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ABSTRACT

The importance of stress concentration factors in machines
and stuctures led to the development of various experimental =nd
analytical techniques for determining them. One of these methods
is the application of finite elemen. inalysis to the various structur
A common structural element in a piece of machinery is a flat plate
with one or more bolt holes, that are often off center.

Using certain assumptions from S. P. Timoshenko's Strength

of Materials and the finite element method outlined in J. S.

Przemienleck's, Theory of Matrix Stuctural Analysis, a computer

program was written to help determine these stress concentration
factors. The program consists of a main program that generates
the nodal points, several subroutines that develop the stiffness
matrix, a subroutine that transforms the element stiffness matrix
into a system stiffness matrix, a subroutine that inverts a part
of the system matrix, and a subroutine that multiplies the system
deformations by another portion of the stiffness matrix.

The stresses computed with the system do not correlate with
otner theoretical values. This inconsistency is believed to
be caused by an error in the transformation of the element
stiffness matrices into the system stiffness matrix. When
this problem is adjusted, the program should give valid stress

concentrations.
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INTRODUCTION

-

The theoretical calculation of the average stress in a
plate of uniform cross-section is quite simple. However, if
there is an abrupt change in the cross-sectional area of a
plate, the stress concentration 1s far above the average stress.
The stress concentration divided by the average stress is the stress
concentration factor for that plate. The theoretical calculations of
these stress concentration factors only exists in a lew of the simplest
cases. The majority of the information of the information has been
obtained by experimentation. These stress concentration factors can
also be determined by finite element methods with practically no
limitation on the geometry of the plate, or discontinuity in the
cross-section.

Finite element analysils separate a continuum into a number
of finite element, in this case triangles. These elements are
assumed to be connected only at the nodal points. A system is
found to determine the stiffness matrix for each element, and then
matrix structural analysis methods can be used to solve for the

stress concentrations.
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PROGRAMING PROCEDURES

MAIN PROGRAM

The first step in the programing procedure was to determine how
to divide the plate into various triangular clements. If possible,
it would be convenient to make this process variable to accommodate
various sizes of plates and various hole diameters while minimizing
the number of inputs and restrictions. 1t was decided to redefine the
plate by drawing an imaginary "circle" around the hole with a relatively
large enough diameter such that the stresses along the circumference
of the "circle" would not be influenced by the hole (see Figure 1). It
was hypothesized that 1f the area of stress could be broken up z#s in
Figure 1, then the plate could be divided into two circles of different

diameters as in Figure 2. The diameter of the outer circle, as determined

4]

by S. P. Timoshenko should be five times larger than the diameter of the

hole. This is a definite limitation on the range of specimens that can
be analyzed: however, by using this restriction the only inputs necessary
to determine each nodal point are: 1) the distance from the center of the
hole to the edge of the plate (variable name in program, SPR), 2) the
distance from the center of the hole to the middle of the plate, or to
the other edge of the plate if only one hole is being analyzed (SPL),
3) the diameter of the hole itselfl (D) and 4) the number of angular
divisions of the mesh (NUMANG).

‘he cartesian coordinate system for determining the nodal points
is located at the center of the hole with the x-axls directed perpendi-
cular to the direction of stress, and y-axis directed tangential to the
direction of stress. Each nodal point is defined by two numbers in the

array POINT(I,J,K): POINT(I,J,l) being the abscissa and POINT(I,J,2)
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being the ordinate. POINT(I,J,1) and POINT(I,J,2) are determined by:

POINT(I,J,1)

R¥COS(ANCN) (Eag 1)
POINT(I,J,2) ¢

R*STN(ANGN) (Bq.

witere R 1s the distance between the nodal points and the origin, and
ANGN is the angle between R and the positive x-axis. The initial value

for R, where J=1, is D/2. The initial value for ANGN, when I=1, 1is

zero. The subsequent values of R when J=J+1 are R+XSPACE, wherve:

XGPACE 2RR¥SIN(TY/ (2¥NUMANG) )
ANGN Zs held constant and each POINT(I,J,K) is calculated using
Eq. 1 and Eq. 2 until R is greater than SPR. R is then set equal

to SPR and POINT(I,J,K) is calculated using the same equatiorns.

¢

ANGN is then changed, I=I+1, to ANGN + ANG where ANG =T¢ /NUMANG

The same procedure for R is followed for the new ANGN until
ANGN =1T/2, The only difference for ANGN between™ /2 and T isc that
SPR is replaced by SPL. When this process has been completed each
value of POINT(IL,J,K) is printed out for future use.

i

fhe main program is also used to call subroutines, TRIG, STF!X,

INVERT and FORCE.

SUBROUTINE TRIG

The second step was to determine the relationship between s single
element K, and the three nodal points. By using the system of obtain-
ing the nodal points illustrated in the previous section, an ulgorithm
could be made to determine the ordinate and the abscissa of each nodal
point for each element. These values are then transfered down to the

subroutine KAPA where the individual stiffness matrices are computed.
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SUBROUTINE KAPA

The next step, and perhaps the most important, was to decide the

method in developing the individual stiffness matrices of each element.

Lo

=1

he method outlined in J. S. Przemieniecki's book Theory of llutrix

m

Structural Analysis was chosen. This method has no restrictions on the

ovrientation of the locwl coordinate system.

Uy

Figure (3)

Triangular Plate Element

Hode (1) = (X1,Y1) X1J = XI-XJ
Node (2) (X2,Y2)
Node (3) = (X3,Y3) YIJ = YI-YJ

The triangular element is situated as shown in Figure (3). The element
stiffness matrix is formulated on the basis of the difference betwecen
cach nodal coordinate and not on the basis of Node (1) being below and
to the left of Node (2). This indicates that the orientation of the
element with respect to the local coordinate system is unimportant as
long as the abscissa and ordinate of each nodal point of the triangle
is known. In addition, the displacements Ul, U3, and U5 will remain
parallel with the x-axis, and the displacements U2, U4, and U6 will
remain parallel to the y-axis.

The clement stiffness matrix (ELSTF) was determined by:

T

where b represents a matrix of the exact strains due to a unit diplacemen

3)

t‘
<3

o
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T . L k3 . 2.3 i
b representing the transposec of b, and X is a matrix of the form:

1-v \Y v 0 O 0
% 1-v v 0 0 0
E v v 1-v 0 0 0
X T (1+v) (1-2v) 0 0 0 (1-2v)/2 0 0
0 0 0 0 (1-2v)/2 0
0 0 0 0 0 (1-2v)/2

where E is Young's modulus and v is Poisson's ratio. For convenience,
the stiffness matrix was seperated into two parts:

K= K, + K

17

K, represents the stiffness due to normal stresses and Kg represents

where

17

stiffness due to shearing stresses. After tne integration of Fq. 3, Kp

and K:> are given by:

= _
_VEY32¥X32  X32° SYMMETRIC
~Y32%Y31 vEX32%Y31  Y31°
K,=l| v¥Y32%X31 -X32%X31  -v*Y31%X31 x31°
Y30%Y21  —v¥X32%Y21 —Y31%Y21 vEX31*y21  vo1°
-vrysexel  x32%x21 VEY31#X21 -X31#X21 —VEY21#X21  X21°
| x32? T
_X32%Y32 y32° SYMMETRIC
_X32%X31 Y30%X31 31"
Kg=N| X32%¥Y31  -Y32¥Y31  -X31%Y31 v31°
X32%X21 _Y32%X21  -X31%X21 Y31%X21 x21°
_X32%Y21 y30%Y21 X31%#Y21  —Y31%Y21 _¥21%Y21 yor
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b(r123)(1-v?)

N = Bt
B(AT23) (T+v )
A123 = ((X32)(Y21)-(X21)(Y32)) /2

where £ 1s the thickness of the plate and all other variables are as
deflfined earlier. As stated previously the orientation of the triangular
element has no effect on the computation of the stiffness matrix: therce-
fore, if the same local coordinate system is used for cach element, the
transformation mutrix‘k, is not necessary. This local coordinate system

is the same system used in the main program to generate the nodal points.

SUBROUTINE STFMX
Af'ter each element stiffness matrix is computed, they must be corre-
lated into the system stiffness matrix (STF). In M.M.U67, Matrix Computer

n
i
i

Analysis of Structures, Dr. James M. Nash i1llustrated a technique of
systematically placing components of the element stiffness matrices into
the system stiffness matrix. This technique requires the formation of a
"Topology Matrix" (ITOPO), which must be read from a data file. The
"Topology Matrix" will be a two dimensional matrix that has a number of
columns equal to the number of element coordinates (NELC) and 4 number of
rows e¢qual to the number of elements in the system (NEL). Before the
"Topology Matrix" can be formed, the system coordinates must be decided
upon. I all of the system coordinates are situated in the positive
Xx-direction and the positive y-direction, all of tne elements of the
"Topology MMatrix" will be positive. Tt 1is necessary to number the
vertical system coordinates along the x-axls last because the forces at

these coordinates are the unknown forces the program will determine.
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The deflection at these coordinates are assumed to be zero, along with the
horizontal deflection on the y-axis if the hole is centered in the
plate. The procedures for developing the "Topology !Matrix" will be

discussed later in the section titled SAMPLE PRORLEM.

SUBROUTINE INVERT
Once the system stiffrness matrix has been correlated, a portion of

the stiffness matrix needs to be inverted as shown below.

A, L0 P = Known Forces
Sl = - — —%—--— F = Unknown Forces
Az YT | u = Unknown Displacements
u,= Displacements assumed
teol be zeko
]
Aoy i A, u E
LS o e s e U B
~ 1
Ay u + A, u, = P —_— IRV
Ay u  + Ay ug F

The horizontal partitioning of the stiffness matrix is located directly
below the last row of the known forces (N). Since the matrix A, needs

to be a square matrix the vertical partition is located an equal number of
columns over. First INVERT transfers the elements of the stiffness matrix
to the A matrix. Second, the known forces are read in from a data file
and placed next to the elements of the stiffness matrix in the A matrix.
INVERT then inverts the matrix A, using Gauss-Jordan elimination while
checking that the pivot element is not zero (EPSILN). 1In the process of
inverting the matrix, INVERT multiplies the forces by the inverted matrix

A, to obtain the unknown displacements.



SUBROUTINE FORCE

Now that the unknown diplacements are known, they are multiplied by
the portion of the stiffness matrix that was not inverted, and the unknown
forces are printed out. From these forces and the original forces the

stress concentration factor can be found.

SAMPLE PROBLEI]

my

The first input into the system 1s the distance from the center of the
nole to the edge of the plate, 4.0 inches. The next input is the distance
from the center of the hole to the other edge of the plate (since this is
a one hole example), 4.0 inches. The diameter of the hole is 0.5 inches
and the number of angular divisions is 2. The program will then print
out tne points of each node. From these a composite of the system can
be drawn, as in Figure (4). From Figure (4) the "Topology Matrix can be
formed.

To produce the "Topology latrix" each element is considered
individually. If the element coordinates are superimposed on the
system coordinates, the number of the system coordinate that
corresponds to the element coordinate is placed in the "Topology
Matrix" in the (Member Number, Element Coordinate) position. For
example, if the element coordinates for element (1) where superimposed
on the system coordinates, element coordinate 1 corresponds to system
coordinate 20. Therefore 20 should be pluaced in the (1,1) position
of the "Topology Matrix™. This procedure is continued for each

element coordinate and for each individual element, until the entire
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ELEINENT COORDINATES

1 2 B I 5 6
MEMBER NUIIBER 1 20 05 1 27 11 26
2ncl 05 19 04 12 27
319 04 13 28 12 27
419 04 18 03 1 28
5 18 03 14 29 13 23
5 16 03 17 02 14 25
717 02 5 30 14 29
8 17 02 16 01 15 30
9 10 25 19 04 20 05
10 10 25 09 24 19 ol
11 09 2L 18 03 19 ot
12 09 24 00 23 18 03
13 08 23 17 02 18 03
14 08 23 07 22 17 02
15 07 22 16 01 17 02
16 07 22 06 21 16 01

"TOPOLOGY MATRIX"
"Topology Matrix" is completed. The "Topology Matrix" for this system
is listed above. The "Topology Matrix" 1is then stored in a data
file for the computer to read.

The next data ile that needs to be computed 1s the known forces
file. The only forces necessary to compute, are the vertical forces
on the circumference of the "circle" and not on the x-axis. These are
computed by integrating the function of stress over the surface area.
From Figure (1), the function of stress is:

i
0O =0sine o
¢ e
) j Sz
™ = | toFsineda = |t( sin )rde=-trocos
A e, €
where @ is the uniaxial stress appllied to the plate, and 6, and &, are

the limits of integration. The €, and 6, values are the half angle
between angular divisions. For this problem, &, and &, would be W/}
and 3f/4 respectively. The vertical forces that would normally be

applied on the circumference of the "circle" and on the x-axis, are

picked up at the nearest node along the circumference of the "circle"
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The only force for this system is at coordinate 1, with a magnitude
of 2¢trg. The force matrix 1is set up to have six different loading
conditions, for various values of O, Therefore, the force matrix
for this system will be:
LOADING CONDITION
1 2 5 4 5 6
1 2000.0 4000.0 3000.0 12000.0 16000.0 2000.0
2 0.0 0.0 0.0 0.0 0.0 0.0
FORCE 3 0.0 0.0 0.0 01510 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
AT 5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 @RSl 0.0 0.0 @R
COORDINTE 7 0.0 0.0 0.0 OR0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0
NUMBER 9 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 C.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0
When the "Topology MMatrix" and the force matrix have been completerd

the program Is

computer.

ready to run. All manual inputs will be prompted by the

The phrases the computer uses to prompt the user corresponding

to the inputs are as follows:

INPUT THE DISTANCE FROM THE CENTER OF THE HOLE TO THE EDGE OF THE PLATE
4.0 (CR)

INPUT THE DISTANCE FRO!f THE CENTER OF THE HOLE TO THE MIDDLE OF THE PLATE.
4.0 (CR)

INPUT THE DIAMETER OF THE HOLE.
05 (CR)

INPUT THE NUMBER OF ANGULAR DIVISIONS OF THE MESH, UP TO 8. THE LARGER

THE NUMBER OF DIVISIONS, THE MORE ACCURATE THE ANSWER WILL BE.
2 (CR)

Fach point

is now being printed out.



INPUT THE VALUES FOR POISSON RATIO, YOUNG'S T11ODULS AND THE THICKNESS
OF THE PLATE.

03 (CR)
29000000.0 (CR)
0.125 (CR)

The stiffness matrix for ecuach clement 1s now being printed out. The
"THE STIFFNESS MATRIX FOR ELEMENT K IS", is printed above each element
stiffness matrix for the convenience of the user.
INPUT THE NUIMBER OF KNOWN FORCES (THE NUMBER OF SYSTEM COORDINATES
NECESSARY TO INVERT).
15 (CR)

INPUT AN EPSILON VALUE APROXIMATELY SIX ORDERSE OF MAGHNITUDE LESS THAN
TEE STIFFNESS MATRIX.

.000001 (CR)
The unknown forces for each system coordinate is then listed.
The approximate stress adjacent to the holeﬁk, can be computed
oy dividing the force at the adjacent nodes (in this case 25 or 26)
by the thickness of the plate t, and half the distance to the nearest
node along the x-axis. The stress concentration factor is equal to

T m

STRESS CONCENTRATION FACTOR = —&F

where 0 is the original stress used to compute the original forces.

INTERPRETATION OF DATA

The forces along the x-axis for the example mentioned above do not
agree with estimated theoretical values. The reason for this variation
1s not yet apparent. The problem appears to be in the formation of
the "Topology Matrix", or an undetected error in the STFIX has not yet

been determincd. The main program and the rest of the subroutines
appear to work. The output for each nodal point and each stiffness
matrix has been checked by hand calculations. Subroutines INVERT

and FORCE have been unloaded into another file, the input formats




The results demonstrate that the remaining subroutines work. With
these checks and the use of computer traces, the only problem

is the formation of the system stiffness matrix. When the error in
STFMX is found and corrected, the program should give reasonable

output.

changed and a small workable matrix was assessed to check the output.
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4o

50

60

70

ooooooooooooooooooo

DIMENSION
¥ P(30,6),RX(30)
COMMON //
¥ R, ANG,

VYL':

E(l 10)
FORMAT (//'
¥ ' CONCE}
¥
WRITE(1,20)
FORIAT(//"
¥
READ (1,%) SPR

WRITE(1,30)

INP

POINT(16,20,2),ELSTF(200,6,6)

THIS
VIRATION
FINITE ELEMENT

EDGE OF THE PLATE.

APPENDIX A

+STRESS COMMON BLOCK..eoos. oo

,STF(200,210),

POINT,ELSTIF,SPL,SPR,D, ANGN,
HANG, XSPAb
DOU%LE D?ECL>IOW POIN
* R,ANG,HANG,XSPACE, AR, JTF A EPQILP

s AR, SmF A, P RX
“m JPL SPR,D, ANGN,RX,SIGNI,SIGNJ,
(T“ EQN, AhL AIL,HOLD PX,P

Y \).LA

..... .+ .END COMMON......

PROGRAM IS DESIGNED TO COMPUTE THE STRESS'

FACTORS IN FLAT PLATES WITH 1 OR 2 HOLES
ANALYSIS BY J. S. PRZEMIENIECKI '//)

T THE DISTANCE FROM
"//)

THE CENTER OF THE HOLE

FORMAT(//' INPUT THE DISTANCE FROI THE CENTER OF THE HOLE
% ' MIDDLE OF THE PLATE. '//)

READ(1,%*) SPL

WRITE(1,40)

FORMAT(//"
READ(1,%¥) D
WRITE(1,50)

INPUT

THE DIAMETER OF THE HOLE. '//)

FORMAT(//' INPUT THE NUMBER OF ANGULAR DIVISIONS OF THE MESH'/
¥ ' Up TO 6. THE LARGER THE NUMBER OF DIVISIONS THE'/

¥ ' MORE ACCURATE THE ANSWER WILL BE.'//)

READ(1,%*) NUIANG

ANGN = 0.0
R = D/2.

ANG =
HANG = ANG/2
INIMANG =

3.141592653589793/NUMANG
(NUMANG/2) + 1

DO 80 I=1,IN!MANG

J =1
POINT(I,J,1)
POINT(I,J,2)
CONTINUE
XSPACE = 2.%R¥(
R = R+XSPACE

non

R¥ (DCOS (ANGN))
R¥(DSIN (ANGN))

DSIN(HANG))

J = J+1

POINT(I,J,1) = R¥(DCOS (ANGN))
POINT(I,J,2) = R¥(DSIN (ANGN))
IF(R.GT.SPR)GO TO 70

GO TO 60

POINT(I,J,1) = SPR¥(DCOS (ANGN))
POINT(I,J,2) = SPR¥(DSIN (ANGN))
R = D/2

JMAX1 = J

ANGN = ANGN+ANG

CONTINUE

INANGP = INMANG+1

NMANGP = NU!MANG+1

@

A(200,210),

TO THE'/

oooooooooooo



90

100

130
140

170

180
190
200

210
220

ANGN = 1.57079632679U4896+ANG
DO 110 I=INANGP,NMANGP

R = D/2

g =il
POINT(I,J,1)
POINT(I,J,2)
CONTINUE
XSPACE = 2¥R¥*(DSIN (HANG))
R = R+XSPACE
J = J+1
POINT(I,J,1)
POINT(I,J,2)
AR = DABS(R)
IF(AR.GT.SPL)GO TO 100
GO TO 90
POINT(I,J,1)
POINT(I,J,2)
ANGN = ANGN+ANG

JUAX2 = J

CONTINUE

WRITE(1,120)JMAX

FORMAT(//'JMAX IS = ',Il4)

DO 140 I=1,INMANG

DO 140 J=1,JMAX1

DO 140 X=1,2

WRITE(1,130)I,J,K,POINT(I,J,K)

FORMAT(//' POINT (',I2,',',I3,',',I3,' ) IS ',D1l4.7)

CONTINUE

DO 160 I=INANGP,NMANGP

DO 160 J=1,JMAX2

DO 160 K=1,2

WRITE(1,150)I,J,K,POINT(I,J,K)

FORMAT(//' POINT (',I2,',',I3,',',I3,') IS ', D14.7)

CONTINUE

CALL TRIG(JMAX1,JMAX2,INMANG,INANGP,NMANGP)

NEL = (JMAX1-1)*NUMANG + (JMAX2-1)*NUMANG

DO 200 L = 1,NEL

WRITE(1,170)L

FORMAT(//' THE STIFFNESS MATRIX FOR ELEMENT ',I4,' 18,'////)
DO 190 1J=1,6

WRITE(1,180)( ELSTF(L,IL,IJ),IL = 1,6)
FORMAT(3X,D14.7,3X,D14.7,3X,D14.7,3X,D
CONTINUE

CONTINUE

NSC = (2*JMAX2% (INMANG-1))+(2*JMAX1*¥INMANG)

CALL STFMX(NSC,NEL)

DO 220 N=1,NSC,6

NP = N + 6

WRITE(1,210)((STF(I,J),J=N,NP),I=1,NSC)
FORMAT(D14.7,3X,D14.7,3X,D14.7,3X,D14.7,3X,D14.7,3X,D14.7,//)
CONTINUE

CALL INVERT(N,NPNV,NVECS,NPLUS1,SIMEQN)

CALL FORCE(N,NPLUS1,NPNV,NSC)

WRITE(1,230)

FORMAT(//////' THE UNKNOWN FORCES ARE AS FOLLOWS "///)

DO 250 IROW=NPLUS1,NSC

WRITE(1,240)IROW,(P(IROW,ICOL),ICOL= NPLUS1,NPNV)

FORMAT('THE FORCE AT ',I4,' IS ',6(Dl1.4,2X)//)

R#*¥ (DCOS (ANGN))
R¥ (DSIN (ANGN))

R¥ (DCOS (ANGN))
R¥ (DSIN (ANGN))

SPL¥*(DCOS (ANGN))
SPL¥(DSIN (ANGN))

14.7,3X,D14.7,3X,D14.7,//)



250 CONTINUE
CALL EXIT

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCECCCCCCCeCCee
c C
C THIS SUBROUTINE CORRELATES THE INDIVIDUAL C
C POINTS INTO EACH ELEMENTAL TRIANGLE. C
C C

cccceeeeeeeeeececeeeececeececececeececeececececeeecececeecceececcececcccecceccccccccccccecccee

SUBROUTINE TRIG (JMAX1,J!MAX2,INMANG,INANGP,NMANGP)

C C
C ovnenenenenansnnnas veeee.STRESS COMMON BLOCK. . eueunn.. e e
C C
DIMENSION POINT(16,20,2),ELSTF(200,6,6),STF(200,210),A(200,210),
¥ P(30,6),RX(30)
COMMON // POINT,ELSTF,SPL,SPR,D,ANGN,
% R, ANG,HANG,XSPACE, AR, STF,A,P,RX
DOUBLE PRECISION POINT,ELSTF,SPL,SPR,D,ANGN,RX,SIGNT,SIGNJ,
¥ R,ANG,HANG,XSPACE, AR, STF,A,EPSILN, STMEQN, AKL,ATL,HOLD,PX,P
o C
C et END COMMON . ¢ v v vevenenenennenconanennes R ¢

DOUBLE PRECISION X1,X2,X3,Y1,Y2,Y3,
¥ POIS,E,T

WRITE(1,260)

260 FORMAT('INPUT THE VALUES FOR POISONS, ELASTICITY, AND THE

¥'THICKNESS OF THE PLATE.')
READ(1,*¥)POIS,E,T

INANGM = INMANG-1

JM1 = JMAX1-1

JI2 = JMAX2 - 1

DO 270 J=1,INANGM

DO 270 I=1,JM1

JP = J+1

IP = I+1

X1 = POINT(JP,I,1)
Y1 = POINT(JP,I,2)
X2 = POINT(J,IP,1)
Y2 = POINT(J,IP,2)
X3 = POINT(J,I,1)

Y3 = POINT(J,I,?2)

K = JM1*¥((J-1)%2)+((2%I)-1)

CALL KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K)
270 CONTINUE

DO 280 J=1,INANGII

DO 280 I=1,JM

IP = I+1

JP = J+1

X1 = POINT(JP,I,1)
Y1 = POINT(JP,I,2)
X2 = POINT(JP,IP,1)
Y2 = POINT(JP,IP,2)
X3 = POINT(J,IP,1)
Y3 = POINT(J,IP,2)

K = (JM1%((J-1)%2))+(2%1)

CALL KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K)
280  CONTINUE

DO 290 J=1,INANGM

w



DO 290 I=1,JI12
IP = I+1

JA = J+INANGM

JP = J+INMANG

X1 = POINT(JP,I,1)

Y1 = POINT(JP,.IL,2)

X2 = POINT(JA,IP,1)
Y2 = POINT(JA,IP,2)
X3 = POINT(JA,I,1)

Y3 = POINT(JA,I,2)

K = (INANGM*¥JM1¥%2)+(JM2%¥((J=-1)%¥2))+((2%I)=1)
CALL KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K)
290 CONTINUE
DO 300 J=1, INANGM
DO 300 I=1,JM2

IP = I+1
JA = J+INANGM

JP = J+INMANG

X1 = POINT(JP,I,1)
Y1 = POINT(JP,I,2)
X2 = POINT(JP,IP,1)
Y2 = POINT(JP,IP,2)
X3 = POINT(JA,IP,1)
Y3 = POINT(JA,IP,2)

K = (INANGM*JMI¥2) + (JM2%((J-1)%2))+(2%I)
CALL KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K)
300 CONTINUE

RETURN

END
CCCCCCeeeeeeeeeceeeeeceeeeecececececeeeceececeeeceeececeececceceeeceeeeccecececececcececececceecececececece
f\ g §
v U
C THIS SUBROUTINE CALCULATES THE STIFFNESS C
C MATRIX FOR EACH INDIVIDUAL ELEMENT. C
C C
CCCCCCCCCcCceeceeeeeeceeceeececeeecceeeecececececeeeeeeececeecceececceececececcecccecceccececcceccce
A
C c

SUBROUTINE KAPA(X1,X2,X3,Y1,Y2,Y3,E,T,POIS,K)
C ~
(CR 5000000000000 e STRES SEEOMIM ONEBILO G K e e e et e e e e e ollollel olistolatial s G
o
C C

DIMENSION POINT(lG,EO,E),ELSTF(200,6,6),STF(200,210),A(200,210),

# P(30,6),RX(30)

COMMON // POINT,ELSTF,SPL,SPR,D,ANGN,

* R,ANG,HANG,XSPACE, AR, STF, A, P, RX

DOUBLE PRECISION POINT,ELSTF,SPL,SPR,D,ANGN,RX,SIGNI,SIGNJ,

¥ R, ANG,HANG,XSPACE, AR,STF,A,EPSILN,SIMEQN,AKL,AIL,HOLD,PX,P
& Sonoooc NDO0GOO00000aGA0000 «+.END COMMON..... olelelelolelolatetete e ale SO0 0500000000 C

DOUBLE PRECISION X21,X31,X32,Y21,Y31,Y32,
¥ A123,XM1,XM2,POIS,X1,X2,X3,Y1,Y2,Y3,E,T

M= (O E )
X32 = (X3-X2)
X31 = (X3-X1)
Y21 = (Y2-Y1)
¥32 = (¥Y3-Y2)
Y31 = (Y3-Y1)

Al23 = ((X32%Y21)-(X21%Y32))/2
XMl = (E¥T)/((L4.¥A123)%¥(1-(POIS¥¥2)))
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<¥A123)%(1+P0OIS))
(Y11*(Y3£**2))+(YH2*(X32**2))
(XM1%(-POIS*¥Y32¥X32))+(XM2%(=X32%Y32))
ELSTF(XK,2,1)
(XM1*(X32%%2) )+ (XM2%(Y32%%2))
(XM1#*¥(=Y32%Y31) )+ (XM2*(=X32%X31))
ELSTF(K,3,1)
(XM1*(POIS¥X32%Y31))+(XM2*¥(Y32%X31))
ELSTF(K,3,2)
(XM1*¥(Y31%%¥2) )+ (XIM12#%(X31%%2))

(XI11% (POIS¥Y32%X31))+(XIM12*%(X32%Y31))
ELSTF(K,4,1)

(XIT1 % (=X32%¥X31) )+ (XI12%(-Y32%Y31))

X2 = (E*T)/(
ELSTF(K,1,1)
ELSTF(K,2,1)
ELSTF(K,1,2)
ELSTF(K,2,2)
ELSTF(K,3,1)
ELSTF(K,1,3)
ELSTF(K,3,2)
ELSTF(K,2,3)
STF(K,3,3)
“”P(} b,1)
ELQLF(h 1,4)
ELSTF(K, 4,2\

||/\

ELSTF(K,2,4) ELSTF(K,4,2)
“L“”F(K,M,J) (qu*( POTS ¥Y31%X31) )+ (XM2¥(=X31%Y31))
ELSTF(K,3,4) STR(XK,4,3)
ELSTF(K,4,4) (XHl*(X31**2))+(XH2*(Y31**2))
mleF(K 5,1) (XM1#%(Y32%Y21) )+ (XM2¥%(X32%X21))
STF(K,1,5) ELSTF(X,5,1)
“L TF(K,5,2) (XM1*¥(-POIS*¥X32¥Y21))+(XM2#%(-Y32%X21))
ELSTF(X,2,5) ELSTF(K,5,2)
LLSTF(K,b,j) (XM1*¥(-Y31%Y21))+(XM2*(=-X31%X21))
LSTF(K,3,5) ELSTF(K,5,3)
ELSTF(K,S,M) (XM1*¥(POIS*¥X31%¥Y21))+(XM2*(Y31#%¥X21))
ELSTF(K,4,5) ELSTF(K,5,4)
ELSTF(K,5,5) (KIM1*(Y21%%¥2) )+ (XM2¥% (X21%%2))
ELSTF(K,6,1) (XM1¥(-POIS*¥Y32%¥X21))+(XM2*(-X32%¥Y21))
ELSTF(X,1,6) ELSTF(K,6,1)
LLb”F(K 6,2) (XM1%(X32%X21))+(XM2¥(Y32%Y21))
ELSTF (K, 2,6) = ELSTF(K,6,2)

(x11k(P0¢Q*Y31*x91))+(xw2*(x71*y21))
ELSTF(X,6,3)
(XMl*(—X31*X21))+(XM2*(-Y31*Y21))
ULJTF(K 6 U)
(XM1#*(—POTS¥Y21#X21) )+ (XM2%(~X21%Y21))
ELSTF(XK,6,5)
(XIl*(X21**?))+(XM2*(Y21**2))

ELS TF(K.6.3)
ELSTF(K,3,6)
ELSTF(K,b,4)
EL"TF( K,4, 6

“”F(K 6 ,5)
FL; F(K,5,6)
ELSTF(K,5,6)

N

L T | | | | | | | | | | ¢ | | {1 | | 1 | A (A R | N [ R 1

RETURN
END
CCEEECECECEEECEEEECECECCECCEECECCECECECECCECECECEECCECECCELECCECCEEECCCECECECEER
@ @
C THIS SUBROUTINE COMBINES EACH ELEMENT STIFFNESS C
C MATRIX INTO THE SYSTEM STIFFNESS MATRIX. @
. C
CEECCEECECEECECEEECEEECECECCCEEECEERCCEECCCECEECECEECCCCECECEECCRECECCCECECCCECEE
c ©
SUBROUTINE STFMX(NSC, NMBR)
("
v ©
C oelel el e olialolie ulialialle olie nlalal o e o SRESISECOMMONT BIEO G o el el elicliole ol el slielelelels s o alel e i@
C C
DIMENSION POI1I 'r”(16 20, ?) ELSTF(200, 6 6),QTF(2OO 210), A(HOJ 210),
& P(30,6))RX<JO)
COMMON // POINT,ELSTF,SPL,SPR,D , ANGN,
¥ R, ANG , HANG, XoPA(‘r‘ AR, ("“F A, P, RX
DOJ’%LF PRECISI ON POI\I FLSMP QPL, SPR,D, ANGN,RX,SIGNTI, SIGNJ,
* R,ANG,H/\NG XSPACE, AR, )PP A, PSILN,SI?"IEQN,AKL,/\.IL,HOLD,PX,P
Il
b G
O e T N DG OMM @ Newerere 50QC00C000000000GS 50000306000 @



DIMENSION ITOPO(200,6)
NELC = 6
READ(5,*%) ((ITOPO(I,J),J=1,6),I=1,N!BR)
DO 310 ISC = 1,NSC
DO 310 JSC = 1,NSC
STF(ISC,JSC) = 0.0
310 CONTINUE
C CONSTRUCT STH
520 MBR = 0
330 "BR = NMBR+1
IF(MBR-NITBR) 340,340,410
340 L =0
350 L = L+1
IF(L-NELC)360,360,330
360 INDEX = ILOPO(LBR L)
IF (LNDEX)57U,350,37O

370 ISC = IABS(INDEX)
SIGNTI = NDEX/ISF
STF(ISC,ISC) = STF(ISC ISC)+ELSTF(MBR,L,L)
1M =1L

360 Moo= M+l

IF(I1-NELC) 390,390,350
390  JNDEX = ITOPO(IIBR,M)
IF(JNDEX) 400,380,400
400 JSC = A?S(JwDPX)
SIGNJ = JNDEX/JS

STF(ISC,JSC) STF(IS ,JSC)+SIGNI*SIGNJ*ELSTF(HBR,L,M)

"non

STF(JSC,ISC) STR( [SC ,JSC)

GO TO de
410 CONTINUE

RETURN

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCceeceeeceeceeceeeeceececeeeeeeecece
¢ c
C THIS SUBROUTINE INVERTS THE PORTION OF THE SYSTEM C
o STIFFNESS MATRIX NECESSARY TO FIND THE DEFORMATIONS. C
€ -
CCCCCCCCCCCCCCCCCCCeCeeeeeeeeeeeeeeeecececeeeeeececeeecceeece ccccccccccccccccccb
¢ C

SUBROUTINE INVERT(N,NPNV,NVECS,NPLUS1,SIMEQN)
C C
C . . . . L) cotocon-STRESS COI’H‘TOI\I BLOCK-.............. oooooooooooo C
C €

DIMENSION POINT(16,20,2),ELSTF(200,6,6),3TF(200,210),A(200,210),

¥ P(30,6),RX(30)

COMMON // POINT,ELSTF, QPL SPR,D, ANGN,

* R, ANG,HANG XJPAFE,A? TF, A P, RX

DOUBLE PRECISION POINT, ELSTF QPL SPR,D,ANGN,RX,SIGNI,SIGNJ,

¥ R,ANG,HANG,XSPACE, AR, STF,A, FPSILN oITFQN AKL AIL,HOLD,PX,P
C ~
C ..... ® o 5 @ & 0 0 2 0 " 0 0 00 I—‘I\‘D CorqlolJ ....OO.'...OO..O..'G........OO..C

DIIENJIQV JC(200),IR(200)
WRITE(1,420)
L2g FORMAT(' INPUT THE NUMBER OF KNOWN FORCES (THE NUMBER '/
¥' OF SYSTE!I COORDINATES NECESSARY TO INVERT):
READ(1,%*)N
DO 430 I=1,N
DO 430 J=1,N

Page A

¢

&)




L30

L40

460
470
L350

490

500

510

520

530

540
550

570

560
590

*

A(I,J) = STF(I,J)

CONTINUE

NVECS = 6

NPNV = N+NVECS

NPLUS1 = N+1

READ(6,%) ((A(I,J),J=NPLUS1,NPNV),I=1,N)
WRITE(1,440)

FORMAT (/' INPUT AN EPSILON VALUE APPROXIMATELY SIX ORDERS

' OF MAGNITUDE LESS THAN THE STIFFNESS IMATRIX '//)

READ(1,* )EPSILN
NMINS1 = N-1

DO 450 L=1,N

JC(L)=0

CONTINUE

DO 550 L=1,N

DO 480 K=1,N

IF (ABS(A(X,L))-EPSILN) 480,460,460
DO 470 KROW=1,L

IF(JC(KROW)=K) 470,480,470

CONTINUE

GO TO 500

CONTINUE

WRITE(1,490)L,EPSILN

FORMAT (' !MX SINGULAR AT PASS ',I3,'W.R.T.
SIMEQN = 0

RETURN
JC(L) = K

AKL = 1.0/A(K,L)

DO 510 J = 1,NPNV
A(K,J) = A(K,J)*AKL
A(K,L) = AKL

DO 540 I=1,H

IF (I-K) 520,540,520

AIL = A(I,L)

DO 530 J=1,NPNV

A(I,J) = A(I,J)-AIL*A(K,J)

CONTINUE
A(I,L) = —-AIL*AKL
CONTINUE

CONTINUE

DO 560 I=1,N

IRC = JE(I)
IR(IRC) = I

CONTINUE
DO 610 I=1,NIMINSI

IF (IR(I)-I) 570,610,570
IP1 = I+1

DO 580 IRS=IP1,N

IF (IR(IRS)-I) 580,590,580
CONTINUE

DO 600 J=1,NPNV

HOLD = A(IRS,J)

A(IRS,J) = A(I,J)

A(I,J) = HOLD

CONTINUE
IR(IRS) =
R =]
CONTINUE

IR(I)

'L,E12.5)

'/
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DO 660 J=1, NITINS1
IF (JC(J)=J) 520,660,620
620 JP1 = J+1
DO 630 JCS=JP1,N
IF(JC(JCS)=-J) 630,640,630
630  CONTINUE
6L0 DO 650 I=1,N
HOLD = A(I,JCS)
A(I,JCS) = A(I,J)
650 A(I,J) = HOLD
JC(JCS) = JC(J)
660  CONTINUE

RETURN

END
CCCCCCCCECOCECCCCCCoreeCeCiCCtCCeCCCCCCECOCreCeCoorceaCercectceccroCececaoe
C C
C THIS SUBROUTINE MULTIPLIES THE PORTION OF THE g
c SYSTEM STIFFNESS MATRIX THAT WAS NOT INVERTED C
¢ BY THE SYSTEM DEFORMATINS TO OBTAIN THE UN- c
C KNOWN SYSTEM FORCES. B
8 C
G161 01CTCI 0110101010 01010 01010, 001010101616 61616 & BIA01E 61010 616101 $1610(61010, 510 bI0TEIDID 101016 61016 1015 010 010 6 oL pTal0Nel010
C &

SUBROUTINE FORCE(N,NPLUS1,NPNV,NSC)
¢ &
Covvnne - ettt STRESS COMMON BLOCK. e+ .. ettt e ¢
c C

DIMENSION POINT(16,20,2),ELSTF(200,6,6),STF(200,210),A(200,210),

¥ P(30,6),RX(30)

COMMON // POINT,ELSTF,SPL,SPR,D,ANGN,

¥ R,ANG,HANG,XSPACE, AR, STF,A,P,RX

DOUBLE PRECISION POINT,ELSTF,SPL,SPR,D,ANGN,RX,SIGNI,SIGNJ,

¥ R,ANG,HANG,XSPACE, AR, STF,A,EPSILN,SIMEON,AKL,AIL,HOLD,PX,P
7l
Y )
C teevovancens teecesccseaseesEND COMMONG. covsvnnns ettt et C

DO 680 ICOL=NPLUS1,NPNV

DO 680 IROW=NPLUS1,NSC

PX = 0.0DO

DO 670 MULT=1,N

PX = PX + STF(IROW,MULT)¥A(MULT,ICOL)
670  CONTINURE

P(IROW,ICOL) = PX
630  CONTINUE

RETURN

END



