
Pattern Recognition: AMOEBA Extension

Honors Program

4/6/91

Charles Phipps
University Undergraduate Fellow

ABSTRACTS

Descriptive: The general field of pattern recognition is discussed with

emphasis on the development of AMOEBA, a two dimensional digital
clustering program, into a three dimensional program. Moreover, a

program analyzing phenyl rings from X-Ray Crystallographic analysis of

organic molecules is discussed. Finally, the report analyzes the steps
involved in writing a pattern recognition program.

Informative: Pattern recognition is the general scientific field dealing with computer
aided analysis of information. Aspects of a computer, such as pipeline, data storage,
processor, and mainframe, are described in this report. In addition, the general
relationship between the researcher and the computer is explored using interactive

techniques.

ii

AMOEBA, a two dimensional digital digital clustering program written by Dr. Jack

Bryant in 1972, is explained based on its unique five-point gradient technique.
Moreover, the use of the Kth nearest neighbor method is discussed.

Phenyl ring identification is mentioned as an additional project used to train myself in

writing a pattern recognition program.

Although the complete conversion of AMOEBA to a three dimensional digital clustering
program was not accomplished, I managed to learn the necessary steps involved in

developing such a program. These steps include, the choice of data units, the choice

of variables, what to cluster, clustering criterion,homogenization of variables, similarity
measures, algorithm and computer implementation, number of clusters, and

interpretation of results.

The development of AMOEBA, as well as the development of the phenyl ring
identification program, is delineated as per each step in the designing process.
Starr is the current version of AMOEBA in three dimensions and is briefly discussed.

Moreover, the phenyl ring program, Findp, is also discussed. Thus, two pattern
recognition programs are studied within this report.

I

I

I

TABLE OF CONTENTS

I. Pattern Recognition 1

iii

II. AMOEBA 2

III. Carbon Rings 4

IV. Program Generation Process 5

A. Choice of Data Units 5
B. Choice of Variables 5
C. What to Cluster 6
D. Clustering Criteria 6
E. Homogenizing Variables 7
F. Similarity Measures 7
G. Algorithms and Computer Implementation 8
H. Number of Clusters 8
J. Interpretation of Results 8

V. Starr 9

VI. Findp 10

VII. Conclusion 11

VIII. Works Cited 11

APPENDICES
1 . AMOEBA History A

2. Starr: Program and Output. B

3. Findp: Program and Output. C

I

I

I

I

I

iv

FOREWORD

The purpose of this report is to outline my progress in understanding the development
of the three dimensional pattern recognition computer program AMOEBA. The scope

of the report includes my understanding of the general scientific research field of

pattern recognition, of the two dimensional digital clustering program AMOEBA, of

Starr, the first attempt at extending AMOEBA,of Findp, the three dimensional program

analyzing phenyl rings, and of the nine step process involved in writing a pattern

recognition program.

I began working on this project last summer at Cornell University. The National

Science Foundation provided me with a research grant in the form of the

Supercomputing Program for Undergraduate Research(SPUR). SPUR was a one

month program involving nineteen students chosen nationally. SPUR provided me

with the basic supercomputing skills I need to do research in the field of pattern

recognition. Cornell also gave me free access to their IBM 3090 Supercomputer. This
has been a valuable resource with which to do research.

[

I

I

Moreover, Dr. Jack Bryant of the Texas A&M University Mathematics Department
approached me last year with an opportunity to work for him. Under his guidance, I

became involved in the Texas A&M University Undergraduate Fellows Research

Program. In addition, I acquired an additional advisor in the Department of Chemistry,
Dr. John Fackler, Dean of the College of Science.

Thus, my project will be sent to the National Science Foundation, Cornell University,
the Texas A&M Honors Department, Dr. John Fackler, and Dr. Jack Bryant.

I
SUMMARY

I

I

I

I

This report deals with the progression of my understanding of the general scientific
field of pattern recognition. In the report, I explain the basic concepts necessary for

understanding a pattern recognition program. In addition, the nine major steps

v

involved in writing a pattern recognition program are discussed and applied to two

programs. First, AMOEBA, a two dimensional digital program, is discussed as being
converted to three dimensions in the form of Starr. Second, Findp, a program finding
phenyl rings in an organic molecule is discussed.

My main problem in this research endeavor has been a shortage of time. AMOEBA is a

very complex and long program. The conversion and development of AMOEBA could

take years. However, I only have one year in which to complete the Senior Honors

Thesis, which is the report requested by the Honors Department and the final report

requested by Cornell. Thus, I must live with the realization that I was unable to

accomplish that which I set out to do.

However, I did help Dr. Bryant develop a program which uses pattern recognition
techniques to develop a program which finds phenyl rings. The data used for this

program was collected from X-Ray Crystallographic analysis of organic molecules.

The planned procedure of conducting my research was simply to help Dr. Bryant add
another dimension to his program. However, the accessibility of Cornell's 3090 was

hindered by A&M's computer failures. Thus, unexpected technical failures delayed the

completion of the AMOEBA conversion.

Thus, a knowledge of pattern recognition, of supercomputing, of programming, of
carbon structures, and of research in general has been gained. In addition to writing
Findp, Dr. Bryant and I developed several display techniques which will be used upon

AMOEBA's complete conversion.

The costs of my research were largely paid by the National Science Foundation in the

sum of $2,000. Moreover, the Honors department gave me a $300 budget. Thus, little
or no expense has come out of my own pocket

I recommend that research be continued on both Starr and Findp. I hope that once

these programs are complete the general scientific community will have been

improved.

1

DISCUSSION

Pattern Recognition: Although the complete conversion of the computer program
AMOEBA to three dimensions was the original task, only an intermediate step was

accomplished. I will elaborate on the larger scope of the project and then specify
exactly what has been accomplished.

Pattern recognition is a general scientific field which involves computer aided data

analysis. Data used for pattern recognition programs can range from the stellar to the

molecular. Moreover, data can be either digital, composed of any real number, or

bi nary, composed of ones and zeros. Each group of data used is termed a data set.

Thus, different pattern recognition programs must be developed for the wide range of

existi ng data sets.

The development of pattern recognition programs requires the knowledge of a few

basics. For example, the way in which a computer uses data must be thoroughly
understood if this process is to be manipulated. In essence, computers read

commands and data in a linear string of arguments called the pipeline. Thus, a three
dimensional data set will be read as a line first down one row, then another, and finally
the logic will skip to another plane and repeat the process.

Another basic idea used in pattern recognition is the Kth nearest neighbor method.

Imagine a point in space. Now imagine the points surrounding it. If calculations are

performed to compare this point with its neighbor it is necessary to know two things:
the value of the points, and the distance between them. Thus, if the analyst wishes to

compare the point with its six closest neighbors, then the process would be termed the

sixth nearest neighbor method.

In addition to understanding the logic sequence of a computer and the Kth nearest

neighbor concept, my project requires an understanding of the way in which

supercomputers operate. Supercomputers are computers that are capable of

processing data at a rate many times faster than that of a normal or personal computer.

2

A supercomputer operates by dealing through a central processing unit or a

mainframe. This central processing unit is like the human brain is to the body.
Moreover, a supercomputer is connected to many other units which are able to perform
tasks independent of one another. Thus, these individual units or processors are like

human hands are to the brain. However, a supercomputer can have many more than

just two processors.

Since my research problem could possibly deal with a staggering amount of data, the

use of a supercomputer becomes necessary. Using a normal computer would take too

long and require too much money. However, the use of a supercomputer entails

dealing with special problems. For example, since many calculations will be occurring
at the same time on different processors. How will the calculations be organized? How

will the processors output be organized? How will the data be accessed.? These

problems and more face the supercomputer user.

Actually, the identified supercomputer problems are easily solved with a little basic

training. I received this training at Cornell University last summer under the National

Science Foundation's Supercomputing Program for Undergraduate
Research(SPUR). The SPUR program provided me with the essential skills necessary

to access and use the Cornell IBM 3090 supercomputer. Moreover, they provided me

with a cash stipend of over $1500 and with forty hours credit on the 3090.

Thus, with an understanding of a few simple concepts and techniques, pattern
recognition can become an exiting field for practically any researcher.

AMOEBA: AMOEBA is a two dimensional digital computer program. The purpose of

AMOEBA is to analyze any raw data set. AMOEBA should be able to produce a list of

clusters found in the data. These clusters can then be analyzed by the programmer or

I user to understand more about the intended research. Thus, AMOEBA is a versatile

research tool because it can be used by any researcher dealing with any type of two

I

I

3

dimensional data set. AMOEBA's history is summarized in Appendix 1.

What makes AMOEBA different from other two dimensional digital programs?
AMOEBA uses a special five-point comparison technique. Once AMOEBA has gone

through a data set and produced a cluster map, it takes five points from each cluster to

represent the diversity within that cluster. Thus, AMOEBA reduces the problem of

analyzing clusters to comparing sets of five points.

AMOEBA then takes five points and labels them so as to identify them with the cluster

from which they were taken. Then the points are aligned based on increasing
numerical value. AMOEBA then subtracts the fifth points value from the first and arrives

at a difference or gradient measure for the cluster.

AMOEBA now has two values with which to categorize the identified clusters; the

gradient, and the five point set. The program first separates the clusters into separate

categories. Then, within each category, the clusters are classified further using the

gradient. thus, each cluster is placed in a map. This map is called a cluster map.

Now that the data has been analyzed and categorized, the researcher can use his

previous understanding of the data to help the computer label the clusters in the

cluster map. For example, if AMOEBA had identified different geometric shapes, the
researcher would then tell the computer what to call each shape. Thus, when the

program runs again it will produce a labeled cluster map.

I

The labeled cluster map can only be developed when the programmer has some

understanding of the data and is able to produce a cluster library within the program.

Thus, in order for the computer to evaluate data the way a researcher would, it must be

trained in recognizing clusters.

I

r
The value of AMOEBA comes from the new arrangements of data clusters it provides.
This allows the researcher to identify new relationships and principles previously
unnoticed. Thus, the substantive results are not the output of the computer, but the new

I

I

4

ideas prompted in the analyst's mind. The test version Starr will be discussed in

Section V. In addition, Starr and its output is located in Appendix 2.

Carbon Rings: Organic chemistry is the study of groups of atoms containing the

element carbon. Many techniques exist for the analysis of these carbon groups or

organic molecules. One of which is X-Ray Crystallography.

X-Ray Crystallography is the technique involving the bombardment of organic
molecules with X-Rays which are high energy electromagnetic radiation. The X-Ray
Crystallographic machine collects deflected X-rays. Then, a computer evaluates the

data and produces a digital map describing the electron density structure of the

organic molecule. Electron density is simply a term used to define that space in which

an electron is observed over a period of time.

I

r

Since the conversion of AMOEBA requires several trial runs Dr. Bryant and I decided

to use X-Ray Crystallographic data as one trial run. What we did was design a

program that would identify phenyl rings within an organic molecule. A phenol ring is

Simply a group of six carbon atoms connected to each other in a circle. Thus, a three

dimensional cluster map may be produced to view the phenyl rings of an organic
molecule.

I

I Findp and its output is located in Appendix 3. Findp will be discussed more in Section

VI.

I

I

I

r

I

I

5

Program Generation Process: According to Anderberg, the general rule in pattern

recognition is that the development of a program involves nine basic steps. These are

the choice of data units, the choice of variables, what to cluster, clustering criteria,

homogenizing variables, similarity measures, algorithm and computer implementation,
number of clusters, and interpretation of results. I will briefly explain each step and

how it relates to the extension of AMOEBA and to the analysis of carbon rings.

A. Choice of Data Units

Data units are those numerical values which indicate something about the objects
which the data describe. The proper choice of the data units which the analyst uses in

the program is essential. For example, if an observer wished to determine the

elevation of a mountain, then data pertaining to the height of the mountain relative to

the sea level must be collected. Moreover, the same observer would not want or need

to collect data concerning the relative locations of the mountain and of the sea. Hence,

only the essential data should be used in analysis.

In AMOEBA, the program user will be allowed to specify the data units. Thus allowing
AMOEBA to be used for a variety of data sets and purposes. Moreover, in the carbon

ring experiment, the data units are the three dimensional coordinates of the carbon

atoms.

I

I
B. Choice of Variables

I
Variables within the data indicate something specific about the existing
interrelationships. For example, a data set describing an assortment of different

colored geometriC shapes would present the problem of choosing a variable to classify
the objects. Should the objects be classified by color or shape? It all depends on what

the analyst is intending to study about the data set.
I

r

I

I

6

Thus, AMOEBA should also be flexible in the analyst's choice of variables to allow a

variety of things to be studied about a particular data set. Moreover, for the carbon

experiment, the distance between carbon atoms is the choice of variable.

C. What to Cluster

(

I

I

Now that the data is collected and the aspect of the data that is intended to be studied

is identified, the data can be analyzed. However, a question arises, what should be

clustered that will enable the researcher to help understand what the data can tell him

regarding his chosen variable?

I

I

For AMOEBA, this division will again be up to the analyst, but will be limited by both

the choice of data units and data variables. Moreover, for the carbon experiment, a

group of closely spaced carbon atoms is clustered. This is done because a phenol ring
is composed of six closely spaced carbon atoms. If a group of atoms is found, then it is

classified as a group. However, simply because a group of atoms is close to each

other does not mean that they form a phenol ring. This leads to the next point.

I
D. Clustering Criteria

I Clustering criteria is that information which tells the computer to discard or to store for

later use a certain cluster. For example, a data set containing a number of different

sizes of spheres was clustered for spheres. This cluster of spheres was then limited to

a certain size of sphere, then those clusters not mentioning the size criteria would be

discarded or stored elsewhere.

I

I

I

,
I

AMOEBA will allow the user to establish clustering criteria only after it has performed
its unique operations. Then, the program becomes interactive with the user to develop
the computer observations into a usable form. Moreover, the carbon atoms experiment
clusters atoms based on their proximity to one another. However, only those groups

I

7

involving six atoms are stored. Thus the clustering criteria for the carbon atom

experiment is the number of carbon atoms in a group.

E. Homogenizing Variables

Since a program can analyze data based on several variables, a relationship between

the variables used must be described. For example, if the size and shape of geometric
figures within a data set is studied, then what relationship do these variables have? Is

there any correlation between a small cube and a small sphere or is the correlation

between a small cube and a large cube? Thus, a comparative intuition must be

developed in the program concerning the relationship between variables.

AMOEBA will be interactive in this area as well since it depends on the interest of the

researcher as to what relative information is important. Moreover, in the carbon

experiment, only groups of six carbons were found, so only one variable, distance, is

studied.

[

I

I

F. Similarity Measures

I

I

As the number of variables increases, the number of possible comparisons also

increases. Thus, not only do these variables need to be computable or homogeneous,
but they need to be comparable. For example, assume a data set composed of three

dimensional colored geometric shapes of different sizes. Now study the data and

decide if the shapes are related to the size or the color, or is the color related to the

shape and size? Thus, many possible relationships between a multi-variable study
exist.

AMOEBA will certainly have to be user interactive in this respect since the number of

I possible relationships could be infinite, even with a small number of variables.

Moreover, for the carbon experiment, this problem does not exist because one variable

I

l

I

I

I

I

I

I
I

I

I
I

8

not a set of variables is studied.

G. Algorithms and Computer Implementation

Algorithms are simply those concepts used to solve a specified problem. Computer
Implementation of these algorithms means that the algorithm is written in a form that

the computer can use. For example, if the relative size of geometric shapes is to be

considered, then an algorithm comparing the area or volume of the different objects
should be implemented into the computer logic.

The major algorithms which AMOEBA uses have previously been explained. The

implementation of these algorithms has yet to take place. Moreover, the algorithms
behind the carbon experiment have been completely implemented.

H. Number of Clusters

The number of clusters indicates the number of aspects found by the program based

upon the decision made by the programmer. For example, the number of clusters

found in a data set containing information on a deck of playing cards can vary greatly.
If color is used to classify, then two clusters will be found. If suit is used, then four

clusters will be found. This process could be continued on certain data sets

indefinitely. Thus, the number of clusters found is a very important question which the

programmer or user must answer.

AMOEBA will allow the user to decide on the number of clusters found. Moreover, the

number of clusters found in the carbon experiment is not an aspect written into the

program. This is because the original question posed by the researcher, myself, was
how many phenol rings are there?

J. Interpretation of Results

9

The interpretation of results phase determines what the researcher is able to learn

from the data. For example, if the program is designed to label a cluster by specific
name then most of the interpretation has been done by the computer. However, if only
the raw clusters are received as output, then most of the interpretation work must be

done by the researcher. Thus, the ability to interpret the results depends on both the

quality of the program and the skill of the user.

I

I

I

AMOEBA will not be trained to interpret the results as a stand alone program.

However, additional supplemental programs or subprograms will hopefully be

developed that will focus AMOEBA in a certain area. Moreover, the interpretation of the

results of the carbon atom experiment is quite easier. I can simply read the output and

determine the number of phenol rings present.

I

I

S1a1L The history of AMOEBA is contained in the comment lines of the code. These

comment lines have been edited out and placed in Appendix 1. AMOEBA itself was

not included because it has approximately 13,000 lines of code.

I In short, the ideas of AMOEBA, specifically the five point method, have been

developed into a new program called Starr. Starr attempts to do in three dimensions

what AMOEBA does in two. Starr is the first attempt at AMOEBA's conversion.

I

I
Starr begins by making artificial data. Starr then calculates the gradient of each point.
The gradient can then be used to determine the amount of change occurring in the

data. Thus, where the gradient change, or change in value, is large then that area is

considered to be a boundary region. The points that comprise a connected group inI
which the gradient does not change a great deal are considered to be non-boundary

r points.

I Once the gradients have been calculated Starr uses the constant data to form seed

groups. These seed groups of constant data are collected until they are surrounded by

I

I

boundary points, Thus, groups are found by Starr. Starr then uses AMOEBA's five point
10

comparison technique.

r

However, Starr currently can not generate enough test sets because its data set is too

small. Starr would need a minimum of about 100 test sets whereas the current data

generate only seventeen.

I

I
Findp: Findp is a pattern recognition program that clusters the phenyl rings in a

compound. The program has been successful on seven out of the nine data sets

acquired from Dr. Fackler's research group. Thus, Findp needs a little work.

I

I

The program begins by calculating each points three closest neighbors. This data is

then printed out. The point being considered is now called i and its closest neighbor j.
These two points are used in a similarity measure. The program then produces a

diagram of points that show a directional relationship to its most similar neighbor. If two

points both point to each other, then these two paints are called an attractor set.I

I

I
I

The attractor sets are then used to cluster the program. For each set of six points in a

group a centroid is calculated. Then a point not of the six is calculated for its distance

away from the centroid. Theses calculations are completed and then the point with the

largest distance associated with it is thrown out of the group. This is continued until a

group of only six carbons remain.

I

I

I

Thus, phenyl groups are recognized. The points not clustered are thrown into a

general pool which could be recalculated for phenyls if the researcher thought that the

program missed some the first time around.

For this report, we print out only the first wave of calculations because we know it to be

accurate. In addition, Findp prints out each group and the other points distance from

the centroid of the group. Then the groups are identified as well as those points not in

I a group of six.

I

J

11

Conclusion: Thus, the general field of pattern recognition can be seen to have many

applications. Although I was unable to complete the AMOEBA conversion, I was able

I to complete the phenyl ring clustering program which works 78% of the time, and the

program Starr. In addition, I gained valuable incite into the requirements for a good

I

I

pattern recognition program.

In essence, this research could produce valuable fruits for many disciplines. I hope
that I will continue working with this research topic in the future. I would like to thank Dr.

Bryant for everything he has taught me. I would like to thank Dr. Fackler for allowing
me to work in his group. In addition, I would like to thank Cornell University and the

National Science Foundation for their technical support. Finally, I would like to thank

the Honors Department at Texas A&M for the fantastic experience.

Works Cited:

Anderberg, Michael R. Cluster Analysis For Applications. New York: Academic Press,

I 1973. pp. 1-16.

I Bryant, Jack. AMOEBA. Pattern Recognition. January, 1972. pp. 1041.

I

I

I

I

I

I

I

APPENDIX A

AMOEBA History

I

I

I
J

J

� section 1.

�

�

f

General comments.

The program AMOEBA is copyright (C) 1983 by Jack Bryant; all rights
are reserved. copying the source is authorized only if are Jack

Bryant or if you make absolutely no changes in the copy except in
the I/O sections or in the main program (which contains VMS

specific system calls). More precisely, the main program
(module AMOBMAIN) and subroutines AMCPARM, OPEN DATA, MAKEOUT ,

OPENTEMP, REWIND DATA, READ DATA, PRINT33, READ LABL,
OPENKEEP, and HEADER may be-modified. In additIon, D LINES

may be added and commented out as you please. The poInt of this
condition is to allow experimentation (through the D LINES code) but

keep everyone's production version 13.2 the same. The same restrictions
apply to the test version.

c

I
c

Although considerable effort has been expended to make AMOEBA correct
and reliable, no warranty is implied. I disclaim any obligation or

liability for damages, including but not limited to special, indirect,
or consequential damages arising out of or in connection with the use

or performance of this software. This work has been a "labor of
love;" I hope that users enjoy it. The reward for the first finder
of a bug is $10.24; this will double in 1991. (THIS REFERS TO PRODUCTION
VERSION 13.2, NOT TO THE TEST VERSION; THE REWARD FOR A NEW BUG IN THE
TEST VERSION IS PRESENTLY $2.56.)c

LANGUAGE VAX-II FORTRAN-77 (ANSI X3.9-1978)
c

I PURPOSE Driver program for the AMOEBA clustering-classification­
dimensionality reduction program.

c

i-------------------------- CALLED MODULES

� AMCPARM Gets parameters.
C

I
c

I
c

i

AMOEBA AMOEBA

MAKEOUT writes output file.

LIB$GET_VM Get virtual memory in program region.
Library function.

A VMS Run-time

LIB$FREE_VM Free virtual memory from program region.
Library function.

A VMS Run-time

c

• PROJECT AMOEBA CLUSTERING/CLASSIFICATION/DISPLAY PROGRAM
c

1-:::::::--::::-------::::o:Evrsr::F:::::::N--------:::::::--------------------
C 10 12/1/83 Jack Bryant Texas A&M Initial VAX Version AMOBMAIN

10.1 12/20/83 Jack Bryant Allow testing any input size & mask.
10.2 1/17/84 Jack Bryant Add subroutine GETPAR for RSC.
10.3 3/5/84 Jack Bryant Replace GETPAR with AMCPARM to allow

many different data types and arrangements of headers.

Also, replace READBYTE with READ DATA and add module to
rewind and skip header records on input data file(s).
Include file added to pass parameters.

C

!
J

10.4 12/25/85 Jack Bryant Corrected bug to allow self-generation
of data. Changes in START, COUNTERR, and NUMCLU .

Jack Bryant Sharpened estimates on memory required
(trying to reduce same).
Jack Bryant Extensive changes in classifier ... over

twice as fast now!
Jack Bryant More classifier and NUMCLU changes.
Also enough changes in START to mention.
Jack Bryant Added Robert's-like gradient for boundaries.
Added allowing old cluster map to be a mask for new run.

Jack Bryant Removed Robert's stuff pending more study.
Changes sprinkled throughout, mostly for minor increase in
speed.
Jack Bryant Big changes in NUMCLU and PERPIXEL make
the program 30% faster! Minor changes in AMCPARM.

Longstanding Bug fixed in THINMEAN.
Jack Bryant Classification is faster yet. (Yet another
simple idea.) Started putting in changes to do spatial
filtering and logic on reclassification of apparent
mixtures.
Jack Bryant Implemented the pair mixture distance test
in the AMOEBA classification option. Also put in logic
to exit-when-classified in NUMCLU.

14.2 10/21/90 Jack Bryant Put in 250 lines of help in the parameter
read module. The statistic file now has file name

<outfile>.TXT. Factored out mask tests everywhere.
Made two read data modules depending on whether the
classification mask is set.

14.3 10/23/90 Jack Bryant Added option to allow previous cluster map
(not necessarily by AMOEBA) to be used to start. Included

help statements for this.
C--

l
..,

t
...

I

10.5 1/1/86

11 1/20/87

12 4/14/88

c 13 3/1/89

13.1 5/10/90
c

13.2 6/20/90
c

14 8/31/90

C

14.1 9/10/90
C

C

C
section 2. An outline of the model.

1. Axiom: Real classes exist.

C 2. Def: A pixel is "pure" if it and all four nearest neighbors are in
the same real class.

3. Def: A "path" is a sequence P , ... ,P of pixels such that P is
1 n i

one of the four nearest neighbors of P , i = 1, •.. ,n-1.
C i+1

4. Theorem: If P and Q are pure pixels-and are neighbors then they are

in the same real class.

5. Def: A set is "connected" if each pair of points in the set can be

joined by a path lying in the set.

6. Def: If S is a set, then C is a "component" of S if C is a maximal
connected subset of S.

7. Theorem: If S is a set and P is an element of S then P is
contained in a unique component C of S. Moreover, C is exactly the
set C = { Q : P can be joined to Q by a path lying in S }.

8. Def: A "patch" is a component of the set of pure pixels.

The set of patches is thus a partition of the set of pure pixels.

9. Def: The "classifier" is the mapping from the set of all pixels to
an unknown set of labels.

Let us note that the classifier exists but is unknown. It exists by
virtue of Axiom 1.

10. Theorem: If F is a patch, then each point in F has the same label;
that is, the partition induced by the classifier in the set of pure
pixels is refined by the component partition.

I 11. Def: A "NNC" is a nearest neighbor classifier determined by a

distance function and a set of cluster attractors.

12. Def: A measurement vector R is a "convex combination" of vectors P
and Q if R = a P + (l-a) Q for some a between 0 and 1.

13. Axiom: (But with supporting arguments ...) If P and Q are

measurement vectors in the same real class and R is a convex combination
of P and Q, then a NNC should classify R in the same class as P and Q.

14. Def: A distance function is "natural" if it is induced by a norm

on the vector space in which the measurement vectors are imbedded.

Note that the maximum likelihood classifier is a NNC induced by a

natural distance function. Also natural are the Minkowski distances

d(P,Q) = (sum 1 p - q 1** p)** lip·
iii

..

!
...

l
..

I
... 15.

Two popular choices for pare 1 ("city block"

distance) and 2 (Euclidean distance). Note also
that the different p may be weighted with unequal (positive) weights
w. A "parallelepiped" classifier can be viewed as a weighted
i

p=infinity classifier.

Theorem: If a natural distance function induces a NNC consistent
with Axiom 13, then it is weighted Euclidean distance.

, Let C be a classifier. Let P and Q be two pure pixels. There are....

.... four possibilities:....

(1) P and Q are in the same real class and C(P) = C(Q);
c

I
(2) P and Q are in different real classes and C(P) # C (Q) ;

(3) P and Q are in the same real class and C(P) # C (Q) ; or,

(4) P and Q are in different real classes and C(P) = C(Q).

C 16. Def: The "pair probability of misclassification" is the

probability PPMC of case (3) or (4) above.

Note a NNC is completely determined by the class attractors and
the distance function. In clustering unknown data (to search for

structure with little a priori knowledge}, we will not know the
"best" weights to apply to the only acceptable distance function
(Euclidean distance). We therefore let all weights be equal.
This fixes the distance function, and it remains to find the
attractors.

17. Objective: It is desired to minimize the PPMC.

�
I"
...

with this objective, we need a means of estimating the PPMC.
Examine again Theorem 10. If we can estimate the set of mixed (i.e. not

pure) pixels, then we can get an estimate of the patches. Using Theorem

10, we can extract samples from the case "same real class". It has been
observed that the average brightness of the measurements is the single
most significant attribute in most multi-image analysis problems.
Therefore, sort the samples on this feature, and select pairs close, but
not too close, in the order. This gives a way to estimate the
"different real class" case. By counting errors (disagreements between
NNC and the case pairs), we obtain both an estimate of the PPMC and an

indication of which attractors are the cause of the (relatively) most
errors.

...

This is the general outline of the idea; refinements, such as using
a prior classification to refine the boundary estimate, and on

selecting starting cluster attractors from the very large number of

candidates, are described in the subroutines which do the work.

Crude flow chart and brief description of the modules.

....

�
....
...

�

,...,
... .

f
·

C .

I
·

(ENTRY)
I

+-------------+

I I OPENTEMP I I
+-------------+

OPENTEMP: Opens scratch
files.

/1_> _

_/
1: label for restart after

dimensionality reduction.
/ DO ITER = \
\ 1,NITER /

I
NO

/ \
/ ITER_YES__
\ =

1/1\ /
START: Initial estimate of

boundary and patches.

c .

+-----------+

I I NEWBNDY I I
+-----------+

c .

+---------+

II START II
+---------+

I

NEWBNDY: Uses classification
map to get improved boundary.

+---------+

I I DECTHRI I DECTHR: Decreases thresholds.
+---------+

-------.-_--_1

C .

+----------+

I I SELECT I I SELECT: Samples patches to get
+----------+ test sets.

I
+------------+

I I THINTSTM I I THINTSTM: Selects
-

300 test
+------------+ sets and 100 means.

I
· .

/ \
/ ITER=1 & NB>1 _YES _

\ OR / I
\ITER=2 & SWITCH>O/ +------------+

I I FLOATVEC I I
+------------+

I REDD: Reduces dim.
+------------+

II REDD II
+------------+

--< 1

FLOATVEC: Floats means.

I
· .

NO

·
· . +------------+

I I SORTTSTS I I
+------------+

I
/ ITER>1 _YES _

\ / I
+-----------+

II ADDMEAN II
+-----------+

_<__ I

SORTTSTS: Sorts test sets on

average one-d attribute.
,
· .

,
· .

,
, .

1'1
, .

,
, .

� .

.,

.. .

f
·

-�
.. .

NO ADDMEAN: Add means

from previous pass.

+----------+

II NUMCLU II
+----------+

I YES

/ _>--------
\ SWITCH<O / I

+------------+

II MAKE3BND II
+------------+

I
+----------------+

I SWITCH=-SWITCH I
+----------------+

I_I-1 I Proceed to restart with
_/ reduced dimensionality.

NUMCLU: Clusters the data.

.,

t :
... .

.,

... 0

� .

.,

... .

.,

�
.

NO

"
.., .

� .

C .

c .

C .

+------------+

I I MORELESS I I
+------------+

I
/ \

NO/ITER=_YES _

\NITER/
\ /

MORELESS: Detects when a class
is lost and adds it.

c .

.
. .

c .

-

C .

I
. .

+------------+

I I SORTMEAN I I
+------------+

> < I--

I

+------------+

I I PERPIXEL I I
+------------+

SORTMEAN: Sort means

on increasing avg.

c .
PERPIXEL: Performs a per pixel
nearest neighbor classification.

I
/ ITER < _--NO __

\ NITER /

YES
+--------+

II COpy II
+--------+

�---------------I

. · · . · · . · · · · / END DO \
\ /

/ \
________2___;CLASMETH � '---3 __

\ 2 OR 3 /
\ /

+------------+ 1 +------------+
I II AMOBCLAS II II CCLASS33 III + + + +

1__>
__

< 1

COpy: Adds means from previous
iteration for next NUMCLU.

(EXIT)

AMOBCLAS Performs standard AMOEBA spatial classification using the

boundary model.

CCLASS33 Context classification based on the context in a 3X3

neighborhood.

section 4. Revision history of AMOEBA.
VERSION DATE AUTHOR AFFILIATION REMARKS

1 5/1/76 Jack Bryant Texas A&M Initial Version AMOEBA

The first version of AMOEBA was a starting procedure for extracting
samples to test other clustering procedures. These, which were among
the fastest methods known, included ISODATA [1], the K-Means Algorithm
[2], and a Single Linkage Tree Algorithm [3].
The purpose of the testing was to
evaluate various clustering methods and their potential in the Large Area

Crop Inventory Experiment (LACIE). In the LACIE, a standard image size
was the "segment", a 117 by 196 multispectral scanner Landsat image, often
three or more rather poorly registered temporal acquisitions. The data
were generally free of clouds but not haze, and were of areas of intense
large field agricultural activity. The images were thus small and not

spectrally complex. still, we lacked the computational resources to

adequately test the methods. Moreover, all the methods failed to solve
the clustering problem when given samples which were measurement-space
mixtures--mixtures which exist owing to the resolution and precision of
the sensor, atmospheric effects, registration problems, and calibration
errors. To avoid testing using mixtures, as well as to sample the data,
we used the Fisher Algorithm [4] down scan lines to break the data into
intervals.

The Fisher method divides a sequential data set into segments so that
the sum of the within-segment "diameters" is minimal for that number of
intervals. It is not a true clustering method, for no information on

whether two distinct segments are the same "class" is obtained. Moreover,
although for a fixed number of intervals there is an objective

function, there is no way to decide how many intervals to use.

We used 12 intervals for scan lines of 117 pixels, and selected
the center of each interval which contained at least 5 pixels.
brought the number of points to cluster from 23,000 to 2,000, a

saving since the methods seemed to need O(#samples**2) time.

This
big

2 7/1/76 Second Version AMOEBA

One drawback was that boundaries in the direction normal to the scan

line direction were missed. Another application of the Fisher method in
that direction picked up those boundaries (but also the every-six-line
Landsat problem). By then we were making line printer maps, and the name

AMOEBA had caught on because of the appearance of the blobs. Our sampling
strategy now had us picking points with no neighbors on any of the
thickened boundaries, much the same as the present subroutine SELECT does.
We now had between 250 and 350 samples to cluster, another big improve­
ment. We were also pleased to be using Dynamic Programming [5]. Pleased,
that is, because of our background as mathematicians. Not so pleased,
however, with the time the Fisher method was taking, and not at all happy
with the results of the clustering methods. At that time, the idea was

to use clustering to develop training sets for a Maximum Likelihood
Classifier. But they were impossible to compare; none did well, nor did
the classifier seem all that likely to be maximum given the poor training.

3 8/1/76 Third Version AMOEBA

Version 3 added a module to label and sample the different components
of the complement of the boundary. David Egle and I wrote the
fast and elegant component labelling program; unlike relaxation
methods, only one pass was required to grow all the labeled components at
one time. The program was optimal in the sense that each pixel was

examined once. Also, the actual computations involved in the Fisher
method were studied (we were trying to speed them up). I found that

simply thresholding the spectral distance of a pixel to its nearby
neighbors did as well. I determined the threshold by experiment,
and made it adapt to data variability. Nothing "dynamic", and no

"maximum likelihood" either. But, if results get to decide, the map
of boundaries was better (less sensitive to 6-line noise), and the new

version could do it in less than one percent of the time we had been

using. The maps and lists of blob statistics from these simple, fast
methods seemed better than classical methods, for example from [6].
To some extent, I had put aside my mathematical point of view.
It was to return.

4 4/1/77 Fourth Version AMOEBA

l.:

C

None of the clustering methods being tested was doing well. This
task was yielding inconclusive results, as might be expected
given the variety of methods. Yet the data were as good as could
be hoped for (given the hardware). Moreover, the problem seemed to be

easy, with preselected data free of clouds, with large fields, flat
terrain, and multiple acquisitions. Cluster maps were confetti, not
wheat fields. Everyone blamed it on the data, and wanted to correct for
bad clustering (and therefore poor classifier performance) by fancy neo­

statistical methods. Version 4 of AMOEBA was a clustering program which
used the boundary map from Version 3. Components of the complement of the
boundary (now called patches) were sampled, forming what I called test
sets. The averages of the test sets were used as starting cluster centers
for a nearest neighbor classifier. Unpopular clusters were eliminated,
reducing the clusters to a user-supplied number. Fast and simple, and the

c

resulting cluster maps were, by comparison, almost great.

5 11/1/77 Fifth Version AMOEBA

Three changes marked Version 5. One was motivated by discussion with
people who interpret images manually: that boundary-between-field
decisions are made based on one of the multi-images, not on some multi­
dimensional distance function. This led to the present vector decision
thresholds. Another was the introduction of reject classifications. This
was really a natural result of a simple model for the spectral appearance
of a spatial boundary with registration errors possible. The third was

the initial version of the heart of the clustering program NUMCLU. For
the first time we had a clustering program which determined the number
of classes automatically. The idea then was to count the errors made when
the classifier split (i.e., classified differently) test pixels from the
same patch. An estimate of the number of errors expected (depending on

the number of clusters) was compared to the number of errors observed,
and the number of clusters determined following this comparison to
to minimize the deviation.

6 2/1/78 sixth Version AMOEBA

I
�

I
�

I
..

Version 6 was a result of a formal model for Landsat data. In

particular, the objective in NUMCLU (the present version) was introduced.
That objective, the pair probability of misclassification, allows one to

compare the hypothetical (and desired) real clustering with the
classification of samples
taken from the same patch and from different patches. We also introduced
spatial classification aids. Points which appeared to be misclassified
were reclassified if possible within the rejection threshold
model. Version 6, a finished program, can cluster and classify a four

pass LACIE segment in 12 seconds (on the AMDAHL), using 'only' 320K memory
in the process. Although subversions of Version 6 continued to appear
until 10/31/79, the main ideas were complete [7].

Although the path that led us here has often strayed from conventional
mathematics, the approach is in spirit mathematical. (The model outlined
above is a mathematical model; the depth or lack of it, compared to "real"
mathematics, is beside the point.)

The development of AMOEBA through Version 6 was supported in part by
NASA contract NAS-9-14689, "Development and Selection of Clustering
Procedures," L.F. Guseman, Jr., P.I. It is a pleasure to acknowledge
this support. Significant contributions to the program came from

Gary Breaux and David Egle.

7 11/1/80 Seventh Version AMOEBA

In the summer of 1980, I went to EROS Data Center, a U.S.

Geological Survey center near sioux Falls, S.D. The purpose of the visit
was to transfer some of the techniques developed at Texas A&M during the
LACIE to the Data Analysis Laboratory at EROS, as well as to develop new

techniques as time permitted. One new technique was the use of hashing
to histogram multidimensional data--e.g. Landsat data. Using this method,
we were able to compress a Landsat one pass frame so it could be processed
on the AMDAHL (i.e., the data were all in memory.) Version 7 uses data in
this form. Unfortunately, a two pass Landsat image is too complex to be

compressed in this manner. (Of course, the AMDAHL is a virtual machine:
little memory limitation, in theory, is placed on a task. But the cost of

memory resources at A&M was high.)

8 9/10/81 Jack Bryant and S.K. Jenson Eighth Version AMOEBA

Version 8 was written at EROS the following summer. The program uses

several tricks to segment essentially infinite images into strips, to
find boundary and samples for NUMCLU, and to classify data, all on a tiny
(by AMDAHL standards) minicomputer (the Hewlett-Packard 3000 Series III).
The program runs as an IDIMS function. Comparisons with ISOCLS [8] show
it performs about as well while saving time (AMOEBA is faster) [9]. Major
enhancements (in addition to the ability to handle very large images)
include a provision for a mask and the generation of a "statistics" file.

9 6/1/82 Ninth Version AMOEBA

Version 9 is an iterative enhancement of Version 6. I noticed
that boundaries were found where the classifier (i.e. the per pixel
classifier) got lost. Classification induced boundaries were used to

generate patches for the next pass of the clustering procedure. Although
this uses more time, it seemed to result in better clustering, at least
in the LACIE data I tested the new program on. Several related techniques
on finding boundaries and on classification based distance functions and

gradients were presented during a special session of a meeting of the
American Mathematical society [10].

10 12/1/83 Tenth Version AMOEBA

Version 10 is a complete rewrite of Version 8 (now in FORTRAN 77).
Mainly owing to the better compiler, the program is written in well
structured code. The advantages of the structured approach to coding are

widely recognized [11]. Additions to Version 8 include:

@ The user may supply weights for counting error cases; these were fixed
in all previous versions.

@ A choice of classifiers is made available. They are:

» a per pixel classifier (not an option of versions past
number 5)

» the Version 8 spatially supervised classifier

» a new context classifier [12], based on 3X3 blocks (new to
all versions)

@ Each pixel is given a label; if necessary, the number of clusters is
increased during the classification step. The difference between this
and Version 8 lies in the more efficient classifier which only looks at
the exceptional case when regular classification is rejected .

.,

.,

@ The number of iterations may be specified by the user. Version 8
did not iterate at all. Other versions handle only small images .

....

@ Using VAX-11 Run-time Library calls, all memory management is transparent
to the user; the program runs in as little virtual memory as possible.

� No previous version has had this feature.

One minor change in Version 10 is the way in which the mask is
labelled with 255 rather than 99 or 0 (in earlier versions). This

C allows 254 context classes, and reserves 0 for "unclassified".

10.1 5/1/84

The VMS version has been modified to merge clusters for the first
time. The merging is carried out in subroutine MORELESS (formerly
MOREQUES). The thresholds are one-fifth of the vector boundary decision
thresholds determined in START.

10.2 1/10/86

A number of minor changes have been made. The test data generation
portion was incorrect due to the removal of READBYTE. NUMCLU,
COUNTERR, and COLAPS have been modified. Many fossil comments
have been removed. The initial start has been given additional
protection to guard against a lost boundary finder. In AMOEBA,
code has been included to add the final clusters from the previous
pass to the spatially determined starting clusters. The two print
routines PRTSTATS and PRINT33 have been modified to make ASCII files.
The AMOEBA classification method has been modified to use 8-neighborhoods
instead of only 4-neighborhoods. A similar change has been made in the

preliminary steps before context classification. All logic including
BIGDATA has been commented out everywhere (awaiting true 12 bit data).

11 6/19/86 Eleventh Version AMOEBA

A major rewrite of the logic in the main clustering module NUMCLU
is the principal change leading to Version 11. Although the objective
function remains unchanged from Version 6, the minimization search has
been considerably widened for the final iteration. Roughly speaking,
Phase II of NUMCLU takes "subclusterings" of the results of the earlier
Version (Phase I) and evaluates, in a 64 node tree search, each

subclustering, looking for arrangements which make fewer errors in the

way the clustering fits the model. In this way, essentially every
arrangement which has any chance of improving the partition is examined.
A report on this work is in preparation.

Another significant change (with a surprising improvement resulting)
is the incorporation of the dimensionality reduction technique of

Bryant and Guseman in the initial phase of NUMCLUi this module takes
the starting means for NUMCLU and finds the best linear mapping to one

dimension. Earlier versions simply used the sum of all the measurements
as the one dimensional attribute. That was not bad for Landsat data, but
the new method is better when far IR or UV bands are present.

Yet another change allows the user to reduce the dimensionality
of the data to three to make a color display of the image, and, at
the same time, save time in the program. The time saved depends on

the number of bands in the input image: for six band input and two

iterations, it amounts to at least 45%. The system is designed for
MSS data. The reduced dimensionality image is designed for currently
available systems. We hope for reproducible colors: that is, the

display will be stable if the sensor and scene do not change materially.
Another change is to restart the process following the dimensionality

reduction step. This is needed because the parameters which are used
to detect probably identical classes are defined in START. If

dimensionality reduction has been carried out, these parameters get
lost.

A major change has been made in the context classifier:
no one likes the many classes you get when you use it. So an option
has been provided which will merge classes when they can be merged.
The entire context classifier situation is incomplete, although the

program does work as advertised. Probably, a 3x3 neighborhood is too
small.

A number of less significant changes have also been incorporated.
One is the way in which the "mask" is handled. Since experience has
shown that the "unclassified" event never (well, almost never) happens
on real data, and since the value 255 is hard to deal with on the lIS

image display hardware, the mask label is made 0 on the final pass if
the classification method is 1 or 2.

Also, the weights /default have changed to fit better with the new

version of NUMCLU and the new option in the context classifier:
it seems to work much better.

12 12/19/86 Twelfth Version AMOEBA

Another major change in NUMCLU uses the exhaustive search on all
iterations now. Changes in the way classification is carried about,
plus saving recently encountered trial arrangements, makes this possible.
A seemingly minor change in the way distances are computed when per­
forming nearest neighborhood classification has made the program at
least twice as fast on 4-band data. Throughout the program, long
to short integer conversions have been eliminated: this gains still
more speed.

The AMOEBA classifier has been generalized to allow the user to
select from one to eight neighbors (in the 8-neighborhood) which
must match to accept the classification. The resulting cluster

maps when (say) 4 alike is selected are very smooth and easy to

interpret (if slightly less accurate). The I-neighbor alike
preserves fine detail such as urban features better and is more

accurate than pure per pixel classification.
The starting boundary estimation procedure has been improved.

When a very large patch is detected, a serious effort is made to
detect additional boundary points without changing the thresholds.
The time spent here is probably repaid later by not having to collect
and analyze the extra points. In addition, a gradually changing
natural feature, such as observed in rangeland or wetlands, is much
less likely to be taken to be a patch.

Throughout the program, changes in the way classification is
carried out have been made. This work, reported in [13], makes the

program nearly three times as fast on 11 dimensional data, yet the
idea is very simple and natural.

The module that makes the 3-band image has been improved.
Safeguards have been incorporated to prevent the 'folding' operation to
lose more that 1/2 percent of the counts (not pixels clipped, but
actual counts lost). The original objectives are still met, although
the resulting color displays are not as spectacular. (The spectacular
appearance was probably a result of sUbstantial 'folding.') The

dimensionality reduction method is now the simple principal components
method, rather than the method of Bryant and Guseman, pending the
location of an efficient nonlinear optimization method. This work is
presented in [14].

A number of fossil comments have been removed, shortening the
source by a thousand lines.

13 1/20/90 Thirteenth Version AMOEBA

A number of changes have made this version faster. Most ammount to
� replacing subroutines and array indexing-loops with straight line code

written out. Of course, this makes the program difficult to understand.
These changes are documented in the modules affected.

�
C 14 1/10/91* Fourteenth Version AMOEBA

* Projected release date.
"The future lies ahead of Us" -- R.M. Nixon

The changes and additions planned for Version 14 are listed here in no

particular order; a few are complete indicated by a date e.g.:
8/10/90

Classification is faster still because of the test for "when classified"
(the nearest attractor has been found when the distance to attractor
tested is half the distance to the other nearest attractor). This
change in PERPIXEL. A similar change in NUMCLU. 8/20/90

The statistics file should have a name: make it the same as the cluster

map with extension .TXT 8/21/90

Some speed-up seems likely if the mask and classmask tests are recoded.

8/21/90

Help files should be added--or built-in help. 8/20/90

An option will be added to allow one to produce a large number of clusters
for the purpose of using these to make a color display in the setting
of a display device with very limited palette--e.g., 256 colors. The

output will be the cluster map and table of cluster attractors. The

map is inteded to be used to produce color display products.

An option will be added to allow dimensionality reduction from n to m

dimensions (instead of just n to 3). Also the dimensionality reduction
will not scale like the 3 band product does (except to make sure the full
use of 8 bit unsigned integers is made).

In connection with this, the Moore-Penrose generalized inverse idea will
be implemented.

Texture needs to be experimented with. Two uses: use texture measurements
as additional bands to aid (?) classification, and use texture to switch
how many alike in the 8-point neighborhood are required.

.

I
I

In connection with this, the 8-point neighborhood logic is slightly
different now. The 4 nearest are weighted twice that of the corners.

At the same time, the requested number is multiplied by 3/2, keeping
the intention of the user the same. 7/7/90

An option to use another cluster map as the entry to the program will be
added. This would be useful if the system had a hardware clustering
program built in which was much faster than one pass through AMOEBA.

AMOEBA has been known to lose a bright' high variance class on the first
iteration. I believe this can be corrected. The main result is that
the dimensionality reduction routine receives poor training.

.. I propose to make a pyramid structure of high resolution data and do
a multi-resolution attempt to understand the image.

..

A 9x9 context classifier will be implemented. I think the information
in an area this big can still be kept in a 32 bit word, and I believe
fewer than 2A16 actual contexts are present even in a complex image .

... -

.. The Moore-Penrose inverse can also be used to restore missing data or

to recreate at apparently higher resolution low resolution data which

is registered to high resolution data. I see no reason why this could
not be done automatically.

An option of making the cluster map a color map should be easy to provide,
although this should clearly be a separate program which depends on the

system.

Filtering: high frequency enhancement filters of the form

222
F (s) = (1+a I I s I I) exp (-I I s I I /b)
a,b

are easily approximated (the Fourier transform can be computed by hand:

f (t)
a,b

/
.- I.-

/

-i s.t
F (s) e

a,b
ds

2
R

2 2
2 2 4 -b II til /4

= pi b /4 [4+4ab -ab] e

within reason, these filters provide modest sharpening and at the same

some smoothing. They are easily implemented as small (say 7x7) real
domain convolution filters.

Information about the platform which acquired the data could potentially
be used to automatically produce color display products, pyramid
structure, and spatial filtering. Much data is available, but it is only

I
now being assembled in one place.

,---------------------------- REFERENCES --------------------------------------

[1]

[2]

[3]

[4]

[5]

[6]

. [7]

� [8]

I

Ball, G.H. and Hall, J.D., A clustering technique for summarizing
mUltivariate data, Behav. Sci. 12(1967),153-155.

Fisher, L. and Van Ness, J.W., Admissible clustering procedures,
Biometrika 58(1971),91-104.

Grower, J.C. and Ross, G.J.S., Minimum spanning trees and single
linkage cluster analysis, Appl. Stat. 18(1969),54-64.

Fisher, W.D., On grouping for maximum homogeneity, J. Am. stat.
Assoc. 53(1958),789-798.

Bellman, R.E. and Dreyfus, S.E., Applied Dynamic Programming,
Princeton univ. Press, Princeton N.J., 1962.

Hartigan, J.A., Clustering Algorithms, John Wiley and Sons, New

York, 1975.

Bryant, J., On the clustering of multidimensional pictorial data,
Pattern Recognition 11(1979),115-126.

Kan, E.P.F. and Holly, W.A., More on clustering techniques with
final recommendations on ISODATA, Tech. Rep. LEC 64-TR-112,
Lockheed Electronics Co., Inc., HASD, Houston, Texas, 1972.

[9] Jenson, S.K., Loveland, T.R., and Bryant, J., Evaluation of
AMOEBA: A spectral-spatial classification method, J. Appl.
Photographic Engineering 8(1982),159-162.

[10] Bryant, J., Clustering and boundary detection in image data,
Abstracts AMS 2(1981),515. Presented to the AMS at 789th

Meeting, Amherst, October 17, 1981.

[11] Tanimoto, S.L., Advances in software engineering and their
relations to pattern recognition and image processing, Pattern

Recognition 15(1982) ,113-120.

[12] Wharton, S.W., A contextual classification method for recognizing
land use patterns in remotely sensed data, Pattern Recognition
15(1982),317-324.

[13] Bryant, J., A fast classifier for image data, Pattern Recognition 22

(1989),45-48.

I [14] Bryant, J., On displaying multispectral data, P.E. & R.S. 54 (1988),
1739-1743.

[15] Bryant, J., AMOEBA clustering revisited, P.E. & R.S. 56 (1990), 41-47.

DNICA>

,

APPENDIX B

Starr: Program and Output

I
,

I

I

I

�

Starr

program starr
c

c One step test of first cut.
c

implicit none! remove for old version 2.1.1 for parallel
integer nc,nr,np,nb
character*64 outfile,infile
parameter(nb=1,nc=32,nr=32,np=32)
integer i,j,k,l,m,n
integer testsets(5,356),means(256)
integer nmeans,ntstsets,nfc
real*4 max

integer nbits
parameter (nbits=32)
integer bndy(O:(nc-1)/nbits,nr,np)
real*4 a(nc,nr,np),grad(nc,nr,np),thresh
common/datal a,grad,bndy
write(6,*) , Percent in homogeneous blobs?'
read(6,*) thresh

write(6,*) , Input file name?'

read(6,1) infile
write(6,*) , Output file name?'

read(6,1) outfile
1 format (a)

write(6,*) , Here we go'
call formdata(infile)
write(6,*) , Oh boy, we have data'
call formgrad(max)
write(6,*) , Gradient formed'
call findthrs(thresh,max)
write(6,*) , Found a threshold: ',thresh
call findbndy(thresh)
write(6,*) , Boundaries marked'
call extract (testsets,means,ntstsets, nmeans)
write(6,*) , Extracted test sets and initial means'

write(6,*) , There are ',ntstsets,' testsets.'
call numclu(testsets,means,nb,ntstsets,nmeans,nfc)
write(6,*) , Clusters found: there are:',nfc
call perpixel(means,nfc)
write(6,*) , Classification step finished'
call cleanup (nfc)
write(6,*) , Spatial fixups finished'
call store it (outfile)
stop
end
subroutine formdata(infile)
implicit none! remove for old version 2.1.1 for parallel

c

c The idea is to place charges at points read in and to set the stren
c equal to the charge/square of distance except not less than 2.0 on

c distance.
c

character*64 infile
integer nc,nr,np,nb
integer nbits
parameter (nbits=32)
parameter(nb=1,nc=32,nr=32,np=32)
integer bndy(O: (nc-l)/nbits,nr,np)
real*4 a(nc,nr,np),grad(nc,nr,np)
common/datal a,grad,bndy

r

real*4 center1,center2,center3,charge,temp
integer k1,k2,i1,i2,j1,j2
integer nchar,i,j,k,l,is
character*l yesno
open(99,file=infile,status='old')
nchar = 0
is = 12321
do 10 I = 1,100000

read(99,*,end=20) center1,center2,center3,charge
nchar = nchar+1

charge = 1.3*sqrt(charge)
k1 = center1-charge
if (k1.lt.1) k1 = 1
k2 = center1+charge
if (k2.gt.np) k2 = np
j1 = center2-charge
if (j1.lt.1) j1 = 1

j2 = center2+charge
if (j2.gt.nr) j2 = nr

i1 = center3-charge
if (i1.lt.1) i1 = 1
i2 = center3+charge
if (i2.gt.nc) i2 = nc

do 50 k = k1,k2
do 50 j = j1,j2
do 50 i = i1,i2
a(i,j,k) = charge+(ran(is)-ran(is»*.4

50 continue
10 continue
20 do 40 k = 1,np

do 40 j = 1,nr
do 40 i = 1,nc
if (a(i,j,k).eq�O.) then

a(i,j,k) = (ran(is)+ran(is)+ran(is)+ran(is)+ran(is)+
+ ran(is)+ran(is)-ran(is)+ran(is)+ran(is)+ran(is)-ran(is»*9.

end if
40 continue

write(6,*)' Dump data?'

read(6,1) yesno
1 format (a)

if (yesno.eq.'y'.or.yesno.eq.'Y') then

write(6,2) a

2 format(lx,16f7.2)
end if

write(6,*)' I read',nchar
return
end

subroutine formgrad(max)
implicit none! remove for old version 2.1.1 for parallel

c

c Form the square of the magnitude of the gradient of a. Only inside
c

integer nc,nr,np,nb
integer nbits
parameter (nbits=32)
parameter(nb=1,nc=32,nr=32,np=32)
integer bndy(0:(nc-1)/nbits,nr,np)
real*4 a(nc,nr,np),grad(nc,nr,np),temp,max

common/datal a,grad,bndy
integer k,j,i
max = o.

c

c This logic defines grad inside. Easy enough.
c

do 10 k = 2,np-1
do 20 j = 2,nr-1
do 40 i = 2,nc-1

temp = (a(i+1,j,k)-a(i-1,j,k))**2+
+ (a(i,j+1,k)-a(i,j-1,k))**2+(a(i,j,k+1)-a(i,j,k-1))**2

if (temp.gt.max) then
max = temp
write(6,*) max,i,j,k,a(i,j,k)

end if
grad(i,j,k) = temp

40 continue
20 continue
10 continue

c

c Now define grad on the boundary of the parallelepiped.
c

do 110 k = 1,np,np-l
do 120 j = 2,nr-1
do 140 i = 2,nc-1

temp = «a(i+1,j,k)-a(i-1,j,k))**2+
+ (a(i,j+1,k)-a(i,j-1,k))**2)*1.5

if (temp.gt.max) then
max = temp
write(6,*) max,i,j,k,a(i,j,k)

end if
grad(i,j,k) = temp

140 continue
120 continue
110 continue

do 210 j = 1,nr,nr-l
do 220 k = 2,np-1
do 240 i = 2,nc-1

temp = «a(i+1,j,k)-a(i-1,j,k))**2+
+ +(a(i,j,k+1)-a(i,j,k-1))**2)*1.5

if (temp.gt.max) then
max = temp
write(6,*) max,i,j,k,a(i,j,k)

end if
grad(i,j,k) = temp

240 continue
220 continue
210 continue

do 310 i = 1,nc,nc-l
do 320 k = 2,np-1
do 340 j = 2,nr-1

temp = «a(i,j+1,k)-a(i,j-1,k))**2+
+ (a(i,j,k+1)-a(i,j,k-1))**2)*1.5

if (temp.gt.max) then
max = temp
write(6,*) max,i,j,k,a(i,j,k)

end if
grad(i,j,k) = temp

340 continue
320 continue

310 continue
c

c The corners.

c

do 410 k = l,np,np-l
do 420 j = 1,nr,nr-l
do 440 i = 1,nc,nc-1

grad(i,j,k) = max

440 continue
420 continue
410 continue

write(6,*)' Down the center: data'

write(6,*) (a(i,nr/2,np/2),i=1,nc)
write(6,*)' Down the center: gradient:'
write(6,*) (grad(i,nr/2,np/2),i=1,nc)
write(6,*)' Maximum gradient: ',max
return
end
subroutine findthrs(th,max)
implicit none! remove for old version 2.1.1 for parallel
integer nc,nr,np,nb
parameter(nb=1,nc=32,nr=32,np=32)
real*4 max

integer nbits
parameter (nbits=32)
real*4 hist(100)
integer bndy(0:(nc-1)/nbits,nr,np)
real*4 a(nc,nr,np),grad(nc,nr,np),th
integer cs,i,j,k,count
common/datal a,grad,bndy
th = (100.-th)*(nc-2)*(nr-2)*(np-2)/8.
do 5 i = 1,100

5 hist(i) = o.
do 10 i = 2,nc-1,2
do 10 j = 2,nr-1,2
do 10 k = 2,np-1,2

cs = 1+99*grad(i,j,k)/max
hist(cs) = hist(cS)+100.

10 continue
count = 0

write(6,*)' Histogram of counts'
write(6, *) (ifix(hist(i)/100.), i=l, 100)

do 20 i = 100,0,-1
count = count+hist(i)
if (count.ge.th) go to 30

20 continue
30 th = (max*i-1.)/99.

return
end
subroutine findbndy(th)
implicit none! remove for old version 2.1.1 for parallel
integer nc,nr,np,nb,ix,iy,iz,i,j,k,nbits,ipset,ibset
parameter (nbits=32)
parameter(nb=1,nc=32,nr=32,np=32)
real*4 a(nc,nr,np),grad(nc,nr,np),th
integer bndy(O: (nc-1)/nbits,nr,np)
common/datal a,grad,bndy
ipset(ix,iy,iz) = ibset(bndy«ix-1)/nbits,iy,iz),

+ nbits-1-mod(ix,nbits»

do 10 k = 1,np
do 10 j = 1,nr
do 10 i = 1,nc
if (grad(i,j,k).gt.th) then

bndy«i-1)/nbits,j,k) = ipset(i,j,k)
end if

10 continue
return
end
subroutine extract(testsets,means,ntstsets,nmeans)
implicit none! remove for old version 2.1.1 for parallel
integer nc,nr,np,nb,ix,iy,iz,x,y,z,nsa,map
parameter(nb=1,nc=32,nr=32,np=32,nsa=nc*nr/10,map=222)
integer knt(nsa),lab(nsa)
integer testsets(5,356),means(256)
integer nbits
parameter (nbits=32)
integer nmeans,ntstsets,c,s,llbl,nsamax,i25,i1,i2,it,l,m,nts
logical lfound
integer lold,lsave,maxslot
integer bndy(0:(nc-1)/nbits,nr,np),plane(nc,nr,2)
real*4 a(nc,nr,np),grad(nc,nr,np) ,dat(map,nsa)
logical point
common/datal a,grad,bndy
point(ix,iy,iz) = btest(bndy«ix-1)/nbits,iy,iz),

+ nbits-1-mod(ix,nbits»
c

c First, go through the array and set the gradient to -1 at points wh
c it had been thresholded. Do this for all six neighbors too.
c

do z = 1,np
do y = 1,nr

do x = 1,nc
if (.not.point(x,y,z» go to 10

grad(x,y,z) = -1.
if (x.gt.1) grad(x-1,y,z) = -1.

if (x.lt.nc) grad(x+1,y,z) = -1.
if (y.gt.1) grad(x,y-1,z) = -1.
if (y.lt.nr) grad(x,y+1,z) = -1.

if (z.gt.1) grad(x,y,z-l) = -1.
if (z.lt.np) grad(x,y,z+l) = -1.

10 end do
end do

end do
c

c Initialization:
s = 0 summer of distances
c = 0 count of test sets encountered
llbl = 1 label
nsamax = 0

ntstsets = 0

i25 = 0 ! pointer
call opentemp(10,5)
i1 = 1 ! circular
i2 = 2 ! pointers

number of slots in use for labels
count of number of test sets collected
used by extract

! a file to store the samples
buffer i1 oldest
for two planes i2 newest

c

c Build the first plane: it is special.
c

c call zap(plane(1,1,i1),nc*nr) not necessary in the present
do y = 1,nr ! Process this plane by rows

do x = l,nc ! and columns.
if (grad(x,y,il).ge.O.) then ! Find a critter.
if (x.eq.l) then ! Got one. start of a row?
if (y.eq.l) then ! Yep. First row?

plane(x,y,il) = llbl ! Yep. Assign the label.
else if (plane(x,y-l,il).gt.O) then Label above?

plane(x,y,il) = plane(x,y-l,il) ! Yep. Transfe

go to 20 and break out of logic.
else
llbl = llbl+l Build a new label

plane(x,y,il) = llbl and assign.
go to 20

end if
else
if (plane(x-l,y,il).gt.O) then ! Look to left.

plane(x,y,il) = plane(x-l,y,il) Got one

go to 20 ! Done ... next
end if
if (y.eq.l) then ! First row?
llbl = llbl+l ! Yep. start a new label

plane(x,y,il) = llbl ! and assign.
else
if (plane(x,y-l,il).gt.O) then ! Nope. Look

plane(x,y,il) = plane(x-l,y,il) ! above and as

else ! else
llbl = llbl+l make a new label

plane(x,y,il) = llbl ! and assign.
end if

end if
end if First column logic.

end if Blob logic.
20 end do Column loop.

end do Row loop.
do z = 2,np ! Plane loop starts.

c

c now build plane i2
c

call zap(plane(l,l,i2),nc*nr)
do y = l,nr ! Again by rows

do x = l,nc ! and columns.
if (grad(x,y,z).ge.O.) then! If a

if (plane(x,y,il).gt.O) then

plane(x,y,i2) = plane(x,y,il)
go to 30 ! exactly the

end if
if (x.eq.l) then
if (y.eq.l) then

plane(x,y,i2) = llbl
else
if (plane(x,y-l,i2).gt.0) then

plane(x,y,i2) = plane(x,y-l,i2)
go to 30

else
llbl = llbl+l

plane(x,y,i2) = llbl

go to 30

end if
end if

blob point is found
! then look to the pre
! plane, else the logi

same as above.

else
if (plane(x-l,y,i2) .gt.O) then

plane(x,y,i2) = plane(x-l,y,i2)
go to 30

end if
if (y.eq.l) then
llbl = llbl+l
plane(x,y,i2) = llbl

else
if (plane(x,y-l,i2).gt.0) then

plane(x,y,i2) = plane(x-l,y,i2)
else
llbl = llbl+l
plane(x,y,i2) = llbl

end if
end if

end if
end if

30 end do
end do

end do
c

c doing plane z-l in the sense of the data.
c

do y = l,nr process one row at a time

c throughout, I always is the pointer into the collected stuff

do I = l,nsamax
if (knt(l) .gt.O) then
lfound = .false.

this initially falls through (no lab
! test if a label has been fou

lfound is a flag that says that labe
was found. This logic starts fresh
for each scan line.

do x = l,nc ! Process this line searching for
if (plane(x,y,il).eq.lab(l» then ! find it?
plane(x,y,il) = 0 ! Yes.
lfound = .true. ! Fly the flag.
if (knt(l).lt.map) then ! Is there room?

m = knt(l)+l Yes. Incr knt

knt(l) = m !

dat(m,l) = a(x,y,z-l)
else ! No. Close that label.
call gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)

end if
end if

end do
if (.not.lfound) ! If this label was not found then clo
call gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)

end if
end do
lold = 0

! and save the data.

c

c

+

! Label loop.
! This is to the most recently encountered lab

do x = l,nc
if (plane(x,y,il).ne.O) then
if (plane(x,y,il).ne.lold) then
if (nsamax.eq.O) nsamax = 1
do I = l,nsamax ! Not the old one.

if (knt(I).eq.O) then! Look for room for

knt(l) = 1 ! start a new critter here
lsave = I ! lsave is where lold goes
lold = plane(x,y,il)
lab (I) = lold

dat(l,l) = a(x,y,z-l)

Test for valid label
Yes. Test if old one

Now we are started.

it.

go to 1 Next point.
end if

end do ! If this falls through, then no new slots wer

nsamax = nsamax+l
if (nsamax.gt.nsa) then! test if we are absolutely ou

I = maxslot(knt,nsa,map) ! Yes. Find fattest a

call gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)
knt(l) = 1 ! start a new critter here.
lsave = I
lold = lab (I)
dat(l,l) = a(x,y,z-l)
nsamax = nsa ! Reset pointer

else ! There is room for a new one.

knt(nsamax) = 1 ! start a new critter here.
lsave = nsamax

lold = plane(x,y,il)
lab (nsamax) = lold

dat(l,nsamax) = a(x,y,z-l)
end if

else ! Yes, we found the old one.

m = knt(lsave)+l ! Prepare to add it.
if (m.le.map) then ! is there room?
knt(lsave) = m ! Yes. Add.

dat(m,lsave) = a(x,y,z-l)
else ! No room. Close the full label.
call gettst(lsave,knt,dat,nts,i25,map,nsa,c,s,nsamax
lold = 0 ! Point to nil label.

end if
end if Label search logic.

end if Valid label in map logic.
1 end do Next point loop.

c swap planes
it = il
il = i2
i2 = it

end do
c

c Now the last plane of labels should be gathered.
c

c

c

do Y = l,nr ! process one row at a time
do I = l,nsamax ! this initially falls through (no lab
if (knt(I).gt.O) then ! test if a label has been fou
lfound = .false. ! lfound is a flag that says that labe

was found. This logic starts fresh
for each scan line.

do x = l,nc Process this line searching for
if (plane(x,y,il).eq.lab(l» then ! find it?
plane(x,y,il) = 0 ! Yes.
lfound = .true. ! Fly the flag.
if (knt(l).lt.map) then ! Is there room?

m = knt(l)+l Yes. Incr knt

knt(l) = m !

dat(m,l) = a(x,y,np) ! and save the data.
else ! No. Close that label.
call gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)

end if
end if

end do
if (.not.lfound) ! If this label was not found then clo

+ call gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)

end if
end do
lold = 0

! Label loop.
! This is to the most recently encountered lab

do x = 1,nc
if (plane(x,y,i1).ne.O) then Test for valid label
if (plane(x,y,i1).ne.lold) then Yes. Test if old one

if (nsamax.eq.O) nsamax = 1 Now we are started.
do I = 1,nsamax ! Not the old one.

if (knt(I).eq.O) then! Look for room for it.
knt(l) = 1 ! start a new critter here
lsave = I ! lsave is where lold goes
lold = plane(x,y,i1)
lab (I) = lold

dat(l,l) = a(x,y,np)
go to 11 ! Next point.

end if
end do ! If this falls through, then no new slots wer

nsamax = nsamax+1
if (nsamax.gt.nsa) then ! test if we are absolutely ou

I = maxslot(knt,nsa,map) ! Yes. Find fattest a

call gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)
knt(l) = 1 ! start a new critter here.
lsave = I
lold = plane(x,y,i1)
lab (I) = lold

dat(l,l) = a(x,y,np)
nsamax = nsa ! Reset pointer

else ! There is room for a new one.

knt(nsamax) = 1 ! start a new critter here.
lsave = nsamax

lold = plane(x,y,i1)
lab (nsamax) = lold

dat(l,nsamax) = a(x,y,np)
end if

else ! Yes, we found the old one.

m = knt(lsave)+l ! Prepare to add ite
if (m.le.map) then ! is there room?

knt(lsave) = m ! Yes. Add.

dat(m,lsave) = a(x,y,np)
else ! No room. Close the full label.
call gettst(lsave,knt,dat,nts,i25,map,nsa,c,s,nsamax
lold = 0 ! Point to nil label.

end if If room logic.
end if Label search logic.

end if Valid label in map logic.
11 end do Next point loop.

end do ! Next row loop.
c

c Now all open slots should be closed.
c

do I = 1,nsamax
if (knt(I).ge.5)

+ call gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)
end do
ntstsets = nts
return
end
subroutine gettst(l,knt,dat,nts,i25,map,nsa,c,s,nsamax)
implicit none

integer I ! the label about to be closed

integer nts
integer i25
integer map
integer nsa

integer knt(nsa)
real dat(map,nsa)
integer c ! counter
real s ! summer

integer nsamax

integer kn
real tdist,tsp(5),last25(25),a
integer m,is,ip
kn = knt(l)
if (kn.gt.4) then

tsp(1) = dat(1,1)
tsp(5) = dat(kn,l)
tdist = abs(tsp(1)-tsp(5»
if (tdist.eq.O.) go to 1
s = s+tdist
c = c+1
if (c.gt.4096) then
c = c/2
s = s/2.

end if
a = sic ! average so far
if (nts.gt.25) then
if (tdist*2 .. lt.a) go to 1
if (tdist.gt.4.*a) go to 1
do m = 1,25
if (abs(tsp(1)-last25(m».lt.tdist) go to 1

end do
end if
is = (kn-1)/4
m = 1+is
do ip = 2,4
tsp(ip) = dat(m,l)
m = m+is

end do
i25 = i25+1
if (i25.gt.25) i25 = 25

last25(i25) = tsp(5)
write(10,*) (tsp(m) ,m=1,5)
nts = nts+1

type*,tsp
end if
knt(l) = 0
return
end
subroutine numclu(testsets,means,nb,ntstsets,nmeans,nfc)
implicit none! remove for old version 2.1.1 for parallel
integer nb,nmeans,nfc,ntstsets
integer testsets(5,356),means(256)
return
end
subroutine perpixel(means,nfc)
implicit none! remove for old version 2.1.1 for parallel
integer nc,nr,np,nb
parameter(nb=1,nc=32,nr=32,np=32)
integer nbits
parameter (nbits=32)

1

r

count of the number of test sets found
circular buffer pointer
max in a blob
max open at once

the count of the number with label I
the data in each blob

current number of potentially open critters

distance first to last

Is it initially
interesting?
believable?

new?

integer testsets(5,356),means(256),nfc
integer bndy(O:(nc-1)/nbits,nr,np)
real*4 a(nc,nr,np),grad(nc,nr,np)
common/datal a,grad,bndy
return
end
subroutine cleanup(nfc)
implicit none! remove for old version 2.1.1 for parallel
integer nc,nr,np,nb
parameter(nb=1,nc=32,nr=32,np=32)
integer nbits
parameter (nbits=32)
integer testsets(5,356),means(256),nfc
integer bndy(o:(nc-1)/nbits,nr,np)
real*4 a(nc,nr,np),grad(nc,nr,np)
common/datal a,grad,bndy
return
end
subroutine storeit(outfile)
implicit none! remove for old version 2.1.1 for parallel
character*64 outfile
integer nc,nr,np,nb
integer nbits
parameter (nbits=32)
parameter(nb=1,nc=32,nr=32,np=32)
integer bndy(O:(nc-1)/nbits,nr,np)
real*4 a(nc,nr,np),grad(nc,nr,np)
common/datal a,grad,bndy
open(98,file=outfile,status='new')
return
end
subroutine opentemp(iu,nr)
implicit none

integer iu,nr
open(iu,status='new') !,disp='delete',form='unformatted'
return
end
subroutine zap(a,n)
integer a(n),n,i
do i = 1,n
a(i) = 0

end do
return
end
function maxslot(k,n,m)
integer k(n),n,m,max
integer maxslot
maxslot = 1
max = k(1)
if (max.ge.m) return
do i = 2,n
if (max.lt.k(i» then

max = k(i)
maxslot = i
if (max.ge.m) return

end if
end do
return
end

Starr Output

Trying 128.194.7.20 ...

Connected to 128.194.7.20.

Escape character is 'A]'.

l v r;r-
';I (1 r

r>, ,1 ,rif/I""

Welcome to VAX/VMS VS.3

Username: AMOEBA

Password:

Welcome to VAX/VMS version VS.3 on node MONICA

Last interactive login on Thursday, 18-APR-1991 14:40

Last non-interactive login on Tuesday, 9-APR-1991 08:16

Device Device Error Volume Free Trans Mnt

Name Status Count Label Blocks Count Cnt

DUAO: Mounted 0 VAXVMSRLS 2379 139 1

%TYPE-W-SEARCHFAIL, error searching for SYS$SYSDEVICE: [AMOEBA]WELCOME.TXT;

-RMS-E-FNF, file not found

MONICA> type balls.dat

3.000000 3.000000 3.000000 17.62415

3.000000 3.000000 14.00000 19.16363

3.000000 3.000000 25.00000 10.19850

3.000000 14.00000 3.000000 19.16363

3.000000 14.00000 14.00000 10.19850

3.000000 14.00000 25.00000 4.367349

3.000000 25.00000 3.000000 10.19850

3.000000 25.00000 14.00000 4.367349

3.000000 25.00000 25.00000 4.554211

14.00000 3.000000 3.000000 19.16363

14.00000 3.000000 14.00000 10.19850

14.00000 3.000000 25.00000 4.367349

14.00000 14.00000 3.000000 10.19850

14.00000 14.00000 14.00000 4.367349

14.00000 14.00000 25.00000 4.554211

14.00000 25.00000 3.000000 4.367349

14.00000 25.00000 14.00000 4.554211

14.00000 25.00000 25.00000 10.82963

25.00000 3.000000 3.000000 10.19850

25.00000 3.000000 14.00000 4.367349

25.00000 3.000000 25.00000 4.554211

25.00000 14.00000 3.000000 4.367349

25.00000 14.00000 25.00000 10.82963

25.00000 25.00000 3.000000 4.554211

25.00000 25.00000 14.00000 10.82963

25.00000 25.00000 25.00000 19.52651

MONICA> run starr

Percent in homogeneous blobs?

45

Input file name?

balls

Output file name?

temp
Here we go

Dump data?

n

I read 27

Oh boy, we have data

4.6458825E-02 2 2 2 5.388172

0.1607398 4 2 2 5.440030

0.7804615 7 2 2 5.509752

2.574856 19 2 2 6.008701

•
4.938468 20 2 2 4.069189

910.2798 29 2 2 4.070025

1160.500 30 3 2 26.69777

�
1649.536 29 4 2 3.992256

2480.657 29 5 2 4.393729

2509.603 30 6 2 32.90219

3225.109 27 8 2 39.30929

3368.889 27 11 2 2.851958

3696.088 21 14 2 54.78817

3830.919 11 27 3 2.799880

4401.765 16 27 3 2.718645

4599.657 11 22 5 2.713610

4916.878 27 22 5 2.775974

5389.722 16 25 5 2.508463

6040.157 22 5 11 2.787701

6915.316 5 27 22 2.593717

Down the center: data

4.192015 4.101766 4.086305 4.477773 4.242034

3.987885 4.058863 26.63864 46.00188 33.09476

2.840770 2.688167 2.778892 2.902167 2.696835

2.701120 41.67275 37.79688 22.37953 27.30846

36.89902 2.596532 2.835341 2.611711 2.707472

2.887982 2.695838 48.42439 53.47391 54.88974

36.03139 51.11856

Down the center: gradient:
0.2917202 1.4465959E-02 0.1863152 6.7582548E-02 0.2725425

4.2965472E-02 513.1008 2216.435 400.3434 1888.532

2731.161 2784.995 3468.301 2346.421 1901.320

3477.114 1545.977 693.3981 238.9257 260.4082

875.5566 3007.539 2302.260 2190.771 1688.093

3481.299 5705.418 2749.697 262.5401 462.3196

202.5814 66.00420

Maximum gradient: 6915.316

Gradient formed

Histogram of counts

1111 120 134 137 120 108

89 88 101 67 85 87

78 75 74 73 72 62

56 62 58 43 37 45

34 34 32 34 27 21

21 20 12 18 14 15

13 14 7 12 5 5

2 6 8 2 2 3

5 4 2 1 1 1

4 2 3 1 1 0

1 2 0 0 2 0

0 1 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

Found a threshold: 349.2483

Boundaries marked

35.39187 52.49762 34.37973 57.91971 50.60735

, 44.08176 28.26985 46.18728 39.66749 49.94583
I 27.17790 49.57285 31.75939 16.22164 36.11312

30.28798 15.71326 40.85241 48.10483 54.05400

�
50.10608 50.84894 38.71812 31.19532 34.46811

40.86628 30.90541 41.06978 23.77833 37.57311

47.80839 31.42234 32.52766 38.54172 35.83867

35.45852 30.60879 38.59006 48.96417 48.17749

48.81665

33.88279

44.65694

36.13909

35.39187

33.76551

44.08176

18.95086

39.72323

Extracted test sets and initial means

There are 17 testsets.

Clusters found: there are: 0

Classification step finished

Spatial fixups finished

FORTRAN STOP

MONICA>

I
I·

�
I

39.61263 31.82920 44.17275 37.47644

31.43385 30.24509 33.16746 38.61612

24.07245 51.83775 42.94830 33.40131

35.52843 33.60717 46.51528 30.83201

52.49762 34.37973 57.91971 50.60735

33.91352 42.39333 29.63771 34.29617

28.26985 46.18728 40.25033 24.77884

59.50185 32.19398 38.76727 46.82760

39.69683 26.37075 25.32755 28.58317

APPENDIX C

Findp: Program and Output

Findp

,

�
II

I

r

r

,

integer numberd,ndx(20),ktr(26)
parameter (numberd=52)
real mind,mind1,mind2,dis(numberd,numberd),

+ sim(numberd,numberd),smax,s
logical changed,found(numberd),readf
integer counter(numberd,numberd),similar(numberd,numberd)
integer seed(26,52),nf(26)
integer nbr(numberd,3)
integer weirdd(numberd,numberd)
integer rings(20,10)
integer rn ! ring number

integer pndx(numberd)
real c(3)
character*64 filename
real carbon(3,numberd)
real pool(3,numberd)
data carbon/.46141 ,.29111 ,.32291

+ ,.16608 ,.25634 ,.43206
+ ,.16040 ,.25822 ,.10400
+ ,.30720 ,-.05160 ,.17651
+ ,.69619 ,.16068 ,.16331
+ ,.79505 ,.17274 ,.13024
+ ,.86146 ,.21187 ,.16901
+ ,.82901 ,.23895 ,.24084
+ ,.73015 ,.22689 ,.27391
+ ,.66374 ,.18776 ,.23515
+ ,.60226 ,-.02971 ,.32649
+ ,.64252 ,-.10888 ,.37558
+ ,.65167 ,-.08196 ,.44516
+ ,.62055 ,.02414 ,.46564
+ ,.58029 ,.10331 ,.41655
+ ,.57114 ,.07639 ,.34697
+ ,-.16218 ,.36745 ,.44139
+ ,-.25599 ,.34612 ,.47637
+ ,-.25765 ,.24197 ,.49470
+ ,-.16550 ,.15913 ,.47805
+ ,-.07169 ,.18046 ,.44307
+ ,-.07003 ,.28462 ,.42475
+ ,-.03087 ,.48707 ,.30682
+ ,-.05452 ,.59600 ,.29306
+ ,-.01462 ,.66104 ,.33342
+ ,.04893 ,.61715 ,.38754
+ ,.07258 ,.50823 ,.40130
+ ,.03268 ,.44318 ,.36094
+ ,.14488 ,.56935 ,.12561
+ ,.09509 ,.66912 ,.09901
+ ,.08098 ,.68239 ,.02646
+ ,.11666 ,.59590 ,-.01948
+ ,.16646 ,.49613 ,.00712
+ ,.18057 ,.48286 ,.07967
+ ,.40680 ,.20952 ,.02345
+ ,.51079 ,.17938 ,-.01289
+ ,.57960 ,.24570 ,-.01334
+ ,.54440 ,.34217 ,.02255
+ ,.44041 ,.37232 ,.05890
+ ,.37161 ,.30599 ,.05935
+ ,.27985 ,-.28881 ,.28871
+ ,.32932 ,-.39133 ,.31096
+ ,.42587 ,-.41117 ,.34145

�
I

I

r

i
t

r

r

,

+ ,.47295 ,-.32849 ,.34969
+ ,.42348 ,-.22597 ,.32744
+ ,.32693 ,-.20613 ,.29694
+ ,.07155 ,-.07371 ,.34792
+ ,-.03848 ,-.06758 ,.36135
+ ,-.10047 ,-.05715 ,.30442
+ ,-.05243 ,-.05285 ,.23407
+ ,.05760 ,-.05898 ,.22064
+ ,.11959 ,-.06941 ,.27757 /

type*,' Data from external file? If so, enter file'
type*,' name, else enter a semicolan and hit return.'
read33,filename
if (filename.ne.';') then
readf = .true.

open(l,file=filename,status='old')
read(l,*) number
do i = 1,number
read(l,*,end=ll) (carbon(k,i),k=1,3)

end do
else
number = numberd
readf = .false.

end if
11 type*,number

inpool = 0
do i = 1,number-1

do j = i+1,number
c type*,i,j,dist(carbon(l,i),carbon(l,j»

dis(i,j) = dist(carbon(l,i),carbon(l,j»
dis(j,i) = dist(carbon(l,i),carbon(l,j»

end do

dis(i,i) = 0
end do
if (readf) go to 44
do k = 5,number,6
type 88,k,k+1,k+2,k+3,k+4,k+5
smd = 10.**30

big = o.
do i = k,k+5

do j = k,k+5
if (i.ne.j) then
if (dis(i,j).gt.big) big = dis(i,j)
if (dis(i,j).lt.smd) smd = dis(i,j)

end if
end do

type 89,i,(dis(i,j),j=k,k+5)
end do

type*,' ratio', big/smd
type*
call zap(c,3)
do i = k,k+5
c(l) = c(l)+carbon(l,i)
c(2) = c(2)+carbon(2,i)
c(3) = c(3)+carbon(3,i)

end do

c(l) = c(1)/6 .

c(2) = c(2)/6.
c(3) = c(3)/6.
do I = 1,number
if (1.lt.k.or.l.gt.k+5) then

"

•

•

r
I

type*,dist(carbon(1,l),c(1))
else

type*,' in the group ',dist(carbon(1,l),c(1))
end if

end do
end do

c calculate new exp. similarity measure

44 smax = 0

type*,' weight'
read*,w

c w = .65 ! found by experiment
smin = 10.**30
do i = 1,number-1

do j = i+1,number
s = w/dis(i,j)
do k = 1,number
if (k.ne.i.and.k.ne.j)

+ s = s + 1./(dis(i,k)+dis(j,k»)
c do 1 = 1,number
c if (l.ne.k.and.l.ne.i.and.l.ne.j)
c + s = s + 1./(dis(i,l)*dis(j,l)*dis(k,l))**(1/3)
c end do

end do

sim(i,j) = s

sim(j,i) = s

if (smax.lt.s) smax = s

if (smin.gt.s) smin = s

end do
end do
do i = 1,number-1

do j = i+1,number
counter(i,j) = ifix(16.99*(sim(i,j)-smin)/(smax-smin))
counter(j,i) = counter(i,j)

end do
end do

typeS
do i = 1,number

type7,i, (counter(i,j),j=1,number)
end do

type*
do i = 1,number
the three most similar neighbors.
near2 = o.

mind2 = o.

do j = 1,number
counter(i,j) = 0
if (i.ne.j) then
if (sim(i,j).gt.mind2) then
near = near1
near1 = near2
mind2 = sim(i,j)
near2 = j

end if
end if

end do

nbr(i,1) = near2

if (near1.ne.0) then

nbr(i,2) = near1
else
mind2 = o.

c

c

c

c

c

c

c

c

c

c

c

c find

,

,

(l1li

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

333

do j = l,number
if (i.ne.j.and.j.ne.near2) then
if (sim(i,j).gt.mind2) then
near = nearl
mind2 = sim(i,j)
nearl = j

end if
end if

end do

nbr(i,2) = nearl
end if
if (near.ne.O) then

nbr(i,3) = near

else
mind2 = o.
do j = l,number
if (i.ne.j.and.j.ne.near2.and.j.ne.nearl) then
if (sim(i,j).gt.mind2) then
mind2 = sim(i,j)
near = j

end if
end if

end do

nbr(i,3) = near

end if
write(*,l)i, (nbr(i,k),k=l,3)
if (i.lt.nbr(i,l))then
counter(i,nbr(i,l))=counter(i,nbr(i,l))+3

else

counter(nbr(i,l),i)=counter(nbr(i,l),i)+3
end if
if (i.lt.nbr(i,2))then
counter(i,nbr(i,2))=counter(i,nbr(i,2))+2

else

counter(nbr(i,2),i)=counter(nbr(i,2),i)+2
end if
if (i.lt.nbr(i,3))then
counter(i,nbr(i,3))=counter(i,nbr(i,3))+l

else

counter(nbr(i,3),i)=counter(nbr(i,3),i)+l
end if

end do
nseed = 0
do i = l,number
found(i) = .false.

end do
do i = l,number
if (nbr(nbr(i,l),l).eq.i) then

found(i) = .true.

found(nbr(i,l)) = .true.
nseed = nseed+l
seed(nseed,l) = i
seed(nseed,2) = nbr(i,l)
nbr(i,l) = 0

nf(nseed) = 2
end if

end do

changed = .false.
if (nseed.gt.O) then
do i = l,number

222

if (found(i» go to 444

it = nbr(i,l) ! want to see if i points to something

do j = 1,nseed
do k = 1,nf(j)
if (i.eq.seed(j,k» go to 111 however, skip it if i

here.

dy in the list.
end do
do k = 1,nf(j)
if (it.eq.seed(j,k» then

found(i) = .true.

nf(j) = nf(j)+l
seed(j,nf(j» = i
changed = .true.

go to 222 ! restart the search??

end if
end do

111 end do if this loop falls through we are through wi
444 end do

end if
if (changed) go to 333

do i = 1,number
if (.not.found(i» then

type*,i,'not found'! do something ... but didn't have to
test.

,

end if
end do
do j = 1,nseed
type2,j,(seed(j,k),k=1,nf(j»

end do
c now the problem is to get rid of the odd guy (if any)

do j = 1,nseed
if (nf(j) .gt.14) then
do k = 1,nf(j)
nin = 0
do m = 1,nf(j)
if (m.ne.k) then
if (nbr(seed(j,k),2).eq.seed(j,m» nin = nin+3
if (nbr(seed(j,k),3).eq.seed(j,m» nin = nin+2

end if
end do

ktr(k) = nin
end do
min = 1000
do k = 1,nf(j)
if (ktr(k).lt.min) then
nout = k
min = ktr(k)

end if
end do
is = 0
do k = 1,nf(j)
if (ktr(k).eq.min) is � is+1

end do
if (is.eq.1) then

c nseed = nseed+1
c nf(nseed) = 1
c seed(nseed,l) = seed(j,nout)

inpool = inpool+1
do k2 = 1,3

..

II'

,.
I

pool(k2,iopool) = carbon(k2,seed(j,nout))
end do

pndx(inpoOl) = seed(j,nout)
do k = nO�t�l,nf(j)
seed(j,k-l) = seed(j,k)

end do

nf(j) = nf(j)-l
end if

end if
end do
do j = l,nseed
if (nf(j).eq.14) then

c for each set of six ••.
amax = 0
do k = 1,nf(j)-7 leave eight out
do k2 = k+l,nf(j)-6
do k3 = k2+1,nf(j)-S
do k4 = k3+1,nf(j)-4
do kS = k4+1,nf(j)-3
do k6 = kS+l,nf(j)-2
do k7 = k6+1,nf(j)-1
do k8 = k7+1,nf(j)
call zap(c,3) compute the centroid of the rest
do 1 = 1,nf(j)
if (1.ne.k.and.l.ne.k2.and.l.ne.k3.and.k4.ne.l

+ .and.kS.ne.l.and.k6.ne.l.and.k7.ne.l.and
+ .k8.ne.l) then

do m = 1,3
c(m) = c(m)+carbon(m,seed(j,l))

end do
end if

end do
do m = 1,3
c(m) = c(m)/6.

end do
dt = dist(carbon(l,seed(j,k)),c(l))
if (dt.gt.amax) then

amax = dt
nout = k

end if
dt = dist(carbon(1,seed(j,k2)),c(1))
if (dt.gt.amax) then

amax = dt
nout = k2

end if
dt = dist(carbon(1,seed(j,k3)) ,c(l))
if (dt.gt.amax) then

amax = dt
nout = k3

end if
dt = dist(carbon(1,seed(j,k4)),C(1))
if (dt.gt.amax) then

amax = dt
nout = k4

end if

�t = dist(carbon(l,seed(j,kS)),C(l))
1f (dt.gt.amax) then

amax = dt
nout = kS

end if

r

r

r

r

r

r

dt = dist(carbon(l,seed(j,k6)),c(I))
if (dt.gt.amax) then

amax = dt
nout = k6

end if
dt = dist(carbon(l,seed(j,k7)),c(I))
if (dt.gt.amax) then

amax = dt
nout = k7

end if
dt = dist(carbon(l,seed(j,k8)),c(I))
if (dt.gt.amax) then

amax = dt
nout = k8

end if
end do
end do
end do
end do
end do
end do
end do
end do

c nseed = nseed+l
c nf(nseed) = 1
c seed(nseed,l) = seed(j,nout)

inpool = inpool+l
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool(k2,inpool) = carbon(k2,seed(j,nout))

end do
do 1 = nout+l,nf(j)

seed(j,l-l) = seed(j,l)
end do

nf(j) = nf(j)-1
end if
if (nf(j) .eq.13) then

c for each set of six ...
amax = 0
do k = l,nf(j)-6 leave seven out
do k2 = k+l,nf(j)-S
do k3 = k2+1,nf(j)-4
do k4 = k3+1,nf(j)-3
do kS = k4+1,nf(j)-2
do k6 = kS+l,nf(j)-1
do k7 = k6+1,nf(j)
call zap(c,3) compute the centroid of the rest
do 1 = l,nf(j)
if (l.ne.k.and.l.ne.k2.and.l.ne.k3.and.k4.ne.l

+ .and.kS.ne.l.and.k6.ne.l) then
do m = 1,3

c(m) = c(m)+carbon(m,seed(j,l))
end do

end if
end do
do m = 1,3
c(m) = c(m)/6.

end do
dt = dist(carbon(l,seed(j,k)),c(I))
if (dt.gt.amax) then

r

r

r

r

r

r

r

r

r
r

r

amax = dt
nout = k

end if
dt = dist(carbon(1,seed(j,k2»,C(1»
if (dt.gt.amax) then

amax = dt
nout = k2

end if
dt = dist(carbon(1,seed(j,k3»,C(1»
if (dt.gt.amax) then

amax = dt
nout = k3

end if
dt = dist(carbon(1,seed(j,k4»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k4

end if
dt = dist(carbon(1,seed(j,k5»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k5

end if
dt = dist(carbon(1,seed(j,k6»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k6

end if
dt = dist(carbon(1,seed(j,k7»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k7

end if
end do
end do
end do
end do
end do
end do
end do

c nseed = nseed+l

c nf(nseed) = 1

c seed(nseed,1) = seed(j,nout)
inpool = inpool+1
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool(k2,inpool) = carbon(k2,seed(j,nout»

end do
do 1 = nout+1,nf(j)

seed(j,l-1) = seed(j,l)
end do

nf(j) = nf(j)-1
end if
if (nf(j).eq.12) then

c for each set of six ...
amax = 0
do k = 1,nf(j)-5 leave six out

do k2 = k+1,nf(j)-4
do k3 = k2+1,nf(j)-3
do k4 = k3+1,nf(j)-2

r

r

..

r

r

r

r

r

r

r
r

r

r

r

r

r
r

r

r

r

r

r
r

+

c

c

c

do k5 = k4+1,nf(j)-1
do kG = k5+1,nf(j)
call zap(c,3) compute the centroid of the rest

do I = l,nf(j)
if (l.ne.k.and.l.ne.k2.and.l.ne.k3.and.k4.ne.1

.and.k5.ne.l.and.kG.ne.l) then

do m = 1,3
c(m) = c(m)+carbon(m,seed(j,l»

end do
end if

end do
do m = 1,3
c(m) = c(m)/G.

end do
dt = dist(carbon(1,seed(j,k»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k

end if
dt = dist(carbon(l,seed(j,k2»,c(I»
if (dt.gt.amax) then

amax = dt
nout = k2

end if
dt = dist(carbon(1,seed(j,k3»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k3

end if
dt = dist(carbon(l,seed(j,k4»,C(I»
if (dt.gt.amax) then

amax = dt
nout = k4

end if
dt = dist(carbon(1,seed(j,k5»,c(I»
if (dt.gt.amax) then

amax = dt
nout = k5

end if
dt = dist(carbon(l,seed(j,kG»,C(I»
if (dt.gt.amax) then

amax dt
nout = kG

end if
end do
end do
end do
end do
end do
end do
nseed = nseed+1

nf(nseed) = 1

seed(nseed,l) = seed(j,nseed)
inpool = inpool+l
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool(k2,inpool) = carbon(k2,seed(j,nout»

end do
do I = nout+l,nf(j)

seed(j,I-1) = seed(j,l)

end do

nf(j) = nf(j)-l
end if
if (nf(j).eq.11) then

c for each set of six ...
amax = 0
do k = 1,nf(j)-4 leave five out

do k2 = k+1,nf(j)-3
do k3 = k2+1,nf(j)-2
do k4 = k3+1,nf(j)-1
do k5 = k4+1,nf(j)
call zap(c,3) compute the centroid of the rest

do I = 1,nf(j)
if (l.ne.k.and.l.ne.k2.and.l.ne.k3.and.k4.ne.1

.and.k5.ne.l) then
do m = 1,3
c(m) = c(m)+carbon(m,seed(j,l»

end do
end if

end do
do m = 1,3

c(m) = c(m)/6.
end do
dt = dist(carbon(1,seed(j,k»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k

end if
dt = dist(carbon(1,seed(j,k2»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k2

end if
dt = dist(carbon(1,seed(j,k3»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k3

end if
dt = dist(carbon(1,seed(j,k4»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k4

end if
dt = dist(carbon(1,seed(j,k5»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k5

end if
end do
end do
end do
end do
end do
nseed = nseed+1

nf(nseed) = 1
seed (nseed,1) = seed(j,nout)
inpool = inpool+1
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool(k2,inpool) = carbon(k2,seed(j,nout»

+

r

r

r

r

r

r

r

r
r

r
r

c

c

c

r

end do
do I = nout+l,nf(j) .

seed(j,I-I) = seed(),l)
end do

nf(j) = nf(j)-1
end if
if (nf(j).eq.10) then

c for each set of six ...
amax = 0
do k = l,nf(j)-3 leave four out

do k2 = k+1,nf(j)-2
do k3 = k2+1,nf(j)-1
do k4 = k3+1,nf(j)
call zap(c,3) compute the centroid of the rest
do I = l,nf(j)
if (l.ne.k.and.l.ne.k2.and.l.ne.k3.and.k4.ne.l) then
do m = 1,3
c(m) = c(m)+carbon(m,seed(j,l))

end do
end if

end do
do m = 1,3
c(m) = c(m)/6.

end do
dt = dist(carbon(l,seed(j,k)),c(I))
if (dt.gt.amax) then

amax = dt
nout = k

end if
dt = dist(carbon(l,seed(j,k2)),c(I))
if (dt.gt.amax) then

amax = dt
nout = k2

end if
dt = dist(carbon(l,seed(j,k3)),c(I))
if (dt.gt.amax) then

amax = dt
nout = k3

end if
dt = dist(carbon(l,seed(j,k4)),c(I))
if (dt.gt.amax) then

amax = dt
nout = k4

end if
end do
end do
end do
end do
nseed = nseed+l

nf(nseed) = 1

seed(nseed,l) = seed(j,nout)
inpool = inpool+l
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool(k2,inpool) = carbon(k2,seed(j,nout))

end do
do I = nout+l,nf(j) .

seed(j,I-I) = seed(),l)
end do

nf(j) = nf(j)-1

c

c

c

r

r
!

r

r

r

r
r

r
r

r

r

r

r

r

r

r

r

r

r
r

end if
if (nf(j).eq.9) then

for each set of six .•.
amax = o.
do k = 1,nf(j)-2 leave three out

do k2 = k+1,nf(j)-1
do k3 = k2+1,nf(j)
call zap(c,3) ! compute the centroid of the rest
do I = 1,nf(j)
if (l.ne.k.and.l.ne.k2.and.l.ne.k3) then
do m = 1,3

c(m) = c(m)+carbon(m,seed(j,l»
end do

end if
end do
do m = 1,3
c(m) = c(m)/6.

end do
dt = dist(carbon(1,seed(j,k»,C(1»
if (dt.gt.amax) then

amax = dt
nout = k

end if
dt = dist(carbon(1,seed(j,k2»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k2

end if
dt = dist(carbon(1,seed(j,k3»,c(1»
if (dt.gt.amax) then

amax = dt
nout = k3

end if
end do
end do
end do

c nseed = nseed+1
c nf(nseed) = 1
c seed(nseed,l) = seed(j,nout)

inpool = inpool+1
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool(k2,inpool) = carbon(k2,seed(j,nout»

end do
do I = nout+1,nf(j)

seed(j,I-1) = seed(j,l)
end do

nf(j) = nf(j)-1
end if
if (nf(j).eq.8) then

c for each set of six ...

c

amax = o.
do k = 1,nf(j)-1 leave two out
do k2 = k,nf(j)
call zap(c,3) compute the centroid of the rest
do I = 1,nf(j)
if (l.ne.k.and.l.ne.k2) then

do m = 1,3
c(m) � c(m)+carbon(m,seed(j,l»

end do

r
f

end if
end do
do m = 1,3

c(m) = c(m)/6.
end do
dt = dist(carbon(l,seed(j,k»,c(I»
if (dt.gt.amax) then

amax = dt
nout = k

end if
dt = dist(carbon(l,seed(j,k2»,c(I»
if (dt.gt.amax) then

amax = dt
nout = k2

end if
end do
end do

c nseed = nseed+l
c nf(nseed) = 1
c seed(nseed,l) = seed(j,nout)

inpool = inpool+l
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool(k2,inpool) = carbon(k2,seed(j,nout»

end do
do I = nout+l,nf(j)

seed(j,I-I) = seed(j,l)
end do
nf (j) = nf (j) -1

end if
if (nf(j).eq.7) then

c for each set of six ...
amax = o.
do k = l,nf(j) leave one out
call zap(c,3) compute the centroid of the rest
do I = l,nf(j)
if (l.ne.k) then
do m = 1,3
c(m) = c(m)+carbon(m,seed(j,l»

end do
end if

end do
do m = 1,3
c(m) = c(m)/6.

end do
dt = dist(carbon(l,seed(j,k»,c(I»
if (dt.gt.amax) then

amax = dt
nout = k

end if
end do

c nseed = nseed+l
c nf(nseed) = 1

c seed(nseed,l) = seed(j,nout)
inpool = inpool+l
pndx(inpool) = seed(j,nout)
do k2 = 1,3
pool (k2,inpool) = carbon(k2,seed(j,nout»

end do
do I = nout+l,nf(j)

seed(j,l-l) = seed(j,l)
end do

nf(j) = nf(j)-l
end if

end do
if (inpool.ge.6) then

number = inpool
do j = 1,3

do i = 1,inpool
carbon(j,i) = pool(j,i)

end do
end do

c restart with these after printing.
type*
type*,' Groups found so far

do j = 1,nseed
type2,j,(seed(j,k),k=1,nf(j))

end do

go to 11
else if (inpool.gt.O) then

type*
type*,' Groups found so far

do j = 1,nseed
type2,j, (seed(j,k),k=l,nf(j))

end do

type*
if (inpool.gt.O)type*,' These are not in a group'
do j = 1,inpool
type2,j,pndx(j)

end do
end if

r
r

I

r

r
33

2
88

89

r 8
+

+

r
+

+

+

r
7
1

r

J
J
,

format (a)
format(i3,2x,40i3)
format(2x,6i7)
format(lx,i3,lx,6f7.4)
format (5x, ,

'2 2 2 2 2 2 2 2

'4 4 4 4 4 4 5 5

4x,' 1 2 3 4 5 6

'3 4 5 6 7 8 9 0

'7 8 9 0 1 2')
format(lx,i2,lx,52z2)
format(lx,1314)

end
real function dist(a,b)
real a(3),b(3)
dist = o.
do i = 1,3
dist = dist+(a(i)-b(i))**2

end do
dist = sqrt(dist)

1 1 1 1 1 1 1 1 1 1 '

2 2 3 3 3 3 3 3 333 3 444 4 '

5'/
789 012 3 4 567 8 9 012 '

1 2 3 4 567 8 9 012 3 4 56'

return
end

subroutine zap(a,n)
real a(n)
do i = 1,n
a(i) = 0

end do

return
end

f

�

r

r

r

r

r

r

r

r

r
�
r

Findp Output

(

I

I

�

�
�
�
I

bright2> telnet 128.194.7.20

Trying 128.194.7.20 ...

Connected to 128.194.7.20.

Escape character is 'A]'.

Welcome to VAX/VMS V5.3

Username: AMOEBA

Password:

Welcome to VAX/VMS version V5.3 on node MONICA

Last interactive login on Thursday, 18-APR-1991 14:45

Last non-interactive login on Tuesday, 9-APR-1991 08:16

Device

Name

DUAO:

Device

Status

Mounted

Error Volume

Count Label

o VAXVMSRL5

Free Trans Mnt

Blocks Count Cnt

2376 139 1

%TYPE-W-SEARCHFAIL, error searching for SYS$SYSDEVICE: [AMOEBA]WELCOME.TXT;

-RMS-E-FNF, file not found

MONICA> sd

MONICA> run findp
Data from external file? If so, enter file

name, else enter a semicolan and hit return.

52

5 6 7 8 9 10

5 0.0000 0.1049 0.1731 0.1726 0.l333 0.0834

6 0.1049 0.0000 0.0863 0.l333 0.1667 0.1687

7 0.1731 0.0863 0.0000 0.0833 0.1687 0.2099

8 0.1726 0.l333 0.0833 0.0000 0.1049 0.1731

9 0.l333 0.1667 0.1687 0.1049 0.0000 0.0863

10 0.0834 0.1687 0.2099 0.1731 0.0863 0.0000

ratio 2.518283

0.337l215

0.6418127

0.6129234

0.5208189

in the group

in the group

in the group

in the group

in the group

in the group
0.3063810

0.3739l87

0.3883196

0.347l391

0.29757l8

0.26997l8

0.9698404

1.064973

1.062222

0.9691162

0.8686152

8.6282626E-02

8.3346076E-02

0.1049382

8.6281128E-02

8.3343178E-02

0.1049403

r

0.8660532

0.8503419

0.9126476

0.9132637

0.8472840

0.7816249

0.7856509

0.7238655

0.8224595

0.8534200

0.7894360

0.6936812

0.6586781

0.3982403

0.3317l76

0.2863543

0.3163954

0.3925098

0.4295547

0.6923202

0.7409720

0.7114174

0.6203169

0.5585796

0.6029915

0.7573878

0.8594168

0.9063084

0.8538952

0.7512286

0.7011728

11 12

11 0.0000 0.1015

12 0.1015 0.0000

13 0.1388 0.0752

14 0.1503 0.1621

15 0.1621 0.2249

16 0.1125 0.2006

ratio 2.991955

r 0.3379711

0.5164840

0.5973534

0.3783226

0.2967898

0.3676921

0.4001977

0.3603922

0.2859595

0.2548333

I

I

I

1
in the group

in the group

in the group

in the group

in the group

1

13 14 15 16

0.1388 0.1503 0.1621 0.1125

0.0752 0.1621 0.2249 0.2006

0.0000 0.1125 0.2006 0.2030

0.1125 0.0000 0.1015 0.1388

0.2006 0.1015 0.0000 0.0752

0.2030 0.13 88 0.0752 0.0000

7.5161621E-02

0.1124452

0.1014902

7.5161584E-02

0.1124452

in the group 0.1014903

0.8588144

0.9383804

0.9082348

0.7978216

0.7088068

0.7401204

0.8126745

0.9014487

0.9146012

0.8371202
• 0.7426279

0.7314651

0.7862124
• 0.8979306

0.9420315

0.8808371

• 0.7734148

0.7222019

0.4751616

• 0.4588591

0.4799675

0.5128325

• 0.5325630

0.5159658

0.4508483

0.4876290

0.4518676

0.3569372

0.2997278

0.3634570

0.5466185

0.6540291

0.7198058

0.6851465

0.5836367
r

0.5102568

17 18 19 20 21 22

17 0.0000 0.1024 0.1664 0.2115 0.2077 0.1250

I 18 0.1024 0.0000 0.1058 0.2077 0.2500 0.2026

19 0.1664 0.1058 0.0000 0.1250 0.2026 0.2047

20 0.2115 0.2077 0.1250 0.0000 0.1024 0.1664

r 21 0.2077 0.2500 0.2026 0.1024 0.0000 0.1058

22 0.1250 0.2026 0.2047 0.1664 0.1058 0.0000

ratio 2.442571

I 0.6406472

0.3311506

r
0.4813473

0.6334385

0.9154456

r
1.017953

1.066957

1.016982

r
0.9138212

0.8608288

0.8309692

0.8920808

0.8857016

0.8200586

0.7623565

0.7667078

in the group 0.1057722
in the group 0.1250173

in the group 0.1023641

in the group 0.1057749
• in the 0.1250200group

in the group 0.1023632

0.3018885

0.3878425

0.4431957

0.4191622

0.3454016

0.2841439

0.5482795

• 0.6015433

0.6506119

0.6472579

0.6067619

0.557913 8

0.7203155

'""
0.8279666

0.8813624

0.8360291

0.7332553

0.6699458

0.7286441

0.8329865

0.9036840

0.8762500

0.7757707

I 0.6983622

0.4260026

0.3672441

l- 0.3616867

0.4040748

0.4583173

r 0.4735000

23 24 25 26 27 28

23 0.0000 0.1123 0.1767 0.1726 0.1417 0.0943

r
24 0.1123 0.0000 0.0863 0.1417 0.1886 0.1886

25 0.1767 0.0863 0.0000 0.0943 0.1886 0.2246

26 0.1726 0.1417 0.0943 0.0000 0.1123 0.1767

r
27 0.1417 0.1886 0.1886 0.1123 0.0000 0.0863

28 0.0943 0.1886 0.2246 0.1767 0.0863 0.0000

ratio 2.602268

r 0.5228370

0.3454710

r
0.4103922

0.6946232

0.8119211

0.8993405

0.9349577

0.8841639

0.7944505

0.7575936

0.8311837

0.9159837

0.9080932

0.8165437

0.7297761

0.7363958

0.2688649

0.3596641

0.4348198

0.4494689

0.3922188

0.2895158

in the group

in the group

in the group

in the group

in the group

in the group

0.2604720

0.2875511

0.3535683

0.3846312

0.3788918

0.3252436

0.6167586

0.7213477

0.7412240

0.6603644

0.5491076

0.5242960

0.8853878

0.9969854

1.049619

0.9953328

0.8817991

0.8237202

0.6289373

0.6216717

0.6204986

0.6185061

0.6259428

0.6351050

29

29 0.0000

30 0.1146

31 0.1634

32 0.1502

33 0.1409

8.6321287E-02

9.4306767E-02

0.1123122

8.6318716E-02

9.4303660E-02

0.1123155

30 31 32 33 34

0.1146 0.1634 0.1502 0.1409 0.1042

0.0000 0.0751 0.1409 0.2085 0.2058

0.0751 0.0000 0.1042 0.2058 0.2293

0.1409 0.1042 0.0000 0.1146 0.1634

0.2085 0.2058 0.1146 0.0000 0.0751

ratio 3.053133

34 0.1042 0.2058 0.2293 0.1634 0.0751 0.0000

0.5168346

0.5013439

0.3297l31

0.6697809

0.7l40642

0.7843630

0.8275298

0.8005663

0.7311445

0.6878421

0.8197653

0.9187382

0.9309915

0.8497087

0.7509524

0.7325141

0.5319006

0.6202481

0.6796764

0.6691324

0.5956778

0.5169901

0.3156753

0.3034965

0.3254029

0.3460691

0.3608167

0.3519293

in the group

in the group

in the group

in the group

in the group

I

in the group

0.4650539

0.5580047

0.5651314

0.4794129

0.3743489

0.3668361

0.9149598

1.026898

1.076047

1.017449

0.9026543

0.8485794

0.7219574

0.7392245

0.7252344

0.6856784

0.667l527

0.6896936

7.5086616E-02

0.1042383

0.1146309

7.5087868E-02

0.1042395

0.1146324

35 36 37 38 39 40

35 0.0000 0.1142 0.1803 0.1911 0.1700 0.1088

36 0.1142 0.0000 0.0956 0.1700 0.2176 0.2015

37 0.1803 0.0956 0.0000 0.1088 0.2016 0.2284

38 0.1911 0.1700 0.1088 0.0000 0.1142 0.1803

39 0.1700 0.2176 0.2016 0.1142 0.0000 0.0956

40 0.1088 0.2015 0.2284 0.1803 0.0956 0.0000

ratio 2.390187

0.3006300

0.5133337

0.3259191

0.3989295

0.2856721

0.3523889

0.4174896

0.4167873

0.3607572

0.2969200

0.4489002

0.5478930

0.5807254

0.5294275

0.4422754

0.3922562

0.7682474

0.8635427

0.8725270

0.7947966

0.6964788

0.6776365

0.6178031

0.6756165

0.6964551

0.6568285

0.5996138

0.5817055

0.4539264

0.5524763

0.5665824

0.4827816

0.3799284

0.3648415

in the group

in the group

in the group

in the group

in the group

in the group

0.6540306

0.7412436

0.7588633

0.6869891

0.5892524

0.5739740

9.5567234E-02

0.1087767

0.1142161

9.5562533E-02

0.1087848

0.1142102

0.6253147

0.7047697

0.7224546
0.6568166

0.5708718
0.5574501

41 42 43 44 45 46

41 0.0000 0.1160 0.1977 0.2064 0.1615 0.0955

42 0.1160 0.0000 0.1032 0.1615 0.1910 0.1857

43 0.1977 0.1032 0.0000 0.0955 0.1857 0.2320

44 0.2064 0.1615 0.0955 0.0000 0.1160 0.1977

45 0.1615 0.1910 0.1857 0.1160 0.0000 0.1032

46 0.0955 0.1857 0.2320 0.1977 0.1032 0.0000

ratio 2.429042

0.6057661

0.6133400

0.6436676

0.3020320

0.5889291

0.6653641

0.7271731

0.7147459

0.6434230

0.5796993

0.3589895

0.3375008

1 0.3781908

0.4379539

0.4698505

� 0.4323780

0.8729894

0.9237661

� 0.8579059

0.7332855

0.6748018

f 0.7499402

0.8939756

1.002381

r 1.045657

0.9843845

0.8754086

r 0.8277283

0.9284191
1.040986

I
1.074769
1.000189

0.8883347

J
0.8498302

0.5974039
0.6054062

r
0.6776252
0.7347047

0.7318283

r
0.6673279

in the group 0.1031749

in the group 9.5500655E-02

in the group 0.1159861

in the group 0.1031759

in the group 9.5500983E-02

in the group 0.1159874

0.3859472

0.4816814

0.5393289

0.5065330

0.4167521

I 0.3534404

47 48 49 50 51 52

47 0.0000 0.1110 0.1782 0.1696 0.1289 0.0853

r
48 0.1110 0.0000 0.0848 0.1289 0.1706 0.1789

49 0.1782 0.0848 0.0000 0.0853 0.1789 0.2220

50 0.1696 0.1289 0.0853 0.0000 0.1110 0.1782

I
51 0.1289 0.1706 0.1789 0.1110 0.0000 0.0848

52 0.0853 0.1789 0.2220 0.1782 0.0848 0.0000

ratio 2.618008

I 0.5751342

0.3828247

I
0.4013503

0.3191126

0.7334319

I
0.8357884

0.9035051

0.8748468

0.7770073

r 0.7029162

0.5947101

0.6402128

I 0.6606217

0.6414452

0.6076587

I 0.5813889

0.4874850

0.5220048

I 0.4539543

0.3392665

0.2985591

I
0.3811291

0.5520599

0.6623901

I
0.7259642

0.6883720

0.5854591

I
0.5117896

0.6677458

0.7619602

I
0.7944201

0.7364668

0.6466391

I
0.6100587

0.5511804

0.6343986

I 0.7162639

0.7228460

0.6551696

I 0.5666568

0.3520308

0.4585432

I 0.5448735

0.5371329

0.4462354

I 0.3480879

in the group 8.4805638E-02

In the group 8.5300371E-02

I
in the group 0.1110153

in the group 8.4805682E-02

in the group 8.5300423E-02

I
in the group 0.1110154

weight
.65

I
1 16 10 5

2 28 22 3

3 40 34 28

I
4 52 46 16

5 10 9 6

6 10 5 1

7 10 5 1

I 8 10 5 1

9 10 5 1

10 5 1 9

I 11 16 15 12

12 11 10 5

13 11 10 5

I 14 16 15 11

15 16 11 10

16 15 11 10

I 17 22 21 20

18 22 17 2

19 22 21 17

I 20 21 17 2

21 22 20 17

22 21 17 2

I
23 28 27 24

24 23 22 2

25 23 22 2

J
26 28 23 22

27 28 23 22

28 23 22 2

J
29 34 33 30

30 29 23 3

31 29 28 23

J
32 34 29 3

33 34 29 3

34 33 29 3

J
35 40 39 36

36 35 10 5

37 36 35 10

38 40 39 35

39 40 35 1

40 39 35 3

41 46 45 4

42 46 45 41

43 45 44 41

I 44 45 41 11

45 46 41 4

46 45 41 4

I
47 52 51 48

48 47 21 4

49 48 47 21

I
50 51 47 21

51 52 47 4

52 47 4 2

I
1 5 10 6 7 8 9

2 15 16 1 11 12 13 14

3 21 22 17 18 19 20

I
4 23 28 2 24 25 26 27

5 33 34 29 30 31 32

6 39 40 3 35 36 37 38

I
7 45 46 41 42 43 44

8 47 52 4 48 49 51 50

I
Groups found so far ...

1 5 10 6 7 8 9

2 15 16 11 12 13 14

3 21 22 17 18 19 20

I 4 23 28 24 25 26 27

5 33 34 29 30 31 32

6 39 40 35 36 37 38

I 7 45 46 41 42 43 44

8 47 52 48 49 51 50

I These are not in a group

1 1

2 2

I 3 3

4 4

MONICA> run findp

I
Data from external file? If so, enter file

name, else enter a semicolan and hit return.

mhOl

I
28

weight
.65

I
1 5 3 2

2 11 4 1

3 5 1 10

I
4 11 2 1

5 10 6 1

6 5 1 10

I
7 5 1 6

I

8 5 1 10

9 10 5 3

10 5 3 1

11 12 2 1

12 11 2 1

13 12 11 2

14 11 2 1

15 16 11 2

16 11 2 1

17 18 10 5

18 17 10 5

19 18 17 10

20 19 18 17

21 17 10 5

22 17 10 5

23 24 11 2

24 23 11 2

25 23 11 2

26 23 11 2

27 23 11 2

28 23 11 2

1 5 10 1 3 6 7 8 9

2 11 12 2 4 13 14 16 15

3 17 18 19 20 21 22

4 23 24 25 26 27 28

Groups found so far ...

1 5 10 6 7 8 9

2 11 12 13 14 16 15

3 17 18 19 20 21 22

4 23 24 25 26 27 28

These are not in a group
1 3

2 1

3 2

4 4

MONICA> run findp
Data from external file? If so, enter file

name, else enter a semicolan and hit return.

mh06

I

I

I

J

1

I

I

I
%FOR-F-FILNOTFOU, file not found

unit 1 file SYS$SYSDEVICE: [SHAPES.DAT]MH06.DAT;
user PC 0000FE7E

-RMS-E-FNF, file not found

%TRACE-F-TRACEBACK, symbolic stack dump follows

I module name routine name

J
I

I

FINDP$MAIN FINDP$MAIN
MONICA> run findp
Data from external file? If so, enter file

line

74

rel PC

00043D9E

00043CAB

0003EA38

0003D49A

0000007E

abs PC

00043D9E

00043CAB

0003EA38

0003D49A

0000FE7E

I

I

I

I

I
I

I

I

I

I

I

I
I

I
I

I

I
I
I

I

I
I

I
I

I

I

I
I

I
I
I

J
I

I

