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ABSTRACT

Deflection is often the dominant design criterion of a flexural

member. The theoretical methods commonly used to determine beam de

flections become extremely complex for irregular and combined loading

conditions. A finite element method is developed for determining the

deflection of a simple beam for a variety of loading conditions. The

results which are obtained by the method developed are compared with

results determined by theoretical methods, and high accuracy is

revealed. With relatively minor modification, the numerical method

developed could be expanded to consider other structural members, such

as cantilevers and beam-columns, or even simple frames and trusses.

This potential for development, along with the present capability to

consider successive beam cross sections quickly and accurately provide

this method with flexibility and efficiency unmatched by standard

theoretical methods.
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1. Introduction

1.1 Background

In the design of a beam, the deflection can be a major factor.

Depending on the intended use of the beam, construction codes commonly

limit the deflection to a fraction of the span length. For example,

the American Institute of Steel Construction CAISC) permits a maximum

deflection of 1/360 of the span length for beams and girders supporting

plastered ceilings, and the American Association of State Highway and

Traffic Officials CAASHTO) recommends a maximum deflection of 1/1000 of

the span length, for bridges and in urban areas. In such cases, the

determination of the deflection becomes paramount to the structural

design in addition to the stress analysis.

1.2 Purpose of Research

Solving the differential equations, obtained from classical beam

theory, for deflection can be very involved when the applied loadings

are complex. Several other methods such as moment area, conjugate

beam, and virtual work can also be used to compute the deflection.

However, solution by any of these methods is manageable for simple

loading conditions, but becomes increasingly difficult with the combin

ation of two or more types of loading conditions. Hence, an

alternative method for determining the deflection under any given
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loading is needed. With the advent of the computer, a numerical method

appears to be very efficient for the deflection problem.

The purpose of this research is to develop a finite element method

for the determination of the deflection in a beam under a variety of

loading conditions. The computed deflections and slopes determined by

this method are compared with those from other methods. Furthermore,

because of the shape functions, the deflection curve can be displayed

on the computer terminal. Thus, the location where maximum deflection

occurs can be easily identified. Any excess deflection can be cor

rected immediately through the selection of a new cross section. The

development of this method bears in mind the effects of boundary

conditions, moments of inertia, span length, elastic properties, and

loading conditions on the deflections of a simple beam.

1.3 Intended Audience

This report is directed to the reader who has a basic under

standing of engineering mechanics. For those who are unfamiliar with

the classical beam theory, the governing differential equations are

derived in br�f. The developed finite element method is presented in

step form.
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2.Classical Beam Theory

2.1 Derivation

In this section the classical relationship between bending moments

and the deflection is derived. This is intended as a brief introduc-

tion to classical beam theory. More detailed derivations are available

in most textbooks on the strengths of materials. The governing

assumptions are as follows:

(1) Plane sections of the beam, originally plane, remain

plane.
(2) The material in the beam is homogenous and elastic.
(3) The moduli of elasticity for tension and compression are

equal.
(4) The beam is originally straight and of constant cross

section.
(5) The plane of loading must contain a principal axis of the

beam's cross section and the loads must be perpendicular
to the longitudinal axis of the beam.

Consider the following beam:

A c..

p

j
I I
B D

Figure 1: Classical Beam
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When the load is applied, the beam bends downward causing sections

A-B and C-D to rotate, relative to each other, by the amount dfr as

shown in Fig. 2.

Figure 2: Deflected Beam for

Classical Theory

The top fiber (AC) shortens and the bottom fiber (BC) lengthens,

while somewhere in between there exists a fiber whose length does not

change. The line connecting this fiber, (EF), is defined as the

neutral axis. The strain of the arbitrary section (GH) can therefore

be expressed as:

(EQ 2. 1 ) e = yde
ef

= yde- = 1.
rdt1 r

And by Hooke's Law, the stress is:

(EQ 2.2) s = Ee = El_
r

The bending moment must be balanced by a resistive moment.

(EQ 2.3) H =jY(Sxda)
Therefore, through substitution EQ 2.2 becomes:

(EQ 2. 4 ) M = I � 2d a = E I

rYY r



Since the resulting deflection curve is very flat, its slope is

very small and can be neglected. Thus, the curvature can be expressed

in terms of the second derivative of the deflection, that is:

(EQ 2.5)
2 2

d y/dx

[1+(dy/dx)2]3/2
2

d Y

2
dx:

1

r

On substituting EQ 2.5 into EQ 2.4 one has:

(EQ 2.6) EI f..f = M
dx

This is the basic relation between applied bending moment and the

flexure induced.

2.2 Governing Equations for Different Loadings

2.2.1 Concentrated Loading Conditions

For concentrated loadings the resulting moments must be found

before EQ 2.6 can be solved. For example:

(a) Load Diagram

(b) Moment Diagram

Figure 3: Concentrated Load for
Classical Theory

5
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Therefore, if the deflection is desired at some arbitrary point C,

which is a distance x from the left end of the beam, the moment at that

point must first be determined. Then EQ 2.6 can be solved for Y

through double integration.

2.2.2 Distributed Loading Conditions

For distributed loading conditions, again the resulting moment

must be determined before equation (2.6) is applied. For irregular

loading conditions, however, the problem grows more complex. The

governing equation becomes the fourth order ordinary differential

equation:

(EQ 2.7) EI � = p(x)
dx

where: P(X) = Load Function
EI = Flex. Rigidity
y = Deflection
x = Distance along

the beam

Therefore, to obtain the deflection at any point, the above

equation must be solved for y through four integrations.

2.2.3 Moment Loading Conditions

For moments applied directly to the beam, EQ 2.6 can be used with

relative ease. Again, the resultant moment, which occurs at the

arbitrary distance x, must first be determined.
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r IX.

�
M

Df I
.�\ (a) Load Diagram K �-I<Z I

(b) Moment Diagram

Figure 4: Moment Load for
Classical Theory

The deflection y, for the given location, can then be found

through double integration of EQ (2.6).

2.2.4 Combined Loading Conditions

When a combination of these loading conditions (i.e. concentrated

load, distributed load, and moment) is applied to a simple beam, the

solution is often obtained by the method of superposition. In this

method the deflection curve due to each loading condition is computed

separately according to the applicable governing equation, and then the

curves are added to obtain the resultant deflection curve for the

combined loading condition.



3. Finite Element Method of Solution

3.1 Introduction

The formulation of the Finite Element method describing a simple

beam in flexure consists of the following seven steps:

(1) Discretization of the beam.

(2) Approximation of the deflection curve.

(3) Derivation of strain-displacement-stress relationships.

(4 ) Determination of element equations.

(5) Determination of the global equation.

(7) Determination of maximum strain and stress.

It should be noted that the assumptions for classical beam theory

previously stated are observed. In the sections which follow, the

steps above will be explained in greater detail.

3.2 Discretization of the Beam

The actual three dimensional beam is modeled by a one dimensional

idealized beam. This idealized beam is then discretized into several

line elements, as shown below in Fig. 5.

8
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.1;;; J�
(a)

f r
(b)

• • • ••

(c)

Figure 5: Discretized Beam

Notice that the element lengths need not be uniform. This allows

greater flexibility in the placement of the nodal points. The local

coordinate system for any element is shown below in Fig. 6.

I -z.

:1� �--------O-����===------O-
. 1 �

I� �
x·:: '" - '/..1

L.

Figure 6: Random Element

9
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3.3 Approximation of the Deflection Curve

Due to the properties of the material and the other assumptions of

classical beam theory, the deflection curve must be smooth and contin-

uous. Consider the loaded beam in Fig. 7(a). After loading, the beam

will tend to bend downward as shown in Fig. 7(b).

p

• • J e

t t
I<.

(a)
�

--=-
-

(b)

1

(c)

Figure 7: Deflected Beam for Finite
Element Method

To ensure the continuity of the deflection curve, the adjacent

nodes of neighboring elements must have the same slope and deflection

as shown in Fig. 7(c). The deflection curve for any element can be

approximated by shape functions in terms of nodal values.
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Accordingly,

(EQ 3.3. 1)

vl(x) = [N] {q}

Where the Ni functions are known as Hermitian functions, which are:

Nl = 1 - 3 (S)2 + 2( S)3

N2 = L(S)(1 - 2(S) + <]- )

N3 = -t (3-2 (S) )

N4 = L( S)2 (S-1)

where: S = (x xi) (local coordinate)
L

in which:
x = global coordinates of any point
xi = global coordinate of node ( i )
L = length of element

This particular interpolation approximation model for deflection

W(x) in local element coordinates, is quite adequate for the purposes

of this research.

3.4 Derivation of Strain-Displacement and Strain-Stress

Relationships

As shown previously, the strain-displacement relationship for any

random point in the beam is:

(EQ 3.4.1) c(x,y) = dv = -yd W = -y WI!
dx dx

where: v = axial displacement
y = vertical distance from neutral axis
W = deflection of beam



The EQ 3.3.1 is differentiated twice to obtain:

(EQ 3.4.2)

W" ( x ) = 1 d [ N]
L dS

\..J" ( x ) = L [B] { q }

where [B] = transformation matrix whose
coefficients are obtained

through differentiation.

3.5 Determination of Element Equations

The principle of minimum potential energy is used to derive the

element equations. The potential energy for any beam element

experiencing distributed, concentrated, and moment loading conditions,

is expressed as:

(EQ 3.5. 1 )

II = 1�;. 5)F(,/") 2

1

Since dII

;;
x2 k h

- pW dx - l. p. W - [. M.W'
.

-1
1

'-1 J1- J-Xl
= 0, differentiation of EQ 3.5.1 yeilds:

dq

(EQ 3.5.2) [k] {q} = {Q}

I k l = FLJ1[BlT[Bl dS (local stiffness)

{Q} = L JrN]T peS) dS +LPi [N(Si)]T
+ 8Mj [n(S�]T

by linear interpolation of nodal load intensities

where:

and peS) is found

(i.e.).

pes) = (1-S)Pi + (S)Pi+1

It should be noted that EQ 3.5.3 allows for several applications

of moment or concentrated loadings per element. For example, the

following element configuration could easily be analyzed.

12
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Figure 8: Arbitrary Element (i)

3.6 Determination of Global Equations

Similarly, for the global coordinate system, the deflection is

related to the applied load and the internal stiffness of the beam by:

(EQ 3.6.1) [K] {q} = {Q}

where: [K] = global stiffness matrix (square)

{q} = global displacement matrix (column)

{Q} = global load matrix (column)

The global stiffness and load matrices are determined by super

imposing the local stiffness matrices. However, care must be taken to

ensure interelement compatibility.
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3.7 Determination of Deflection

After the global stiffness and global load matrices have been

found then the global displacements may be determined. One of the most

common methods for the solution of a linear equation is matrix inver

sion.

(EQ 3. 7 • 1 ) {q} = [Kf
1
{Q}

The Gauss-Jordan elimination method can be used to invert the

global stiffness matrix. Then the displacement matrix {q} can be found

directly. The boundary conditions for a particular beam configuration

may limit the translation or rotation at the ends, thereby reducing the

number of unknowns and simplifying the governing equations. Hence, a

considerable amount of computer time and memory can be saved if the

given boundary conditions are imposed before the matrix inversion.

3.8 Determination of Strain and Stress

Once the slopes and deflections at the nodal points are known,

then the Hermitian functions can be used to approximate the slopes and

deflections at several points between the nodes, as discussed in

section 3.3. Using this method, one can easily determine the location

of the maximum deflection in each element. Once the location and

magnitude of the maximum deflection is known, EQ 3.4.1 and EQ 2.2 may

be used to determine the strain and stress at that point. Therefore,

by utilizing this method, the maximum deflection, strain, and stress
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for the beam considered can be determined for any loading condition.

4. Results and Discussions

4.1 Loading Conditions

The following general types of loads were considered:

1. Distributed
2. Concentrated

3. Moment

As mentioned previously, for simple loadings the solution can be

obtained with little difficulty using ordinary methods. But as the

loading condition grows more complex, the advantage of numerical method

becomes more evident. This section will discuss several particular

loads and their combined as well as their individually induced

deflections.

4.1.1 Distributed Loading

In the design of a structure, beams must commonly support distri-

buted loads. For example, the dead weight of a concrete slab, roofing

material, or machinery is not unusual. A uniformly distributed load of

small magnitude, as shown in Fig. 9, can result in a relatively large

deflection.
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F////;/
�, �z

Figure 9: Uniformly Distributed Load

The distributed load for which the deflection curve was evaluated

is shown in Fig. 10. The beam's dimensions and properties are also

noted. The deflection curve which was obtained using the maximum

possible number of points, is shown in Fig. 11. The maximum stress,

along with its location on the beam, are also given with the computed

curve. IOK
L=ZO"'"
E z; Z9 � tOO PSl
I:; O�05Z Ft4

Figure 10: Distributed Load Considered

These results compare favorably with those obtained by other

methods. The relative difference is only 0.26 percent, which can be

explained by rounding errors commonly incurred during the manual

calculations associated with theoretical solutions.
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4.1.2 Concentrated Loading

Frequently a structure is designed such that the secondary

members, which support the floor, are supported by primary members,

such as the girders illustrated in Fig. 12.

�--�----�----u

(a)

PI

A

(b)

Figure 12: Beams Supported By Girders

Therefore, this concentrated loading condition was selected for

analysis. The actual beam and loads used are given in Fig. 13. The

resulting deflection is plotted in Fig. 14.

8'

Figure 13: Concentrated Loading Considered
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These results are very encouraging. The relative difference

between the theoretical and numerical methods for computing maximum

deflections was 0.10 percent.

4.1.3 Moment Loadings

The magnitude and direction of the applied moment was chosen

arbitrarily. The selected moment and beam configuration is shown in

Fig. 15, and the resulting deflection is shown in Fig. 16.

L= GO FL
t.. = Z� x JOb P5'I

I=-O .052 H.4

Figure 15: Moment Loading Considered

The relative difference between the results obtained using each of

these methods was less than 0.84 percent. This is exceptional,

considering the variations of the theoretical and finite element

methods.
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4.1.4 Combined Loadings

One of the most advantageous features of the numerical method

which was developed during this researchX'is its ability to consider

multiple loading conditions. The program developed is designed to

accomodate a maximum of 10 elements, each with a maximum of 100 coneen-

trated loads� and 100 applied moments. In addition, a coincident

irregularly distributed load can also be applied. Fig. 17 indicates

the flexibility of the method developed.

Figure 17: A Possible Combination of

Loads and Moments

The principles used to evaluate simple loading conditions are the

same for complex loading conditions. It is reasonable to assume that

if numerical methods provide reliable results for simpler cases, then

it should also comply for the maximum in complexity for which it was

designed. See Appendix I.

The previous problems illustrated the reliability of the numerical

method developed for each individual loading condition. Now, consider
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these three separate loading conditions applied simultaneously to the

same beam as shown in Fig. 18. The resulting deflection is plotted in

Fig. 19.

lDK

Figure 18: Combined Loadings Considered

From a brief inspection of Fig. 19, it can be seen that the

deflection curve for the combined loadings is roughly equal to the

summation of the deflection curves for each of the individual loading

conditions. Comparison with theoretical methods reveals an extremly

high accuracy in the deflection values, (less than 0.40 percent).

Therefore, the numerical method developed provides reliable results for

independent as well as combined loadings.

4.2 Effects of Various Functions on Accuracy

The major factors which influence the accuracy results are:

1. Load Approximation
2. Shape Functions

3. Beam Discretization

The effect on each of these and the particular application

selected will be discussed in this section. For more detail about the

actual functions the reader is referred to section 3.
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4.2.1 Load Approximation

In order to consider irregularly distributed loading functions,

some general method of approximation is required. In the method

developed, a linear approximation was used to describe the load

function between nodal points as illustrated in Fig. 20.

(a)

(b)

Figure 20: Linear Approximation
of Load Function

Although higher order polynomial approximations are available,

they are not always necessary. For this research, the accuracy

obtained using linear interpolation was sufficient, when the maximum

number of nodal points were considered.

4.2.2 Shape Functions

Frequently, the maximum deflection may occur between nodal points.

Shape functions, such as those given in section 3.3, can be used to
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generate the deflection at any point on an element, but their accuracy

is very dependent on the accuracy of the nodal values of that element.

In the method developed, the shape functions were used to determine the

deflection at 10 points per element. Consequently, a very smooth

deflected curve is obtained when plotted. This allows the maximum

deflection and point of occurence, to be read directly from the curve

whether it was plotted on paper or a computer terminal.

4.2.3 Beam Discretization

The size of the element considered affects the deflection

directly, as described by element equations section 3.5, and

indirectly, through load approximation and shape functions. By discre

tizing the beam into more elements of smaller lengths, the accuracy of

the results can be improved. Hence, the highest accuracy is one

obtained using the maximum possible nodal points.

5. Concluding Remarks

5.1 Summary of Results

As demonstrated by the results, the method developed is a viable

alternative method for determination of the deflection of a simple beam

for various loading conditions. The accuracy of the results obtained

was quite acceptable for engineering analysis, and the ease with which

several beam cross sections could be compared should prove invaluable

to the overall design process.
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5.2 Further Development

In this research, however, there is a potential for additional

development. The method developed was designed so that it could be

modified to consider more complex beams. For example, by increasing

the types of boundary conditions which can be imposed, a fixed-end

condition can be placed on the beam and axial loads can be considered.

And, by defining the nodal coordinates in two or three dimensions, a

simple frame or truss can be analyzed. In this manner, the capabil

ities of the method developed in this research can be dramatically

increased without affecting its' basic structure.
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APPENDIX I

The computer program developed is written in FORTRAN, however, to

use it no knowledge of computer programming is needed. It was designed

and tested using the PRIME 550 computer system at Texas A&M University

at Galveston. The following data must be supplied:

Moment of Inertia
Modulus of Elasticity
Beam Length
Number of Elements
Coordinates of Nodes

Magnitude and Placement of Loads

Any system of units can be used, as long as consistency is

maintained throughout the data. For example, if the nodal coordinates

are in feet, then the moment of inertia must also be in feet. The

maximum number of elements which can be evaluated by this program is

10. This program is applicable only for simple beams. A copy of the

FORTRAN code can be found in APPENDIX II.
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APPENDIX II
FORTRAN FOR BEAM DEFLECTION BY F.E.M.

C SIMPLE BEAM DEFLECTION BY FEM

C********************************************************
C MAIN PROGRAM
C VALID ONLY IF 10 ELEMENTS OR LESS CONSIDERED
C********************************************************

DIMENSION S(10,4,4),GS(22,22),XI(10),Q(10,4),P(11),F(10),
*GQ(22),X(10),C(20,20),GP(20),D(22),PC(10,100),AM(10,22),
*PX( 10, 100) ,SX( 10, 100) ,DX( 11) ,NPEL( 10) ,NMEL( 10) ,QII( 10,4),
*QIII(10,4),AMX(10,100),SMX(10,100),XCOORDC11),XSX(10,10),
*XINTER( 10) ,wc 10, 10) ,XS( 10, 10) ,D2( 101) ,ASX( 101)

DATA S,GS,XI,Q,P,F,GQ,X,GP,D,C,PC,AM/160*0,484*O,10*O,40*O,11*0,
*10*0,22*0,10*0,20*0,22*0,400*0,1000*0,220*01
DATA SX,PX,DX,NPEL,NMEL/1000*0,1000*O,11*0,10*O,10*01
DATA QII,QIII,AMX,SMX,XCOORD/40*0,40*0,1000*O,1000*0,11*01
DATA XSX,XINTER,W,XS,ASX,D2/100*0,10*O,100*0,100*0,101*O,101*01

GRW=O.O
SG=O.O

NELJG=O
NELGW=O

DO 5 1=1,20
DO 4 J=1,20
C(I,J)=O.OO

4 CONTINUE
5 CONTINUE

WRITE( 1,100)
10 WRITE(1,105)

READ(1,*)IA
IF(IA.NE.O)GO TO 20
CALL EXIT

20 WRITE(1,107)
WRITE( 1,110)
READ(1,*)NEL
IF(NEL.GT.10) GO TO 250
N3=NEL+1
WRITE(1,120)
NCORD=NEL+1
DO 30 I=2,NCORD
READ(1,*)XCOORD(I)
J=J-1

X(J)=XCOORD(I)-XCOORD(J)
DX(I)=XCOORD(I)
DA=DX(I )
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30 CONTINUE

47 WRITE(1,127)
READ(1,*)IAL
IF(IAL.EQ.1)GO TO 48
IF(IAL.EQ.O)GO TO 60

GO TO 47
48 WRITE(1,129)

READ(1,*)ITYPE
IF(ITYPE.EQ.1)GO TO 50
IF(ITYPE.EQ.2)GO TO 54
IF(ITYPE.EQ.3)GO TO 50

50 WRITE(1,130)
READ(1,*)IC
IF(IC.EQ.1) GO TO 52
IF(IC.EQ.O) GO TO 51

GO TO 50
51 WRITE ( 1 , 136)

READ ( 1 ,
* ) (P CI ) , 1=1 , N 3 )

GO TO 65
52 WRITE(1,135)

READ(1,*)P1
DO 65 I=1,N3
P(I)=P1

65 CONTINUE

IF(ITYPE.EQ.1)GO TO 60
54 DO 58 I=1,NEL

WRITE(1,137)I
READ(1,*)NP
NPELCI) =NP
IF(NPEL(I).EQ.O)GO TO 58
WRITE(1,138)I
DO 56 J=1,NP
READ(1,*)PC(I,J),PX(I,J)
SX(I,J)=(PX(I,J)-DX(I»/X(I)

56 CONTINUE
58 CONTINUE
60 WRITE(1,133)

READ(1,*)IQM
IF(IQM.EQ.1)GO TO 62
IF(IQM.EQ.O)GO TO go
GO TO 60

62 DO 66 I=1,NEL
WRITE(1,139)I
READ(1,*)NM
NMEL( 1) =NM
IF(NMEL(I).EQ.O)GO TO 66
�'lRITE( 1,143)
DO 64 J=1,NM
READ(1,*)AM(I,J),AMX(I,J)
SMX(I,J)=(AMX(I,J)-DX(I»/X(I)

64 CONTINUE
66 CONTINUE
90 WRITE(1,145)

READ(1,*)E
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198 WRITE(1,147)
READ(1,*)AI
IF(AI.EQ.1.0) GO TO 199
IF(AI.EQ.2.0) GO TO 200

GO TO 198
199 WRITE(1,149)

READ(1,*) XT

GO TO 212
200 WRITE(1,150)

READ( 1 , *)IE
IF(IE.EQ.1)GO TO 210

IF(IE.EQ.O)GO TO 220
GO TO 200

210 WRITE(1,155)
READ(1,*)X2,Y2
XT=(X2*Y2**3)/12

212 DO 215 J=1,NEL
XI( J) =XI

215 CONTINUE
GO TO 230

220 WRITE(1,156)
DO 225 J=1,NEL

READ(1,*)X2,Y2
XI(J)=(X2*Y2**3)/12

225 CONTINUE

230 DO 240 J=1,NEL
F(J)=E*XI(J)

240 CONTINUE

WRITE(1,185)
WRITE(1,201)XT
WRITE(1,202)E,DA
WRITE(1,2003)NEL
WRITE(1,205)
DO 245 I=1,NCORD
WRITE (1,207)XCOORD(I)

245 CONTINUE

VJRITE(1,208)
DO 242 J=1,NEL
IPNEL=NPEL(J)
IF(IPNEL.EQ.O)GO TO 242

DO 242 I=1,IPNEL
WRITE(1,209)PC(J,I),PX(J,I)

242 CONTINUE
DO 247 J=1,NEL
MNEL=NMEL(J)
IF(MNEL.EQ.O)GO TO 247
DO 247 I=1,MNEL
WRITE(1,211)AM(J,I),AMX(J,I)

247 CONTINUE

WRITE(1,203)P1
GO TO 300

250 WRITE(1,160)
GO TO 10

300 DO 500 I=1,NEL



CALL STIFF(I,X,S,F)
500 CONTINUE
600 DO 650 I=l,NEL

CALL LOAD(I,X,P,NMEL,NPEL,SX,SMX,PC,AM,QII,QIII,Q)
650 CONTINUE

700 CALL DIAGS(NEL,S,GS,C)
800 CALL DIAGQ(NEL,Q,GQ,GP)

N=NEL*2
900 CALL INVDET(C,N)
1000 CALL DEFLEC(C,GP,N,D)

WRITE(1,165)
NA=N+2

WRITE(1,170)(D(I),I=1,NA)
WRITE(1,185)
vVRITE( 1,1015)
READ(l,*)ISHAPE
IF(ISHAPE.EQ.O) CALL EXIT

DO 3333 I=l,NEL
XINTER(I) = X(I)/l0.0

DO 3777 J=2,10
NJ=J-l

XSX(I,J)= XSX(I,NJ) +XINTER(I)
XS(I,J)=XSX(I,J)/X(I)

3777 CONTINUE

3333 CONTINUE
CALL SHAPE(NEL,D,X,XS,W,GRW,NELGW,NELJG,XSI)

WRITE(1,1025)NELGW,GRW
K=l

DO 4000 I=l,NEL
DO 3999 J=1,10

C WRITE(8,1050)XSX(I,J)
C WRITE(9,1050)W(I,J)

ASX(K)=XSX(I,J)+DX(I)
D2(K)=W(I,J)
K=K+l

3999 CONTINUE
4000 CONTINUE

ASX(K)=DX(NEL+l)
DO 5000 I=l,K
WRITE(5,1050)ASX(I)
WRITE(6,1050)D2(I)

5000 CONTINUE

WRITE(7,1060)XSI,NELJG
J=NELGW
PLACE = XSI*X(J) + DX(J)

CALL STRAIN(J,X,XS,XSI,D,NELJG,SG)
STRESS=E*SG

WRITE(1,1030) SG,STRESS,PLACE
CALL EXIT

C ****************************

C ** FORMAT STATEMENTS *******

C ****************************

100 FORMAT(2X, 'THIS PROGRAM DETERMINES THE DEFLECTION OF ',I,
*'A SIMPLY SUPPORTED BEAM BY FINITE ELEMENT ANALYSIS' ,I,
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*'IT SHOULD BE NOTED THAT THIS PROGRAM IS ONLY VALID FOR',I,
*'10 ELEMENTS OR LESS')

105 FORMAT(2X, 'DO YOU WISH TO CONTINUE? (1=YES,0=NO)')
107 FORMAT(2X,'PLEASE ENTER THE FOLLOWING DATA----')
110 FORMAT(2X,'HOW MANY ELEMENTS ARE TO BE CONSIDERED?')
120 FORMAT(2X,'PLEASE ENTER THE COORDINATE OF' ,I

*'EACH NODE (FROM LEFT TO RIGHT)')
127 FORMAT(2X,'ARE ANY LOADS APPLIED?',

*'(1=YES,0=NO)')
129 FORMAT(2X,'ARE THEY DISTRIBUTED OR CONCENTRATED?',

*,1,15X,'1=DISTRIBUTED',1,15X,'2=CONCENTRATED',1,15X,'3=BOTH')
130 FORMAT(2X,'IS THE DISTRIBUTED LOAD CONSTANT OVER THE BEAM?',I,

*'1=YES,0=NO')
133 FORMAT(2X,'ARE ANY MOMENTS APPLIED TO THE BEAM?',I,'1=YES,0=NO')
135 FORMAT(2X,'PLEASE ENTER THE UNIFORM LOAD')
136 FORMAT(2X,'PLEASE ENTER THE UNIFORM LOAD APPLIED A EACH NODE--'

*,1,2X,'FROM LEFT TO RIGHT--')
137 FORMAT(2X,'HOW MANY CONCENTRATED LOADS ARE APPLIED IN ELEMENT'

*,12,' ?')
138 FORMAT(2X,'PLEASE ENTER EACH CONCENTRATED LOAD APPLIED'

*'IN ELEMENT NUMBER ',12,1, 'AND THE "

*'DISTANCE OF EACH FROM THE LEFT END OF THE BEAM')
139 FORMAT(2X,'HOW MANY MOMENTS ARE APPLIED IN ELEMENT ',12,' ?')
143 FORMAT(2X,'PLEASE ENTER EACH APPLIED MOMENT "

*'AND THE DISTANCE OF EACH FROM THE LEFT END')
145 FORMAT(2X,'PLEASE ENTER THE MODULUS OF ELASTICITY'

*,I,'EE6')
147 FORMAT(2X,'WHICH DO YOU WISH TO ENTER?',1,15X,'1=MOMENT OF',

*, INERTIA' ,1,15X,'2=RECTANGULAR DIMENSIONS OF X-SECTION')
149 FORMAT(2X,'PLEASE ENTER THE MOMENT OF INERTIA')
150 FORMAT(2X,'IS THE CROSSECTION OF THE BEAM CONSTANT FOR EACH',I,

*'ELEMENT?' ,1,2X,'(1=YES,0=NO)')
155 FORMAT(2X,'PLEASE ENTER THE X (HORIZ) AND Y (VERT) DIMENSIONS')
156 FORMAT(2X,'PLEASE ENTER THE X (HORIZ) AND Y (VERT) DIMENSIONS',I,

*'FOR EACH ELEMENT' ,1,'X1= ,Y1=',I,'etc')
157 FORMAT(F3.0,X,F3.0)
160 FORMAT(2X,'I"M SORRY,BUT THIS PROGRAM CAN ONLY HANDLE A',I,

*'MAXIMUM OF 10 ELEMENTS')
165 FORMAT(2X, 'THE DEFLECTION AND SLOPE AT EACH NODAL POINT',I,

*'LISTED BELOW IN DESCENDING ORDER (I=1,NUMBER OF ELEMENTS)')
170 FORMAT('W=',F10.4,5X,'SLOPE =',F10.4,)
185 FORMAT(II'*********************************************',/)
201 FORMAT(2X,'THE FOLLOWING IS A LIST OF THE INPUT DATA' ,I,

*'*********************************************',11,
*T5,'BEAM CHARACTERISTICS' ,1,T10,'MOMENT OF INERTIA',
*T50,F5.3)

202 FORMAT(T10, 'MODULUS OF ELASTICITY',T50,E10.4,1
*T10,'LENGTH OF BEAM' ,T50,F4.1)

2003 FORMAT(T10,'NUMBER OF ELEMENTS' ,T50,I2)
205 FORMAT(T10, 'COORDINATES OF NODAL POINTS ARE')
207 FORMAT(T50,F5.2)
208 FORMAT(T5, 'LOADING CONDITIONS')

209 FORMAT(T10, 'CONCENTRATED LOAD',
*T48,F7.1,I,T15,'POINT APPLIED' ,T50,F5.1,1,/)



211 FORMAT(T10,'MOMENT MAGNITUDE',T48,F7.1,I,T15,'POINT APPLIED',
*T50,F5.1,1,/)

203 FORMAT(T10,'THE DISTRIBUTED LOAD IS' ,T50,F5.1)
1015 FORMAT(2X, 'DO YOU WISH TO GENERATE MORE DEFLECTIONS',I,

*'USING SHAPE FUNCTIONS? (O=NO)')
1025 FORMAT(2X,'THE MAXIMUM DEFLECTION OCCURS IN ELEMENT ',12,1,

*'AND IT"S MAGNITUDE IS' ,5X,E12.6)
1030 FORMAT(T10,'MAXIMUM STRAIN IS' ,T50,E12.6,1,

*T10,'MAXIMUM STRESS IS',T50,E12.6,1,I,T5,'THE DISTANCE FROM "

*'FROM THE LEFT END OF THE BEAM' ,I,'TO THE POINT OF MAXIMUM',
*, STRESS IS',T50,F12.6)

1050 FORMAT(X,F12.6)
1060 FORMAT(F3.0,I4)

END

C ******************************

C LOCAL STIFF MATRIX
C ******************************

SUBROUTINE STIFF(I,X,S,F)
DIMENSION X(10),F(10),S(10,4,4)
A=F(I)/X(I)**3
B=X(I)**2

S(I,1,1)=12.
S (I, 1 ,2) = 6. *X (I )
S(I,1,3)=-12.
S(I,1,4)=6. *X(I)
S(I,2,2)=4. *B

S(I,2,3)=-6. *X(I)
S(I,2,10=2.*B
S(I,3,3)=12.
S(I,3,4)=-6.*X(I)
S(I,4,4)=4.*B

DO 10 K= 1 ,4
DO 9 J= 1 , K

S(I,J,K)=S(I,J,K)*A
S(I,K,J)=S(I,J,K)

9 CONTINUE
10 CONTINUE

RETURN
END

C ********************

C ** LOAD MATRIX *****

C ** SUBROUTINE *****

C ********************

SUBROUTINE LOAD(I,X,P,NMEL,NPEL,SX,SMX,PC,AM,QII,QIII,Q)
DIMENSION NMEL(10),NPEL(10),SX(10,100),PC(10,100),AM(10,22),
*X(10),Q(10,4),Q2(10,20,4),Q3(10,20,4),
*Q1(10,4),P(11),QII(10,4),QIII(10,4),SMX(10,100)
B=X(I)I3.
A=X(I)/20.
BI=1./X(I)
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NI=I+1
NPL=NPEL(I )
W1L=NMEL( I)

Q1(I,1)=(P(I)*7.+P(NI)*3.)*A
Q1(I,2)=(B*(P(I)*3. + P(NI)*2.»*A
Q1(I,3)=(P(I)*3. + P(NI)*7.)*A
Q1(I,4)=(-B*(P(I)*2. + P(NI)*3.»*A

DO 5 J=1,NPL

Q2(I,J,1)=(1-3.*SX(I,J)**2 +2.*SX(I,J)**3)*PC(I,J)
Q2(I,J,2)=«X(I)*SX(I,J)**2)*(1.-2.*SX(I,J)+SX(I,J)**2»*PC(I,J)
Q2(I,J,3)=SX(I,J)**2*(3.-2.*SX(I,J»*PC(I,J)
Q2(I,J,4)=X(I)*(SX(I,J)**2)*(SX(I,J)-1.)*PC(I,J)

5 CONTINUE

DO 7 J=1,NML

Q3(I,J,1)=(-6.*SMX(I,J)+6.*SMX(I,J)**2)*AM(I,J)*BI
Q3(I,J,2)=(X(I)*(1.-4.*SMX(I,J)+3.*SMX(I,J)**2»*AM(I,J)*BI
Q3(I,J,3)=(6.*SMX(I,J)-6*SMX(I,J)**2)*AM(I,J)*BI
Q3(I,J,4)=(X(I)*(3.*SMX(I,J)**2-2.*SMX(I,J»)*AM(I,J)*BI

7 CONTINUE

DO 30 K=1,4
DO 29 J=1,NPL
QII(I,K)=QII(I,K)+Q2(I,J,K)

29 CONTINUE

30 CONTINUE

DO 40 K=1,4
DO 39 J=1,NML
QIII(I,K)=QIII(I,K)+ Q3(I,J,K)

39 CONTINUE
40 CONTINUE

DO 20 K=1,4
Q(I,K)=Q1(I,K)+QII(I,K)+QIII(I,K)

C
C
C
C

NOTE: I=ELEM. NO.
J=CONC. LOAD NO.
K=MATRIX CHAR.

20 CONTINUE
RETURN
END

C *********************

C ** DIAGONALIZATION **

C ** OF STIFF MATRIX **

C *********************

SUBROUTINE DIAGS(NEL,S,GS,C)
DIMENSION S(10,4,4),GS(22,22),C(20,20)
DO 110 K=1,10
KUL=(K-1)*2

DO 100 J=1,4
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DO 90 1=1,4
NEWI=KUL+I
NEWJ=KUL+J

GS(NEWI,NEWJ)=GS(NEWI,NEWJ)+S(K,I,J)
90 CONTINUE
100 CONTINUE
110 CONTINUE

N=NEL*2 +2
NEWN=N-1

A=O.O
B=O.O
DO 10 K= 1 ,N
A=GS(N,K)
GS(N,K)=O.O
GS(N,K)=GS(NEWN,K)
GS(NEWN,K)=A

10 CONTINUE
DO 11 K=1,N
B=GS(K,N)
GS(K,N)=GS(K,NEWN)
GSCK,NEWN)=B

11 CONTINUE
N2=NEL*2

DO 15K=1,N2
K2=K+1

DO 15 J= 1 ,N2
J2=J+1

C(J,K)=GS(J2,K2)
15 CONTINUE

RETURN
END

C **********************

C ** GLOBALIZATION ***

C ** OF LOAD MATRIX ***

C **********************

SUBROUTINE DIAGQ(NEL,Q,GQ,GP)
DIMENSION Q(10,4),GQC22),GP(20)

DO 11 K=1,NEL
KXI=(K-1)*2

DO 10 1=1,4
M=I+KXI

GQ(M)=GQ(M)+Q(K,I)
10 CONTINUE
11 CONTINUE

NvJN=NEL*2+2
A2=GQ(NWN)
GQ(NWN)=GQ(NWN-1)
GQ(NWN-1)=A2
NB=NWN-1
DO 15 K=2,NB
GP(K-1)=GQ(K)

15 CONTINUE
RETURN
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END

C *********************************

C ** INVERSION OF GLOBAL ******

C ** STIFFNESS MATRIX ******

C ** OBTAINED FROM NUMERICAL ******

C ** METHODS TEXT--HORNBECK ******

C ** (GAUSS-JORDAN METHOD) ******

C *********************************

SUBROUTINE INVDET(C,N)
DIMENSION C(20,20),J(50)
REAL*8 PD,DETM
PD=1.0
DO 124 L=1,N
DD=O.O
DO 123 K= 1 , N

123 DD=DD+C(L,K)*C(L,K)
DD=SQRT(DD)

124 PD=PD*DD
DETM=1.0
DO 125 L= 1 , N

125 J(L+20)=L
DO 144 L=1,N
CC=O.O
M=L
DO 135 K=L,N
IF((ABS(CC)-ABS(C(L,K»).GE.O.O)GO TO 135

126 M=K

CC=C(L,K)
135 CONTINUE

127 IF(L.EQ.M) GO TO 138
128 K=J(M+20)

J (M+20)=J (L+20)
J (L+20)=K
DO 137 K= 1 , N

S=C(K,L)
C(K,L)=C(K,M)

137 C(K,M)=S
138 C(L,L)=1.0

DETM=DETM*CC
DO 139 M=1,N

139 C(L,M)=C(L,M)/CC
DO 142 M=1,N
IF (L.EQ.M) GO TO 142

129 CC=C(M,L)
IF(CC.EQ.O.O) GO TO 142

130 C(M,L)=O.O
DO 141 K= 1 ,N

141 C(M,K)=C(M,K)-CC*C(L,K)
142 CONTINUE
144 CONTINUE

DO 143 L= 1 , N

IF(J(L+20).EQ.L) GO TO 143
131 M=L
132 �1=M+ 1



IF (J(M+20).EQ.L) GO TO 133
136 IF (N.GT.M) GO TO 132
133 J(M+20)=J(L+20)

DO 163 K=l,N
CC=C(L,K)
C(L,K)=C01,K)

163 C(M,K)=CC
J(L+20)=L

143 CONTINUE

DETM=DABS(DETM)
DTNRM=DETM/PD
RETURN
END

C *********************************

SUBROUTINE DEFLEC(C,GP,N,D)
DIMENSION C(20,20),GP(20),D(22)
DO 10 I=1,N
DO 10 J = 1 ,N
D(I+l)=D(I+l)+C(I,J)*GP(J)

10 CONTINUE
K=N+2

D(K)= D(K-1)
D(K-l)=O.O
RETURN
END

C *****************************************

C
C
C

****** ******SHAPE FUNCTIONS USED
TO GENERATE CURVE PTS ************

*****************************************

SUBROUTINE SHAPE(NEL,D,X,XS,W,GRW,NELGW,NELJG,XSI)
DIMENSION XS(10,10),X(10),D(22),W(10,10)

DO 10 I=1,NEL
Kl=I*2-1
K2=Kl+1

K3=Kl+2
K4=Kl+3

DO 5 J = 1 ,10

XN1=1.0-3.0*XS(I,J)**2.0 + 2.0*XS(I,J)**3
XN2= X(I)*XS(I,J)*( 1.0 - 2.0 *XS(I,J) +XS(I,J)**2.0)
XN3= XS(I,J)**2.0 *(3.0 -2.0 *XS(I,J))
XN4= X(I)*XS(I,J)**2.0*(XS(I,J) -1.0)

W(I,J)= XN1*D(Kl) +XN2*D(K2) +XN3*D(K3) +XN4*D(K4)

A=WCI,J)
IF(GRW.GT.A)GO TO 4

GRW= \;l(I,J)
NELGW=I
NELJG=J

XSI=XSCI,J)

4 CONTINUE
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5 CONTINUE

10 CONTINUE

RETURN
END

C ***************************************

C ****** DETERMINATION OF STRAIN ******

C ***************************************

SUBROUTINE STRAIN (J,X,XS,XSI,D,NEWJG,SG)
DIMENSION X(10),XS(10,10),D(22)

I =NE\�JG
K1= J*2-2

K2 =K1 +1

K3 =K1 +2
K4 =K1 +3

SG = 1.0/X(J)**2.0 *((-6.0 + 12.0*XS(J,I)*D(K1)
* + (-4.0* X(J) + 6.0 * X(J) *XS(J,I»* D(K2)
* +(6.0 -12.0*XS(J,I» * D(K3)
* +(6.0 * X(J)*XS(J,I) -2.0*X(J» *D(K4»

RETURN
END
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