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Introduction
Over the past several years, spread spectrum radio communication systems

have been increasingly viewed as attractive alternatives to more common methods
of radio communication. The military has long valued spread spectrum communi­
cation techniques, but commercial vendors are now embracing this technology.
This research hoped to combine spread spectrum communications with a relatively
new approach to information processing, wavelet technology, to improve the per­
formance of today's spread spectrum technology.

Spread Spectrum Communication Technology
Spread spectrum communication is an extension of the types of digital commu­

nication used widely for many years. The military has used spread spectrum tech­

niques in its secure communication equipment. Communications equipment
designers are only now applying spread spectrum technology to commercial appli­
cations, as wireless communication devices use increasingly precious frequency
space to connect people and computers everywhere.

Spread spectrum techniques literally spread the frequency content of normal

signal (see Figure 1). Spreading the signal lowers the average energy density of the
radio signal; this provides several benefits over non-spread signals, such as selective

addressing, multiple access, low probability of intercept, signal encryption, and

high-resolution ranging.
Selective addressing and multiple access allow many radio devices to use the

same general frequency space without interfering with each other and without re­

ceiving unnecessary or unauthorized information. In selective addressing, a spread
spectrum transmitter dispatches a signal with a unique code at the beginning of the
intended user's information. This pattern identifies the intended receiver, allowing

FFT of BPSK signal FFT of spread BPSK signal

Figure 1: FFT spectra of normal BPSK and spread BPSK signals
(note: peak of BPSK signal is over 6 dB higher than spread signal)
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(or requiring) other receivers to ignore the rest of the message and continue search­

ing other frequencies and time spaces for its intended message. Spread spectrum
techniques allow several communications devices to use the same or nearly the
same frequency space for individual communication.

In this project, the spread spectrum system is based on simple binary phase­
shift key (BPSK) modulation, which will be used to show how one form of spread
spectrum, direct sequence, works. In BPSK modulation.. a transmitter interprets bit
sequences as phase shifts on a sinusoidal carrier wave. It does this by simply mixing
the bit stream values with the carrier wave. A phase shift of 0 degrees is normally
the 1/1" bit, and a phase shift of 180 degrees is the 1/-1" (I/O") bit. The receiver mixes
this incoming signal with an identical (or nearly so) carrier wave. The resulting sig­
nal has two parts: a DC signal carrying the bit information, and a high-frequency
signal that is usually filtered out.

The direct sequence spread spectrum (DSSS) technique further modulates the
transmitted signal with a sequence of pseudorandom bits whose rate is much higher
than the information bit rate. This spreads the signal in the frequency plane and
scrambles the information carried in the signal. The receiver mixes an identical se­

quence with the incoming signal to despread the signal. If the receiver mixes the

wrong pseudorandom sequence, the incoming signal will be indistinguishable from
random noise. DSSS techniques make a communications system much more compli­
cated than simple BPSK systems, but its resistance to casual eavesdropping and in­
terference more than outweigh its complexity.

Background: Wavelets and Multiresolution Analysis
Wavelet theory is a recent breakthrough in mathematics particularly useful for

analyzing signals (radio, sound, video or otherwise) in both the time and frequency
domains simultaneously. Early studies of the basics of this type of analysis were

made almost 100 years ago, but the lack of sufficiently powerful computers made
serious application impossible until about 10 years ago.

The Fourier transform must be compared with the wavelet transform in order to

properly understand the way that wavelets work. The Fourier transform operates
on the theory that any time signal can be replicated with an infinite number of in­
finite-duration sine and cosine waves, each at a certain frequency that is, the sine
wave is the basis function of the transformed signal.

The Fourier transform works well for stationary signals - those signals whose

components do not change over the period of analysis. For instance, a signal made
up of a mixture of sine waves is a stationary signal and could easily be analyzed
with Fourier techniques. However, any fast transitions in a signal are spread
throughout the frequency axis, making close observation impossible and rendering
frequency analysis useless in such situations.

Two methods attempt to address this shortcoming. One cuts the signal into dif­
ferent time windows in which the signal is relatively stationary. Each window is
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transformed individually, creating a series of "local" Fourier transforms. Another
method modifies the sine wave basis functions to be time-limited.

Gabor first adapted the Fourier transform for the time-frequency plane, creating
blocks of information corresponding to the locations of the time-frequency window.
The effect is similar to a mosaic painting: the information is accurate to a certain

point. In the case of Gabor's short-time Fourier transform, or STFT, accurate time
resolution yields poor frequency resolution, and vice-versa. Also, a given STFT fixes
the size of the windows; the transform cannot tune its window for different fre­

quency bands.
Wavelet transforms seek to overcome this limitation by allowing the shape of

the time-frequency window to vary over the plane. In fact, the frequency window is

proportionate to the frequency being analyzed. This creates a multiresolution

analysis that allows time resolution to become relatively good at high frequencies
(where accurate frequency resolution is less important), while frequency resolution
becomes more accurate at low frequencies.

The Continuous Wavelet Transform (CWT), similar to the Fourier transform, com­
putes the wavelet coefficient on every point on the time-frequency plane. The basis
function used is always localized in time-hence the term wavelet (or little wave).

Wavelet transforms are not based on sine waves; they require basis functions
that are completely localized or that decay very quickly to zero. Any square inte­

grable function with zero mean can become the basis for the continuous wavelet
transform. In either case, wavelet analysis no longer renders frequency information
in the conventional (Fourier) sense. CWT analysis produces time-scale analysis
rather than pure frequency analysis. The term scale is more accurate and is used

commonly in wavelet circles.
W(t) is the mother wavelet or primary waveform, and it can generate a complete

set of wavelets Wa,b(t) by the following formula, where a is the time-dilation factor
and b is the time-shift factor:

'1'0. b(l) = �'I'( t
-

bJ.\jlal a

Just as in Fourier or STFT analysis, the CWT of a signal is created by taking the
inner product of the signal and the scaled wavelet:

- 1
f (t

-

bJX(b, a) = fCI x(t)'f - dt.

\jlal a

Wavelet analysis results in a set of coefficients that indicate how close a signal is
to the wavelet's basis function; that is, a signal is decomposed into wavelets of con­
stant shape but different scale, size, and amplitude. These wavelets combine to rec­

reate the original function. This concept of perfect reconstruction is satisfied
whenever the signal being analyzed is of finite energy and the wavelet satisfies the
multiresolution analysis.
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In discrete time application, the discrete wavelet transform (DWT) takes the

place of the CWT. The physical manifestation of the DWT is a bank of complemen­
tary highpass and lowpass filters followed by downsample filters (devices that re­
move every other discrete time element), which double the scale of the output signal
at each filter (see Figure 2). Passing the signal through this filter bank creates a

highpass downsample
filter filter

x(n

lowpass
filter

Figure 2: Filter and downsample process for the discrete wavelet transform

coarse approximation of the signal from the lowpass filter and detail information
from the highpass filter. Each successively approximated signal is sent through an

identical filter bank until no more useful information can be obtained. No informa­
tion is lost when the signal elements are downsampled, and the original signal can
be reconstructed perfectly from its wavelet elements.

This simplicity is the beauty of the discrete wavelet transform. The mathemati­
cal basis for wavelet transforms is too complex to be included here, but the actual

implementation is straightforward.

The Application
Spread spectrum communication is exploding in popularity as new wireless

devices cover scarce radio space. Wavelet transform methods are popping up in

myriad signal processing applications. In this project, I hoped to learn about and
combine direct sequence spread spectrum and wavelet transforms. I succeeded in
the learning part; the direction I took in using wavelet transforms to decode incom­

ing direct-sequence spread spectrum signals yielded decidedly mixed results.
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The idea is simple: use the continuous wavelet transform to directly decode an

incoming BPSK spread spectrum signal (see Figure 3), and compare the resulting bit
information to the bit information recovered by the standard method (see Figure 4).

tEE
transmitted received

�:�eam�1.·111�ign�·�1-----�-+-+-+-1gn____";1�111·1.�1.�1�
PN random multipath PN carrier

interference code sinnal
carrier

signal code noise

Figure 3: Diagram for standard spread spectrum model

received
to wavelet filter
for decoding

�

PN random
�fgn�' ·i

multipath PN
interference code

carrier

signal code noise

Figure 4: Diagram for the "wavelet" spread spectrum model

Since direct-sequence spread spectrum is a digital technology, any interesting
results could directly apply to communication industries. These results would not

apply to other forms of spread spectrum such as frequency hopping or time-hopping
unless the form being used is a hybrid that includes DSSS techniques.
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Process and Results: Test of Concept
Early simulations used binary phase-shift keying on a carrier located at 1000

Hz. The simulation used a bit rate of 100 bits per second (see Figure 5), with 10

1

Figure 5: Bit stream for first simulations

pseudorandom chips per bit. Ten bits were used in the simulated signal, lasting 0.1
seconds for 5000 samples. All early simulations ran on the PC version of Matlab.

The pseudorandom bits used to spread the bandwidth of the BPSK signal were
created with Matlab's RANDO command and rounded to one or zero (see Figure 6).

-1 '; � """""_""'''''''�",;,",�''''''''''-"""",,,�.J!l�
o 1000 2000 3000 4000 5000

Figure 6: Plot of PN code bits used in early simulations

The bit and pseudorandom code streams were expanded, mixed with the sinusoidal
carrier signal, and "transmitted" (see Figure 7).
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o

-0.5

100 200 300 400

Figure 7: Time plot of the signal (0 to 0.01 sec)
500

The chip rate is consistent with guidelines set by the FCC for spread spectrum
signals operating in the 900 MHz range at 1 Mbps. The early model is, of course,
nowhere near 900 MHz; but since the signal is processed digitally, the signal used
can be considered identical to one operating at higher frequencies over a shorter
time frame. Later, direct comparisons with standard decoding were run at 900 MHz

on a Sun SparcStation.
Early runs were attempted using Haar wavelet scaling function coefficients,

lowpass and highpass filters of length 2. The Haar coefficients are simple (see Fig­
ure 8), but are useful in many signal processing applications, including video and

lowpass scaling highpass scaling
function function

EaEa
o 0.5 1 o 0.5 1

audio processing. Unfortunately, when applied to the spread spectrum signal
model, the Haar coefficients put some bit changes in different subbands, rendering
easy analysis impossible.

FiQure 8: The Haar wavelet
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A different, more complex wavelet was used to much greater success (see Fig­
ure 9) throughout the rest of the simulations.

lowpass scaling function
1�----------------�

highpass scaling function
1�------------------

lS �
l \

....................�\J \r�····················
-OJ '-------------------..

o
-u .___-----��-�--�

o

The spread spectrum signal was first run through the wavelet filter without inter­
ference. The filter to detected the phase changes in the BPSK signal that indicate a +1 or

-1 bit or series of bits. In other words, it worked in an ideal situation (see Figure 10).

10 10 ZD

But how well? Next, additive white Gaussian noise was added to the signal.
The signal was despread and decomposed. Since the result was unintelligible, the
noise power was adjusted until the bit changes were visually detectable. At a signal
to noise ratio (SNR) of 8 dB, the wavelet receiver detected the bit change blips ac-

Figure 9: Wavelet used in simulations

1�------�--------�--------�------�------�

-1--------------------------------------------�

Figure 10: Plot of despread signal
(note that phase changes are in synch with bit changes in bit stream)
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ceptably (see Figure 11). The SNR required by the wavelet filter to recover the bit

changes is higher than that required by standard recovery.

Figure 11: Plot of decomposition with 8 dB SNR

Next, multipath interference in the form of a reflected version of the original
signal was added to and decoded with the original signal. The reflection was de­

layed by .002 seconds, enough time to cause the incoming signal to drop out occa­

sionally; smaller delays had similar effects, but larger delays look like Gaussian
noise thanks to the pseudorandom code. At a 3 dB SNR, the wavelet receiver de­
coded the bit changes well above the phase changes caused by the interfering signal
(see Figure 12). Below a 1 dB SNR, the receiver's output was unintelligible.

1

O!��iL 'tt i44�
-1

In the final test of the wavelet receiver, the intended signal is masked with both
Gaussian noise and multipath interference. A reasonable (potentially detectable)
pattern emerged when Gaussian noise with an 8 dB SNR and multipath interference
with a 3 dB SNR were added to the transmitted signal. If the power of either inter­
ference element was raised much at all, though, the receiver produced unintelligible
output.

The wavelet receiver is capable of successfully decoding a BPSK signal. To de­
termine its usefulness beyond an academic curiosity, the wavelet receiver was com­

pared with the standard ideal BPSK receiver.

Figure 12: Plot of signal with multipath interference with 3 dB SNR
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Process and Results: Comparison with Standard Methods

Comparison tests were run on Matlab 4.2 on a Sun SparcStation 20. The simu­
lated signal operated at 900 MHz, the frequency space allocated to the FCC for
commercial spread spectrum devices. In early (and what would prove to be final)
simulations, 20 random bits (see Figure 13) were run at a rate of 1 million bits per
second (Mbps). To keep within FCC regulations, 10 pseudorandom chips per bit
would spread the signal. The resulting signal was sampled at 10 GHz, combined
with Gaussian noise with SNR 0 dB, and processed with the wavelet filter and the
standard recovery method.

Figure 13: Plot of data bits used in sample (20 random bits)

The results were eye-opening. Even at an SNR of 0 dB, standard reconstruction

accurately returned the bit information (see Figure 14).

Figure 14: Plot of normal reconstruction of data bits at 0 dB SNR

The wavelet receiver did not fare as well with Gaussian noise at 0 dB. The noise
level caused too many phase changes for the wavelet receiver to hope to sort from
the bit phase changes (see Figure 15).
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Figure 15: Plot of wavelet reconstruction of data bits at 0 dB SNR

Results for multipath interference were similar to the results for Gaussian noise
interference. The standard reconstruction technique easily handled high levels of
both kinds of noise, while the wavelet receiver required very low levels of noise and

multipath interference in order to find the bit changes. In order to obtain a reason­

able output for the wavelet receiver, noise had to be reduced to 10 dB below the
transmitted signal (see Figure 16). On top of the noise power reduction, the multi­

path signal strength was reduced in order to obtain a reasonable output.

o

-t

Figure 16: Plot of wavelet reconstruction of data bits
Gaussian noise at -10 dB, multipath at -3 dB

Fiqure 17: Plot of data bits (for reference)
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a

Conclusion
The wavelet receiver is technically capable of recovering bit information from a

spread spectrum signal. Since it perceives the phase changes that correspond to bit

changes as "blips" instead of DC output as in standard signal recovery, a more

complex receiver must be used to detect and transmit the change properly and
check carefully for errors due to an errant phase change.

No effort was made to this end, however, after roughly comparing the perform­
ance of the wavelet receiver with standard signal recovery. Standard recovery has a

significant advantage in noise rejection. The wavelet processing cannot screen out

the different scales involved in Gaussian noise or a multipath signal without elimi­
nating the phase change that results from a bit change in the bit stream.

-I

Figure 18: Plot of wavelet reconstruction of data bits
Gaussian noise at -10 dB, multipath at -8 dB
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