
I

Small Scale Voice Recognition

Bryan Armstrong

University Undergraduate Research Fellow, 1994-95

Texas A&M University

Department of Computer Science

APPROVED

,1

ABSTRACT

Small Scale Voice Recognition

Bryan M. Armstrong

Undergraduate Fellows Program

Advisor: Dr. Walter Daugherity

This report describes a small-scale, isolated word voice recognition module. I

explain my approach to the problem of voice recognition and provide performance figures

and sample runs to give a picture of how this module operates. In general the module is

successful in matching isolated words. However, my project goal of speaker

independence was not met.

Voice recognition is not a new idea. Successful voice recognition was achieved in

the 1950's using analog speech storage and comparison methods. However, most research

focuses on recognition of large vocabularies and continuous speech. For my recognition

module, I use a simple matching algorithm that matches waveform data processed by a

Fast Fourier Transform to previously stored patterns to recognize human speech.

/

TABLE OF CONTENTS

Abstract

Why Voice Recognition?

Background

The Voice Recognition Process

Approach to the Problem

Simplicity

Digital Sampling

Speed

Short Research Time

Feature Sets

Matching Algorithm

Restrictions

No DSP Use

No Real Time Input

One Feature Set Used

Sample Run

Performance

A Word About Floating Point Units

Performance Resu Its for the Digits

First Attempt

Second Attempt

4

4

4

4

5

5

6

6

6

7

7

7

9

9

9

9

10

1 1

11

] 1

12

Conclusion

Future Research

Adding More Feature Sets

Using a Digital Signal Processor

How to Run the Recognizer

If No Executable Exists

Running

References

12

12

12

14

APPENDICES

A. Source Code

B. Source Code for FFf from Dave Edelblute

C. Speech Waveforms

15

44

51

LIST OF ILLUSTRATIONS

Figures Page

1. Training and Recognition Phases of a Voice Recognition System 2

2. Speech Spectrogram of a Sample Phrase 2

3. Speech Spectrogram Generated by Small Scale Voice Recognizer 3

4. Template and Feature Set Relationship 5

WHY VOICE RECOGNITION?

I chose to research voice recognition because of the wide variety of topics yet to

be covered, and my personal interest in the subject. Also, there is no small-scale voice

recognition package currently available. I wanted to build a small voice recognition

module that could be added to any existing computer application to add simple voice

control.

Background

Voice recognition is an idea which has been around since the 1950's when only

analog equipment was available. As voice recognition advanced, digital processing of

speech became more convenient and efficient to use than analog. Digital Signal

Processors made the digital switch over easy by increasing the speed of feature extraction,

usually the most time consuming pieces of the voice recognition process.

The Voice Recognition Process

The voice recognition process is broken down into two major steps: feature

extraction and model pattern matching (Cox 211). (See Figure 1.)

2

Figure 1:

nition Phases of a Voice Reco nition System
training

Feature extraction is the process of formulating unique features from an input

signals of
known
classification

speech wave. The most commonly used feature is the frequency domain plot of a wave.

recognition

Figure 2 shows the phrase "Noon is the sleepy time of day" plotted in the frequency

signals of
unknown
classification

decision

domain (Yannakoudakis 70). Notice the two frequency bands between 1000 and 2500Hz.

These bands carry the majority of the unique features of a word. Figure 3 is an example of

a speech spectrogram generated from data produced by the small scale recognizer. The

lighter areas denote regions of higher voice energy.

Figure 2:

S ectrum of a Sam le Phrase
3500 -

3000

� 2500

(;" 2000
c
cv

� 1500

�
LL 1000

500

o

Time (seconds)

'Noon is the sleepy time of day'

Figure 3:
S ectrogram Generated b Small Scale Voice Recognizer

3

o 10 20 30

Time

"Zero"

40 50

recognition focuses on the pattern matching process. A voice recognition system uses

While pattern matching may sound simple, most of the research in voice

pattern matching to compare an input signal with stored speech templates to decide on an

appropriate output.

Voice recognition does not work without help from the user. One must train the

system to recognize his or her speech. This training session may take a few minutes, or a

few hours depending on the pattern matching method and number of words the system

needs to recognize. The training process follows the recognition process through feature

extraction and then it stores the results for later access. (See Figure 1.)

4

APPROACH TO THE PROBLEM

Simplicity

I approached the problem with simplicity in mind. There are many ways of

matching voice patterns to stored waveforms: Dynamic Time Warping, Hidden Markov

Models, and Chain Code Matching are a few. (Cater 122-138) I chose a template

searching algorithm because my database is small, and the algorithm is simple. Each

stored pattern is in an array type structure which is searched to find the closest match to

the spoken pattern. For a small database an O(n) search is not unreasonable. Most large

vocabulary recognizers use some kind of index, cross reference, or tree search to minimize

search time.

Digital Sampling

I chose to use a sampling rate of J 1111 Hz to record the voice samples used in the

training and recognition processes. The Nyquist theorem states that an analog signal must

be sampled at a rate twice the frequency of the signal to successfully reproduce the signal

digitally. Since human speech is located under the 4000Hz frequency I chose to use the

11] 11 Hz sampling rate because it would correctly represent frequencies to 5555Hz.

[also chose to use an 8-bit linear format for the sample. This allows 256 possible

values which has a dynamic range of about 48dB. This is sufficient for voice recognition.

Speed

The recognizer should be able to complete at least one word recognition per

second. This is only possible on a machine with a floating point unit or digital signal

processor. Otherwise, the Fast Fourier Transform will slow down the process completely.

Originally I was to use a NeXT machine with a Motorola 56000 DSP to complete my

project, but I chose not to use a DSP because of the time involved in learning the

5

instruction set and the programming involved to take input from the CPU, run a FFf on

the data, and return the results to the calling program.

Short Research Time

Since I had such a short time period to complete the research and coding, I chose

to use a template searching algorithm. The other methods would have taken far more time

to research and the final coding would have been more complicated and harder to debug.

Feature Sets

Each word pattern (template) contains feature sets which represent the word. (See

Figure 4.) In this case only one feature set was used.

Tern 1 t
Figure 4:

dF t StRlf hiplp a e an ea ure e e a Ions

Template 1

I Feature I I
I Feature 2 I

"- v

Template 2

I Feature I I
I Feature 2 I

The feature set I use is Percentage of Total Energy. The speech sample is broken

down into 16 (or any power of two) ranges of frequencies, and a percentage of the total

energy is found for each range. The feature set is then built from the minimum and

maximum percentages in each frequency range. To get these minimum and maximum

6

values the user must provide at least two, and preferably three samples for each word in

the database.

Matching Algorithm

After building a template for each word needing to be recognized, a template

matching algorithm is used. Each feature set is compared to a stored feature set giving a

number representing how strongly they match. The template with the strongest match will

be chosen as the correct word.

To generate each template, a spectrogram is first created. (See Figure 3.) To

create this spectrogram the speech data is first read in 128 byte segments and fed into a

FFT. The lower 64 points of the transform are then fed into a spectrum shaping function

that de-emphasizes the extreme high and low portions of the spectrum and I inearly shapes

it to the center frequency. The shaped spectrum is then written to a file. This process is

continued to the end of the sample, thus completing the generation of the spectrogram.

The spectrogram is then used to calculate the feature set which is stored in a template.

RESTRICTIONS

No DSP Use

A DSP would greatly increase the speed of the FFT. While researching this

project, I came across FFf code for the Motorola 56000 DSP. I procured a DSP56000

manual set and attempted to learn the instruction set and how to program the DSP. I

abandoned the DSP avenue when I realized I did not have time to delve deeply into the

subject. I found that using a machine with a floating point unit produced acceptable

speed.

7

No Real Time Input

Real time input should not be difficult to add to the recognition module. Assuming

a Sun Microsystems machine and SunOS operating system, the additional code would

necessitate the following procedure:

1. Use ioctli) call to set up sampling rate, encoding type, number of channels and

precision,

2. Open /dev/audio as a stream.

3. Read from the data stream using readr) until a speech sample is captured.

4. Close Idev/audio.

The audio man page offers more information on the audio interface.

One Feature Set Used

Unfortunately I had time to implement only one feature set: Percentage of Total

Energy. Other possible feature sets include speech length, phonemes and number of

syllables. These could be easily incorporated into the current template structure, and the

matching algorithm would require minimal change.

SAMPLE RUN

What follows is a sample run of the recognizer on a single sample stored in the file

Obryan. voc.

sparc70-: start

Program start ...

Checking start.ini

Trying to open start.ini

Loading patterns:
Opening file: O.ftr. Pattern added: O.ftr

Pattern added: l.ftr

Pattern added: 2.ftr

Pattern added: 3.ftr

Opening file: l.ftr.

Opening file: 2.ftr.

Opening file: 3.ftr.

8

Opening file: 4.ftr. Pattern added: 4.ftr

Opening file: 5.ftr. Pattern added: 5.ftr

Opening file: 6.ftr. Pattern added: 6.ftr

Opening file: 7.ftr. Pattern added: 7.ftr

Opening file: 8.ftr. Pattern added: 8.ftr

Opening file: 9.ftr. Pattern added: 9.ftr

voice Recognition Menu

1. Use Recognizer
2. Train Recognizer
3. Load File to Recognize
4. Calibrate Recognizer
5.

Q. Quit
3

Recognize from a file

File to load: Obryan.voc

Bytes done: 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584

3840 4096 4352 4608 4864 5120 5376 5632 5888 6144 6400 6656 6912 7168 7424

7680 7936 8192 8448 8704 8960 9216 9472 9728 9984 10240 10496 10752 11008

11264 11520 11776 12032 12288 12544 12800 13056 13312 13568 13824 14080

16128 16384 16640 16896 1715214336 14592 14848 15104 15360 15616 15872

The probability this matches 0 is: 0.7781

The probability this matches 1 is: 0.5555

The probability this matches 2 is: 0.7030

The probability this matches 3 is: 0.4510

The probability this matches 4 is: 0.4434

The probability this matches 5 is: 0.4359

The probability this matches 6 is: 0.2007

The probabil i ty this matches 7 is: 0.5887

The probability this matches 8 is: 0.4108

The probability this matches 9 is: 0.5275

The number chosen was: 0.7781

The best choice was: 0

Voice Recognition Menu

1. Use Recognizer
2. Train Recognizer
3. Load File to Recognize
4. Calibrate Recognizer
5.

Q. Quit

9

PERFORMANCE

A Word About Floating Point Units

During most of the development of the recognition software I used an Intel

386DX 25Mhz machine without a floating point unit. The absence of a floating point unit

was more than a little noticeable. The spectrum building took almost 45 times longer than

running on an Intel 486DX2/50Mhz machine with a floating point unit. True, the Intel

486 I was using has twice the clock rate and an internal data and instruction cache, but

without a FPU the performance would have been as dismal as the Intel 386.

Performance Results for the Digits

All performance results are from a Sun 4/50 running SunOS 4.1.3. Each word

recognition was completed in under one second.

First Attempt

For my first testing I used a set of training samples created from my own voice.

The digits zero through nine were created with three samples of each digit. The first test

was not reassuring. The three recognition tests on my voice did not produce accurate

results. The test results follow.

Male Speaker 1 (Speaker that trained the recognizer)
Set 1: 60% 0,1,2,3,4,9 recognized correctly
Set 2: 40% 1,2,4,9 recognized correctly
Set 3: 60% 0,1,2,4,7,9 recognized correctly

Male Speaker 2
Set 1: 40% 1,2,4,7 recognized correctly

Male Speaker 3
Set 1: 50% 0,1,2,4,9 recognized correctly

10

Female Speaker 1

Set I: 40% 4,5,8,9 recognized correctly
Set 2: 30% 5,7,9 recognized correctly

Second Attempt

After the disappointing results from the first test, I looked at the training samples

and compared them to the test samples. The training samples were of a much lower

amplitude. I then trained the recognizer with a new set of digits spoken more loudly, and

the results were much improved.

In both the previous and current test, the number four was consistently recognized.

However, the number nine which was frequently recognized in the first test, was only

recognized by one speaker other than the training speaker in the second test.

Male Speaker I (Speaker that trained the recognizer)
Set 1: 90% 0,1,2,3,4,5,6,8,9 recognized correctly
Set 2: 80% 1,2,4,5,6,7,8,9 recognized correctly

Male Speaker 2
Set 1: 40% 1,2,4,5 recognized correctly
Set 2: 30% 2,4,7 recognized correctly

Male Speaker 3
Set 1: 60% 1,2,4,5,6,7 recognized correctly

Male Speaker 4 (slight Oriental accent)
Set 1: 50% 2,4,5,7,8 recognized correctly
Set 2: 50% 2,4,5,7,8 recognized correctly

Female Speaker 1

Set I: 50% 2,4,5,8,9 recognized correctly
Set 2: 30% 4,5,9 recognized correctly

Female Speaker 2 (slight Russian accent)
Set 1: 40% 2,4,5,8 recognized correctly
Set 2: 20% 4,5 recognized correctly

II

CONCLUSION

From the results presented in the previous section two conclusions are made.

Firstly, using percentage of total energy as a sole feature for voice recognition is

very limited. This feature can be used to accurately recognize the trainer's voice, but

speaker independent recognition is not possible. More feature sets should be used to

allow more accurate speaker dependent and independent recognition.

Secondly, and most importantly, small scale voice recognition is definitely possible.

The simple template matching algorithm has little overhead with a small word database.

With a word database of ten, this module can complete one recognition in under one

second on a machine with a floating point unit. The executable occupies less than 130000

bytes of storage space, and the data files less than 3000 bytes.

FUTURE RESEARCH

Adding More Feature Sets

Since the recognizer only matches voice energy percentages, it is very limited for

speaker independent applications. A fuller set of patterns to match could include timing,

phonemes, and envelope contours. (Cater 122-38) One could possibly break down each

word into phonemes and keep a phoneme database to search. This would reduce the disk

storage requirements, since each word would have a specific phoneme construction which

takes less space to store than a complete spectral analysis. However, breaking down a

speech sample into phonemes is a difficult and complex process which would greatly

increase the load on the CPU, thereby slowing down the recognition process.

12

Using a Digital Signal Processor

The use of a DSP would probably increase the speed at least ten fold over a

machine with only a floating point unit. The Motorola DSP56000 could easily complete a

128 point FFf in real time on 8000Hz sampled digital data. This would allow almost

instantaneous recognition of isolated words.

HOW TO RUN THE RECOGNIZER

If No Executable Exists

If the executable does not exist, the user will have to compile it before attempting

to use the recognizer.

The program set consists of a Makefile and all the .c and .h files necessary for the

program to function. On a Unix machine simply type make and the program should build

correctly. The executable is named start.

Running

First, the user should record three or more samples of each word for the

recognizer to learn. These word samples should be in a linear 8-bit PCM format. Sound

tools are standard with most workstations to allow recording and playback of sound.

Next, run the start executable.

Then, select menu option "2. Train Recognizer" from the main menu. A training

menu will then appear. Select "1. Train from file" and enter the filename of the first word

to train. The program will then prompt for a word name with which to create the

template. Continue the training from file process until all words are trained.

13

Finally, the recognition can be run. Select "3. Recognize from file" on the main

menu. Type in the file name at the prompt. You will see the byte counter at the bottom

of the screen count through the voice sample. After completion, the recognizer will

display a list of valid words and the word in the database with the highest probability of

matching the file.

14

REFERENCES

Cater, John P. ELectronically Hearing: Computer Speech Recognition. Indianapolis:
Howard W. Sams & Co., 1984.

Cox, S.J. "Hidden Markov Models for Automatic Speech Recognition: Theory and

Application." Speech and Language Processing. Eds. C. Whedden and R. Linggard.
London: Chapman and Hall, 1990. 209-30.

Yannakoudakis, E. 1. and P. J. Hutton. Speech Synthesis and Recognition Systems. New
York: Ellis Horwood, 1987.

15

APPENDIX A

Source Code

start.c

/*
start.c

Mainline of voice recognition.
*/

#include "start.h"

struct pattern_list pattlist;

/*
These are default values used by the get_input() function

and others to detect voice input. These values will be replaced
by those in the start.ini file if it exists.

*/
int MaxCount = 16;

int MedianOfSampRange = 127;

int NoiseLevel = 2;

int SizeOfSample = 1; /* in bytes */

/*
Offset value used in seeking past any headers contained in voice

files.

*/
int Offset 33;

#ifdef PC

#include "graph.h"
#endif

#include "filerec.h"

#include "train.h"

#include "use.h"

#include "calibrat.h"

#include "init.h"

#include "extract.h"

#include "recogniz.h"

void clear_screen();
void print_menu();

void clear_screen()

int i;

for(i=O;i<2S;i++) printf("\n");

16

void print_menu()

#ifdef PC

#ifdef DEBUG

printf("\nCoreleft: %u\n",coreleft());
#endif

#endif

printf("\nVoice Recognition Menu\n");
printf("1. Use Recognizer\n");
printf("2. Train Recognizer\n");
printf("3. Load File to Recognize\n");
printf("4. Calibrate Recognizer\n");
printf (

II 5. \n II) ;

printf ("Q. Qui t\n") ;

main(argc)
int argc;

int done 0;
char ch;

printf ("\nProgram start ... \n ") ;

if (argc != 2)
ini t_stuff () ;

else

/* Build database from existing files Oa .. Oc-9a .. 9c */
build_stuff();
exit(O) ;

/* clear_screen(); */
while (! done)

print_menu();
ch = getchar () ;

if (islower(ch))
ch = toupper(ch);
switch(ch)
{
case '1': use_recognizer();

break;

case '2': train_recognizer();
destroy_pattlist();
ini t_stuff () ;

break;
case '3': printf("\nRecognize from a file\n");

file_recognize();
break;

case '4': calibrate_recognizer();
break;

case 'Q': done = 1;

desfroy_pattlist();
retMTn(l);

J

18

init.c

/*
init.c

This will check for a config file and load it if

it exists. It will also create the pattern linked list

necessary for the rest of the program.

*/

#include "start.h"

#include "init.h"

/*
Destroy the pattern link list.

*/
int destroy_pattlist()
(
struct pattern *temp;

extern struct pattern_list pattlist;

while (pattlist.head != NULL)

(

temp = pattlist.head;
pattlist.head = pattlist.head -> next;

pattlist.number--;
free (temp) ;

return(l);

/*
Add a pattern to the pattern link list.

*/
int add_pattern(newpat)
struct pattern *newpat;

extern struct pattern_list pattlist;

/* Insert new pattern at end of list */
if (pattlist.head == NULL)

pattlist.head = newpat;
pattlist.tail = newpat;
pattlist.number++;

else

pattlist.tail -> next = newpat;
pattlist.tail = newpat;
pattlist.number++;

19

return(l);

/* Build database from existing files Oa-9c */
int build_stuff()
{
int i,j;
char str[80];
struct pattern *patt;
struct spectrogram *spec;
char names [] [2] = {" 0 II

,
II 1" ,

II 2 II

,

II 3 II

,

II 4 II
,

II 5 II
,

II 6 "
, "7

II

, "8" ,
II 9" } ;

char ext [] [2] = {" a" , "b II
, "c

II } ;

for (i=O;i<10;i++)
{
for (j=O;j<3;j++)
{

strcpy(str,names[i]);
strcat(str,ext[j]);
strcat(str, ".voc");
spec = build_spectrogram(str);
if (spec != NULL)

{

patt = extract(spec);
store_pattern(patt,names[i]);

free(patt) ;

free(spec->array);
free(spec);

else

printf("Error handling %s.\n",names[i]);

return(l);

int init_stuff()
{
FILE *infile;
struct pattern *newpat;
char str[80];

extern struct pattern_list pattlist;
extern int MaxCount;

extern int MedianOfSampRange;
extern int NoiseLevel;

pattlist.head = NULL;

20

pattlist.tail = NULL;

pattlist.number = 0;

printf("Checking start.ini\n");
infile = fopen("start.ini", "r");
printf("Trying to open start.ini\n");
while ((infile != NULL) && !feof(infile))
{

printf("start.ini found!\n");
fscanf(infile,"%d",MaxCount) ;

fscanf(infile, "%d",NoiseLevel);
fscanf(infile,"%d",MedianOfSampRange);

fclose(infile);

printf("Loading patterns:\n");
infile = fopen("patterns", "r");
while ((infile != NULL) && !feof(infile))
{

fscanf(infile, "%s",str) ;

newpat = get_pattern(str);
add_pattern(newpat);
printf("Pattern added: %s\n",str);

fclose(infile);
printf ("\n") ;

return(l);

21

filerec.c

/*

filerec.c

Recognize saved file.

*/

#include "start.h"

#include "filerec.h"

int file_recognize()
{
struct spectrogram *spec = NULL;

struct pattern *patt = NULL;

struct pattern *bestchoice = NULL;

char filename[40];
#ifdef PC

char ch;
int done = 0;
int first = 0;

int second = 0;

#endif

printf ("\nFile to load: ");

scanf("%s"/filename);

spec = (struct spectrogram *)build_spectrogram(filename);

#ifdef PC

if (spec != NULL)

{
if (intograph ())

{
while (! done)
{

graph(spec/spec -> size/first/second);

kbhit() ;

if (' Q ' toupper (ch)) done 1;
if ('C' == toupper(ch))

gotoxy (40/12);
printf("Enter new values: ");
scanf("%d %d",&first/&second);

outofgraph();

else

22

printf("\nSpectrogram Build Failed\n");
return(O);

#endif

if (spec != NULL)
{

patt = extract(spec);
bestchoice = recognize(patt);

printf("The best choice was: %s\n",bestchoice->name);

free(patt) ;

free(spec -> array);
free(spec);
return(l);

else

printf ("\nFailed") ;

return(O);

23

extract.c

/*
extract.c

Extract all of the features from the spectrogram.
*/

#include "start.h"

#include "extract.h"

struct pattern *percents(spec,patt)
struct spectrogram *spec;

struct pattern *patt;

unsigned int count;

unsigned long int sum;

unsigned int pos;

int halfnp = NUMPOINTS/2;

/* Initialize the percent freqs */
for (count = 0; count < NUMBANDS*2; count++)

patt -> percent_freqs[countJ = 0;

/* Calculate sums for all freqs and total energy. */
sum = 0;
for (count = 0; count < spec -> size; count++)

pos = 2*((count % halfnp)/(halfnp/NUMBANDS»;
sum = sum + spec -> array[count];
patt -> percent_freqs[pos+l] += spec -> array[count];

/* Put average energy values in. */
for (count = O;count < NUMBANDS*2; count ++)

patt -> percent_freqs[count] /= sum/lOO;

return(patt);

int printstuff(patt)
struct pattern *patt;

int count;

for (count=0;count<NUMBANDS;count+=2)

printf ("%d: %8.3 f, ", count/2, patt - >percent_freqs [count]) ;

printf("%8.3f ",patt->percent_freqs[count+l]);

24

printf("%d: ", (count+NUMBANDS)/2);
printf("%8.3f,",patt->percent_freqs[count+NUMBANDS]);
printf(" %8.3f\n",patt->percent_freqs[(count+NUMBANDS)+1]);

return(l);

struct pattern *extract(spec)
struct spectrogram *spec;

struct pattern *patt;

patt = (struct pattern *)malloc(sizeof(struct pattern));
if (patt != NULL)
[

patt = percents(spec,patt);
/*
Extract more stuff here.

*/
ifdef DEBUG

printstuff(patt);
#endif

return(patt) ;

else

return(NULL) ;

25

buildspc.c

/*
buildspc.c

Build the spectrogram.
*/

#include "start.h"

#include "buildspc.h"

struct spectrogram *build_spectrogram(filename)
char *filename;

FILE *infile;
FILE *outfile;
#ifdef DUMPSPECTROGRAM

FILE *dumpfile; /* For dumping the spectrogram */
#endif

double *x; /* stores the real part of the fft */
double *y; /* stores the imaginary part of the fft */
int *store; /* stores the integer values of the fft */
struct spectrogram *spec;
extern int MedianOfSampRange;
extern int SizeOfSample;
extern int Offset;

int count;

int done;

long length;
float tempnum;

unsigned int tempintl;
unsigned int tempint2;
int halfnp = NUMPOINTS/2;

/* Malloc my working space */
x = (double *)malloc(sizeof(double)*NUMPOINTS);
y = (double *)malloc(sizeof(double)*NUMPOINTS);
store = (int *)malloc(sizeof(int)*NUMPOINTS);

if ((x == NULL) I I (y == NULL) I I (store == NULL)

{

printf("\nCould not malloc x,y, or store in buildspec.c\n");
exit(l);

infile = fopen(filename,"rb");
outfile = fopen("temp","wb");

if (infile == NULL)

{

printf("\nFILENAME <%s> not found\n",filename);
fclose(infile) ;

fclose(outfile);
free(x) ;

free (y) ;

free (store) ;

return(NULL) ;

if (outfile == NULL)

printf("\nCould not open temp file\n");
exit(l);

fseek(infile,Offset,O);

/* Change file data into spectrogram. */
printf("\nBytes done:");
length = 0;

done = 0;

while (! done)

/* Read in NUMPOINTS worth of data */
for (count O;count < NUMPOINTS;count++)

tempint1 = fgetc(infile);

/* If the sample is other than 1 byte */
if (SizeOfSample > 1)

tempint2 = fgetc(infile);
/* Shift left 8 bits */
tempint2 «= 8;

tempint1 = tempint1 I tempint2;

tempnurn = (double)tempint1;
if (!feof(infile))
(

x[countJ

y[countJ
tempnum - MedianOfSampRange;
0.0;

else

/* Fill in the value for no data for the slack space in file */
done = 1;

x[countJ 0.0;

y[countJ = 0.0;

fft(x,y,NUMPOINTS);

/* Make power spectrum and shape it */
for (count = O;count < halfnp;count++)

26

x[countJ = (double) (pow(pow(x[countJ ,2)+pow(y[countJ,2),O.S»;

if (count < (halfnp/2»
(
store[countJ = (int) (x[countJ * 1.O/(halfnp/2)*count);

else

store[countJ (int)(x[countJ * 1.O/(halfnp/2)*(halfnp-count»;

if (!done)

/* Write the sucker to a file */
/* ONLY HALF OF THE ARRAY IS WRITTEN */

fwrite(store,sizeof(int)*halfnp,l,outfile);
length += halfnp;
printf(" %u",length*sizeof(int»;
fflush(stdout);

printf ("\n") ;

/* Clean up! * /
free(x) ;

free(y) ;

free (store) ;

fclose(infile);
fflush(outfile) ;

fclose(outfile) ;

outfile = fopen("temp","rb");
rewind(outfile);

/* Get space for spectrum */
store = (int *)malloc(sizeof(int)*length);

if (store == NULL)

printf("\nCould not malloc %s\n",sizeof(int)*length);
exit(l);

fread(store,sizeof(int),length,outfile);

fclose(outfile) ;

unlink ("temp") ;

#ifdef DUMPSPECTROGRAM

dumpfile = fopen ("spectro. out" , "w") ;

if (dumpfile != NULL)

27

28

for (count = O;count < length;count++)

/*fprintf(dumpfile, "%d ",count % halfnp) ;*/
/*fprintf(dumpfile, "%d ",count / halfnp) ;*/
fprintf(dumpfile, "%u\n",store[count]);

fclose(dumpfile);

else

printf("Could not open spectro.out\n");

#endif

spec = (struct spectrogram *)malloc(sizeof(struct spectrogram»;
if (spec != NULL)
{

spec -> size = length;
spec -> points = NUMPOINTS;

spec -> array = store;

return(spec);

else

return(NULL);

29

pattfile.c

/*
pattfile.c

Handles all pattern file reading and writing.
*/

#include "start.h"

#include "pattfile.h"

int store_pattern(patt,samplename)
struct pattern *patt;
char *samplename;

char samplefilename[40);
struct pattern *pattfile;
FILE *outfile;

int count;

strcpy(samplefilename,samplename);
strcat(samplefilename," .ftr");
if (! (outfile = fopen(samplefilename,"r"»)
{

/* If this is a new pattern do this. */

outfile = fopen(samplefilename, "w");
fprintf(outfile, "%s\n",samplename);

/* store word pattern data in .ftr file */
for (count = 0; count < NUMBANDS*2;count+=2)

fprintf(outfile, "%10.5f ",patt -> percent_freqs[count+l);
fprintf(outfile,"%10.5f\n",patt -> percent_freqs[count+l);

fclose(outfile);

/* Update the patterns file */
outfile = fopen("patterns", "a");
fprintf(outfile, "%s\n",samplefilename);
fclose(outfile);

else

/* If pattern already exists we need to update it here */

/* Get the pattern already on disk */
pattfile = get_pattern(samplefilename);
if (pattfile == NULL) return(O);

outfile = fopen(samplefilename,"w");
fprintf(outfile, "%s\n",samplename);
/* Using the pattern in memory and the one from disk

write a new pattern file.

*/
for (count = 0; count < NUMBANDS*2;count+=2)

if (patt -> percent_freqs[count+l) <

pattfile -> percent_freqs[count)

pattfile->percent_freqs[count) = patt->percent_freqs[count+l);

else

if (patt -> percent_freqs[count+l) >

pattfile -> percent_freqs[count+l)

pattfile->percent_freqs[count+l) = patt->percent_freqs[count+l);

/* store word pattern data in .ftr file */
for (count = 0; count < NUMBANDS*2;count+=2)

fprintf(outfile,"%10.5f ",pattfile -> percent_freqs[count);
fprintf(outfile, "%10.5f\n",pattfile -> percent_freqs[count+l);

free(pattfile);
fflush(outfile) ;

fclose(outfile);

return(l);

struct pattern *get_pattern(filename)
char *filename;

FILE *patternfile;
struct pattern *newpat;
char tempstr[80);
float tempnuml;
float tempnum2;
int count;

printf ("Opening file: %s. ", filename) ;

patternfile = fopen(filename,"r");
if (patternfile != NULL)

{

newpat = (struct pattern *)malloc(sizeof(struct pattern»;
if (newpat == NULL)
{

printf("\nCould not allocate memory to add pattern.\n");
exit(l);

fscanf(patternfile, "%s",tempstr);

30

31

strcpy(newpat -> name,tempstr);

for (count = 0; count < NUMBANDS*2;count+=2)

fscanf(patternfile,"%f %f",&tempnuml,&tempnum2);
newpat -> percent_freqs[countJ = tempnuml;
newpat -> percent_freqs[count+1J = tempnum2;

newpat -> next = NULL;

fclose(patternfile);
return(newpat);

else

printf("\n%s pattern file not found! !",filename);
fclose(patternfile);
return(NULL);

32

recogniz.c

/*
recogniz.c

THE RECOGNIZER!!!! Ta-da.

*/

#include "start.h"

#include "recogniz.h"

float compare(patt,temp)
struct pattern *patt;
struct pattern *temp;

struct pattern storage;
float average;

float pointl;
float point2;
float tempnum;
int count;

/* Check percent freqs. */
for (count = 0; count < NUMBANDS*2;count +=2)

if ((patt -> percent_freqs[count+1] <=

temp -> percent_freqs[count+1]) &&

(patt -> percent_freqs[count+1] >=

temp -> percent_freqs[count]))

storage.percent_freqs[count+1] = 1.0;

point1 = patt->percent_freqs[count+1];
#ifdef DEBUG

printf ("Middle: patt: %8. 3f ", pointl) ;

printf("%4.3f\n",storage.percent_freqs[count+1]) ;

#endif

else

if (patt -> percent_freqs[count+1J >

temp -> percent_freqs[count+1])

pointl = patt -> percent_freqs[count+1];
point2 = temp -> percent_freqs[count+1];
tempnum = 1-((point1 - point2)*(FREQSLOPE));
if (tempnum < 0.0) tempnum = 0.0;

#ifdef DEBUG

printf ("Greater: patt: %8. 3f temp: %8. 3f ", pointl, point2) ;

printf("%4.3f\n",tempnum);
#endif

33

else

pointl = patt -> percent_freqs[count+lJ;
point2 = temp -> percent_freqs[countJ;
tempnum = 1-«point2 - pointl)*(FREQSLOPE));
if (tempnum < 0.0) tempnum = 0.0;
ifdef DEBUG

printf("Lesser: patt: %8.3f temp: %8.3f ",pointl,point2);
printf (" %4. 3f\n ", tempnum) ;

#endif

storage.percent_freqs[count+lJ tempnum;

/* Weight each category. */
average = 0.0;

for (count = 0; count < NUMBANDS*2;count += 2)

average += storage.percent_freqs[count+lJ;

average /= NUMBANDS;

printf("The probability this matches %s ",temp->name);
printf (" is: %5. 4f\n II

,average) ;

return(average);

struct pattern *recognize(patt)
struct pattern *patt;

extern struct pattern_list pattlist;

struct pattern *temp = pattlist.head;
struct pattern *bestchoice = NULL;

float previousnum = 0.0;
float currentnum = 0.0;

/* Compare patt to list of patterns and return a result. */
while (temp != NULL)

{

/* Check using all features. */
currentnum = compare(patt,temp);
if (currentnum > previousnum)

previousnum = currentnum;

bestchoice = temp;

temp = temp -> next;

printf("The number chosen was: %5.4f\n",previousnum);

return(bestchoice);

34

35

train.c

/*
train.c

Train the recognizer.
*/

#include "start.h"

#include "train.h"

void train_menu()

#ifdef PC

#ifdef DEBUG

printf("\nCorefree: %u",coreleft(»;
#endif

#endif

printf("\nTraining Menu\n");
printf("l. Train from stored files\n");

printf("2. Train in real time\n");
printf("Q. Quit to main\n");

void train_recognizer()

int done = 0;
int ch;

/* Memory leak is here somewhere (it may be fixed now) */
while (! done)
(

train_menu();
ch = getchar();
if (islower(ch»
ch = toupper(ch);
switch(ch)
(
case '1': printf("\nTrain from a file\n");

train_f iles () ;

break;
case '2': train_realtime();

break;
case 'Q': done = 1;

break;

/*
Train from a pre-recorded voice file.

*/

36

int train_files()

struct spectrogram *spec
struct pattern *patt;
char filename[40];
char samplename[40];

NULL;

printf ("\nFilename: ");
scanf("%s",filename);
printf ("\nName of sample: ");
scanf("%s",samplename);

spec = build_spectrogram(filename);

if (spec != NULL)

{

/* Extract the features from the spectrogram */
patt = extract(spec);

/* store features in *.ftr */
store_pattern(patt,samplename);

/* Clean up */
free (patt) ;

free(spec -> array);

free(spec);

else

printf("\nFailed\n");
return(O);

return(l);

/*
Train from real time user voice input. NOT IMPLEMENTED.

*/
int train_realtime()

struct pattern *patt;
struct spectrogram *spec;
char samplename[40];

printf("Waiting for Voice Input\n");
printf("Hit a key to escape\n");
get_input () ;

printf("\nName of captured sample: ");
scanf ("%s" ,samplename) ;

/*

37

NOT IMPLEMENTED.

Build feature list.

spec = build_spectrogram("");

Extract features.

patt = extract(spec);

store features in *.ftr

store_pattern(patt,samplename);

free(spec -> array);

free(spec);
free(patt) ;

*/

return(l);

38

graph.c

/*
graph.c

Graphing section.

*/

#include "start.h"

#include "graph.h"

#ifdef PC

int intograph()
{
int gdriver = VGA;

int gmode = VGAHI;

int errorcode;

initgraph(&gdriver,&gmode,"/tc/bgi");

errorcode = graphresult();

if (errorcode != grOk)

printf("Error: %s",grapherrormsg(errorcode));
return(O) ;

return(l);

void outofgraph()

closegraph();

int graph(spec,length,first,second)
struct spectrogram *spec;
unsigned int length;
int first;
int second;

int count;

int count2;

int temp;
int halfnp = NUMPOINTS/2;
unsigned long int sum = 0;

/* Find the average value */
for (count = O;count < length; count++)

sum = sum + spec -> array[count);

sum = (unsigned long int)sum/length;
if (first == 0)

first = sum * 5;
second = first * 1.2;

gotoxy(l,22);
printf("%d %d",first,second);

gotoxy(40,14);
printf ("Average: %d", sum) ;

/* Using a halfnp by length/halfnp two dim array */
for (count2 = 0;count2 < length/halfnp; count2++)
{
for (count = 0; count < halfnp;count++)

gotoxy(l,25);
printf("%14.4f is the num",spec -> array[count+count2*halfnp]);
temp = spec -> array[count+count2*halfnp];
if (temp> first)
putpixel((count2*2) % 640,halfnp*2-(count*2),WHITE);
if (temp> second)
putpixel((count2*2) % 640,halfnp*2-(count*2),LIGHTRED);

gotoxy(l,24);
printf("%u: on count = %u",count2*halfnp,count);

if (kbhit()) return(l);

return(l);

#endif

39

40

getinput.c

/*
getinput.c

Get the input from /dev/dsp and put it somewhere for the

rest of the program to find.

Remember to do something about the format of the sound sample!!
u-law needs to be converted to int if used on a Sun.

*/

#include "start.h"

#include "getinput.h"

/*
Grab a single sample.
*/

unsigned int get_single_sample(audioin)
FILE *audioin;

unsigned int tempnum1;
unsigned int tempnum2;
extern int SizeOfSample;

tempnum1 = fgetc(audioin);

if (SizeOfSample > 1)
{

tempnum2 = fgetc(audioin);
tempnum2 «= 8;

tempnum1 = tempnum1 I tempnum2;

return(tempnum1);

/*
Read a voice block in and write to a file of ints. NOT IMPLEMENTED.

*/
int read_block(audioin)
FILE *audioin;

return(l);

/*
Chop the excess dead space off each end of sample. NOT IMPLEMENTED.

*/
int chop_block()
{
return(l);

41

/*
Get input from /dev/dsp. May not be available. Might have to

use /dev/audio. Have to filter .au header and return byte
values. ??????????????

*/
int get_input()
{
int count = 0;

unsigned int samp;
extern int MaxCount;

extern int MedianOfSampRange;
extern int NoiseLevel;
FILE *audioin;

audioin = fopen ("/dev/audio" , "r") ;

if (audioin != NULL)

while((count < MaxCount) /*&& !kbhit()*/)
{

/*

Open a stream from /dev/dsp and check until a certain

level is reached MaxCount times. Then capture the puppy.

*/
samp = get_single_sample(audioin);
if (abs(samp - MedianOfSampRange) > NoiseLevel) count++;

if (count> MaxCount)

/* Read in sample for a while. */

read_block(audioin);
fclose(audioin);
/* Find the end of the sample and cut off excess. */
chop_block();
return(l);

else

printf("\nCould not open /dev/audio. Exiting.\n");
exi t (1) ;

return(O) ;

42

use.c

/*
use.c

Use the recognizer.
(as in real time)
*/

#include "start.h"

#include "use.h"

void use_recognizer()

struct pattern *patt;
struct pattern *bestchoice;
struct spectrogram *spec;

printf("Waiting for Voice Input\n");
printf("Hit a key to escape\n");
get_input () ;

/*
NOT IMPLEMENTED.

Build the spectrogram.
spec = build_spectrogram("");

Build the feature list

patt = extract(spec);

Send feature list to recognizer
bestchoice = recognize(patt);

Output result

free(spec -> array);

free(spec);
free (patt) ;

*/

43

caLibrat.c

/*
calibrat.c

Calibrate the recognizer. NOT IMPLEMENTED.

*/

#include "start.h"

#include "calibrat.h"

int calibrate_recognizer()

printf("Calibrate Menu\n");
printf("NOT IMPLEMENTED.\n");
return(O);

44

APPENDIX B

Source code for FFT from Dave Edelblute

bryfft.c

/*
** by: Dave Edelblute, edelblut@cod.nosc.mil, 05 Jan 1993
** Modified: R. Mayer to work with my benchmark routines.

*/

#include "bryfft.h"

#include "tables.h"

#ifndef PI

#define PI 3.14159265358979323846

#endif

double l_cos(double x)

int nurn;

num = (int) x/PI*180;
return(costable[num]);

double l_sin(double x)

int nurn;

num = (int) x/PI*180;
return(sintable[num]);

/*
A Duhamel-Hollman split-radix dif fft

Ref: Electronics Letters, Jan. 5, 1984

Complex input and output data in arrays x and y

Length is n.

*/

int fft(x, y, np)
double x[2];
double y[2];
int np

double *px,*py;
int i,j,k,m,n,iO,i1,i2,i3,is,id,n1,n2,n4
double a,e,a3,cc1,ssl,cc3,ss3,r1,r2,sl,s2,s3,xt

px = x-I;

py = y
- 1;

i 2;

In 1;

45

while (i < np)
i i+i;
m = m+l;

} ;

n = i;
if (n ! = np) I

for (i = np+l; i <= n; itt)
*(px + i) 0.0;
* (py + .i) = O. 0 ;

} ;

printf("\nuse %d point fft",n);

n2 = n+n;

for (k = 1; k <= m-l; k++) I
n2 n2 / 2;

n4 = n2 / 4 ;

e = 2.0 * PI / n2;

a = 0.0;
for (j = 1 ; j<= n4 j++) {

a3 3.0*a;

ccl 1_cos(a);
ssl 1_sin (a) ;

cc3 1_cos(a3) ;

ss3 1_sin(a3) ;

a = j*e;
is = j;
id = 2*n2;

while (is < n) {
for (iO = is; iO <= n-l; iO

il iO + n4;

i2 il + n4;

i3 i2 + n4;
rl *(px+iO) - *(px+i2);
*(px+iO) = *(px+iO) + *(px+i2);
r2 = *(px+il) - *(px+i3);
*(px+il) = *(px+il) + *(px+i3);
sl = *(py+iO) - *(py+i2);
*(py+iO) = *(py+iO) + *(py+i2);
s2 = *(py+il) - *(py+i3);
*(py+il) = *(py+il) + *(py+i3);

i 0 + id) I

s3 rl - s2;
rl rl + s2;

s2 r2 - sl;

r2 r2 + sl;

*(px+i2) rl*ccl - s2*ssl;

*(py+i2) -s2*ccl - rl*ssl;

*(px+i3)
*(py+i3)

s3*cc3 + r2*ss3;
r2*cc3 - s3*ss3;

is 2*id - n2 + j;
id 4*id;

/*
---------------------Last stage, length=2 butterfly--------------------
*/

is = 1;
id = 4;

while is < n) {
for (iO = is; iO <= n; iO

i1 = iO + 1;
r1 = *(px+iO);
*(px+iO) = r1 + *(px+i1);
*(px+i1) = r1 - *(px+i1);
r1 = *(py+iO);
*(py+iO) r1 + *(py+i1);
*(py+i1) = r1 - *(py+i1);

iO + id) {

is 2*id - 1;
id 4 * id;

/*
--------------------------Bit reverse counter

*/
j = 1;
n1 = n - 1;
for (i = 1; i <= n1; i++) {

if (i < j) {
xt = *(px+j);
* (px+ j) = * (px+ .i) ;

*(px+i) = xt;

xt = *(py+j);
*(py+j) * (py+ .i) ;

*(py+i) = xt;

k = n / 2;
while (k < j) {

j j - k;
k = k / 2;

j j + k;

/*
for (i = 1; i<=16; i++) printf("%d %g %gn" , i, * (px+ .i) , (py+ .i)) ;

*/

return(n);

46

tables.h

/*
tables.h

*/
double costable[] = {

1.000000000000000,0.999847695156391,0.999390827019097,0.998629534754576,
0.997564050259827,0.996194698091750,0.994521895368280,0.992546151641332,
0.990268068741583,0.987688340595153,0.984807753012227,0.981627183447687,
0.978147600733833,0.974370064785268,0.970295726276034,0.965925826289111,
0.961261695938368,0.956304755963091,0.951056516295215,0.945518575599386,
0.939692620785984,0.933580426497285,0.927183854566879,0.920504853452540,
0.913545457642709,0.906307787036767,0.898794046299294,0.891006524188504,
0.882947592859073,0.874619707139552,0.866025403784605,0.857167300702290,
0.848048096156614,0.838670567945624,0.829037572555253,0.819152044289215,
0.809016994375182,0.798635510047540,0.788010753606982,0.777145961457244,
0.766044443119264,0.754709580223071,0.743144825477706,0.731353701619496,
0.719339800338991,0.707106781186901,0.694658370459365,0.681998360062880,
0.669130606359255,0.656059028990918,0.642787609686965,0.629320391050278,
0.615661475326114,0.601815023152519,0.587785252292959,0.573576436351547,
0.559192903471263,0.544639035015558,0.529919264233751,0.515038074910616,
0.500000000000577,0.484809620246930,0.469471562786499,0.453990499740170,
0.438371146789716,0.422618261741354,0.406736643076470,0.390731128489959,
0.374606593416613,0.358367949546016,0.342020143326400,0.325568154457902,
0.309016994375708,0.292371704723512,0.275637355817790,0.258819045103326,
0.241921895600487,0.224951054344699,0.207911690818607,0.190808995377406,
0.173648177667806,0.156434465041120,0.139173100960968,0.121869343406063,
0.104528463268582,0.087155742748599,0.069756473745078,0.052335956243909,
0.034899496703478,0.017452406438272,0.000000000001000,-0.017452406436273,
-0.034899496701480,-0.052335956241912,-0.069756473743083,-0.087155742746607,
-0.104528463266593,-0.121869343404078,-0.139173100958987,-0.156434465039145,
-0.173648177665836,-0.190808995375443,-0.207911690816651,-0.224951054342750,
-0.241921895598547,-0.258819045101394,-0.275637355815867,-0.292371704721600,
-0.309016994373806,-0.325568154456012,-0.342020143324520,-0.358367949544149,
-0.374606593414758,-0.390731128488118,-0.406736643074643,-0.422618261739541,
-0.438371146787919,-0.453990499738389,-0.469471562784733,-0.484809620245181,
-0.499999999998845,-0.515038074908902,-0.529919264232055,-0.544639035013881,
-0.559192903469605,-0.573576436349908,-0.587785252291341,-0.601815023150921,
-0.615661475324538,-0.629320391048724,-0.642787609685433,-0.656059028989409,
-0.669130606357768,-0.681998360061418,-0.694658370457926,-0.707106781185487,
-0.719339800337601,-0.731353701618133,-0.743144825476368,-0.754709580221759,
-0.766044443117978,-0.777145961455985,-0.788010753605751,-0.798635510046337,
-0.809016994374007,-0.819152044288068,-0.829037572554134,-0.838670567944535,
-0.848048096155555,-0.857167300701260,-0.866025403783605,-0.874619707138583,
-0.882947592858134,-0.891006524187596,-0.898794046298417,-0.906307787035922,
-0.913545457641896,-0.920504853451759,-0.927183854566130,-0.933580426496569,
-0.939692620785300,-0.945518575598734,-0.951056516294597,-0.956304755962506,
-0.961261695937817,-0.965925826288594,-0.970295726275550,-0.974370064784818,
-0.978147600733418,-0.981627183447306,-0.984807753011880,-0.987688340594841,
-0.990268068741304,-0.992546151641088,-0.994521895368071,-0.996194698091576,
-0.997564050259688,-0.998629534754471,-0.999390827019027,-0.999847695156357,
-1.000000000000000,-0.999847695156426,-0.999390827019166,-0.998629534754680,
-0.997564050259967,-0.996194698091925,-0.994521895368489,-0.992546151641575,
-0.990268068741861,-0.987688340595466,-0.984807753012575,-0.981627183448069,

47

48

-0.978147600734249,-0.974370064785718,-0.970295726276518,-0.965925826289629,
-0.961261695938919,-0.956304755963675,-0.951056516295833,-0.945518575600037,
-0.939692620786668,-0.933580426498002,-0.927183854567628,-0.920504853453322,
-0.913545457643523,-0.906307787037613,-0.898794046300170,-0.891006524189412,
-0.882947592860012,-0.874619707140522,-0.866025403785605,-0.857167300703320,
-0.848048096157674,-0.838670567946713,-0.829037572556371,-0.819152044290362,
-0.809016994376358,-0.798635510048744,-0.788010753608213,-0.777145961458502,
-0.766044443120549,-0.754709580224383,-0.743144825479045,-0.731353701620860,
-0.719339800340380,-0.707106781188315,-0.694658370460803,-0.681998360064343,
-0.669130606360741,-0.656059028992427,-0.642787609688497,-0.629320391051832,
-0.615661475327689,-0.601815023154116,-0.587785252294576,-0.573576436353185,
-0.559192903472921,-0.544639035017236,-0.529919264235447,-0.515038074912330,
-0.500000000002309,-0.484809620248679,-0.469471562788265,-0.453990499741953,
-0.438371146791514,-0.422618261743166,-0.406736643078297,-0.390731128491800,
-0.374606593418467,-0.358367949547883,-0.342020143328279,-0.325568154459794,
-0.309016994377610,-0.292371704725425,-0.275637355819712,-0.258819045105257,
-0.241921895602427,-0.224951054346648,-0.207911690820563,-0.190808995379369,
-0.173648177669775,-0.156434465043095,-0.139173100962948,-0.121869343408047,
-0.104528463270571,-0.087155742750591,-0.069756473747073,-0.052335956245906,
-0.034899496705477,-0.017452406440272,-0.000000000003000,0.017452406434273,
0.034899496699481,0.052335956239915,0.069756473741089,0.087155742744614,
0.104528463264604,0.121869343402093,0.139173100957006,0.156434465037169,
0.173648177663867,0.190808995373481,0.207911690814694,0.224951054340801,
0.241921895596606,0.258819045099462,0.275637355813945,0.292371704719687,
0.309016994371905,0.325568154454120,0.342020143322641,0.358367949542282,
0.374606593412904,0.390731128486277,0.406736643072816,0.422618261737729,
0.438371146786121,0.453990499736607,0.469471562782968,0.484809620243431,
0.499999999997113,0.515038074907188,0.529919264230360,0.544639035012204,
0.559192903467947,0.573576436348270,0.587785252289722,0.601815023149324,
0.615661475322962,0.629320391047170,0.642787609683901,0.656059028987899,
0.669130606356282,0.681998360059955,0.694658370456488,0.707106781184073,
0.719339800336213,0.731353701616768,0.743144825475030,0.754709580220447,
0.766044443116693,0.777145961454726,0.788010753604519,0.798635510045133,
0.809016994372831,0.819152044286921,0.829037572553016,0.838670567943445,
0.848048096154495,0.857167300700230,0.866025403782606,0.874619707137613,
0.882947592857195,0.891006524186688,0.898794046297540,0.906307787035077,
0.913545457641083,0.920504853450978,0.927183854565381,0.933580426495852,
0.939692620784616,0.945518575598083,0.951056516293979,0.956304755961921,
0.961261695937266,0.965925826288076,0.970295726275066,0.974370064784368,
0.978147600733002,0.981627183446924,0.984807753011533,0.987688340594528,
0.990268068741026,0.992546151640844,0.994521895367862,0.996194698091402,
0.997564050259548,0.998629534754366,0.999390827018957,0.999847695156322};

double sintab1e [] = {

0.000000000000000,0.017452406437272,0.034899496702479,0.052335956242911,
0.069756473744081,0.087155742747603,0.104528463267587,0.121869343405070,
0.139173100959977,0.156434465040132,0.173648177666821,0.190808995376425,
0.207911690817629,0.224951054343724,0.241921895599517,0.258819045102360,
0.275637355816828,0.292371704722556,0.309016994374757,0.325568154456957,
0.342020143325460,0.358367949545082,0.374606593415685,0.390731128489039,
0.406736643075557,0.422618261740448,0.438371146788818,0.453990499739279,
0.469471562785616,0.484809620246055,0.499999999999711,0.515038074909759,
0.529919264232903,0.544639035014720,0.559192903470434,0.573576436350728,
0.587785252292150,0.601815023151720,0.615661475325326,0.629320391049501,

49

0.642787609686199,0.656059028990163,0.669130606358511,0.681998360062149,
0.694658370458646,0.707106781186194,0.719339800338296,0.731353701618814,
0.743144825477037,0.754709580222415,0.766044443118621,0.777145961456614,
0.788010753606366,0.798635510046938,0.809016994374595,0.819152044288641,
0.829037572554694,0.838670567945079,0.848048096156085,0.857167300701775,
0.866025403784105,0.874619707139067,0.882947592858604,0.891006524188050,
0.898794046298855,0.906307787036345,0.913545457642303,0.920504853452149,
0.927183854566504,0.933580426496927,0.939692620785642,0.945518575599060,
0.951056516294906,0.956304755962798,0.961261695938092,0.965925826288853,
0.970295726275792,0.974370064785043,0.978147600733625,0.981627183447496,
0.984807753012054,0.987688340594997,0.990268068741443,0.992546151641210,
0.994521895368176,0.996194698091663,0.997564050259758,0.998629534754523,
0.999390827019062,0.999847695156374,1.000000000000000,0.999847695156409,
0.999390827019131,0.998629534754628,0.997564050259897,0.996194698091838,
0.994521895368385,0.992546151641453,0.990268068741722,0.987688340595310,
0.984807753012401,0.981627183447878,0.978147600734041,0.974370064785493,
0.970295726276276,0.965925826289370,0.961261695938643,0.956304755963383,
0.951056516295524,0.945518575599711,0.939692620786326,0.933580426497644,
0.927183854567253,0.920504853452931,0.913545457643116,0.906307787037190,
0.898794046299732,0.891006524188958,0.882947592859542,0.874619707140037,
0.866025403785105,0.857167300702805,0.848048096157144,0.838670567946168,
0.829037572555812,0.819152044289788,0.809016994375770,0.798635510048142,
0.788010753607597,0.777145961457873,0.766044443119906,0.754709580223727,
0.743144825478376,0.731353701620178,0.719339800339685,0.707106781187608,
0.694658370460084,0.681998360063612,0.669130606359998,0.656059028991673,
0.642787609687731,0.629320391051055,0.615661475326901,0.601815023153317,
0.587785252293767,0.573576436352366,0.559192903472092,0.544639035016397,
0.529919264234600,0.515038074911473,0.500000000001443,0.484809620247804,
0.469471562787382,0.453990499741062,0.438371146790615,0.422618261742260,
0.406736643077383,0.390731128490879,0.374606593417539,0.358367949546950,
0.342020143327339,0.325568154458848,0.309016994376659,0.292371704724468,
0.275637355818751,0.258819045104291,0.241921895601457,0.224951054345673,
0.207911690819585,0.190808995378388,0.173648177668790,0.156434465042107,
0.139173100961958,0.121869343407055,0.104528463269576,0.087155742749595,
0.069756473746076,0.052335956244908,0.034899496704477,0.017452406439272,
0.000000000002000,-0.017452406435273,-0.034899496700480,-0.052335956240913,
-0.069756473742086,-0.087155742745611,-0.104528463265598,-0.121869343403085,
-0.139173100957997,-0.156434465038157,-0.173648177664851,-0.190808995374462,
-0.207911690815673,-0.224951054341776,-0.241921895597576,-0.258819045100428,
-0.275637355814906,-0.292371704720643,-0.309016994372855,-0.325568154455066,
-0.342020143323581,-0.358367949543215,-0.374606593413831,-0.390731128487198,
-0.406736643073730,-0.422618261738635,-0.438371146787020,-0.453990499737498,
-0.469471562783850,-0.484809620244306,-0.499999999997980,-0.515038074908045,
-0.529919264231208,-0.544639035013042,-0.559192903468776,-0.573576436349089,
-0.587785252290531,-0.601815023150123,-0.615661475323750,-0.629320391047947,
-0.642787609684667,-0.656059028988654,-0.669130606357025,-0.681998360060686,
-0.694658370457207,-0.707106781184780,-0.719339800336907,-0.731353701617450,
-0.743144825475699,-0.754709580221103,-0.766044443117335,-0.777145961455356,
-0.788010753605135,-0.798635510045735,-0.809016994373419,-0.819152044287494,
-0.829037572553575,-0.838670567943990,-0.848048096155025,-0.857167300700745,
-0.866025403783105,-0.874619707138098,-0.882947592857665,-0.891006524187142,
-0.898794046297979,-0.906307787035500,-0.913545457641489,-0.920504853451368,
-0.927183854565755,-0.933580426496210,-0.939692620784958,-0.945518575598409,
-0.951056516294288,-0.956304755962214,-0.961261695937541,-0.965925826288335,

50

-0.970295726275308,-0.974370064784593,-0.978147600733210,-0.981627183447115,
-0.984807753011707,-0.987688340594684,-0.990268068741165,-0.992546151640966,
-0.994521895367967, -0.996194698091489,-0.997564050259618,-0.998629534754419,
-0.999390827018992,-0.999847695156339,-1.000000000000000,-0.999847695156444,
-0.999390827019201,-0.998629534754733,-0.997564050260037,-0.996194698092012,
-0.994521895368594,-0.992546151641697,-0.990268068742000,-0.987688340595623,
-0.984807753012748,-0.981627183448260,-0.978147600734457,-0.974370064785943,
-0.970295726276760,-0.965925826289888,-0.961261695939195,-0.956304755963968,
-0.951056516296142,-0.945518575600362,-0.939692620787010,-0.933580426498360,
-0.927183854568003,-0.920504853453712,-0.913545457643929,-0.906307787038035,
-0.898794046300609,-0.891006524189866,-0.882947592860481,-0.874619707141007,
-0.866025403786105, -0.857167300703835,-0.848048096158204,-0.838670567947258,
-0.829037572556930,-0.819152044290935,-0.809016994376946,-0.798635510049346,
-0.788010753608829,-0.777145961459131,-0.766044443121192,-0.754709580225039,
-0.743144825479714, -0.731353701621542,-0.719339800341075,-0.707106781189022,
-0.694658370461523,-0.681998360065075,-0.669130606361484,-0.656059028993182,

-0.642787609689263,-0.629320391052609,-0.615661475328477,-0.601815023154914,
-0.587785252295386,-0.573576436354004,-0.559192903473749,-0.544639035018074,
-0.529919264236296,-0.515038074913187,-0.500000000003175,-0.484809620249554,

-0.469471562789148,-0.453990499742843,-0.438371146792413,-0.422618261744073,
-0.406736643079210,-0.390731128492720,-0.374606593419394,-0.358367949548817,
-0.342020143329218,-0.325568154460739,-0.309016994378561,-0.292371704726381,

-0.275637355820673,-0.258819045106223,-0.241921895603398,-0.224951054347621,
-0.207911690821542,-0.190808995380351,-0.173648177670760,-0.156434465044082,
-0.139173100963938,-0.121869343409040,-0.104528463271565,-0.087155742751588,

-0.069756473748071,-0.052335956246905,-0.034899496706476,-0.017452406441272};

51

APPENDIX C

Speech Waveforms

Zero

60 t\
I I

I \
40/

I

/
20 !
I

20 40

50

60

40

30

20

10

o

o 10 20 30 40 50

52

One

20 40 60

60

50

40

30

20

10

o

o 10 20 30 40 50 60

53

Two

10 20 30 40

10

60

50

40

30

20

o

o 10 20 30 40

54

Three

10 20 30 40

10

60

so

40

30

20

o

o 10 20 30 40

55

Four

20 40

50

60

40

30

20

10

o

o 10 20 30 40 50

56

Five

10 20 30

10

60

50

40

30

20

o

o 5 10 15 20 25 30

57

Six

20 40

30

60

50

40

20

10

o

o 10 20 30 40 50

58

Seven

60

50

40

30

20

10

o

o 10 20 30 40 50

59

Eight

10 20 30

30

60

50

40

20

10

o

o 5 10 15 20 25 :30

60

Nine

60

50

40

30

20

10

o

o 10 20 30 40 50

