned with the

application of difference equations to curve fitting

data by means of splines. There is a paper written

by four math professors at Texas A&M which concerns

itself with this data fitting problem. In particular,

a theorem in this paper states conditions for when a

complex data function has a unique best fit from a

spline space. Central to the proof of this theorem

was the necessity of deciding when certain determinants

were positive using divided difference equations.

The purpose of my research was to broaden the classes

of matrices for which the determinant is positive

which, in turn, would broaden the classes of functions

for which one could obtain a unique piecewise spline.
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Introduction

Some problems in calculus may conveniently be

assumed to have only a discrete set of possible values.

For example, in economics such a variable is time.

Important ecnomic quantities, such as National Income,

are ordinarily available only at certain time periods.

In calculus, when problems like this arise, mathematicians

use difference equations to derive mathematical models.

A difference equation is simply an equation relating the

values of a function y and one or more of its differences.

The methods for solving difference equations are for the

most part analogous to solving differential equations.

The purpose of this paper will be in the applica-

tion of difference equations to data analysis. For in-

stance, in a missile tracking operation, data naturally

arises from radar readings of a missile flight. For

various reasons, one would like to "fill in" this data

to obtain a continuous flight pattern for the missile

(in particular, this would help to predict where the

missile would land). See Figure 1. One tries to curve

fit this data by means of splines. Splines are piece-

wise polynomials with "knot" sequence, that is, between

The citations on the following pages follow the style
of the Siam Journal of Numerical Analysis.
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any two consecutive "knots" the spline is a polynomial,

between another consecutive pair of "knots" the spline

might be a different polynomial, but the different poly-

nomials connect at the knots. For curve fitting, splines

are favored over polynomials for computational purposes.

One wishes to keep the number of knots small, so the

location of knots is important.

There is a theorem, known as Theorem II, written

in a paper by four math professors here at Texas A&M

concerning this data fitting problem, which gives con­

ditions for when a convex (or concave) data has a unique

best fit from a spline space. (Consult bibliography) .

Central to the proof of this theorem was the necessity

of deciding when certain determinants were positive

using divided difference equations. The purpose of this

research project is to broaden the classes of matrices

for which the determinant is always positive.

This is important because by doing this, one can

hope to broaden the classes of functions for which a

unique spline may be obtained. One would like to know

that there is a unique spline because uniqueness makes

it easier to compute a spline by using a standard mini­

mization method, such as the steepest descent method.



General Solution of the Homogeneous Equation

Before attempting to extend the classes of matrices

for which the detrminant is positive, it is necessary

to understand the general solution of the homogeneous

equation for solving divided difference equations.

Suppose we are trying to find the general solution

of the homogeneous equation

(2.1)

This reduces to the problem of finding two solutions.

It is easy to find solutions of the difference equa-

tion for which

k
Y = m
k

where m is some suitably chosen constant different from

zero. If this trial solution is substituted into (2.1),

after division by the common factor
k

m , one obtains,

2
m + alm + a2

= O.

This quadratic equation is called the auxiliary equation.

Therefore, if m is a number satisfying the auxiliary
k

equation, then Yk = m is the solution of the difference

equation.

The auxiliary equation is a quadratic algebraic

equation, and therefore has two nonzero roots, say ml
and m2.

There are three kinds of roots of a solution. They

may be real and unequal, real and equal, or complex.

4



These cases will be considered separately.

Case 1. Suppose y and y' are two real and unequal

solutions of the homogeneous difference equation

(2. 2)

and let

Y = C Y + C y'1 2

where Cl and C2 are arbitrary constants. If

Y Y'
o 0

= YoYl' - Yo'Yl � 0

(2. 3)

then Y is the general solution of (2.2).

Proof. It must be first shown that if Y and y' are

two solutions of linear howogeneous difference equations,

then C1Y + C2Y' is also a solution. This can easily

be shown when n = 2. For if

then this can be rewritten as

Cl(Yk+2+alYk+l+a2Yk)+c2(Y'k+2+Y'k+l+Y'k) .

Thus, C1Y and C2Y' are both solutions.

NOw, it must be shown that if Y is any solution of

(2.2), then Y and yare identical. It suffices to show

that Y and yare equal at k = 0 and k = 1. That is,

the values of Cl and C2 must be determined so that

Yo = Yo and Yl = Yl for any choice of Yo and Yl. But,

Y C v + C v'
o 1.< 0 2.1 0

5



so Cl and C2 must satisfy the equations

YoCl + y'oC2 Yo

YICI + y'lC2 Yl

By hypothesis, the determinant formed by the coefficients

of Cl and C2 is different from zero. Now a unique pair

of values of Cl and C2 can be found for each choice of Yo
and Yl because a system of simultaneous equations has a

unique solution if and only if (2.3) hold.

1
Since ml � m2, the determinant of {ml

1
}

.

m2 1S not

equal to zero. Thus the general solution of the homo-

geneous equation (2.1) is given by
k k

Yk = clml + C2m2 . (2 • 4 )

End of proof.
k

Now suppose the solutions Yk =

ml and

Y'k = m2k are real and equal. The solutions no longer

Case 2.

form a fundamental set since the determinant is zero.

Now it shall be shown that a solution is given by
k

Y' = kmlk (2 • 5)

To prove that if ml
=

m2 is actually a solution, y'

for y is substituted in the difference equation (2.1),

and checked to see that the equation is satisfied:

k+2 k+l k
Y'k+2+alY'k+l+a2Y'k = (k+2)ml +al(k+l)ml +a2kml

k 2 k+l
kml (ml +alm+a2)+ml (2ml+al)·

(2 .6)

6
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But the terms in the first parenthesis add to zero

since ml is a root of the auxiliary equation. Furthermore,

the sum of the roots of the auxiliary equation is -al.
But, if ml

= m2, this sum is 2ml. Hence, 2rnl+ al= O.

This makes (2.6) identically zero, so (2.5) is a solution

of the difference equation.

Case 3. Before considering the case of complex roots,

some material needs to be reviewed. Recall that a+bi

and a-bi are complex conjugates. The complex number

a+bi can be represented graphically, using a rectangular

coordinate system by the point P with coordinates (a,b).

See Figure 2. Since a = r cos8 and b = r sin8, it follows

that a + bi = r (cos8 + isin8). Now the identity
. 28 28Sln + cos = I shows that a2 + b2

r =/a2 + b
2

2
= r or

(2. 7)

Hence, 8 may be taken as the unique angle, such that

cos8 =
a

sin8 =
b

-TT<8< TT. (2.8)

The de Moivre's theorem states that if n is any positive

integer,

{r(cos8+isin8}n =
n
r (cosn8 + isinn8).

Note that complex roots of a quadratic equation always

occur in conjugate pairs. Therefore, if ml and m2 are

complex roots of the auxiliary equation, then ml � m2.
Thus, the only difficulty with the general solution (2.4)
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is that it may be a complex number if ml and m2 are com­

plex. Consequently, it must be shown that if Cland C2
are complex conjugates, Yk is always a real number. To

prove this, write all conjugate numbers in polar form.

Proof. The roots of the auxiliary equation are

complex conjugates and hence have polar form,

r(cosS+isinS) r(cosS-isinS) . (2 • 9)

Assuming Cl and C2 are complex conjugates,

Cl = a(cosB+isinB) C2 = a (cosB-isinB) .

By the de Moivre's theorem

Mkl = rk(coskS+isinkS) mk2 = rk(coskS-isinkS).
Therefore, using the rules for mUltiplying complex numbers,

Yk is simplified as follows:

Yk = clmlk+c2m2k ark{cos(kS+B)+isin(KS+B)}
= ark {cos (kS+B) -isin (kS+B) }

2arkcos(kS+B). (2.10)

This is a real number as claimed.

End of proof.

The numbers rand S are determined from (2.9) by

writing the roots of the auxiliary equation in polar form

to findr and S. The constants a and B in (2.10) take the

place of Cl and C2. If 2a is denoted by A, the general

solution of the homogeneous difference equation when the

auxiliary equation has complex roots can be written in

the form,

9



k
Yk = Ar cos (k8+B)l '

where A and B are arbitrary constants. (Goldberg, 1958)
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Fours on the Main Diagonal

As mentioned in the introduction, central to the proof

of Theorem II was the necessity of proving the following

proposition.

Proposition 1. Let A = (a. .) be a tridiagonal
1,J

NxN real matrix, with positive diagonal entries. Then

if

a a < a a (1+n2/4N2)/4n,n-l n-l,n- n,n n-l,n-l ( 3 . 1)

for n=2, ., N, it follows that determinant A> O. This

inequality was motivated by a tridiagonal matrix with 2's

along the main diagonal and -lIs along the remaining two

diagonals.

This proposition was proven in the same paper as

Theorem II, and it guarantees that Theorem II can be uti-

lized for any tridiagonal matrix which satisfies conditon

(3.1). Furthermore, the tridiagonal matrices are impor-

tant because they correspond to curve fitting data by a

linear spline.

The first step to broadening the classes of matrices

for which the determinant >0, is to see if condition (3.1)

holds true for other constants along the main diagonal,

and for any nonconstant entries along the other two

diagonals. For purposes of illustration, let us try

the constant four along the main diagonal instead of two.

Let A be a tridiagonal matrix with fours along the



main diagonal. See Figure 3. First we must discover a

general equation for the detAn. This can be achieved by

studying the first few determinants, and watching for a

general pattern to occur.

detAl = 4

detA2 = 16-a21a12

detA3 -a23a32An-2+4An-l

detA4 -a34a43An-2+4An-l

so it follows that

detA = 4A -a a A.
n n-l n-l,n n,n-l n-2

Now we can define A 1, because
o

Let f = a
1

a
1

so that the equation becomes
n- ,n n,n-

A -4A l+fA 2
= 0 .

n n- n-

This can now be rewritten as

A -2A l+A 2-2A 1+2A 2
= gAn-2 = O. (3.2)

n n- n- n- n-

Using the definition of difference equations,

A -2A l+A 2n n- n-

and

-2A 1+2A 2n- n-
-26A

n-2

so equation ( 3 . 2) is now equal to

62A -26A C A
2

= = -w A
n-2·n-2 n-2 n n-2

Before showing that each A > o , n = 1, . , N,
n

we motivate a key equation ( 3 . 6 ) with the following

12
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observation.

Suppose that u and v solve the problem

u" (x) = f (x) u (x) + 2u' (x) u (0) = 1 u
' (0) = 1

u' (0) = 3 because detAl-detAo=3.
Now u�(x) can be rewritten as

u
11 (x) = ( f (x) _w2+w2 ) u (x) + 2u' (x) .

Let

v" (x)
2

- =w v (x) +2v' (x) v(o)=l v' (0)=3

Then, W = u-v satisfies

2 2
w'J(x)-2w' (x) = -w w(x)+(f(x)+w )u(x) w(o) w' (0) o

(3 • 3)

Solving the homogeneous equation

w" (x) -2w' (x) +w2w (x) 0

the auxiliary equation becomes

utilizing the quadratic equation, one finds that the

roots ml, and m2 are 1 ±

Therefore, using the form of a homogeneous differential

II 2
-w

equation,

W(x)
+ l)x +

(/l_w2
C e

-

2
+1) x

( 3 • 4 )

Next, Green's function must be utilized to obtain

a particular solution to (3.3).

Green's function is defined as



IS;

where Yl and Y2 are solutions of the homogeneous equation

(3.4) which satisfies the boundary conditions at X=O,

and W(Yl'Y2) is the Wronskian of Yl and Y2.
Thus a particular solution takes the form,

1

<P (x) =[ G(x,u) f(u)du.
o

Now, the Wronskian of Y1 and Y2 from (3.4) is found to

;:-2
be equa 1 to - 2 l-w . Plugging into Green's frmction our solution is

W(X) ;X[
;:-2 .. ;:-2 J

=
e

( l-w + 1) te (- l-w + 1) x
_

;:-2
-2 l-w

o

Now if we let

(_/l-w2+1) (x-t) (/l-w2+1) (x-t)
e -e

a(x-t) =

-2 Il_w2
then it can be rewritten as

a(x-t) =

a(x-t) B(x-t)
e -e

where
I 2

a= - l-w +1,

a - B

B =/1-w2 +1

a - B
and a' (x)

ax
B

Bx
ae - e .

a - B
so a(x)

ax Bx
e -e

Thus a(o) = 0 and a' (0) = 1.

Now we can say that

2
6 a 2-21'1a 2n- n-

2
= -v.l an-2.

Now returning to our proof, let (V ), (a ), n=O, ..
n n

N satisfy



62V -26V = V -4V 1+4V 2n n n n- n-

2
= -w V

2'n-
V =1 V =4
o '1

and

2
6 a 26a 2n- n-

2
-w an-2,

which we have just shown above.

Now let W = U -V , so that
n n n

We claim that the sequence defined by

X
n

n-l
2:

k=O (3 • 6)

x = o.
o

equals W .

n
= 0 since a = 0, and we have only

o
Indeed, Xl

to prove (3.5) holds. A direct calculation for n 2: 2

gives that W = X. This calculation is analogous to
n 0

the procedure used in the paper by the four math profes-

sors found in the introduction (consult bibliography) ,

and because this calculation is complex, I leave it to

the reader to accept this point.

Now solving for A. Suppose A
n n

n
R , where R is

a complex number. So,

Rn_2Rn-l+Rn-2_2(Rn-l_Rn-2) 2 n-2
-w R

Rn_4Rn-l+4Rn-2

R2-4R+3

2 n-2
-w R

2
-w is the auxil-

iary equation.

Then the roots are

R = 2± Il_w2 .

16



Solving for V .

n

V -4V 1+(4+w2) = 0
n n-

The auxiliary equation can be expressed as

2 2
r - 4r+ (4+w ).

Using the quadratic equation, the roots become equal to

2±iw. Hence, our solution becomes equal to

CIReal(1+iw)n + c2Imaginary(2+iw)n .

Solving for Cl and C2 using the initial conditions that

Vo=l, and Vl=4, we find,

1 = Cl(l)
4 Cl (2) + C2 (w)

2
Therefore, Cl = 1, and C2 =

w

Thus, our solution for V is equal to
n

Re(1+iw)n+2Im(2+iw)n/w.

Suppose now we want to find a condition for w, so that

the determinant will always be greater than zero. See

i8
Figure 4. We know that 2 + iw = pe from complex var-

iables, and hence (Pei8)n
From the diagram

n in8
= p e

w
tan8 =

"2

We want 2Ntan-l 8 � n/2

so

-1
tan 8 :s. n/4N = W.

Therefore, since NW � n/4, we have V > 0 and a > 0 for
n n

n = 1, . N. Finally, replacing w by n/4N, we can

17
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conclude that W <0 is impossible and hence
n

u =W +v >0, n=l,
n n n

. N. Thus, we conclude that

changing the two on the main diagonal did not change

the validity of the original hypothesis.

This same analysis would probably hold true for

any k along the main diagonal. If we find a general

equation for the nth determinant it turns out to be

detA =K, tA I-a 1
a IdetA 2·n ae n- n- ,n n,n- n-

Notice, however, that this equation does not correspond

to any first or second difference. This would cause the

computation to become very long and involved. Thus, the

best we can do is to make a reasonable conjecture based

on our previous study of the original hypothesis (3.1),

and this conjecture would be that for any k along the

main diagonal, hypothesis (3.1) would hold true.

19
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Tridiagonal Case

The next phase of this project was to determine when

a general tridiagonal matrix (i.e. when the diagonals

are each a constant) has a positive determinant. The

first step in determining when a constant tridiagonal matrix

has a positive determinant is to derive a divided dif-

ference equation for the determinant of any NxN matrix.

See Figure 5.

Let us compute the first few determinants to see

if a general pattern occurs.

det A = 1
o

(an assumption to be checked later).

= a

-bcdetA 2+adetA 1n- n-

-bcdetA 2+adetA 1.n- n-

Thus, it can be generalized that

detA = adetA I-bcdetA 2.n n- n-
(4 . 1)

Now, A = 1 must be confirmed. Plugging into the formula
o

for the determinant of A2 using a = 4, b = 1, and c = 2,

one finds

detA2 � I = 16-2 14

= -2 x 1(1) + 4(4)

-bcdetA 2+adetA l'n- n-

thus the det A = 1.
o

The auxiliary equation (2.1) from the equation (4.1)



b o 0 o.

o.

o.

b

,

• •

c b o

o c b

o o c
,_ • •

• • •
•

• • •
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is
2

m -am+bc = O.

To solve this quadratic equation, we must consider the

three special cases.

Case 1. Suppose the roots are real and unequal.

Utilizing the quadratic equation, the roots are,

a ±-I a2 - 4bc
2

-I 2
a- a -4bc

=

2
where

a+
-I 2
a -4bc

andr =

1 2

These roots satisfy the equation

(4 • 2)

Solving for the initial conditions with A
o

22

1, and Al = a,

we find that

Using Cramer's Rule to solve two simultaneous equations,

1 1 1 1

a r2 rl a

C1 and C =

1 1 2
1 1

rl r2! rl ('2
r2-a a -

r1so Cl k
and C2rl r2

-

rlr2-rl

hence,

r -a
k a-rl k2

Yk
--

rl + r2 .

r2-rl r2-rl



Simplifying r2- r1, we find

la2-4bc
2

I 2
a - 4bca

"2
-

a

2 2

Thus,

1 ( (r2-alrlk+(a-rllr2k)
( 4. 3)

Similarly, simplifying r2-a, we find

r -a

I 2
a- a -4bc

2
2a
-2

=

I 2
-a- a -4bc

2

=

Finally, simplifying a-rl, we find

2a a+ la2-4bc
=

2 2

aj a2-4bc
=

2

=

r2
Substituting into (4.2), one finds

y =

k
1

Looking at Yk, it is obvious that if

>

then det A >0.
n

Consequently, if

a+� a2-4bc >

then the following steps directly follow:

23
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la2-4bc > -/a�4bc
a2-4bc > -(a�4bc)
a2-4bc > a2+4bc

2a2 > 8bc

a2 > 4bc

Thus, if a2>4bc, the detA > 0.
n

Let us now consider one example. Suppose a=2, b=O, and

c=o. Then,

2 k+l)-1 ( -2-/4
2 ( 2

k+l 2-/4
+

� (_ (2k+l»)
= 2k

=

2 2
Notice that a >4bc, because 2 >0, so the determinant should

always be positive, and we found it is.

2k>O for all k = 1, 2, 3, .

Case 2. Suppose the roots are real and equal.

The auxiliary equation of (4.1) is still

m2-am+bc = 0.

Using the quadratic equation, the roots equal

a±

/ 2
a 4bc

2

a

"2

2
since a -4bc=0 by assumption. Recall from section two of

this paper, that the general solution for this case is,

Yk = (Cl+C2k) (�)k
Using the initial conditions, aO=l, and al=a, Cl and C2

are as follows,



Plugging in 1 for Cl, C2 becomes also equal to 1.

Thus,

Yk = (l+k) (i)k
Therefore, when a2=4bc the determinant >0 if a 20, and

the determinant >0 when k is even if a <0. Notice that

in the case where the roots are real, the determinant is

2
always positive when a >4bc. This is a slightly weaker

assumption than the hypothesis (3.1) of proposition 1.

Next, let us work two examples.

Example 1. Suppose a = 2, b = 1, and c 1. The roots

are equal to
2 ±/4-4
2 ' so roots = 1.

Thus Yk = (l+k) (l)k, which is always> O.

Example 2. Suppose a = -2, b= -1, and c = -1. The roots

-2±/4-4
are equal to 2 ' so roots = -1.

k
Thus, Yk = (l+k) (-1) , which is positive when k is even.

Case 3. Suppose the roots are complex. Again,

the auxiliary equation of (4.1) is given by
2

m -am+bc = O.

Using the quadratic equation, the roots equal

25



We are now assuming that 4bc>a2 so that conjugate roots

are obtained.

From section two,

;! a 2
2 �

r = (_) + ((4bc-a) )2'-i 2 2

= Ibc

Also from section two,

cose =
a (_1_)="2

v'bc

sine =
) 4bc-a2

2

a

2/bc

( 1 ) =

IbC

I 2
4bc-a
2bc

Recall the solution for complex roots is given by

Y = A
k
cos (ke+B)k r

where

2a and ClA

Thus,

B.

( 4 • 4)

Solving for Cl and C2 with initial conditions ao 1,

al
= a,

which simplifies to

26



We also know by our initial conditions that

which simplifies as follows:

a

2 /bC

which finally simplifies to

[';2a = Cl acosC2- 4bc-a sinc2] .

See Figure 6.

Using the fact that cos&
side adjacent
side opposite

1
cos C2 =

2Cl

Using the Pythagorean Theorem,

Using the fact that sine
sloe opposite
hypotenuse

�----

/4c12 - 1

2Cl

Substituting into (4.4), the equation becomes

1 2 k
_ (4bc ..... a ) 2

2Cl

trigonometry

.; 2
4bc-a

2/bC

( 4 • 5)

, we find

(4 • 6)

27
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or

2 k 2 �
a = (4bc-a ) 2

(4Cl -1) 2.

Upon squaring both sides

222
a = (4bc-a ) (4Cl -1).

Solving for Cl,
2

a

Multiplying by

4bc-a2
1

2
4bc-a

we find

2
4bc-a

2
4bc-a

+

2
a

2
4bc-a

Simplifying,

4bc
4C

2
12

4bc-a

and
be

2
4bc-a

C - +/Ecso
1

-

-

2
4bc-a

Substituting into (4.6), one can solve for C2.

1

)2(J_bc
lJ 4bc-a2

Rearranging,

1 =
2 �

�
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so
I 2
4bc-a

2�
= cos C�

L.

hence,
'I 2 )( 4bc-a

.

= arc cos

2 IbC

Returning to (4.4)

Yk = 2C1 IbCk cos (k8+C2) k = 0, 1, 2,

Now we must consider two cases, when Cl>O, and when

1. Assume C1>0 so -IT/2 < k8 + C2 < IT/2.

Substituting into (4.4) we find Yk will be greater than

zero whenever

IT (4n�1)< k arc cos
a

+ arc cos

21bC

I 2
4bc-a

< IT

2 IbC

4n+1
-2- . (4.7)

2. Assume C1<0 and use the same procedure as part 1.

Now we find that Yk is greater than zero whenever

IT
2n-l a

-2-
< k arc cos

2/bc
+ arc cos

/ 2
4bc-a

2 /be

2n+l
<IT -2- (4 • 8)

Both of these cases are true for n = 0, 1, 2, .

Thus we have found that the determinant of (4.1) is

greater than zero when:

2
1. a >4bc, for real and unequal roots,

2
2. a = 4bc, for real and equal roots provided k

is even, if a<O,

3. (4.7) and (4.8) hold for the complex roots.
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Five Diagonal Case

The last phase of this project was to determine when

a general five diagonal (i.e. when the diagonals are each

a constant) matrix has a positive determinant. The five

diagonal matrices correspond to forming quadratic poly-

nomials to estimate a data fit. This is helpful because

using quadratic functions lessens the number of knots

needed in a spline.

Before attacking the general five diagonal case,

let us consider the following specific case, where the

five constants are 0,1,4,2, and 1. See Figure 7. By

using the same method as in the tridiagonal case, we find

h h
.

f h
th

d
. ..

bt at t e equat10n or ten eterm1nant 1S glven y

the following,

U = 4U l-2U 2+U 3·n n- n- n-

In the case where n=1,2,3,4, the determinants are respec-

tively 4, 13, 49, and 174. We wish to make the claim

that Un�2Un_l and show this true by induction.

Proof. Suppose Un�2Un_l for n-3, n-2, and n-l

U = 4U l-2U 2+U 3n n- n- n-

�
4U l-2U 2n- n-

End of proof.
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Next, we replaced the five diagonals by the constants

o,c,a,b,c. See Figure 8. The general equation for the

determinant was found to be

3
U = c u 3-bc u

2
+ a U

l'n n- n- n-

The auxiliary equation is

m3-am2+bcm-c3 = O.

This auxiliary equation can be transformed into

x3 + sx + t = 0, by substituting for y the value x+a/3.

This method for solving cubic equations was found in the

Standard Mathematical Tables, 21st Edition. Now

s = 1/3 (3bc-a2) and t = 1/27 (-2a3+9abc-27c3).
For a solution, let,

3)-25 + /542 + �� BA

then the values of X will be given by

X = A + B

X
-A+B

+
+A-B

--2- -2-

X
-A+B
-2-

-A-B
-2-

(5.1)
If -a, be, and -c are real, then:

If s2/4 + t3/27 > 0 there will be one real root and

two conjugate imaginary roots,

If s2/4 + t3/27 = 0 there will be three real roots

of which at least two are equal.

If s2/4 + t3/27<0 there will be three real and un-

equal roots.
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c b o . ·

b c a 0

0 CA_ b c

\ 0 0 c (A b . .

\ 1

-,



We know that the general solution of a difference

equation is of the form (2.4), so we find that,

Yo Cl+C2+C3 = 1

Yl Clrl +C2r2+C3r3 = a

2
a -bc

where r is given by (5.1).

When we attempted to solve for Cl, C2, and C3, to

obtain conditions on a, b, and c for when the determinant

is positive, the calculations became "messy," and it was

impossible to get any satisfactory conditions in the

time we had to work on this problem. Thus, this part of

our research was disappointing. In fact, it becomes

impossible for a polynomial of degree � 5 to have a solu-

tion which follows a general formula by a well known

theorem in algebra known as the insolvability of the

quintic. Therefore, if we had tried to solve a matrix

with nine constants, the effort would have proved worth-

less in the amount of time we had to spend on this

project.
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CONCLUSION

First of all, this research has shown that we extend­

ed the classes of matrices for which the determinant

is always positive to all constant tridiagonal matrices.

Actually, Proposition 1 was sufficient to conclude when

the determinants of constant tridiagonal matrices are

positive, but we were able to weaken the condition in

Proposition 1. Furthermore, we also showed that when

there are fours along the main diagonal of any tri­

diagonal matrix, the determinant will be positive whenever

Proposition 1 holds true. In fact, we feel safe in

saying that for any constant k on the main diagonal

of a tridiagonal matrix, the determinant will be greater

than zero, under the assumptions of Proposition 1.

However, we were not able to specifically prove this,

so it will hopefully be attacked by future research.

Secondly, we were able to give conditions for when

the determinant of a five diagonal matrix is positive

only for specific matrices. When we attempted to gener­

alize the five diagonal case, the computation became

too complex for us to solve in the allotted time period.

Thus, this is also a problem I leave to future research.

Thirdly, because we did extend the classes of ma­

trices for which the determinant is always positive,

we can speculate that Theorem II can now be generalized
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to include piecewise convex or concave functions. This is

important for mathematicians who are trying to curve fit

data.

Finally, although our research did not result in

startling conclusions, I would like to say that it was

a very enlightening and immeasurable experience.
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