Determination of Stress Concentration Factors in Flat Plates with Holes Using Finite-Element Analysis Methods

by

Roger Paul Young

Maritime Systems Engineering

Submitted in Partial Fulfillment of the Requirements of the University Undergraduate Program

1981-1982

Approved by:

Calk

Mr. Ralph Davis

April 1982

ABSTRACT

The importance of stress concentration factors in machines and stuctures led to the development of various experimental and analytical techniques for determining them. One of these methods is the application of finite element analysis to the various structures. A common structural element in a piece of machinery is a flat plate with one or more bolt holes, that are often off center.

Using certain assumptions from S. P. Timoshenko's <u>Strength</u> of <u>Materials</u> and the finite element method outlined in J. S. Przemienieck's, <u>Theory of Matrix Stuctural Analysis</u>, a computer program was written to help determine these stress concentration factors. The program consists of a main program that generates the nodal points, several subroutines that develop the stiffness matrix, a subroutine that transforms the element stiffness matrix into a system stiffness matrix, a subroutine that inverts a part of the system matrix, and a subroutine that multiplies the system deformations by another portion of the stiffness matrix.

The stresses computed with the system do not correlate with other theoretical values. This inconsistency is believed to be caused by an error in the transformation of the element stiffness matrices into the system stiffness matrix. When this problem is adjusted, the program should give valid stress concentrations. i

ACKNOWLEDGEMENTS

I extend my thanks and gratitude to all the personnel in the computer center who had the time and patience to answer my many questions. I would also like to express my appreciation to all of the faculty and staff at Texas A&M at Galveston for the learning experience over the last four years. My special thanks go to my two advisors, Dr. James M. Nash and Mr. Ralph Davis for sharing their knowledge with me and for the encouragement to extend my studies in finite element analysis.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
TABLE OF ILLUSTRATIONS	iv
INTRODUCTION	1
PROGRAMING PROCEDURES	2
Main Program. Subroutine TRIG. Subroutine KAPA. Subroutine STFMX. Subroutine INVERT. Subroutine FORCE. SAMPLE PROBLEM.	2 5 6 9 10
INTERPRETATION OF DATA	14
BIBLIOGRAPGY	16
APENDIX	A-1

TABLE OF ILLUSTRATIONS

Figure	1.	One Hole Specimen	3
Figure	2.	Two Hole Specimen	4
Figure	3.	Triangular Plate Element	6
Figure	4	Example Problem	11

INTRODUCTION

The theoretical calculation of the average stress in a plate of uniform cross-section is quite simple. However, if there is an abrupt change in the cross-sectional area of a plate, the stress concentration is far above the average stress. The stress concentration divided by the average stress is the stress concentration factor for that plate. The theoretical calculations of these stress concentration factors only exists in a few of the simplest cases. The majority of the information of the information has been obtained by experimentation. These stress concentration factors can also be determined by finite element methods with practically no limitation on the geometry of the plate, or discontinuity in the cross-section.

Finite element analysis separate a continuum into a number of finite element, in this case triangles. These elements are assumed to be connected only at the nodal points. A system is found to determine the stiffness matrix for each element, and then matrix structural analysis methods can be used to solve for the stress concentrations.

Page 1

PROGRAMING PROCEDURES

MAIN PROGRAM

The first step in the programing procedure was to determine how to divide the plate into various triangular elements. If possible, it would be convenient to make this process variable to accommodate various sizes of plates and various hole diameters while minimizing the number of inputs and restrictions. It was decided to redefine the plate by drawing an imaginary "circle" around the hole with a relatively large enough diameter such that the stresses along the circumference of the "circle" would not be influenced by the hole (see Figure 1). It was hypothesized that if the area of stress could be broken up as in Figure 1, then the plate could be divided into two circles of different diameters as in Figure 2. The diameter of the outer circle, as determined by S. P. Timoshenko should be five times larger than the diameter of the hole. This is a definite limitation on the range of specimens that can be analyzed: however, by using this restriction the only inputs necessary to determine each nodal point are: 1) the distance from the center of the hole to the edge of the plate (variable name in program, SPR), 2) the distance from the center of the hole to the middle of the plate, or to the other edge of the plate if only one hole is being analyzed (SPL), 3) the diameter of the hole itself (D) and 4) the number of angular divisions of the mesh (NUMANG).

The cartesian coordinate system for determining the nodal points is located at the center of the hole with the x-axis directed perpendicular to the direction of stress, and y-axis directed tangential to the direction of stress. Each nodal point is defined by two numbers in the array POINT(I,J,K): POINT(I,J,1) being the abscissa and POINT(I,J,2)

÷

Figure 2 Two hole specimen being the ordinate. POINT(I,J,1) and POINT(I,J,2) are determined by: $\begin{array}{rcl} & \text{POINT(I,J,1) = R*COS(ANGN)} & (Eq. 1) \\ & \text{POINT(I,J,2) = R*SIN(ANGN)} & (Eq. 2) \end{array}$

where R is the distance between the nodal points and the origin, and ANGN is the angle between R and the positive x-axis. The initial value for R, where J=1, is D/2. The initial value for ANGN, when I=1, is zero. The subsequent values of R when J=J+1 are R+XSPACE, where:

 $XSPACE = 2*R*SIN(\pi/(2*NUMANG))$

ANGN is held constant and each POINT(I,J,K) is calculated using Eq. 1 and Eq. 2 until R is greater than SPR. R is then set equal to SPR and POINT(I,J,K) is calculated using the same equations. ANGN is then changed, I=I+1, to ANGN + ANG where ANG = \hat{T} /NUMANG. The same procedure for R is followed for the new ANGN until ANGN = $\hat{T}/2$. The only difference for ANGN between $\hat{T}/2$ and \hat{T} is that SPR is replaced by SPL. When this process has been completed each value of POINT(I,J,K) is printed out for future use.

The main program is also used to call subroutines, TRIG, STFMX, INVERT and FORCE.

SUBROUTINE TRIG

The second step was to determine the relationship between a single element K, and the three nodal points. By using the system of obtaining the nodal points illustrated in the previous section, an algorithm could be made to determine the ordinate and the abscissa of each nodal point for each element. These values are then transferred down to the subroutine KAPA where the individual stiffness matrices are computed. The next step, and perhaps the most important, was to decide the method in developing the individual stiffness matrices of each element. The method outlined in J. S. Przemieniecki's book <u>Theory of Matrix</u> <u>Structural Analysis</u> was chosen. This method has no restrictions on the orientation of the local coordinate system.

Figure (3)

Triangular Plate Element

Node	(1)	=	(X1,Y1)	XIJ	=	XI-XJ
Node	(2)	=	(X2,Y2)			
Node	(3)		(X3,Y3)	YIJ		YI-YJ

The triangular element is situated as shown in Figure (3). The element stiffness matrix is formulated on the basis of the difference between each nodal coordinate and not on the basis of Node (1) being below and to the left of Node (2). This indicates that the orientation of the element with respect to the local coordinate system is unimportant as long as the abscissa and ordinate of each nodal point of the triangle is known. In addition, the displacements U1, U3, and U5 will remain parallel with the x-axis, and the displacements U2, U4, and U6 will remain parallel to the y-axis.

The element stiffness matrix (ELSTF) was determined by:

$$\mathbf{K} \simeq \int \mathbf{b} \mathbf{X} \mathbf{b} \, \mathrm{dV} \tag{Eq. 3}$$

where b represents a matrix of the exact strains due to a unit diplacement,

b representing the transpose of b, and X is a matrix of the form:

$$X = \frac{E}{(1+v)(1-2v)} \begin{vmatrix} 1-v & v & v & 0 & 0 & 0 \\ v & 1-v & v & 0 & 0 & 0 \\ v & v & 1-v & 0 & 0 & 0 \\ 0 & 0 & 0 & (1-2v)/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & (1-2v)/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & (1-2v)/2 \end{vmatrix}$$

where E is Young's modulus and v is Poisson's ratio. For convenience, the stiffness matrix was seperated into two parts:

$K = K_n + K_s$

where K_n represents the stiffness due to normal stresses and K_s represents stiffness due to shearing stresses. After the integration of Eq. 3, K_n and K_s are given by:

	¥32 ²					
	-v*¥32*X32	X32 ²		SYMMETRIC		
	-¥32*¥31	v*X32*Y31	¥31 ²			
к _л =М	v*Y32*X31	-X32*X31	-v*¥31*X31	X31 ²		
	Y32*Y21	-v*X32*Y21	-Y31*Y21	v*X31*Y21	Y21 ²	
	-v*Y32*X21	X32 * X21	v*Y31*X21	-X31*X21	-v*Y21*X21	X21 ²
	X32 ²					
	-X32*Y32	¥32 ²		SYMMETRIC		
	-X32*X31	¥32*X31	X31 ²			
K _s = N	X32*Y31	-¥32*¥31	-X31*Y31	¥31 ²		
	X32 * X21	-¥32*X21	-X31*X21	Y31*X21	X21 ²	
	-X32*Y21	¥32*Y21	X31*Y21	-Y31*Y21	-X21*Y21	Y21 ²

$$M = \frac{Et}{4(A123)(1-v^2)}$$
$$N = \frac{Et}{8(A123)(1+v)}$$
$$A123 = ((X32)(Y21)-(X21)(Y32)) /2$$

where t is the thickness of the plate and all other variables are as defined earlier. As stated previously the orientation of the triangular element has no effect on the computation of the stiffness matrix: there-fore, if the same local coordinate system is used for each element, the transformation matrix λ , is not necessary. This local coordinate system is the same system used in the main program to generate the nodal points.

SUBROUTINE STFMX

After each element stiffness matrix is computed, they must be correlated into the system stiffness matrix (STF). In M.M.467, Matrix Computer Analysis of Structures, Dr. James M. Nash illustrated a technique of systematically placing components of the element stiffness matrices into the system stiffness matrix. This technique requires the formation of a "Topology Matrix" (ITOPO), which must be read from a data file. The "Topology Matrix" will be a two dimensional matrix that has a number of columns equal to the number of element coordinates (NELC) and a number of rows equal to the number of elements in the system (NEL). Before the "Topology Matrix" can be formed, the system coordinates must be decided upon. If all of the system coordinates are situated in the positive x-direction and the positive y-direction, all of the elements of the "Topology Matrix" will be positive. It is necessary to number the vertical system coordinates along the x-axis last because the forces at these coordinates are the unknown forces the program will determine.

The deflection at these coordinates are assumed to be zero, along with the horizontal deflection on the y-axis if the hole is centered in the plate. The procedures for developing the "Topology Matrix" will be discussed later in the section titled SAMPLE PROBLEM.

SUBROUTINE INVERT

Once the system stiffness matrix has been correlated, a portion of the stiffness matrix needs to be inverted as shown below.

$$\begin{bmatrix} STF \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} P = Known \text{ Forces} \\ F = Unknown \text{ Forces} \\ u = Unknown \text{ Displacements} \\ u_0 = Displacements \text{ assumed} \\ to be zero \end{bmatrix}$$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} u \\ u_0 \end{bmatrix} = \begin{bmatrix} P \\ F \end{bmatrix}$$

$$A_{11} & u + A_{12} & u_0 = P \longrightarrow u = A_{11}^{-1} P$$

$$A_{21} & u + A_{22} & u_0 = F$$

The horizontal partitioning of the stiffness matrix is located directly below the last row of the known forces (N). Since the matrix A_u needs to be a square matrix the vertical partition is located an equal number of columns over. First INVERT transfers the elements of the stiffness matrix to the A matrix. Second, the known forces are read in from a data file and placed next to the elements of the stiffness matrix in the A matrix. INVERT then inverts the matrix A, using Gauss-Jordan elimination while checking that the pivot element is not zero (EPSILN). In the process of inverting the matrix, INVERT multiplies the forces by the inverted matrix A, to obtain the unknown displacements.

Page 10

SUBROUTINE FORCE

Now that the unknown diplacements are known, they are multiplied by the portion of the stiffness matrix that was not inverted, and the unknown forces are printed out. From these forces and the original forces the stress concentration factor can be found.

SAMPLE PROBLEM

The first input into the system is the distance from the center of the hole to the edge of the plate, 4.0 inches. The next input is the distance from the center of the hole to the other edge of the plate (since this is a one hole example), 4.0 inches. The diameter of the hole is 0.5 inches and the number of angular divisions is 2. The program will then print out the points of each node. From these a composite of the system can be drawn, as in Figure (4). From Figure (4) the "Topology Matrix can be formed.

To produce the "Topology Matrix" each element is considered individually. If the element coordinates are superimposed on the system coordinates, the number of the system coordinate that corresponds to the element coordinate is placed in the "Topology Matrix" in the (Member Number, Element Coordinate) position. For example, if the element coordinates for element (1) where superimposed on the system coordinates, element coordinate 1 corresponds to system coordinate 20. Therefore 20 should be placed in the (1,1) position of the "Topology Matrix". This procedure is continued for each element coordinate and for each individual element, until the entire

	1	2	3	24	5	6
<u>MEMBER NUIIBER</u>	$\begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 1 \\ 9 \\ 1 \\ 1 \\ 9 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	05 05 04 03 02 25 24 24	12 19 13 18 14 17 15 16 19 09 18 00	27 04 28 03 29 02 30 01 04 24 03 23	11 12 12 13 13 14 14 15 20 19 19	26 27 28 29 29 30 05 04 04
	13 08 14 08	23	$\begin{array}{c} 0 \\ 17 \\ 07 \end{array}$	02	$18 \\ 17$	03
	$15 \ 07 \ 16 \ 07$	22	16	01	17	02

ELEMENT COORDINATES

"TOPOLOGY MATRIX"

"Topology Matrix" is completed. The "Topology Matrix" for this system is listed above. The "Topology Matrix" is then stored in a data file for the computer to read.

The next data file that needs to be computed is the known forces file. The only forces necessary to compute, are the vertical forces on the circumference of the "circle" and not on the x-axis. These are computed by integrating the function of stress over the surface area. From Figure (1), the function of stress is:

 $\sigma' = \sigma \sin \Theta$ $F = \int_{A} t\sigma \sin \Theta da = \int_{\Theta_{1}}^{\Theta_{2}} t(\sin) rd\Theta = -tr\sigma \cos \left|_{\Theta_{1}}^{\Theta_{2}}\right|$

where σ is the uniaxial stress applied to the plate, and Θ_{z} and Θ_{z} are the limits of integration. The Θ_{z} and Θ_{z} values are the half angle between angular divisions. For this problem, Θ_{z} and Θ_{z} would be $\pi/4$ and $3\pi/4$ respectively. The vertical forces that would normally be applied on the circumference of the "circle" and on the x-axis, are picked up at the nearest node along the circumference of the "circle". The only force for this system is at coordinate 1, with a magnitude of $2 \operatorname{tr} \boldsymbol{\sigma}$. The force matrix is set up to have six different loading conditions, for various values of $\boldsymbol{\sigma}$. Therefore, the force matrix for this system will be:

		1	2	3	4	5	6
	1	2000.0	4000.0	8000.0	12000.0	16000.0	2000.0
	2	0.0	0.0	0.0	0.0	0.0	0.0
FORCE	3	0.0	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0	0.0
ΑT	5	0.0	0.0	0.0	0.0	0.0	0.0
	6	0.0	0.0	0.0	0.0	0.0	0.0
COORDINTE	7	0.0	0.0	0.0	0.0	0.0	0.0
	8	0.0	0.0	0.0	0.0	0.0	0.0
NUMBER	9	0.0	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0	0.0
	11	0.0	0.0	0.0	0.0	0.0	0.0
	12	0.0	0.0	0.0	0.0	0.0	0.0
	13	0.0	0.0	0.0	0.0	0.0	0.0
	14	0.0	0.0	0.0	0.0	0.0	0.0
	15	0.0	0.0	0.0	0.0	0.0	0.0

LOADING CONDITION

When the "Topology Matrix" and the force matrix have been completed the program is ready to run. All manual inputs will be prompted by the computer. The phrases the computer uses to prompt the user corresponding to the inputs are as follows:

INPUT THE DISTANCE FROM THE CENTER OF THE HOLE TO THE EDGE OF THE PLATE. 4.0 (CR)

- INPUT THE DISTANCE FROM THE CENTER OF THE HOLE TO THE MIDDLE OF THE PLATE. 4.0 (CR)
- INPUT THE DIAMETER OF THE HOLE. 0.5 (CR)

INPUT THE NUMBER OF ANGULAR DIVISIONS OF THE MESH, UP TO 8. THE LARGER THE NUMBER OF DIVISIONS, THE MORE ACCURATE THE ANSWER WILL BE. 2 (CR)

Each point is now being printed out.

Page 14

INPUT THE VALUES FOR POISSON RATIO, YOUNG'S MODULS AND THE THICKNESS OF THE PLATE. 0.3 (CR) 29000000.0 (CR) 0.125 (CR) The stiffness matrix for each element is now being printed out. The "THE STIFFNESS MATRIX FOR ELEMENT K IS", is printed above each element stiffness matrix for the convenience of the user. INPUT THE NUMBER OF KNOWN FORCES (THE NUMBER OF SYSTEM COORDINATES NECESSARY TO INVERT). 15 (CR)

INPUT AN EPSILON VALUE APROXIMATELY SIX ORDERS OF MAGNITUDE LESS THAN THE STIFFNESS MATRIX. .000001 (CR)

The unknown forces for each system coordinate is then listed. The approximate stress adjacent to the hole $\overline{}m$, can be computed by dividing the force at the adjacent nodes (in this case 25 or 26) by the thickness of the plate t, and half the distance to the nearest node along the x-axis. The stress concentration factor is equal to

STRESS CONCENTRATION FACTOR = $\frac{\sigma_m}{\sigma}$

where σ is the original stress used to compute the original forces.

INTERPRETATION OF DATA

The forces along the x-axis for the example mentioned above do not agree with estimated theoretical values. The reason for this variation is not yet apparent. The problem appears to be in the formation of the "Topology Matrix", or an undetected error in the STFMX has not yet been determined. The main program and the rest of the subroutines appear to work. The output for each nodal point and each stiffness matrix has been checked by hand calculations. Subroutines INVERT and FORCE have been unloaded into another file, the input formats changed and a small workable matrix was assessed to check the output. The results demonstrate that the remaining subroutines work. With these checks and the use of computer traces, the only problem is the formation of the system stiffness matrix. When the error in STFMX is found and corrected, the program should give reasonable output.

BIBLIOGRAPHY

- Baumeister, Theodore, Eugene A. Avallone, and Theodore Baumeister III, Eds. <u>Mark's Standard Handbook for Mechanical Engineers</u>. New York: McGraw-Hill Book Company, 1978.
- Bray, Elliott, Computer Center Director at Texas A&M University at Galveston. Interview. Galveston, Texas.
- Davis, Ralph, Department Head of Marine Engineering at Texas A&M University at Galveston. Interview. Galveston, Texas.
- Nash, James M., Professional Engineer. Interview. Houston, Texas.
- Przemieniecki, J. S. <u>Theory of Matrix Stuctured Anlaysis</u>. New York: McGraw-Hill Book Company, 1968.
- Singer, Ferdinand L. <u>Strength of Materials</u>. New York: Harper & Row, Publishers, 1962.
- Timoshenko, S. P. <u>Strength of Materials Part II: Advanced Theory</u> and Problems. New York: D. Van Norstrand Company, Inc., 1957.
- Zienhiewicz, O. C. The Finite Element Method in Stuctural and Continuum Mechanics. London: McGraw-Hill Publishing Company Limited, 1967.

APPENDIX A

С.	C C
0	DIMENSION POINT(16,20,2),ELSTF(200,6,6),STF(200,210),A(200,210),
	* P(30,6),KA(30) COMMON // POINT,ELSTF,SPL,SPR,D,ANGN,
	* R, ANG, HANG, XSPACE, AR, STF, A, P, RX DOUBLE PRECISION POINT FLOTTE SPL SPR D ANGN BY SIGNI SIGNI
	* R, ANG, HANG, XSPACE, AR, STF, A, EPSILN, SIMEQN, AKL, AIL, HOLD, PX, P
С С	CC
1.0	WRITE(1,10)
10	<pre>* ' CONCENTRATION FACTORS IN FLAT PLATES WITH 1 OR 2 HOLES USING'/ * ' FINITE ELEMENT ANALYSIS BY J. S. PRZEMIENIECKI '//) WDIWE(1 20)</pre>
20	FORMAT(//' INPUT THE DISTANCE FROM THE CENTER OF THE HOLE TO THE'/ *' EDGE OF THE PLATE. '//) BEAD (1.*) SPR
30	WRITE(1,30) FORMAT(//' INPUT THE DISTANCE FROM THE CENTER OF THE HOLE TO THE'/ * ' MIDDLE OF THE PLATE. '//)
	READ(1,*) SPL WRITE(1 40)
40	FORMAT(//' INPUT THE DIAMETER OF THE HOLE. '//) READ(1,*) D WRITE(1 50)
50	FORMAT(//' INPUT THE NUMBER OF ANGULAR DIVISIONS OF THE MESH'/ * ' UP TO 8. THE LARGER THE NUMBER OF DIVISIONS THE'/ * ' MORE ACCURATE THE ANSWER WILL BE.'//) READ(1,*) NUMANG ANGN = 0.0 B = D/2.
	ANG = 3.141592653589793/NUMANG
	HANG = ANG/2 INMANG = (NUMANG/2) + 1 DO 80 I=1,INMANG
60	POINT(I,J,1) = R*(DCOS (ANGN)) $POINT(I,J,2) = R*(DSIN (ANGN))$ $CONTINUE$
	XSPACE = 2.*R*(DSIN(HANG)) R = R+XSPACE J = J+1
	POINT(I,J,1) = R*(DCOS (ANGN)) $POINT(I,J,2) = R*(DSIN (ANGN))$ $IF(R.GT.SPR)GO TO 70$ $GO TO 60$
70	POINT(I,J,1) = SPR*(DCOS (ANGN)) POINT(I,J,2) = SPR*(DSIN (ANGN)) R = D/2
	JMAX1 = J $ANGN = ANGN + ANG$
80	CONTINUE INANGP = INMANG+1 NMANGP = NUMANG+1

```
ANGN = 1.570796326794896 + ANG
      DO 110 I=INANGP, NMANGP
      R = D/2
      J = 1
      POINT(I, J, 1) = R*(DCOS(ANGN))
      POINT(I, J, 2) = R*(DSIN (ANGN))
90
      CONTINUE
      XSPACE = 2*R*(DSIN (HANG))
      R = R + XSPACE
      J = J+1
      POINT(I,J,1) = R*(DCOS (ANGN))
      POINT(I, J, 2) = R*(DSIN (ANGN))
      AR = DABS(R)
      IF(AR.GT.SPL)GO TO 100
      GO TO 90
      POINT(I, J, 1) = SPL*(DCOS (ANGN))
100
      POINT(I, J, 2) = SPL*(DSIN (ANGN))
      ANGN = ANGN + ANG
      JMAX2 = J
110
      CONTINUE
      WRITE(1,120)JMAX
120
      FORMAT(//'JMAX IS = ', I4)
      DO 140 I=1, INMANG
      DO 140 J=1, JMAX1
      DO 140 K=1,2
      WRITE(1,130)I, J, K, POINT(I, J, K)
130
      FORMAT(//' POINT (',12,',',13,',',13,') IS ',D14.7)
140
      CONTINUE
      DO 160 I=INANGP, NMANGP
      DO 160 J=1, JMAX2
      DO 160 K=1,2
      WRITE(1, 150)I, J, K, POINT(I, J, K)
150
      FORMAT(//' POINT (',12,',',13,',',13,') IS ', D14.7)
160
      CONTINUE
      CALL TRIG(JMAX1, JMAX2, INMANG, INANGP, NMANGP)
      NEL = (JMAX1-1)*NUMANG + (JMAX2-1)*NUMANG
      DO 200 L = 1, NEL
      WRITE(1,170)L
170
      FORMAT(//' THE STIFFNESS MATRIX FOR ELEMENT ', I4,' IS,'///)
      DO 190 IJ=1.6
      WRITE(1,180)( ELSTF(L,IL,IJ),IL = 1,6)
180
      FORMAT(3X, D14.7, 3X, D14.7, 3X, D14.7, 3X, D14.7, 3X, D14.7, 3X, D14.7, //)
190
      CONTINUE
200
      CONTINUE
      NSC = (2*JMAX2*(INMANG-1))+(2*JMAX1*INMANG)
      CALL STFMX(NSC,NEL)
      DO 220 N=1,NSC,6
      NP = N + 6
      WRITE(1,210)((STF(I,J),J=N,NP),I=1,NSC)
210
      FORMAT(D14.7, 3X, D14.7, 3X, D14.7, 3X, D14.7, 3X, D14.7, 3X, D14.7, //)
220
      CONTINUE
      CALL INVERT(N.NPNV, NVECS, NPLUS1, SIMEQN)
      CALL FORCE(N, NPLUS1, NPNV, NSC)
      WRITE(1,230)
230
      FORMAT(/////' THE UNKNOWN FORCES ARE AS FOLLOWS
                                                               '///)
      DO 250 IROW=NPLUS1,NSC
      WRITE(1,240)IROW, (P(IROW,ICOL), ICOL= NPLUS1, NPNV)
FORMAT('THE FORCE AT ',14,' IS ',6(D11.4,2X)//)
240
```

250 CONTINUE CALL EXIT END С С С С THIS SUBROUTINE CORRELATES THE INDIVIDUAL С С POINTS INTO EACH ELEMENTAL TRIANGLE. С С С С SUBROUTINE TRIG (JMAX1, JMAX2, INMANG, INANGP, NMANGP) С СSTRESS COMMON BLOCK..... ..C С С С DIMENSION POINT(16,20,2), ELSTF(200,6,6), STF(200,210), A(200,210), * P(30,6),RX(30) COMMON // POINT, ELSTF, SPL, SPR, D, ANGN, * R, ANG, HANG, XSPACE, AR, STF, A, P, RX DOUBLE PRECISION POINT, ELSTF, SPL, SPR, D, ANGN, RX, SIGNI, SIGNJ, * R, ANG, HANG, XSPACE, AR, STF, A, EPSILN, SIMEQN, AKL, AIL, HOLD, PX, P С C СC DOUBLE PRECISION X1, X2, X3, Y1, Y2, Y3, * POIS,E,T
WRITE(1,260) FORMAT('INPUT THE VALUES FOR POISONS, ELASTICITY, AND THE ' 260 *'THICKNESS OF THE PLATE.') READ(1, *)POIS, E, T INANGM = INMANG-1JM1 = JMAX1-1JM2 = JMAX2 - 1DO 270 J=1, INANGM DO 270 I=1,JM1 JP = J+1IP = I+1X1 = POINT(JP, I, 1)Y1 = POINT(JP, I, 2)X2 = POINT(J, IP, 1)Y2 = POINT(J, IP, 2)X3 = POINT(J,I,1) $Y_3 = POINT(J, I, 2)$ K = JM1*((J-1)*2)+((2*I)-1)CALL KAPA(X1, X2, X3, Y1, Y2, Y3, E, T, POIS, K) 270 CONTINUE DO 280 J=1, INANGM DO 280 I=1.JM1 IP = I+1JP = J+1X1 = POINT(JP, I, 1)Y1 = POINT(JP, I, 2)X2 = POINT(JP, IP, 1)Y2 = POINT(JP, IP, 2)X3 = POINT(J, IP, 1) $Y_3 = POINT(J, IP, 2)$ K = (JM1*((J-1)*2))+(2*I)CALL KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K) 280 CONTINUE DO 290 J=1, INANGM

```
DO 290 I=1,JM2
     IP = I+1
     JA = J + INANGM
     JP = J + INMANG
     X1 = POINT(JP, I, 1)
     Y1 = POINT(JP, I, 2)
     X2 = POINT(JA, IP, 1)
     Y2 = POINT(JA, IP, 2)
     X3 = POINT(JA, I, 1)
     Y_3 = POINT(JA, I, 2)
     K = (INANGM*JM1*2) + (JM2*((J-1)*2)) + ((2*T)-1)
     CALL KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K)
290
     CONTINUE
     DO 300 J=1, INANGM
     DO 300 I=1, JM2
     IP = I+1
     JA = J + INANGM
     JP = J + INMANG
     X1 = POINT(JP, I, 1)
     Y_1 = POINT(JP, I, 2)
     X2 = POINT(JP, IP, 1)
     Y2 = POINT(JP, IP, 2)
     X3 = POINT(JA, IP, 1)
     Y_3 = POINT(JA, IP, 2)
     K = (INANGM*JM1*2) + (JM2*((J-1)*2))+(2*I)
     CALL KAPA(X1, X2, X3, Y1, Y2, Y3, E, T, POIS, K)
300
     CONTINUE
     RETURN
     END
С
                                                                    С
С
               THIS SUBROUTINE CALCULATES THE STIFFNESS
                                                                    С
С
              MATRIX FOR EACH INDIVIDUAL ELEMENT.
                                                                    С
С
                                                                    С
С
                                                                    С
     SUBROUTINE KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K)
С
                                                                    С
С
         .....STRESS COMMON BLOCK.....
                                                                  ..C
С
                                                                    С
     DIMENSION POINT(16,20,2), ELSTF(200,6,6), STF(200,210), A(200,210).
    * P(30,6),RX(30)
     COMMON // POINT, ELSTF, SPL, SPR, D, ANGN,
    * R,ANG,HANG,XSPACE,AR,STF,A,P,RX
     DOUBLE PRECISION POINT, ELSTF, SPL, SPR, D, ANGN, RX, SIGNI, SIGNJ,
    * R, ANG, HANG, XSPACE, AR, STF, A, EPSILN, SIMEQN, AKL, AIL, HOLD, PX. P
 DOUBLE PRECISION X21, X31, X32, Y21, Y31, Y32,
    * A123,XM1,XM2,POIS,X1,X2,X3,Y1,Y2,Y3,E,T
     X21 = (X2 - X1)
     X32 = (X3 - X2)
     X31 = (X3 - X1)
     Y_{21} = (Y_{2} - Y_{1})
     Y_{32} = (Y_{3} - Y_{2})
     Y_{31} = (Y_{3} - Y_{1})
     A123 = ((X32*Y21)-(X21*Y32))/2
     XM1 = (E*T)/((4.*A123)*(1-(POIS**2)))
```

```
XM2 = (E*T)/((8.*A123)*(1+POIS))
     ELSTF(K,1,1) = (XM1*(Y32**2))+(XM2*(X32**2))
     ELSTF(K,2,1) = (XM1*(-POIS*Y32*X32))+(XM2*(-X32*Y32))
     ELSTF(K,1,2) = ELSTF(K,2,1)
     ELSTF(K, 2, 2) = (XM1*(X32**2))+(XM2*(Y32**2))
     ELSTF(K,3,1) = (XM1*(-Y32*Y31))+(XM2*(-X32*X31))
     ELSTF(K,1,3) = ELSTF(K,3,1)
     ELSTF(K,3,2) = (XM1*(POIS*X32*Y31))+(XM2*(Y32*X31))
     ELSTF(K,2,3) = ELSTF(K,3,2)
     ELSTF(K,3,3) = (XM1*(Y31**2))+(XM2*(X31**2))
     ELSTF(K, 4, 1) = (XM1*(POIS*Y32*X31)) + (XM2*(X32*Y31))
     ELSTF(K, 1, 4) = ELSTF(K, 4, 1)
     ELSTF(K, 4, 2) = (XM1*(-X32*X31))+(XM2*(-Y32*Y31))
     ELSTF(K, 2, 4) = ELSTF(K, 4, 2)
     ELSTF(K,4,3) = (XM1*(-POIS*Y31*X31))+(XM2*(-X31*Y31))
     ELSTF(K,3,4) = ELSTF(K,4,3)
     ELSTF(K, 4, 4) = (XM1*(X31**2)) + (XM2*(Y31**2))
     ELSTF(K,5,1) = (XM1*(Y32*Y21))+(XM2*(X32*X21))
     ELSTF(K,1,5) = ELSTF(K,5,1)
     ELSTF(K, 5, 2) = (XM1*(-POIS*X32*Y21))+(XM2*(-Y32*X21))
     ELSTF(K,2,5) = ELSTF(K,5,2)
     ELSTF(K, 5, 3) = (XM1*(-Y31*Y21))+(XM2*(-X31*X21))
     ELSTF(K,3,5) = ELSTF(K,5,3)
     ELSTF(K, 5, 4) = (XM1*(POIS*X31*Y21)) + (XM2*(Y31*X21))
     ELSTF(K, 4, 5) = ELSTF(K, 5, 4)
     ELSTF(K, 5, 5) = (XM1*(Y21**2))+(XM2*(X21**2))
     ELSTF(K, 6, 1) = (XM1*(-POIS*Y32*X21))+(XM2*(-X32*Y21))
     ELSTF(K,1,6) = ELSTF(K,6,1)
     ELSTF(K, 6, 2) = (XM1*(X32*X21))+(XM2*(Y32*Y21))
     ELSTF(K, 2, 6) = ELSTF(K, 6, 2)
     ELSTF(K,6,3) = (XM1*(POIS*Y31*X21))+(XM2*(X31*Y21))
     ELSTF(K,3,6) = ELSTF(K,6,3)
     ELSTF(K, 6, 4) = (XM1*(-X31*X21))+(XM2*(-Y31*Y21))
     ELSTF(K, 4, 6) = ELSTF(K, 6, 4)
     ELSTF(K,6,5) = (XM1*(-POIS*Y21*X21))+(XM2*(-X21*Y21))
     ELSTF(K,5,6) = ELSTF(K,6,5)
     ELSTF(K, 6, 6) = (XM1*(X21**2))+(XM2*(Y21**2))
     RETURN
     END
С
               THIS SUBROUTINE COMBINES EACH ELEMENT STIFFNESS
                                                                      С
               MATRIX INTO THE SYSTEM STIFFNESS MATRIX.
                                                                      С
                                                                      С
C
     SUBROUTINE STFMX(NSC,NMBR)
                                                                      С
      .....BLOCK.....STRESS COMMON BLOCK.....
                                                                     C
                                                                      С
     DIMENSION POINT(16,20,2), ELSTF(200,6,6), STF(200,210), A(200,210),
    * P(30,6),RX(30)
     COMMON // POINT, ELSTF, SPL, SPR, D, ANGN,
    * R, ANG, HANG, XSPACE, AR, STF, A, P, RX
     DOUBLE PRECISION POINT, ELSTF, SPL, SPR, D, ANGN, RX, SIGNI, SIGNJ,
    * R, ANG, HANG, XSPACE, AR, STF, A, EPSILN, SIMEQN, AKL, AIL, HOLD, PX, P
                                                                      C
                   .....END COMMON...........
```

С

С

С

С

С

С

С

С

С

C

	DIMENSION ITOPO(200,6)
	NELC = 6 READ(5.*)((ITOPO(I.J),J=1.6),I=1.NMBR)
	DO 310 ISC = 1,NSC
	DO 310 JSC = 1,NSC STR(ISC JSC) = 0.0
310	CONTINUE
Č	CONSTRUCT STF
320	MBR = 0 $MBR = MBR+1$
550	IF(MBR-NMBR)340,340,410
340	L = O
350	L = L + I TE(L - NELC) > 60 - 360 - 330
360	INDEX = ITOPO(MBR, L)
	IF (INDEX)370,350,370
370	ISC = IABS(INDEX) STONT = INDEX/ISC
	STF(ISC,ISC) = STF(ISC,ISC)+ELSTF(MBR,L,L)
200	M = L
380	M = M + 1 TF(M-NELC) = 390 - 390 - 350
390	JNDEX = ITOPO(MBR, M)
100	IF(JNDEX) 400,380,400
400	SIGNJ = JNDEX/JSC
	<pre>STF(ISC,JSC) = STF(ISC,JSC)+SIGNI*SIGNJ*ELSTF(MBR,L,M)</pre>
	STF(JSC,ISC) = STF(ISC,JSC)
410	CONTINUE
110	RETURN
ccccc	END
C	- 0000000000000000000000000000000000000
С	THIS SUBROUTINE INVERTS THE PORTION OF THE SYSTEM
C	STIFFNESS MATRIX NECESSARY TO FIND THE DEFORMATIONS.
ccccc	
С	C
С	SUBROUTINE INVERT(N,NPNV,NVECS,NPLUS1,SIMEQN)
č	STRESS COMMON BLOCK
С	
	DIMENSION POINT(16,20,2),ELSTF(200,6,6),STF(200,210),A(200,210), * P(30,6) RX(30)
	COMMON // POINT,ELSTF,SPL,SPR,D,ANGN,
	* R, ANG, HANG, XSPACE, AR, STF, A, P, RX
	* R ANG. HANG. XSPACE. AR. STF. A. EPSILN. SIMEON, AKL, AIL, HOLD, PX. P
С	C
с	DIMENSION IC(200) ID(200)
	WRTTE(1,420)
420	FORMAT(' INPUT THE NUMBER OF KNOWN FORCES (THE NUMBER '/
	*' OF SYSTEM COORDINATES NECESSARY TO INVERT')'.
	DO 430 $I=1.N$
	DO 430 J=1,N

	$A(\mathbf{I}, \mathbf{J}) = STF(\mathbf{I}, \mathbf{J})$
120	
430	NUECO - G
	NPNV = N+NVEUS
	NPLUSI = N+1
	READ(6, *)((A(1, J), J=NPLUS1, NPNV), I=1, N)
	WRITE(1,440)
440	FORMAT(/' INPUT AN EPSILON VALUE APPROXIMATELY SIX ORDERS '/
	* ' OF MAGNITUDE LESS THAN THE STIFFNESS MATRIX '//)
	READ(1,*)EPSILN
	NMINSI = N-1
	DO 450 L=1.N
	$JC(\Gamma) = 0$
450	CONTINUE
1.50	DO 550 L=1 N
	DO 180 K=1 N
	TE (APC(A(K T))) EPCTIM) HOO HOO HOO
160	$\frac{1}{100} \frac{1}{100} \frac{1}$
400	$\frac{10}{10} \frac{10}{10} 10$
1.70	F(J((KROW) - K) + 470, 480, 470)
470	CONTINUE
1.0 -	GO TO 500
480	CONTINUE
	WRITE(1,490)L,EPSILN
490	FORMAT(' MX SINGULAR AT PASS ',I3,'W.R.T. ',E12.5)
	SIMEQN = 0
	RETURN
500	JC(L) = K
	AKL = 1.0/A(K,L)
	DO 510 J = 1.NPNV
510	A(K, J) = A(K, J) * AKL
-	A(K, L) = AKL
	DO 540 T = 1 N
	TE(T-K) = 520 - 540 - 520
520	ATL = A(T L)
)20	DO = 520 I = 1 MPAU
	$\Delta(T T) = \Delta(T T) \Delta T + \Delta(K T)$
530	A(1 , 0) - A(1 , 0) - A(1 , 0)
720	ONTINUE A(T.I.) — ATI¥AKI
510	A(I,L) = -ALL*AKL
540	CONTINUE
550	CONTINUE
	$DO_{560} = 1, N$
	IRC = JC(I)
	IR(IRC) = I
560	CONTINUE
	DO 610 I=1,NMINS1
	IF (IR(I)-I) 570,610,570
570	IP1 = I+1
	DO 580 IRS=IP1,N
	IF (IR(IRS)-I) 580,590,580
580	CONTINUE
590	DO 600 J=1,NPNV
	HOLD = A(IRS, J)
	A(IRS,J) = A(I,J)
	A(I,J) = HOLD
600	CONTINUE
	TR(TRS) = TR(T)
	IR(T) = T
610	CONTINUE

```
DO 660 J=1, NMINS1
     IF (JC(J)-J) 620,660,620
     JP1 = J+1
620
     DO 630 JCS=JP1,N
     IF(JC(JCS)-J) 630,640,630
630
     CONTINUE
    DO 650 I=1,N
640
     HOLD = A(I, JCS)
     A(I, JCS) = A(I, J)
650
     A(I,J) = HOLD
     JC(JCS) = JC(J)
660
     CONTINUE
     RETURN
     END
С
С
                                                               С
С
            THIS SUBROUTINE MULTIPLIES THE PORTION OF THE
С
                                                               С
            SYSTEM STIFFNESS MATRIX THAT WAS NOT INVERTED
С
            BY THE SYSTEM DEFORMATINS TO OBTAIN THE UN-
                                                               С
С
            KNOWN SYSTEM FORCES.
                                                               С
С
                                                               С
С
                                                               С
     SUBROUTINE FORCE(N, NPLUS1, NPNV, NSC)
С
                                                               С
        ..... STRESS COMMON BLOCK.....
С
                                                             ..C
С
                                                               C
    DIMENSION POINT(16,20,2), ELSTF(200,6,6), STF(200,210), A(200,210),
    * P(30,6),RX(30)
    COMMON // POINT, ELSTF, SPL, SPR, D, ANGN,
    * R, ANG, HANG, XSPACE, AR, STF, A, P, RX
    DOUBLE PRECISION POINT, ELSTF, SPL, SPR, D, ANGN, RX, SIGNI, SIGNJ,
    * R, ANG, HANG, XSPACE, AR, STF, A, EPSILN, SIMEON, AKL, AIL, HOLD, PX, P
С
                                                               С
   С
                                                             ..C
     DO 680 ICOL=NPLUS1,NPNV
     DO 680 IROW=NPLUS1,NSC
     PX = 0.0D0
     DO 670 MULT=1,N
     PX = PX + STF(IROW, MULT)*A(MULT, ICOL)
670
     CONTINUE
     P(IROW, ICOL) = PX
680
     CONTINUE
     RETURN
     END
```