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ABSTRACT

Computational Analysis of the Q-function
for Intermediate to Large Parameter Range. (April 1986)
Jeff L. Freeman, B.S., Texas A & M University
Advisor: Dr. Pierce E. Cantrell

Cantrell has developed a very efficient algorithm using Parl’s method for
accurately calculating the generalized Q-function @m(e,8). Parl’s method using
floating formats with the exponent larger than However, only values of m up to
about 100 could be studied using the Real*8 floating point format. An investigation
into the range m >100 is made. Real*8 F-floating are run to determine the
limitations of the Parl method. Results are presented in this range of m using
other floating point formats and Rice’s asymptotic expansion for the non-central chi-
square distribution and the probability of detection for a classical multi-observation
detection problem. Also, plots of number of significant figures of the Rice uniform
asmptotic expansion for different iterations verses m are given . Finally, a
comparison of CPU time required for the Parl method and the Rice algorithm

are presented for each iteration used in the significant figure plots.
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I. INTRODUCTION

The generalized Q-function {7/, 8, pp. 219-223] is related to the non-central
chi-square [4}, Rayleigh, Poisson, and Rician distribution functions. Communication
problems, radar detection [8], and transient M/M/1 queues are just a few of the
applications for the Q-function.

The generalized Q-function is defined by the integral

oCu<3>W1exp<_(°‘2ﬂ3) I'm- 1 (au)du (1)

o 2

Qmles) = [

g
where I,(z) is a modified Bessel function and is given by the series expression
o0 6+2k

()

&)= ) e Te T iy

k:(.‘

Of all the methods that have been proposed for approximating the Q-function,
which include asymptotic and power series expansions, the Parl and Rice algorithms

will be examined in this thesis. Parl’s method is generally applicable for values of

~

m less than 100 because of it is limited by the floating point format of the computer
[6]. However, Cantrell’s computer program of Parl’s algorithm was modified to
run using Real*8 G floating point which extended the exponent from 38 to 308,

dropping only one significant figure. This extended the range of the Parl algorithm

to values of m less than 500.

-

There are applications today that require a range of m > 500. The next section
shows two of the possible applications and compares the results of using the Parl

algorithm alone and then both the Parl and Rice algorithms combined.

Journal model is IEEE Transactions on Automatic Control.
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II. APPLICATION

A. Non-central Chi-square distribution

In Figs. 1 and 2, the logarithm of the Q-function and its complement are
plotted versus 3 for several values of o using the F-floating point format [6]. In each
figure m is constant. The number of significant figures is shown on the curve when
the significant figures drops below 11. Fig. 1 was plotted using Parl’s algorithm
alone; whereas Fig. 2 was plotted from a combined Parl and Rice procedure. If the
Parl method fails, the Rice algorithm computes the result. Note that the combined
algorithms are able to compute the Q-function results of Fig. 2 to 11 significant
figures for a = 10 and most of the range for @ = 1. The Parl method alone cannot

be used to compute @ = 1 in Fig. 1 due to floating point overflow.

B. Probability of Detection

Figs. 3 and 4 represent plots of probability of detection for a multiple
observation detection problem versus the SNR, a, with 2m degrees of freedom and

a desired false alarm probability, Py,, {6, p.12], |7], where
P, =001/

, and the probability of detection is given by
Pp = Qm(a, /)

. Figs. 3 and 4 show only the central region 10 % < Pp < .9999.
In Fig. 1, the curves for m = 100, 150, and 200 cannot be computed over the

entire range due to floating point overflow. As m increases, the minimum value of



R

T w T T i A.ﬁ,jiqkfaé;_t‘.ﬂ,qutﬂlﬁ,m R H R
j J .

\

"
Ry
.‘V\h‘L\
]
thrw__~»w»____bbir._L mr__—_pw_m__m_hr»
(@] O (@] |®] (@] (@]
(o] 0N i o L oV} M A
! I | ~N I | | |
-
-4
AAn.uVaa:ﬂvoﬂmoﬂ. 3 Aﬁu.uvaavoﬂuoﬁ
i
"]
o]
i

50

40

30

20

10

Fig.



—__—__h—__._h___\___

[ =] [©] (=]
(V' ] -
| |

T
Aan.cvnauavoﬁuoa.

10(10(1/2)_

Aﬁn.uvnwvoﬂuoﬁ

60

40

30

20

10

2.

Fig.



99.

% Qp(a.8)

Fig. 3.

20



99.9%
299.8

09 _
o8 .|

96.

-

90.

|

80.

70.

60'
60.
40.

30.
20.

|

L

I

% Qp(a.p)

10}

26

30



o for which @m (e, /7) can be calculated also increases [6, p. 12]. Cantrell [6] gave
an equation to predict amin, and we verified its validity in predicting am:n, even
for Real*8 G format. We note that this o, tends to change experimentally more
than predicted as m increases. Therefore we added a small safety factor term to
Cantrell’s equation in obtaining plots for m > 100.

In section III Rice’s uniform asymtotic expansion 3| is introduced to calculate
the Q-function where Parl’s method suffers {rom floating point overflow. In addition,
the CPU time when using Parl’s method increases as the value of m increases so it
is anticipated that for some m Rice’s asymptotic expansion will be as accurate as

Parl’s method and require a smaller execution time.
I. RICE’S ALGORITHM

A. Method

In Appendix A the Rice approximation is derived, which with a change of

variables gives (3, pp. 1990-1991]

[Nl

I}

1
1-Qm(e,B8) = 5{1 — erflvy(s,7)z
| 2 i

- —;-(mc)“f exp(—zlvi(s,r)]%) Paslys Ty ™ (3)

n=0

where £ = 2m, s = f/z , r = a/z, vy is a function of s and r, and pn; is a function

of =, s, and r.

”

Essentially, Rice’s algorithm is an error function plus a correction series for the
tails of the distribution function. Thus, by implementing this general algorithm in
a program, Rice’s expansion can be compared in terms of relative error with respect

to the Parl method calculated with a relative error of 1 x 10 12,



From extensive evaluation of the usable range of the Rice algorithm. we found
that the Rice algorithm is reasonably accurate above the value of m=50. Depending
on the number of terms in the Rice tail series, significant figures are determined.
Increasing the number of iterations generally increases the accuracy of the Rice
algorithm. The number of significant figures is obtained from two investigations.
First, the parameters «a, 3, m are varied individually over a range where the Chernoff
bound of the Q-function or complementary Q-function exceeds 10”24 Secondly, the
parameters are varied on a plot of the probability of detection versus SNR. For
this application, the Q-function is between 10™% to .9999. The next subsection will

discuss the problems encountered in computation using the Rice algorithm.

B.  Algorithm Problems

The Rice algorithm had several major problems associated with computation
which are all related to a loss of significance from catastrophic cancellation. Even
with Real*16, the algorithm failed in the initial research stages.

For certain values of «, [, and m the algorithm did not give a usable relative
error. The tail series which is the right most expression in (3) can be represented
by

P =K(pl -1)

where K is a constant and pl is an iterative term. When the algorithm fails, the
constant is very large and pl is very close to one. At this point th\e\s\eri'es'P is
computed as a very small difference between two large numbers. Thus, even with
Real*16 implementation, much precision is lost which makes the algorithm fail [3,p.
1990]. However, a Taylor expansion at this point solves the problem (see Appendix

B).



The first method of investigating the significant figures must be limited by a
Chernoff bound of 10724, On the extreme tails of the distribution function the
mechanism for loss of significant figures can be determined by examining (3). The
loss of accuracy occurs when calculating @ and not 1—@. therefore an expression for
@ must be derived since the two terms to the right of the equal sign in (2) are nearly
equal at this point and on the order of 10724 (this was determined experimentally).

In most applications, a Chernoff bound of 10724 is more than sufficient.

II. DISCUSSION OF RESULTS

A. Sigﬁiﬁcant Figure Plots

In the plots that have significant figures verses m the significant figures increase
as m increases. Fig. 5 is a plot of the number of worst case significant figures versus
m. The worst case simply means that for each m, a and § were varied within the
Chernoff bound of 10724 and the minimum significant figure obtained was used as
a data point for that particular value of m. For this and all of the signiﬁc‘a/nt figure
plots, the relative error of the modified Parl algorithm is used as a comparison
since it was calculated with a relative error of less than 10712, By computing the
Q-function for the Parl and Rice methods, a relative error for the Rice iteration
can be obtained. In Fig. 5 the legend has four aifferent linestyles that indicate the
number of iterations of the Rice algorithm. As the iterat,ions_incyéase,\Lhé accﬁracy
increases at the expense of some CPU time. Additional iterations are not shown
since we found no improvement in accuracy. Note that 11 significant figures is the

maximum(Parl’s algorithm was only calculated to 11 significant figures) which is

reached in Fig. 9 for Real*16. As m increases, the number of significant figures for
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a fixed number of terms in the asymtotic expansion increases. These data can be

used to obtain a given number of significant figures when using Rice’s method.
The numerical data of the significant figure plots is used in calculating the

CPU time of each algorithm, on an equal basis as will be explained in the following

section.

B. CPU Time Plots

The next plots of CPU time verses m are derived from using the data of the
first plots to keep the relative error of the Parl and Rice method the same as the
subroutine times are plotted.

We expect the CPU plots to give us an optimum value of m to switch over from
using the Parl algorithm to using the Rice algorithm for a given significant figure
requirement. For example, in Fig. 6 the CPU time versus m is plotted for the first
iteration of the Rice algorithm. The maximum and minimum CPU times of each
algorithm are shown, the solid line representing the minimum and maximum times
of Parl’s method and the dotted line representing the minimum and maximum times
of Rice’s method. To keep the relative error of the two algorithms equal to each
other, the data from Fig. 5 was used as input. By sending the relative error of the
Rice algorithm to the Parl algorithm(the input from Fig. 5), the relative errors of
each are assured to be the same since the Parl algorithm iterates until it meets a
desired relative error. In Fig. 6 the value of m to switch from Parl’s algorithm to
Rice’s asymtotic expansion is about 50, which is obtained from the mi\n‘/max CPU
times of both algorithms.

I. CONCLUSION

From the CPU plots, the Parl algorithm is much slower than the Rice algorithm
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for m > 50. If both algorithms are implemented in one program, an entire range of
parameters can be usable. Thus, for m > 50 the value of m to switch from Parl’s
algorithm to Rice’s expansion is much more dependent on the number of significant
figures required. In general, for m > 50 Rice’s algorithm should be used due to
the fast execution time. These results are summarized in the table on the following
page for different m values and different significant figure requirements.
Depending on the software and computer system available, this table and the
plots will allow one to write a program to compute the Q-function for a large range

of parameters with the Rice subroutine given in Appendix C.



SUMMARY of RESULTS

TABLE 1 CHERNOFF of 10~ %4

Real*8 NOG/G Real*16 /G
Rice Signif. Signif.
Iter. m Fig. m Fig.
1 200 4 125 3
2 270 4 50 5
3 200 4 50 7
4 - - 50 8
5 - - K -
TABLE 2 PDET for CHERNOFF of 10™* to .9999
Real*8 NOG/G Real*16 /G
Rice Signif. Signif.
Tter. m Fig. m Fig.
1 150 4 50 3
2 150 6 50 5
3 - - 50 /i
4 - - 50 9
5 - = 50 11

14
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APPENDIX A

A CHANGE OF VARIABLES FROM THE NON-CENTRAL
CHI-SQUARE DISTRIBUTION TO THE Q-FUNCTION

16

The Q-function is related to the cummulative distribution function (cdf) and

complementary cdf of the non-central chi-square [6]. Let z = 1/n(X'?) where X'?

is non-central X2 with n° of freedom and non-centrality parameter A.

X"? =nz
Pr{0 <z <s} = Pr{0< X"*(A)/n <s}
=Pr{0.< XD'Q(A) < ns}[6]

r=sfn

1- Qm(ayﬁ) = PI'{O s X21‘11,2(a2) = 52}

therefore
R
3° =ns
a’ =)
2m = n,
for Pp give m, a, 8 = /7.
From above
n=2m

9:
r = ,\//n 2 a"/?m.
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APPENDIX B

DERIVATION OF RICE TAIL SERIES USING
A POLYNOMIAL EXPANSION AND A TAYLOR SERIES EXPANSION

Rice [3], [p. 1990| mentions that for certain parameters, his algorithm must be
expanded in a Taylor series since the expressions become essentially small differences
between large numbers. Since the derivatién was not given in his paper, a simple
case will be derived to show how a good approximation for this saddle point can be

made. The first term in the Rice tail series is given by

Po1 = 1/’01{(’()11‘,&1))‘//1.] e 1} ) (Bl)

It remains to be shown the this is equivalent to

por = (a1/2)t1" + O(t1), A (B.2)

where O(t;) are important higher order terms dominated by terms of ¢; [3], [p.
1990]. By setting t = O after expanding h(t) about ¢ = t; leads to a series for —h;

127+

which can be used to get v;%‘l as [tl(l)/tl l times a power series in t; [3],

[pp. 1990,1991]. Expanding h(t)
ht) = h{t1) + R (0@ = t1) + 8D 2% = 1) + -

~hy = KPP (t1)? /2! - R 1P (11)? /3! o (B.3)

Substitute this series into (B.1)

W=

por = [1/(t) 2721 = (tal/0) P ()220 - P ()2 /31 + 0 F (B.a)
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por = [1/(t)(2/hB)7 = (/e [R{P 20 = BB (1y) /31 + O(1, %)) (B.5)

Now factor out {hgz)/’Z]E
por = [1/(t2)[2/h7 {1 = 1= AP nP (1) /3 + 0(1,?) F) (B.6)

But this can be simplified by substitution [3], [p. 1989 eq.(71)! in terms of aj

0=

1
2

por = [1/(£0) 2767 {1 = 11 + @ (t) - az(t1)? + O(L2)] 7). (B.7)

Let X equal the series terms under the denominator of the second term in brackets.

Taking a binomial expansion

1+X)F = Y. <_§'>xk =1-(X/2)+ (3/8) X2+ O(X?).

[N

Thus, substitute tgl) for [2/h§2)] and some terms of t; cancel

- -

por = ey — 11(a2 + (3/061%)) +0lt:2). (B.8)

Note that the above expression is different from (B.2) since higher order terms of

>

t1 must be included to get the required accuracy. The terms of (t])2 and up can be
dropped.
In general where |t;] is very small,
1 i 27+2 , 2541
' v Ay :
P =G @Y (T )0 e
j : AR
k=0 Fi i

and

29 4+2

X =gt —aslie) hnslts) 5 e i)’
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APPENDIX D ,
PROGRAM LISTING: IMPLEMENTATION OF RICE ALGORITHM

This is the program implementation of the Rice algorithm.

It is now configured for REAL*16 operation. If you want to run it on
REAL*8/G__floating or /NOG__floating, just change the variable declaration
that has ”Real*16 xs,r,tl1..” to “Real*8 xs,r,tl..”.

Also change the line that is about 10 lines down that reads,

“QLOG(1.DO + T1)..” to “DLOG(1.DO + T1)..”.

Inputs:

H = m Order of Q-function

Beta = Second argument in Qm(Alpha,Beta)

Alpha = First argument in Qm(Alpha,Beta)

Limit = Number of iterations for the Rice algorithm

Outputs:

RiceD
RiceCD

Generalized Q-function
1 - Qm(Alpha,Beta)

Subroutines called:
ERF The error function approximation
subroutine.

Real*8 FUNCTION RiceCD(H,Beta,Alpha,Limit,RiceD)
Parameter (nmax=101)

Integer*4 H,LimitIT,NUM,NM,K,PTEMP4,EXPAND
Real*8 Alpha,Beta,RiceD

Real*16 xs,1,t1,v1,t11,P,C,PTEMPO,PO,P1,P2.P3,

1 PTEMP1,PTEMP2,BTEMP1,BTEMP2,BTEMP3,B(0:nmax,0: nmax)
2 A(0:nmax),SUMC1,SUM1,SUM2,PLPTEMP3,PT,ERF

Accurately compute PI for use at the end of the program

= DACOS(-1.D0)

Refer to Appendix A for explanation of x,s,r

Also see [3, pp. 1989-1991]
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200 * H
s Beta * Beta / x
r = Alpha * Alpha / x
t1 = -1.D0 + ((1.D0 + SQRT(1.DO + 40 * r * g)) /
2 (2.D0 * )
vl = (t1 / (ABS(t1))) * SQRT(-0.5DO * (s * t1 -
2 QLOG(1.DO + T1) + r / (1.DO + t1) - 1))
t11=2.D0 * SQRT(((1.D0 + t1)**3)/(2.D0 * r + 1.DO + t1))

X

nmnoy

P = 0.DO
C
C Compute all Ak values
C
Do 510 K=1,15
AK) = @D0 * (1K + 1)) /
2 (K + 2D0) * (1.D0 + t1)*K) * ((K + 2.DO) *
3 r+ 1D0 + t1) / 2D0 * r + 1.DO + t1))
510 Continue
C
C Flag to check for small tl
C
IF (ABS(SQRT(ABS(X*(S-1))) - ALPHA) .LE. 0.3) THEN
C
C Refer to Appendix B for explanation of this approximation
C

PO=((A(1)-t1 A(2)+3.D0/4.D0* A(1)%*2)))/2.DO)*t11
P1=3.D0/2.DO*A(3)-A(4)* t1)
P1=P1-(15.00/8.D0%(-2.D0*A(1 *AQ)+(2.DO*A(1 *A(3 1+
2 AQ)*2)*1))
P1=P1+(35.D0/16.DO*((A(1)**3)-3.DO* A(1)¥*2)*A(2)*t1))
P1=P1-(945.D0/384.DO¥ A(1)**4)*t1)
P1=(-.5DOX(t11**3)*P1 * (X**-1)
P2=(5.D0/2.D0X(A(5)-A(6)*t1))
P2=P2-(35.D0/8.D0*(-2.D0*A(1)*A(4)-2. DO*AQ*A(3)+

2 t1¥((A(3*2)+2.DO*A(1 *A(5)+2.DO*A(2)*A(4))))
P2=P2+(105.D0/16.DO*(3.DO*A(1 (A2 )**2)+

2 A*A))(3.DO*A(1 1M A(1)*A(4)+2.DO*A2)*A(3)))))
P2=P2-(3465.D0/384.D0*(-4. DO A(1 *3*A(2)+2.DOX(A(1¥*2)*

2 t1¥(3.DOXA(2)¥*2)+2.D0*A(1 *A(3))))

P2=P2-+(45045.D0/3840.DO*((A(1)**5)-5. DO*(A(l)**4)*A(2)*t1))
P2=P24(675675.D0/46080.D0* A(1)**6)*t1)
P2=(.75*(t11%5))¥P2 * (X**-2)

P3=(7.D0/2.D0*A(7)) '
P3=P3+63.D0/4.DO A1 *A(6)+AQ}A(SH+A(3)*A(4)))
P3=P3+693.D0/16.DOX(A(1)*2*A(5)+2. DO*A(l)*A(2)*A(4)+

2 AQMAG*2)HAQRI*2)*A(3)))
P3=P3+(9009.D0/96.DOX(A(1 *3*A(4)+2. DO*(A(I)"‘*2)*A(2)*A(3)+
2 AQPAQIHAGHAAMARI*3))

P3=P3+(135135.D0/768.DOX(A(1)*4)*A(3)+2.DOX A(1)*3)X(A(2)¥*2)))
P3=P3+(2297295.D0/7680.DOX(A(1 }**5}*A(2)))
P3=P3+(43648605.D0/645120.D0¥ A(1)**7))
P3=(-15D0/8.DO¥t11*7)HP3 * (X**-3)

P4=9.D0/2.D0*(t1*(-a(10)+(a(9)))

P4=P4-99.D0/8.D0*(t1¥(2*a(1)*a(9)+2*a(2)*a(8)+2*a(3)}*a(7)

1 +2*a(4)*a(6)+a(5)”2)+(~2*a(1)*a(8)-2*a(2)*a(7)—2*a(3)*a(6)
2 -2xa(4)a(5))

36



-t N A W= W N -

W= NS W= N - —

NN S W=

AN A W -

«
¥

P4=P4+1287.D0/36.D0*(t1¥(-3*a(1)~2*a(8)-6*a(1)*a(2*a(7)
-6*a(1)*a(3)*a(6)-3*a(2)2a(6)-6*a(1)*a(4)*a(5)-6%a(2)*a(3)*a(5)
-3*a(2)*a(4)"2-3*a(3)"2*a(4))+(3*a(1)"2*a(7)+6*a(1)*a(2)*a(6)
+6*a(1)*a(3)*a(5)+3*a(2)"2*%a(5)+3*a(1)*a(4) " 2+6*a(2)*a(3)*a(4)+a(3)"3))
P4=P4-19305.D0/384.D0*(11*(4*a(1)"3*a(7)+12*a(1)"2*a(2)*a(6)
+12*a(1)~2*a(3)*a(5)+12*a(1)*a(2)"2*a(5)+6a(1)"2a(4)"2
+24a(1)a(2)a(3)a(4)+4a(2)"3a(4)+4a(1)a(3)"3+6%a(2)"2*a(3)"2 )+
(-4*a(1)"3*a(6)-12*a(1)"2*a(2)*a(5)-12*a(1)"2*a(3)*a(4)
~12*a(1)*a(2)~2*a(4)-12*a(1)*a(2)*a(3)"2-4*a(2)"3*a(3)))
P4=P4+328185.D0/3840.D0*(t1*(-5*a(1)"4*a(6)-20%a(1)" 3*a(2*a(5)
-20*a(1)"3*a(3)*a(4)-30*a(1)~2*a(2)"2*a(4)-30*a(1)"2*a(2)*a(3)"2
-20*a(1)*a(2)"3*a(3)-a(2)"5)+(+5*a(1)"4*a(5)+20*a(1)" 3*a(2)*a(4)
+10*a(1)~3*a(3)"2+30*a(1)*2*a(2)"2*a(3)+5*a(1*a(2)"4))
P4=P4-6235515.D0/46080.D0*(t 1*(6*a(1)~5*a(5)+ 30*a(1)"4*a(2)*a(4)
+15*a(1)"4*a(3)"2+60%a(1)"3*a(2)"2*a(3)+15%a(1)"2*a(2)"4)
+(-6*a1"5*a4-30*al"4*a2*a3-20*al ~3%22°3))
P4=P4+130945815.D0/645120.D0*(t1*(-7*a(1)"6*a(4)-42*a(1)"5*a(2}*a(3
-35*a(1)"4*a(2)"3) :
H7*a(1)~6*a(3)1+21*a(1)"5*a(2)"2))

P4=P4+3011753745.D0/10321920.D0*(t1*(8*a(1)~7*a(3)}+28*a(1)"6*a(2)"2)

-8*a(1)"7a(2))
P4=P4-7.5293843E10/185794560.D0*(t1*(-9*a(1)"8*a(2))+{a(1)"9))
P4=P4+2.0329337E12/3715891200.D0*t1¥(a(1))"10
P4=(105.D0/16.D0¥(t11**9))¥P4 * (X**-4)
P5=11.D0/2.D0Xt1*(-a(12))+(a(11))) IR
P5=P5-143.D0/8.D0X(t1%(2*a(3)*a(9)+2*a(4)*a(8)+2*a(5)*a(7)
+a(6)~2+2*a(10)*a(2)+2*a(1)*a(11)1+(-2*a(2*a(9)-2*a(3)*a(8)
-2*a(4)*a(7)-2*a(5)*a(6)-2a(1)a(10)))
PS=P5+2145.D0/36.D0*(t1*(-6*a(1)*a(2)*a(9)-6%a(1)*a(3)*al8)
-3%a(2)"2*a(8)-6%a(1)*a(4)*a(7)-6*a(2)*a(3)*a(7)-6*a(1)*a(5)*a(6)
—6*a(2)*a(4)*a(6)-3*a(3)"2*a(6)-3*a(2)*a(5)~2-6*a(3*a(4)*a(5)
-a(4)~3-3*a(1)"2*a(10))+(3*a(1)"2*a(9)-6*a(1)*a(2)*a(8)
+6*a(1)*a(3)*a(7)+3*a(2)"2*a(7)+6*a(1 Ya(4)¥a(6)+6*a(2)*a(3)*a(6)
+3*a(1)*a(5)"2+6*a(2)*a(4)*a(5)+3*a(3) " 2*a(5)+3*a(3*a(4)"2))
PS=P5-36465.D0/384.D0*t1¥(4*a(1)~3*a(9)+12*a(1)"2*a(2)*a(8)
+12a(1)"2*a(3)*a(7)+12%a(1)*a(2)"2*a(7)+12*a(1)"2*a(4)*a(6)
+24%a(1)*a(2)¥a(3)*a(6)+4*a(2) " 3*a(6)+6%a(1)"2*a(5)"2

+24%a(1 a2 *a(4)¥a(5)+12*a(1)*a(3)"2*a(5)+12*%a(2)*a(3)"2*a(5)
+12%a(1)*a(3)*a(4)"2+6%a(2)"2%a(4)"2+12*a(2)*a(3)"2*a(4)+a(3)"4)
P5=P5+692835.D0/3840.D0%(t1¥(-5*a(1)"4*a(8)-20*a(1)"3*a(2)*a(7)
_20*a(1)"3*a(3)*a(6)-a(1)"2*a(2) 2*a(6)-20*a(1)"3*a(4)*a(5)
_60*a(1)"2*a(2)*a(3)*a(5)-20%a(1*a(2)"3*a(5)-30%a(1)"2*a(2)*a(4)"2
_30%a(1)"2*a(3)"2*a(4)-60*a(1)*a(2)"2*a(3)*a(4)-5*a(2)"4*a(4)
_20*a(1)*a(2)*a(3)"3-10%a(2)"3*a(3) "2 +(5*a(1)"4*a(7)
+20*a(1)"~3*a(2)*a(6)+20%a(1)" 3*a(3)*a(5)+30%a(1)"2*a(2)"2*a(5)
+10*a(1)"3*a(4)"2+60%a(1)"2%a(2}a(3*a(4)+20*a(1*a(2)"3*a(4)
+10%a(1)"2*a(3)"3+30*a(1*a(2)"2*a(3)"2+5*a(2)"4*a(3)))
P5—P5-14549535.D0/46080.D0*(t1X(6*a(1)"5*a(7)+30%a(1)"4*a(2)*a(6)
+30%a(1) 4*a(3)*a(5)+60%a(1)"3*a(2) " 2*a(5)+15%a(1)"4%a(4)"2
+120*a(1)"3*a(2)*a(3)*a(4)+60%a(1)"2*a(2)"3%a(4)+20%a(1)"3*a(3)"3
+90%a(1)~2*a(2)"2*a(3)"2+30%a(1*a(2) 4*a(3)+a(2) 6 )+
(-6*a(1)"5*a(6)-30*a(1)"4*a(2*¥a(5)-30*a(1 ) 4*a(3)*a(4)
-60*a(1)~3*a(2)"2*a(4)-60%a(1)"3*a(2*a(3)"2-60*a(1 )~2*a(2)"3*a(3)
-6*a(1)*a(2)°5))

P5=P5+334639305.D0/645120 DOXt1*(-T*a(1)"6*a(6)-42*a(1)"5*a(2)*a(5)



530

560

5§70

550

540

520
580

AW =

(SN

W

-42%a(1)"5*a(3)*a(4)-105*a(1)"4*a(2)"2*a(4)-105*a(1)"4*a(2)*a(3)"2
-140*a(1)"3*a(2)"3*a(3)-21*a(1)~2*a(2)~5}+(7*a(1)"6*a(5)
+42*a(1)"5*%a(2)*a(4)+21*a(1)"5*a(3)"2
+105*a(1)"4*a(2)"2*a(3)+35*a(1)"3*a(2)"4))
P5=P5-8365982625.D0/10321920.D0*(t1*(8*a(1)"7*a(5)+56*a(1)"6*a(2)*a(4)
+28*a(1)"6*a(3)"2+168*a(1)"5*a(2)"2*a(3)+70*a(1)"4*a(2) 4)+
(-8*a(1)"7*a(4)-56*a(1)"6*a(2)*a(3)-56*a(1)"5*a(2)"3))
P5=P5+2.2588153E11/185794560%(t1%(-9*a(1)"8*a(4)-72*a1"7*a2*a3
-84*a1"6*a2"3)+(9*a1"8*a3+36*a1"7*a2"2))
P5=P5-6.5505643E12/3715891200%(t1%(10*a(1)~9*a(3)+45*a(1)"8*a(2) 2+
(-10*a(1)"9*a(2)))
P5=P5+2.0306749E14/8.1749606E10%(t1*(-11*a(1)"10*a(2))}+{(a(1)"11))
P5=P5-6.7012273E15/1.9619905E12*t1x(a(1))"12
P5=4945.D0/32.DO(t11¥*11)¥PS * (X**-5)

P=PO + P1 + P3 + P4 + P5

GOTO 580

ENDIF

PTEMP3 = v1 * t11 / t1

Do 520 IT=O0,LIMIT

C = 1.D0

PTEMP4 = 2 * IT + 1

Do 530 NUM=0,IT
IF (NUM .EQ. 0) Go To 530
C=C*(05+NUM -1

JEEESS .

Continue
PTEMPO = 0.D0
PTEMP1 = 0.DO
Do 540 N=0,2*IT
BTEMP3 = 0.DO R
B(ON) = 0.D0 :
B(0,0) = 1.DO
Do 550 M=ON
BTEMP1=0.D0
Do 560 K=1N-M+1
BTEMP1 = BTEMP1 + K * A(K) * B(M,N-K+1)
Continue

B(M+1,N+1) = (1.D0 / (N + 1)) * BTEMP1
BTEMP2 = 1.DO
Do 570 NUM=0M

IF (NUM .EQ. 0) Go To 570

BTEMP2 = BTEMP2 * (IT + 0.5 + NUM - 1)
Continue

BTEMP3 = BTEMP3 + B(M,N) * BTEMP2 By

Continue :
PTEMPO = PTEMPO + ((-t1*N) * BTEMP3
Continue .
PTEMP1 = (PTEMP3*PTEMP4) * PTEMPO

PT = (((((1)*IT) * C) / (v1*PTEMP4))
PT = PT * PTEMP1 - PT

PT = PT * (x*-IT))

P=P+PT

Continue

PTEMP2 = ERF(ABS(vl * SQRT(x)))
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IF (V1 .EQ. 0) THEN EXPAND=1
PTEMP2 = (v1 / ABS(v1)) * PTEMP2
SUMC1 = 0.5D0 * (1.D0 - PTEMP2)
SUM1 = 0.5D0 * (1.DO + PTEMP2)
SUM2 = (1.0 / (2 * SQRT(PI * X))) * EXP(-X *
(v1*2)) * P
RiceCD = SUMC1 + SUM2
RiceD = SUM1 - SUM2
RETURN
END
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APPENDIX E

C

c PROGRAM LISTING: IMPLEMENTATION OF ERROR FUNCTION APPROXIMATION

C

C This program uses Chebyshev Expansions for calculating the

C Error function. See reference by:

C Schonfelder, J.L..Chebyshev Expansions for the Error and

C

C Related Functions, Mathematics of Computation,Vol. 32,

C LT ST

C Number 144, October 1978, Page 1232-1240.

C
REAL*16 FUNCTION ERFE(D)
IMPLICIT NONE
REAL*16 D
REAL*16 A(72)Y,T,X, TR
INTEGER*4 1

C

C CONSTANTS FOR 0 <= X <= 2

C
AQ1) = +1.483110564084803581889448079057E+0
AQ2) = -3.01071073386594942470731046311E-1
A(3) = +6.8994830689831566246603180718E-2
A(4) = -1.3916271264722187682546525687E-2
~A(5) = +2.420799522433463662891678239E-3
A(6) = -3.65863968584808644649382577E-4
A(7) = +4.8620984432319048282887568E-5
A(8) = -5.749256558035684835054215E-6
A(9) = +6.11324357843476469706758E-7
A(10) = -5.8991015312958434390846E-8
A1) = +5.207009092068648240455E-9
Al12) .= -4.23297587996554326810E-10
A13) = +3.1881135066491749748E-11
A(14) = -2.236155018832684273E-12
AQ1S) = +1.46732984799108492E-13 ;
A(16) = -9.044001985381747E-15
A7) = +5.25481371547092E-16
A(18) = -2.8874261222849E-17
A(19) = +1.504785187558E-18
AQO0) = -7.4572892821E-20
A1) = : +3.522563810E-21
A(22) = -1.58944644E-22
AQ23) = +6.864365E-24
AQ4) = -2.84257E25 . -
A@S) = +1.1306E-26
A(26) = -4.33E-28
AQRT) = +1.6E-29
A(28) = -1.0E-30

C

C CONSTANTS FOR X > 2

C
AQR9) = +1.077977852072383151168335910348E+0
A(30) = -2.6559890409148673372146500904E-2
A(G1) = -1.487073146698099509605046333E-3
A(32) = ; -1.38040145414143859607708920E-4
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30
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DO 20 I=1, 28
TR = QCOS((I-1*T)
Y =Y + A(D*TR

IF (I .EQ. 1) Y=Y/2

CONTINUE
ERF = X * Y
ELSE
T = QACOS((10.5 - X*X) / (2.5 + X*X))
Y =0
DO 30 1=29, 72
TR = QCOS((1-29)*T)
Y = Y + AOFTR
IF (I EQ. 29) Y=Y/2
CONTINUE
ERF = 1.D0 - (EXP(-X**2) * Y / X)
ENDIF

WRITE (5) Y
GOTO 5
RETURN

END
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