

Carbon and Nitrogen Dynamics of a Subtropical Savanna Ecosystem: Consequences of Increased Woody Plant Abundance

Lori Lynn Herrmann University Undergraduate Research Fellow, 1994-95 Texas A&M University Department of Rangeland Ecology and Management

APPROVED omas W. Undergraduate Advisor Exec. Dir., Honors Program

ACKNOWLEDGEMENTS

I would like to thank my faculty advisor, Dr. Tom Boutton, for his help and guidance with my research project. Throughout this project, he was very supportive and encouraging. He spent many hours teaching me techniques and assisting with the research. Many thanks to Dr. Steve Archer for his assistance and support. I would like to thank Dr. Stephen Zitzer and Dr. Tom Hallmark. Dr. Zitzer spent many hours helping me with field work. Dr. Hallmark allowed me to use equipment and spend time in his Soil Characterization Lab. He also spent many hours helping me with various methods and with the use of his equipment.

Many organizations helped fund my research, including: the Texas A&M University Honors Department, Sigma Xi Research Foundation, Texas A&M University Graduate School, and USDA. I would also like to extend thanks to the other undergraduate fellows and their advisors in the Biology Research group for their help and constructive criticism during the fellows presentations. I would also like to thank Andy McDavid for his help collecting bulk density samples and for proof-reading my papers.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	.ii
LIST OF TABLESi	iv
LIST OF FIGURES	.v
ABSTRACT	.1
INTRODUCTION	.2
OBJECTIVES AND HYPOTHESIS	.5
PROCEDURES	.6
STUDY AREA SOIL SAMPLING AND AGE DETERMINATION SOIL CHARACTERIZATION NUTRIENT CONCENTRATIONS AND ACCUMULATION RATES	.6 7 .7
RESULTS	.9
DISCUSSION	7
CONCLUSIONS4	.0
LITERATURE CITED4	1
APPENDIX 14	2
APPENDIX 2	9
VITA	3

LIST OF FIGURES

Figure Par	ge
1. Soil texture for different landscape units and soil depths at LaCopita Research Area	.14
 Soil pH for different landscape units and soil depths at LaCopita Research Area 	.18
 Bulk density (oven dry) for different landscape units and soil depths at LaCopita Research Area 	.20
 Organic carbon and total nitrogen concentrations, and carbon/nitrogen ratios, for different landscape units and soil depths at LaCopita Research Area 	.22
 Mass of organic carbon and total nitrogen for different landscape units and soil depths at LaCopita Research Area	24
 Relationships between basal diameter and age of mesquite trees in different landscape positions at LaCopita Research Area 	.26
 Change in soil organic carbon concentrations with increasing age of mesquite trees in different landscape units at LaCopita Research Area 	.28
 Change in soil total nitrogen concentrations with increasing age of mesquite trees in different landscape units at LaCopita Research Area	30
 Change in soil carbon/nitrogen ratios with increasing age of mesquite trees in different landscape units at LaCopita Research Area. 	.32
10. Change in mass of soil organic carbon with increasing age of mesquite trees in different landscape units at LaCopita Research Area	34
 Change in mass of soil total nitrogen with increasing age of mesquite trees in different landscape units at LaCopita Research Area. 	.36

LIST OF TABLES

Table	Pa	age
1.	Results of analysis of variance to test for effects of landscape unit, soil depth, and their interaction on different soil characteristics	.15
2.	Results of Tukey's pairwise comparisons to determine specific differences between landscape units with respect to soil physical and chemical characteristics	.16

ABSTRACT

The abundance of woody plants has increased in recent history in many grassland and savanna ecosystems throughout the world. Woody plants involved in this successional process are often capable of N₂-fixation, such as *Prosopis glandulosa*. The biogeochemical consequences of grassland invasion by N₂-fixing woody plants may include increased belowground carbon storage and increased N₂O emissions from the soils, both of which may have the potential to influence atmospheric chemistry and climate.

At the Texas Agricultural Experiment Station LaCopita Research Area in the Rio Grande Plains of southern Texas, soil samples were collected under mesquite trees at 0-10 cm and 10-20 cm depths. The mesquite trees were harvested and age was determined for each tree by counting its rings. The soil samples were analyzed for organic carbon and total nitrogen using combustion/gas-chromatography. Regressions were developed for nutrient concentrations and nutrient mass/area vs. tree age.

Soil organic carbon and total nitrogen concentrations and mass/area increased significantly with tree age. In the closed canopy woodlands, soils are accumulating total nitrogen at a rate of 2.96 g/m²/yr and organic carbon at a rate of 35.84 g/m²/yr. The increase of nutrients beneath *Prosopis* canopies suggest that the soils are temporarily sequestering a significant quantity of carbon and nitrogen from the atmosphere, and therefore influencing carbon and nitrogen dynamics of this subtropical ecosystem.

INTRODUCTION

The abundance of woody plants has increased in recent history in many grassland and savanna ecosystems throughout the world (Archer 1994). Woody plants involved in this successional process are often capable of N₂-fixation, such as Prosopis glandulosa (mesquite) in the southwestern USA (Johnson & Mayeaux 1990). These changes increase nitrogen input; for example, *P. glandulosa* may contribute 100 kg N/ha yr under its canopy through the fixation of atmospheric nitrogen (Abrams et al. 1990). Nitrogen fixed by N_2 -fixing species may become available to other plants and microorganisms, altering ecosystem-level properties. These changes in nutrient input consequently alters primary productivity, decomposition, plant water-use efficiency, and succession in ecosystems (Belsky et al. 1989; Vitousek & Walker 1989). The biogeochemical consequences of grassland invasion by N₂-fixing woody plants may include increased belowground caron storage and increased N₂O emissions from the soils, both of which may have the potential to influence atmospheric chemistry and climate. Despite its potential local, regional, and global importance, little is known about the ecological significance and resource management implications of increased abundance of N₂-fixing woody plants in savanna ecosystems.

A savanna is an ecosystem in which a continuous, well-developed grassland matrix is interspersed with an open discontinuous layer of shrubs or trees (Knoop & Walker 1985; Belsky 1994). Woody landscape elements within savanna ecosystems often have significantly higher concentrations of organic carbon and total nitrogen in soils compared with the surrounding grassland matrix (Jackson et al. 1980; Mordlelet et al. 1993; Frost & Edinger

Format follows the style of Journal of Applied Ecology.

1991), presumably due to higher above and below ground productivity and/or accumulation of coarse woody debris with slow decomposition rates. In cases where one or more of the woody species are symbiotic N₂-fixers, nitrogen accumulation in below canopy soils is even more pronounced (Virginia 1986; Mazzarino et al. 1991). Invasion by exotic species into this ecosystem can alter composition and community structure. This can also alter properties of the whole ecosystem, such as productivity, nutrient cycling, and hydrology. Because these invading species differ from native species in resource acquisition and resource use efficiency, they can alter trophic structure, and disturbance frequency and intensity (Vitousek 1990).

The historic *Prosopis-Acacia-Andropogon-Setaria* savannas of the Rio Grande Plains of southern Texas (Kuchler 1964) have been largely replaced by a subtropical thorn woodland in recent history (Archer 1994; Boutton et al. 1994). Intensification of livestock grazing and changes in fire and climatic regimes are believed to account for the vegetational shift (Hastings & Turner 1965; Grover & Musick 1990). In heavily grazed ecosystems, reductions in soil fertility and alterations in physical and chemical properties may occurr with loss of vegetative ground cover and erosion (Thurow 1991; Walker & Steffen 1993). This reduction in soil fertility would potentially favor N₂-fixing woody plants (van Auken & Bush 1989; Vitousek & Howarth 1991) and growthforms tolerant of low nutrient conditions (Goldberg 1982). Recent studies have indicated that the dominant woody plant species which have increased in abundance in the Rio Grande Plains of southern Texas are capable of symbiotic nitrogen fixation (Zitzer et al. 1991; Boutton et al. 1992).

Since woody plant encroachment into grasslands has been occurring over large areas worldwide, ecosystem level changes in nutrient pool sizes and fluxes could potentially influence regional and global biogeochemistry and climate (Whitford 1992; Walker & Steffen 1993). The replacement of grassland and savanna ecosystems by woodlands must be considered as a local problem with economic impacts on livestock production, and also in the context of regional changes in biogeochemistry and climate that will influence landscape evolution and future land use options in arid and semiarid ecosystems worldwide.

Despite many investigations on the carbon cycle, approximately 2 Pg of carbon remain unaccounted for. Various researchers have suggested that land vegetation acts as a sink for carbon dioxide (Schlesinger 1993). The increase in abundance of woody plants in subtropical, ecosystems worldwide may temporarily sequester the buildup of atmospheric carbon dioxide (Alban & Perala 1992; Sombroek et al. 1993).

The purpose of this study was to document some of the biogeochemical changes resulting from increased woody plant abundance in the Rio Grande Plains of southern Texas. Specifically, I will utilize a previously documented (Archer 1994) successional chronosequence from open grassland to closed canopy woodland to quantify changes in carbon and nitrogen storage in belowground biomass and soils.

OBJECTIVE AND HYPOTHESES

Objective: Quantify the magnitude and rate of change in belowground N and C pool sizes along a successional chronosequence from remnant grassland to woodland.

Hypothesis 1: As a consequence of both greater above- and belowground productivity and the presence of N_2 -fixing woody plants, N and C pools in belowground biomass and soils will increase with time habitation by woody plants and will be significantly greater in areas that are now woodland relative to remnant grasslands.

Hypothesis 2: C/N ratios of biomass and soil organic matter will be lower in acreas dominated by N_2 -fixing woody plants relative to grasslands.

PROCEDURES

Study Area: The research was conducted at the 1093 ha Texas Agriculture Experiment Station LaCopita Research Area, 65 km west of Corpus Christi, Texas, in the eastern Rio Grande Plains of the Tamaulipan Biotic Province. Mean annual rainfall is 680 mm, and mean annual temperature is 22.4°C. Elevations range from 75-60 m. Soils range from fine sandy loams to sandy clay loams, from slightly acid to alkaline and include Ustolls and Ustalfs on uplands, and Aqualfs in lower landscape positions.

Upland vegetation consists of discrete multi-species woody plant clusters embedded within a continuous matrix of herbaceous vegetation (grassland) dominated by tropical and subtropical C4 grasses (Archer et al. 1988). In the uplands, successional processes from grassland to woodland are initiated by the establishment of *Prosopis glandulosa*, a nitrogen-fixing legume (Archer et al. 1988). Once established, Prosopis appears to facilitate the colonization of other woody plant species beneath its canopy. Thus, Prosopis is always the oldest plant in any particular stand of woody plants. Upland wooded areas that consist of single *Prosopis* plant and up to 15 other woody plant species are referred to as clusters. Soils beneath clusters always have an argillic horizon (Bt) present. Upland wooded areas that consist of multiple *Prosopis* plants and up to 15 other woody plant species are referred to as groves. Soils beneath groves always lack an argillic horizon. Low-lying landscape positions (drainages) consist of closed-canopy subtropical thorn woodland, dominated by *Prosopis*, but with the same understory woody species as occur in the upland woodlands., This site has been grazed since the mid 1800s.

Soil Sampling and Tree Age Determination: For each landscape position, 40 sites were identified that provided a range of *Prosopis* tree sizes/ages. At each site, three soil cores (2.5 cm wide x 20 cm deep) were taken directly beneath the largest (oldest) *Prosopis* tree in the stand in April 1994. All three cores were divided into 0-10 cm and 10-20 cm depth increments, and the three samples from each depth interval were pooled. Samples were dried at 60° C for 5 days, and ground to pass a 2 mm screen. Large roots and organic matter fragments were removed during this step. A subsample of this soil was used for determination of texture. Another subsample was pulverized (particle size < 5µm) with an Angstrom ring grinder, and utilized for all other analyses.

At the same time the soil cores were taken, the largest *Prosopis* tree in the stand was cut down at ground level with a chain-saw, and a cross-section of the trunk was removed. The age of each tree was determined by counting annual rings in the cross-sections prepared using methods described previously (Flinn et al. 1994). Regressions were developed to determine relationships between tree diameter and tree age for each landscape position.

Soil samples for bulk density determination were sampled in December 1994. Samples were taken from 12 sites within each landscape position. At each site, one clod was taken from the 0-10 cm depth, and another from the 10-20 cm depth. Clods were wrapped in hair nets, dipped in liquid saran, and transported back to the lab for further processing.

Soil Characterization: Soil texture was determined on all samples using the pipette method (Gee and Bauder 1986). All fractions were corrected for moisture content. Soil pH was determined on a 2:1 (water:soil) mixture using

a pH meter (McLean 1982). Bulk density was determined on both oven dry soil, and soil at 0.03 Mpa using the clod method (Blake and Hartge 1986). Differences in percent sand, percent silt, percent clay, pH, and bulk density due to landscape position, soil depth, and their interaction were determined by analysis of variance. Specific differences between landscape units were revealed by Tukey's pairwise comparison test.

Nutrient Concentrations and Accumulation Rates: Organic carbon and total nitrogen concentrations were determined on finely pulverized ($<5\mu$ m) soil samples by combustion/gas-chromatrography using a Carlo Erba NA-1500 elemental analyzer (Verardo et al. 1990). Mass per unit area (q/m^2) of organic carbon and total nitrogen was determined for each site by multiplying the nutrient concentration by the appropriate bulk density. Differences in carbon and nitrogen concentrations and mass/area due to landscape position, soil depth, and their interaction were determined by analysis of variance. Specific differences between landscape units were revealed by Tukey's pairwise comparison test. Rates of changes in nutrient concentrations and nutrient mass/area were determined by regression against tree age. In these regressions, I assumed that nutrient concentrations and mass at time 0 in the wooded areas (clusters, groves, drainages) were equivalent to mean values for these parameters from areas that are presently grassland. Therefore, all regression lines were forced through the nutrient concentrations or masses for grasslands at time 0.

RESULTS

Analysis of soil texture revealed that soils in grasslands, clusters, and groves were loamy sands while drainages were sandy clay loams (Fig. 1). The relative proportions of sand, silt, and clay were significantly different between landscape units (Table 1). This difference was due to the fact that drainages had more clay and silt and less sand than all of the other landscapes (Table 2). Sand and silt did not differ between soil depths, but clay was significantly greater at the 10-20 cm depth interval (Table 1). There were no significant landscape unit x soil depth interactions for any of the particle size classes.

Values for soil pH did not differ significantly between landscape units or soil depths (Fig. 2; Table 1). Mean values for soil pH ranged from approximately 6.7 to 7.4 (Fig. 2). Similarly, bulk density did not differ significantly between landscape units or soil depth (Fig. 3; Table 1). Mean values for bulk density ranged from 1.37 to 1.41 g/cm³ (Fig. 3).

Concentrations of soil organic carbon varied significantly between landscape units and soil depths (Fig 4; Table 1). At 0-10 cm, values for organic carbon ranged from 6.9 g kg⁻¹ in the grasslands to 24.1 g kg⁻¹ in the drainage woodlands. All pairwise comparisons between landscape units were significantly different, except for the cluster-grove comparison (Table 2). Concentrations of soil total nitrogen also varied significantly between landscape units and soil depths (Fig. 4; Table 1). At 0-10 cm, values for total nitrogen ranged from 0.72 g kg⁻¹ in the grasslands to 2.2 g kg⁻¹ in the drainage woodlands (Fig. 4). The drainage woodlands were significantly different from all of the upland landscape units (Table 2). The upland landscape units did not differ significantly (Table 2).

The carbon/nitrogen ratio varied significantly between landscape units, soil depths, and the interaction between landscape units and soil depths (Table 1.) All pairwise comparisons differed significantly except the cluster-grove and drainage-grassland comparisons (Table 2). Values in the 0-10 cm depth range from 10.6 in the groves to 12.6 in the drainages (Fig. 4).

Mass per unit area of organic carbon differed significantly between landscape units and between soil depths (Fig. 5; Table 1). There was no significant interaction between landscape units and soil depth (Table 1). Values in the 0-10 cm depth increment range from 944 g/m² in the grassland to 3297 g/m² in the drainage woodland (Fig. 5). All pairwise comparisons were significantly different except the cluster-grove comparison (Table 2). Mass per unit area of nitrogen was also significantly different between landscape units and soil depth (Fig. 5; Table 1). There was not a significant interaction between landscape unit and soil depth (Table 1). Values in the 0-10 cm depth range from 98 g/m² in the grassland to 304 g/m² in the drainage. All pairwise comparisons were significantly different except the cluster-grove and grove-grassland comparisons (Table 2).

Regression analyses predicting *Prosopis* tree age from tree basal diameter were all highly significant (Fig. 6). Values for r^2 ranged from 0.76 for clusters to 0.83 for groves and drainages. Paired t-tests showed that all three regression lines were significantly different from each other (p<0.001).

Soil organic carbon concentrations at 0-10 cm and 10-20 cm increased significantly with tree age, as revealed by linear regression (Fig. 7). All

regressions were statistically significant, except for clusters at the 10-20 cm depth. At 0-10 cm, rates of increase in organic carbon concentrations ranged from 0.09 g C kg⁻¹ yr⁻¹ (groves) to 0.28 g C kg⁻¹ yr⁻¹ (drainages) (Fig. 7). At 10-20 cm, rates of increase in organic carbon concentration ranged from 0.05 g C kg⁻¹ yr⁻¹ (groves to 0.23 g C kg⁻¹ yr⁻¹ (drainages) (Fig. 7). Similarly, soil total nitrogen concentrations at 0-10 cm and 10-20 cm increased significantly with tree age, as revealed by linear regression (Fig. 8). All regressions were statistically significant, except for clusters at the 10-20 cm depth increment. At 0-10 cm, rates of increase in total nitrogen concentrations ranged from 0.01 g N kg⁻¹ yr⁻¹ (clusters and groves) to 0.03 g N kg⁻¹ yr⁻¹ (drainages) (Fig. 8). At 10-20 cm, rates of increase in total nitrogen concentrations ranged from 0.003 g N kg⁻¹ yr⁻¹ (drainages) (Fig. 8).

Carbon/nitrogen ratios at 0-10 cm and 10-20 cm decreased significantly with tree age, as revealed by linear regression (Fig. 9). All regressions were statistically significant, except for clusters at the 0-10 cm depth and drainages at the 10-20 cm depth. At 0-10 cm, rates decreased from 0.02 yr⁻¹ (clusters and drainages) to 0.03 yr⁻¹ (groves) (Fig. 9). At 10-20 cm, rates decreased from 0.01 yr^{-1} (drainages) to 0.05 yr⁻¹ (clusters) (Fig. 9).

Mass/unit area of organic carbon at 0-10 cm, 10-20 cm, and combined 0-20 cm depths, increased significantly with tree age, as revealed by linear regression (Fig. 10). All regressions were statistically significant. At the combined 0-20 cm depth, rates of increase in mass/unit area of organic carbon ranged from 9.72 g/m² (groves) to 35.84 g/m² (drainages) (Fig. 10). At the 0-10 cm depth, rates of increase in mass/unit area of organic carbon ranged from 11.38 g/m² (groves) to 38.14 g/m² (drainages) (Fig. 10). At the 10-20 cm depth,

rates of increase ranged from 8.01 g/m² (groves) to 31.59 g/m² (drainages) (Fig. 10).

Mass/unit area of total nitrogen at 0-10 cm, 10-20 cm, and combined 0-20 cm depths, increased significantly with tree age, as revealed by linear regression (Fig. 11). All regressions were statistically significant, except for clusters at the 10-20 cm depth. At the combined 0-20 cm depth, rates of increase in mass/unit area of total nitrogen ranged from 0.83 g/m² (groves) to 2.96 g/m² (drainages) (Fig. 11). At the 0-10 cm depth, rates of increase in mass/unit area of total nitrogen ranged from 0.92 g/m² (groves) to 3.50 g/m² (drainages) (Fig. 11). At 10-20 cm, rates of increase in mass/unit area of total nitrogen ranged from 0.92 g/m² (groves) to 3.50 g/m² (drainages) (Fig. 11). At 10-20 cm, rates of increase in mass/unit area of total nitrogen ranged from 0.92 g/m² (drainages) (Fig. 11).

Figure 1. Soil texture for different landscape units and soil depths at LaCopita Research Area. Texture was measured by the pipette method, and all fractions were corrected for moisture content.

Table 1. Results of analysis of variance to test for effects of landscape unit, soil depth, and their interaction on different soil characteristics.

			Texture		Bulk		C/N	Organi	c Carbon	Total	Nitrogen
	DF	Sand	Silt	Clay	Density	Hq	Ratio	g/kg	g/m ²	g/kg	g/m ²
Landscape unit	3, 304	***	**	***	NS	NS	***	***	**	***	***
Soil Depth	1, 304	NS	SN	*	NS	NS	*	***	* *	***	*
Interaction	3,304	NS	NS	NS	NS	NS	*	NS	NS	NS	NS
* = P<0.05									-		
** = P<0.01											
*** = P<0.001											

 2. Results of Tukey's pairwise of to soil physical and chemical of
--

Pairwise		Texture		Bulk		C/N	Organi	c Carbon	Total	Nitrogen
Comparison	Sand	Silt	Clay	Density	Hq	Ratio	g/kg	g/m ²	g/kg	g/m ²
cluster-grove	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
cluster-drainage	*	*	*	NS	NS	*	*	*	*	*
cluster-grassland	NS	NS	NS	NS	NS	*	*	*	NS	*
grove-drainage	*	*	*	NS	NS	*	*	*	*	*
grove-grassland	NS	NS	NS	NS	NS	*	*	*	NS	NS
drainage-grassland	*	*	*	NS	NS	NS	*	*	*	*
* = P<0.05										

** = P<0.01 *** = P<0.001

Figure 2. Soil pH for different landscape units and soil depths at LaCopita Research Area. pH was measured on a 2:1 (water:soil) mixture. Error bars represent one standard deviation.

Hq NA3M

Figure 3. Bulk density (oven-dry) for different landscape units and soil depths at LaCopita Research Area. Bulk density was determined by the clod method. Error bars represent one standard deviation.

Bulk Density (g/cm³)

Figure 4. Organic carbon and total nitrogen concentrations, and carbon/nitrogen ratios, for different landscape units and soil depths at LaCopita Research Area. Organic carbon and total nitrogen concentrations were determined by combustion/gas-chromatography. Error bars represent one standard deviation.

Figure 5. Mass of organic carbon and total nitrogen for different landscape units and soil depths at LaCopita Research Area. Nutrient mass was determined as the product of nutrient concentration and bulk density. Error bars represent one standard deviation.

Figure 6. Relationships between basal diameter and age of mesquite trees in different landscape positions at LaCopita Research Area. Tree age was determined by counting annual rings. Regression lines are shown as dark, heavy lines, and 95% confidence intervals are shown as lighter, thinner lines. Analysis of variance revealed that all regressions were significant at p<0.001.

Figure 7. Change in soil organic carbon concentrations with increasing age of mesquite trees in different landscape units at LaCopita Research Area. The three graphs on the left are for the 0-10 cm soil depth, while the three on the right are for the 10-20 cm soil depth. Analysis of variance revealed that all regressions were statistically significant (p<0.05), except for clusters (10-20 cm).

Figure 8. Change in soil total nitrogen concentrations with increasing age of mesquite trees in different landscape units at LaCopita Research Area. The three graphs on the left are for the 0-10 cm soil depth, while the three on the right are for the 10-20 cm soil depth. Analysis of variance revealed that all regressions were statistically significant (p<0.05), except for clusters (10-20 cm).

Figure 9. Change in soil carbon/nitrogen ratio with increasing age of mesquite trees in different landscape units at LaCopita Research Area. The three graphs on the left are for the 0-10 cm soil depth, while the three on the right are for the 10-20 cm soil depth. Analysis of variance revealed that all regressions were statistically significant (p<0.05), except for clusters (0-10 cm) and drainage (10-20 cm).

Figure 10. Change in mass of soil organic carbon with increasing age of mesquite trees in different landscape units at LaCopita Research Area. The three graphs on the left are for the 0-20 cm soil depth, the three graphs in the middle are for the 0-10 cm soil depth, and the three graphs on the right are for the 10-20 cm soil depth. Analysis of variance revealed that all regressions were statistically significant (p<0.05).

Figure 11. Change in mass of soil total nitrogen with increasing age of mesquite trees in different landscape units at LaCopita Research Area. The three graphs on the left are for the 0-20 cm soil depth, the three graphs in the middle are for the 0-10 cm soil depth, and the three graphs on the right are for the 10-20 cm soil depth. Analysis of variance revealed that all regressions were statistically significant (p<0.05), except for clusters (10-20 cm).

DISCUSSION

The study site was previously a savanna ecosystem with an open grassland matrix interspersed with woody plants. Recently, it has been encroached by woody plants and is predominantly a subtropical thorn woodland (Archer 1994; Boutton et al. 1992). For the purpose of this research, the grassland landscape unit was considered as the original vegetation element. The drainages, closed canopy woodlands, were considered as the oldest landscape element, with the clusters and groves as intermediate in age. The grasslands reflected lower quantities of organic carbon concentrations, total nitrogen concentrations, and organic carbon and total nitrogen masses than any of the wooded landscape positions (Fig. 4 and 5). In all of the regressions for organic carbon and total nitrogen, I am assuming that the mean grassland value represents the original vegetation condition (time 0).

All regressions show an increase in nutrient accumulation (both concentrations and masses) through time. This is consistent with previous literature on savannas--there are greater quantities of nutrients under tree canopies than in the grassland matrix (Belsky et al. 1989; Bernard-Reverstat 1982; Mazzarino 1991). Some explanations for the change in nutrients under tree canopies are as follows: the trees have larger roots that can search for nutrients at further distances (resource allocation), trees possess greater above ground biomass, which means they produce more litter and input more soil organic matter than herbaceous zones, a greater microbial biomass is found beneath tree canopies to make nutrients available, and also from dung deposits from birds that utilize the branches and shade of the tree. Rundel et al. (1982) noted only 45 g N/m² under grassland vegetation and 1020 g

 N/m^2 under the canopy of *Prosopis glandulosa*. I found that the grassland landscape unit contained an average of 91 g N/m^2 and 903 g C/m^2 whereas the drainage woodland contained an average of 268 g N/m^2 and 3112 g C/m^2 under the canopy of *Prosopis glandulosa*.

The drainage consisted of the highest total and greatest rate of increase (for both organic carbon and total nitrogen concentrations and masses) (Fig. 4 through 11). This can be explained because of the particle size distribution. Fine textured soils were found to be more abundant in the drainage woodlands (Fig. 1). Clay soils have a higher cation exchange capacity and retain nutrients in greater amounts and for longer amounts of time. Virginia and Jarrell (1983) also found that total soil nitrogen was greatest on soil with the highest clay content and lowest in aeolian sand dunes. Clusters and groves, both upland woody landscape units increase in nutrients at a similar rate that is not as dramatic as the drainages. This is due to the coarser texture of the uplands. Sandier textures do not accumulate as much carbon and nitrogen because the nutrients are lost, for example, by leaching, decomposition, erosion, volitalization, or denitrification.

The carbon/nitrogen ratios decreased with time (age of mesquite trees) (Fig. 9). This is because more litter is accumulating from nitrogenfixing woody plants. *Prosopis* is known to form symbiotic associations with Rhizobium and fix atmospheric nitrogen (Boutton et al. 1992) which it contributes to the soil through litter. Nornberg et al. (1993) found that carbon/nitrogen ratios also decreased under the canopy of oak trees. The carbon/nitrogen ratio is greatest in the grasslands (Fig. 4) because there are no woody species present to input greater amounts of nitrogen relative to carbon.

Each woody landscape unit has a different relationship between tree age and basal diameter (Fig. 6). Woody plants in each landscape unit grows at different rates due to different environmental conditions. The drainage woodlands have the fastest growth rate. They are present in the lowland areas of the landscape, and therefore obtain more runoff which contributes more water and nutrients. This landscape also contains finer textured soils (clay), which retains nutrients more effectively than coarser textured soils.

Nutrients stored in the upper soil horizons represents the most active nutrient pool and the pool most sensetive to change as a result of agricultural land uses (Moraes et al. 1995). The 0-10 cm depth accumulated greater quantities of nutrients than the 10-20 cm depth for all analyses. In all of the regressions (nutrients vs. tree age), the top soil depth showed a greater rate of nutrient increase with time than the 10-20 cm depth. The 10-20 cm depth did show a slower increase in nutrient accumulation. This is because there are more litter/soil organic matter inputs to the top of the soil. There is also a greater microbial biomass in the top portion of the soil to assist with mineralization of nutrients.

The low r² of all regressions are due to the variability of this ecosystem. Different plant species produce varying amounts of nitrogen and carbon and their decomposition rates differ due to the chemical composition of each species. At the LaCopita Research Area, there are many species of woody plants, forbs, and grasses, each contributing to the variability of the landscape.

CONCLUSIONS

Although the ages of trees sampled ranged over a relatively short period of time, less than 106 years, a significant increase in both organic carbon and total nitrogen from grasslands to all woody landscapes was apparent. This is especially evident in the fine textured drainage woodlands. Because the carbon/nitrogen ratios decreased in the woody landscapes, nitrogen seems to be accumulating at a greater rate than carbon due to the fact that nitrogen-fixing mesquite trees are adding a significant amount of nitrogen from the atmosphere to the soil. In the drainage woodland, total nitrogen is increasing at a rate of $2.96 \text{ g/m}^2/\text{yr}$ and organic carbon is increasing at a rate of $35.84 \text{ g/m}^2/\text{yr}$ in the top 20 cm of the soil.

The increase in abundance of woody plants is influencing carbon and nitrogen dynamics of this subtropical savanna ecosystem in the Rio Grande Plains of southern Texas. The increase of nutrients beneath *Prosopis* canopies suggests that the soils are temporarily sequestering a significant amount of carbon and nitrogen from the atmosphere. This could potentially change the regional biogeochemistry and climate. If woody plants continue to increase in abundance worldwide at the rates observed at this site, the increased storage of carbon and nitrogen could affect global biogeochemical cycles.

Further studies could evaluate what is happening to the carbon and nitrogen in the soils by measuring soil respiration rate and other mechanisms.

LITERATURE CITED

- Abrams, M.M., Jarrell, W.M., Smith, H.A., Clark, P.R. (1990). Nitrogen accretion in soil and biomass production by three *Prosopis* species. *Agroforestry Systems*, 10, 93-97.
- Alban, D.H., and Perala, D.A. (1992). Carbon storage in Lake States aspen ecosystems. *Canadian Journal of Forest Resources*, 22, 1107-1110.
- Archer, S. (1994). Tree-grass dynamics in a subtropical parkland: Reconstructing the past and predicting the future. *Ecoscience*.
- Archer, S., Scifres, C., Bassham, C.R., and Maggio, R. (1988). Autogenic succession in a subtropical savanna: Conversion of grassland to thorn woodland. *Ecological Monographs*, 58, 111-127.
- Belsky, A.J. (1994). Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition. *Ecology*, 75(4), 922-932.
- Belsky, A.J., Amundson, R.G., Duxbury, J.M., Riha, S.J., Ali, A.R., and Mwonga, S.M. (1989). The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. *Journal of Applied Ecology*, 26, 1005-1024.
- Bernard-Reversat, F. (1982). Biogeochemical cycle of nitrogen in a semi-arid savanna. *Oikos*, 38,321-332.
- Blake, G., and Hartge, K. (1986). Bulk density. IN: Klute, A. (ed.), Methods of soil analysis, Part 1, 363-375. American Society of Agronomy, Madison, WI.
- Boutton, T.W., Nordt, L.C., Archer, S.R., Midwood, A.J., Casar, I. (1994). Stable carbon isotope ratios of soil organic matter and their potential use as indicators of paleoclimate. IN: *Applications of isotope techniques in studying past and current environmental changes in the hydrosphere and the atmosphere*. International Atomic Energy Agency, Vienna.
- Boutton, T.W., Zitzer, S.F., Archer, S.R., Cifuentes, L.A. (1992). Symbiotic N₂fixation in a subtropical thorn woodland: Evidence from ¹⁵N natural abundance and nodulation potential. *Bulletin of Ecological Society of America*, 73(2), 117-118.
- Flinn, R.C., Archer, S.R., Boutton, T.W., Harlan, T. (1994). Identification of annual rings in an arid-land woody plant *Prosopis glandulosa*. *Ecology*.

- Gee, G.W., Bauder, J.W. (1986). Particle size analysis. IN: Klute, A. (ed.), *Methods of soil analysis, Part 1*, 383-411. Soil Science Society of America, Madison WI.
- Goldberg, D.E. (1982). The distribution of evergreen and deciduous trees relative to soil type: An example from the Sierra Madre, Mexico, and a general model. *Ecology*, 63, 942-951.
- Grover, H.D., Musick, H.B. (1990). Shrub land encroachment in southern New Mexico, USA: An analysis of desertification processes in the American southwest. *Climatic Change*, 17, 305-330.
- Hastings, J.R., Turner, R.L. (1965). The changing mile: An ecological study of vegetation change with time in the lower mile of an arid and semiarid region. University of Arizona Press, Tucson.
- Jackson, L.E. Strauss, R.B., Fioreston, M.K., Bartolome, J.W. (1990). Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. *Agricultural Ecosystem Environment*, 32, 89-105.
- Johnson, J.B., Mayeux, H.S. (1990). *Prosopis glandulosa* and the nitrogen balance of rangelands Extent and occurrence of nodulation. *Oecologia*, 84, 176-185.
- Knoop, W.T., Walker, B.H. (1985). Interactions of woody and herbaceous vegetation in a southern African savanna. *Journal of Ecology*, 73, 235-253.
- Kuchler, A.W. (1964). *The potential natural vegetation of the coterminous United States.* American Geographical Society.
- Mazzarino, M.J., Oliva, L., Nunez, A., Nunez, G., Buffa, E. (1991). fNitrogen mineralization and soil fertility in the Dry Chaco ecosystem (Argentina). *Soil Science Society of America Journal*, 55, 5125-522.
- McLean. (1982). pH and liming requirements. IN: Klute, A. (ed.), *Methods of soil* analysis, Part 2, Soil Science Society of America, Madison, WI.
- Moraes, J.L., Cerri, C.C., Melillo, J.M., Kicklighter, D., Neill, C., Skole, D.L., Steudler, P.A. (1995). Soil carbon stocks of the Brazilian Amazon basin. *Soil Science Society of America Journal*, 59, 244-247.
- Mordelet, P., Abbadie, L., Menaut, J.C. (1993). Effects of tree clumps on soil characteristics in a humid savanna of West Africa (Lamto, Cote d'Ivoire). *Plant and Soil*, 153, 103-111.

- Nornberg, P., Sloth, L., Nielson, K.E. (1993). Rapid changes of sandy soils caused by vegetation changes. *Canadian Journal of Soil Science*, 73, 459-468.
- Rundel, P.W., Nilson, E.T., Sharifi, M.R., Virginia, R.A., Jarrell, W.M., Kohl, D.H. Shearer, G.B. (1982). Seasonal dynamics of nitrogen cycling for a *Prosopis* woodland in the Sonoran Desert. *Plant and Soil*, 67, 343-353.
- Thurow, T.L. 91991). Hydrology and erosion. IN: Heitschmidt, R.K., Stuth, J.W. (eds.), *Grazing management: An ecological perspective*, 141-160. Timber Press, Portland, OR.
- Van Auken, O.W., Bush, J.K. (1989). Prosopis glandulosa growth: Influence of nutrients and simulated grazing of Bouteloua curtipendula. Ecology, 70, 512-516.
- Verardo, D.J., Froelich, P.N., McIntyre, A. (1990). Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. *Deep Sea Research*, 37, 157-165.
- Virginia, R.A. (1986). Soil development under legume tree canopies. *Forest Ecological Management*, 16, 69-79.
- Virginia, R.A., Jarrell, W.M. (1983). Soil properties in a mesquite dominated Sonoran Desert Ecosystem. *Soil Science Society of America Journal*, 47, 138-144.
- Vitousek, P.M. (1990). Biological invasions and ecosystem processes: towards an integration of population biology and ecosytem studies. *Oikos*, 57, 7-13.
- Vitousek, P.M., Howarth, R.W. (1991). Nitrogen limitation on land and in the sea: How can it occur? *Biogeochemistry*, 13, 87-115.
- Vitousek, P.M., Walker, L.R. (1989). Biological invasion by *Myrica faya* in Hawaii: plant demography, nitrogen fixation, ecosytem effects. *Ecological Monographs*, 59(3), 247-265.
- Schlesinger, W.H. (1993). Responses of the terrestrial biosphere to global climate change and human perturbation. *Vegetation*, 104/105, 295-205.
- Sombroek, W.G., Nachtergaele, F.O., Hebel, A. (1993). Amounts, dynamics, and sequestering of carbon in tropical and subtropical soils. *AMBIO*, 22, 417-426.

- Walker, B.H., Steffen, W.L., (1993). Rangelands and global change. *Rangeland Journal*, 15, 95-103.
- Whitford, W.G. (1992). Biogeochemical consequences of desertification. IN: Dunnette, D.A., O'Brien, R.J. (eds.), *The science of global change: The impact of the environment*, 352-359. American Chemical Society, Washington, D.C.
- Zitzer, S.F., Archer, S.R., Boutton, T.W. (1991). Infective capacity of symbiotic nitrogen-fixing bacteria in southern Texas savannas. *Bulletin of Ecological Society of America*, 72(2), 299.

APPENDIX 1. Results of soil characterization. The first number in the sample code identifies the sample number, the second number in the sample code identifies the landscape unit (1=cluster, 2=grove, 3-drainage, and 4=grassland.) The last number in the sample code identifies the soil depth (1=0-10 cm depth, 2=10-20 cm depth.)

	Tree	Tree		Tavtura			Oven Drv	0.03 MDa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
1-1-1	24.3	65	70.6	15.1	14.3	6.98	1.41	1.37
2-1-1	20.0	57	68.1	15.8	16.0	6.96	1.41	1.37
3-1-1	12.2	44	72.8	13.4	13.8	6.75	1.41	1.37
4-1-1	7.9	33	71.1	10.7	18.2	6.85	1.41	1.37
5-1-1	5.1	16	74.1	11.3	14.6	7.59	1.41	1.37
6-1-1	8.0	34	78.4	8.1	13.5	7.04	1.41	1.37
7-1-1	9.1	25	80.5	10.8	8.6	6.16	1.41	1.37
8-1-1	6.7	25	75.9	10.0	14.1	7.60	1.41	1.37
9-1-1	5.2	18	79.2	9.8	11.0	7.01	1.41	1.37
10-1-1	20.2	50	76.4	12.6	11.1	5.62	1.41	1.37
11-1-1	16.8	42	79.2	11.3	9.5	6.41	1.41	1.37
12-1-1	21.8	59	73.0	13.5	13.5	6.28	1.41	1.37
13-1-1	26.3	52	73.6	14.2	12.2	6.20	1.41	1.37
14-1-1	1.6	14	72.6	13.9	13.5	6.69	1.41	1.37
15-1-1	17.0	48	73.5	14.8	11.8	6.26	1.41	1.37
16-1-1	14.5	33	72.5	15.6	11.9	6.62	1.41	1.37
17-1-1	2.5	15	71.1	12.6	16.3	6.99	1.41	1.37
18-1-1	10.1	30	77.1	12.0	11.0	7.21	1.41	1.37
19-1-1	2.1	14	71.1	14.2	14.8	7.02	1.41	1.37
20-1-1	6.1	22	70.6	13.9	15.5	7.12	1.41	1.37
21-1-1	3.5	15	72.9	12.8	14.3	7.05	1.41	1.37
22-1-1	10.5	39	76.8	11.9	11.3	6.98	1.41	1.37
23-1-1	3.8 3.8	12	73	14.9	12.2	7.37	1.41	1.37
24-1-1	17.5	57	82.6	8.2	9.2	6.16	1.41	1.37
25-1-1	15.4	43	69.4	16.5	14.1	7.15	1.41	1.37
26-1-1	22.5	46	67.6	17.3	15.1	6.77	1.41	1.37

APPENDIX 1. Results of soil characterization.

0.03 MPa	Bulk Density	grand	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
Oven Dry	Bulk Density	grand	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	141	1.41	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
	Ţ		6.36	5.84	6.82	6.02	6.83	6.55	7.12	6.11	6.04	7.36	6.76	6.62	6.38	6.72	6.72	6.30	7.15	7.23	7.01	6.11	7.05	6.71	6.41	6.78
		Clay	11.7	13.6	13.4	13.2	14.9	11.8	16.1	12.3	8.6	9 [.] 0	11.6	11.1	12.6	19.9	20.3	18.9	17.5	14.8	14.7	9.1	9.4	9.1	10.2	10.0
Texture	(%) Silt	OIIL	14.1	13.1	13.1	12.4	11.5	12.6	11.7	12.8	<u>9</u> .0	9.5	6.8	7.2	9.3	13.1	11.8	10.8	12.2	14.0	8.2	10.1	12.1	12.2	11.3	10.5
			74.2	73.3	7.35	74.4	73.5	75.7	72.2	74.8	82.4	80.5	81.6	81.7	78.1	66.9	67.9	70.4	70.3	71.3	77.1	80.8	78.5	78.8	78.5	79.5
Tree	Age	()()		59	36	48	18	25	46	34	64	32	22	32	63	65	57	44	33	16	34	25	25	18	50	42
Tree	Diameter		8.0	21.8	14.0	14.2	5.7	9.3	16.0	11.4	16.0	8.5	7.5	7.3	20.5	24.3	20.0	12.2	7.9	5.1	8.0	9.1	6.7	5.2	20.2	16.8
	Sample	anno	27-1-1	28-1-1	29-1-1	30-1-1	31-1-1	32-1-1	33-1-1	34-1-1	35-1-1	36-1-1	37-1-1	38-1-1	39-1-1	1-1-2	2-1-2	3-1-2	4-1-2	5-1-2	6-1-2	7-1-2	8-1-2	9-1-2	10-1-2	11-1-2

en Dry 0.03 MPa	Density Bulk Density	ı/cm ³ g/cm ³	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	1.43 1.37	
Õ	Bulk	pH g	5.93	6.50	6.92	6.31	6.49	7.10	7.32	6.86	6.95	7.10	7.11	7.06	6.70	7.16	6.71	6.32	6.15	6.65	5.87	7.00	6.90	7.03	6.30	6.28	
		Clay	14.5	9.5	14.1	12.5	11.8	16.1	14.7	16.6	17.2	17.4	15.4	12.7	10.4	15.4	16.6	12.1	15.3	14.7	9.5	16.3	13.8	17.4	15.9	10.0	0.01
Texture	(%)	Silt	13.0	16.8	11.6	13.0	11.4	13.2	13.5	13.4	12.8	15.6	11.5	13.7	14.9	15.3	15.7	12.9	13.6	10.5	15.9	5.1	11.7	12.5	11.1	9.9	1
		Sand	72.5	73.7	74.3	74.5	76.8	70.7	71.8	70.0	70.0	67.0	73.1	73.6	74.7	69.3	67.7	75.1	71.1	74.8	74.6	68.6	74.6	70.1	73.0	80.1	
Tree	Age	(yr)	59	52	14	48	33	15	30	14	22	15	39	12	57	43	46	31	59	36	48	19	25	46	34	64	00
Tree	Diameter	(cm)	21.8	26.3	1.6	17.0	14.5	2.5	10.1	2.1	6.1	3.5	10.5	3.8	17.5	15.4	22.5	8.0	21.8	14.0	14.2	5.7	9.3	16.0	11.4	16.0	
	Sample	Code	12-1-2	13-1-2	14-1-2	15-1-2	16-1-2	17-1-2	18-1-2	19-1-2	20-1-2	21-1-2	22-1-2	23-1-2	24-1-2	25-1-2	26-1-2	27-1-2	28-1-2	29-1-2	30-1-2	31-1-2	32-1-2	33-1-2	34-1-2	35-1-2	

	Tree	Tree		Texture			Oven Dry	0.03 MPa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
37-1-2	7.5	22	82.9	6.2	10.9	6.35	1.43	1.37
38-1-2	7.3	32	82.5	7.0	10.5	6.33	1.43	1.37
39-1-2	20.5	63	80.1	8.4	11.5	6.56	1.43	1.37
1-2-1	15.6	34	75.9	6.7	17.5	6.54	1.36	1.34
2-2-1	8.5	13	75.7	13.1	11.2	6.81	1.36	1.34
3-2-1	24.7	54	70.7	17.4	11.8	7.80	1.36	1.34
4-2-1	27.1	49	72.5	14.8	12.7	7.01	1.36	1.34
5-2-1	14.0	39	74.3	12.7	13.0	6.45	1.36	1.34
6-2-1	11.1	21	81.7	2.8	15.4	6.93	1.36	1.34
7-2-1	2.25	12	78.2	10.6	11.3	8.12	1.36	1.34
8-2-1	23.5	53	80.2	7.2	12.5	5.75	1.36	1.34
9-2-1	13.2	27	85.0	4.5	10.5	6.54	1.36	1.34
10-2-1	25.9	50	62.3	25.1	12.7	5397	1.36	1.34
11-2-1	11.9	40	77.8	8.4	13.8	6.12	1.36	1.34
12-2-1	18.9	39	74.5	9.7	15.8	8.00	1.36	1.34
13-2-1	9.5	34	78.0	6.7	15.3	7.54	1.36	1.34
14-2-1	21.6	48	69.2	10.7	20.1	8.18	1.36	1.34
15-2-1	11.5	40	76.3	14.4	9.3	7.04	1.36	1.34
16-2-1	3 [.] 0	4	77.2	10.2	12.6	7.92	1.36	1.34
17-2-1	15.5	91	75.5	13.9	10.5	7.99	1.36	1.34
18-2-1	22	54	68.4	21.2	10.5	7.65	1.36	1.34
19-2-1	28.5	60	81.2	9.1	9.7	6.81	1.36	1.34
20-2-1	4.0	4	74.4	14.0	11.6	7.32	1.36	1.34
21-2-1	4.2	15	78.8	11.0	10.2	8.08	1.36	1.34
22-2-1	8.3	19	79.2	12.2	8.5	7.32	1.36	1.34

0.03 MPa	Bulk Density	g/cm ³	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.42	1.42	1.42	1.42	1.42	1.42	
Oven Dry	Bulk Density	g/cm ³	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.41	1.41	1.41	1.41	1.41	1.41	
		Hd	7.10	8.12	7.61	6.79	7.79	7.12	7.25	7.15	7.71	7.60	6.61	4.98	5.60	6.35	7.49	6.11	6.99	7.36	6.43	6.75	7.02	7.11	6.99	6.86	
		Clay	9.0	15.3	11.0	9.9	13.3	9 [.] 8	8.5	14.3	13.2	14.2	13.4	15.0	13.4	14.2	10.7	13.6	8.1	7.8	13.7	13.5	11.8	14.3	10.9	13.8	
Texture	(%)	Silt	9.8	14.4	9.5	11.0	12.6	9.9	9.6	5.9	4.0	3.0	9.5	8.2	10.1	7.1	11.1	5.3	8.0	0.0	19.5	13.2	14.8	12.4	12.5	7.8	() () ()
		Sand	81.1	70.3	79.5	79.1	74.1	80.3	81.9	79.7	82.8	82.7	77.2	76.7	76.5	78.8	78.3	81.1	83.9	83.1	66.8	73.3	73.4	73.3	76.6	78.4	
Tree	Age	(yr)	20	76	11	63	49	61	50	18	14	40	37	64	52	40	41	27	20	38	34	13	54	49	39	21	7 7
Tree	Diameter	(cm)	7.2	28.8	5.3	30.2	15.5	26.2	23.0	6.0	3.1	17.5	20.8	30.5	25.3	17.5	21.2	15.5	7.6	22.5	15.6	8.5	24.7	27.1	14.0	11.1	с С
	Sample	Code	23-2-1	24-2-1	25-2-1	26-2-1	27-2-1	28-2-1	29-2-1	30-2-1	31-2-1	32-2-1	33-2-1	34-2-1	35-2-1	36-2-1	37-2-1	38-2-1	39-2-1	40-2-1	1-2-2	2-2-2	3-2-2	4-2-2	5-2-2	6-2-2	004

	Tree	Tree		Texture			Oven Dry	0.03 MPa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
8-2-2	23.5	53	80.7	5.5	13.8	6.25	1.41	1.42
9-2-2	13.2	27	80.9	5.2	13.8	6.62	1.41	1.42
10-2-2	25.9	50	74.4	9 [.] 8	15.8	7.48	1.41	1.42
11-2-2	11.9	40	77.4	6.9	15.7	6.81	1.41	1.42
12-2-2	18.9	39	75.6	9.1	15.3	8.12	1.41	1.42
13-2-2	9.5	31	78.9	7.7	13.3	7.91	1.41	1.42
14-2-2	21.6	48	72.6	10.2	17.2	8.16	1.41	1.42
15-2-2	11.5	40	72.2	13.9	13.9	7.04	1.41	1.42
16-2-2	3.9	4	74.0	11.9	14.1	8.03	1.41	1.42
17-2-2	15.5	91	76.5	11.5	12.0	7.91	1.41	1.42
18-2-2	22	54	75.5	12.0	12.5	7.62	1.41	1.42
19-2-2	28.5	60	77.2	11.4	11.5	7.75	1.41	1.42
20-2-2	4.0	4	74.0	11.4	14.6	7.32	1.41	1.42
21-2-2	4.2	15	77.7	10.6	11.7	7.99	1.41	1.42
22-2-2	8.3	19	80.6	10.2	9.2	7.45	1.41	1.42
23-2-2	7.2	20	78.5	8 [.] 9	12.6	7.51	1.41	1.42
24-2-2	28.8	76	74.0	13.0	13.0	8.11	1.41	1.42
25-2-2	5.3	1	74.9	11.3	13.8	7.92	1.41	1.42
26-2-2	30.2	63	72.8	13.9	13.3	7.03	1.41	1.42
27-2-2	15.5	49	70.2	13.2	16.6	8.09	1.41	1.42
28-2-2	26.2	61	79.7	9.0	11.3	7.24	1.41	1.42
29-2-2	23.0	50	80.6	9.7	9.8	7.39	1.41	1.42
30-2-2	6.0	18	67.2	16.8	16.8	7.22	1.41	1.42
31-2-2	3.1	4	81.3	4 8	13.9	7.90	1.41	1.42
32-2-2	14.5	40	76.5	8.3	15.2	7.68	1.41	1.42

	Tree	Tree		Texture			Oven Drv	0.03 MPa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
33-2-2	20.8	37	74.0	9.8	16.2	6.30	1.41	1.42
34-2-2	30.5	64	78.6	5.0	16.3	5.23	1.41	1.42
35-2-2	25.3	52	76.7	7.7	15.6	5.91	1.41	1.42
36-2-2	17.5	40	76.9	11.3	11.8	6.20	1.41	1.42
37-2-2	21.5	4	76.3	16.3	7.4	7.51	1.41	1.42
38-2-2	15.5	27	78.1	5.1	16.8	6.06	1.41	1.42
39-2-2	7.6	20	77.1	9.4	13.5	6.68	1.41	1.42
40-2-2	22.5	38	81.0	7.9	11.2	7.22	1.41	1.42
1-3-1	19.0	50	59.5	20.4	20.1	8.11	1.37	1.27
2-3-1	16.6	40	68.2	17.2	14.5	7.65	1.37	1.27
3-3-1	28.5	69	60.6	20.8	18.6	7.22	1.37	1.27
4-3-1	28.6	69	60.5	20.7	18.9	7.49	1.37	1.27
5-3-1	19.1	99	49.8	26.3	23.9	6.15	1.37	1.27
6-3-1	43.9	82	56.0	25.4	18.7	6.35	1.37	1.27
7-3-1	11.5	36	70.4	15.6	14.0	7.10	1.37	1.27
8-3-1	19.2	44	47.4	27.9	24.7	6.78	1.37	1.27
9-3-1	46	86	42.4	30.7	26.9	6.65	1.37	1.27
10-3-1	29.1	75	48.1	29.9	21.9	6.01	1.37	1.27
11-3-1	6.8	14	62.9	16.5	20.5	7.72	1.37	1.27
12-3-1	20.5	52	48.5	25.2	26.3	8.13	1.37	1.27
13-3-1	13.1	59	51.6	22.8	25.6	8.17	1.37	1.27
14-3-1	31.0	75	62.2	19.1	18.7	6.70	1.37	1.27
15-3-1	29.1	71	65.8	18.2	16.0	7.91	1.37	1.27
16-3-1	16.8	45	63.3	18.7	18.0	8.15	1.37	1.27
17-3-1	24.1	99	46.4	39.6	13.9	7.99	1.37	1.27

	Tree	Tree		Texture			Oven Dry	0.03 MPa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
18-3-1	12.4	29	53.8	24.0	22.2	7.41	1.37	1.27
19-3-1	6.7	15	53.3	23.9	22.7	7.12	1.37	1.27
20-3-1	12.0	39	56.2	22.8	21.0	7.41	1.37	1.27
21-3-1	28.5	57	51.4	26.3	22.3	7.48	1.37	1.27
22-3-1	40.5	94	53.2	25.0	20.8	7.16	1.37	1.27
23-3-1	13.8	53	58.7	20.4	20.9	7.35	1.37	1.27
24-3-1	33.5	80	56.9	22.6	20.5	7.30	1.37	1.27
25-3-1	21.0	31	53.0	22.4	24.6	7.07	1.37	1.27
26-3-1	26.8	49	58.7	22.2	19.1	7.14	1.37	1.27
27-3-1	10.0	266	54.5	21.3	24.2	7.11	1.37	1.27
28-3-1	44.0	106	42.1	29.3	28.6	7.30	1.37	1.27
29-3-1	23.2	72	49.3	25.7	25.0	6.41	1.37	1.27
30-3-1	18.2	55	50.1	23.8	26.0	6.93	1.37	1.27
31-3-1	25.2	54	43.1	30.4	26.6	6.90	1.37	1.27
32-3-1	10.5	50	39.3	28.9	31.7	7.01	1.37	1.27
33-3-1	42.5	88	41.3	28.5	30.3	6.62	1.37	1.27
34-3-1	35.3	72	42.5	30.0	27.5	6.84	1.37	1.27
35-3-1	22.8	52	52.7	20.8	26.6	7.29	1.37	1.27
36-3-1	6.1	10	52.7	21.0	26.3	7.72	1.37	1.27
37-3-1	39.5	93	49.7	24.6	25.7	7.22	1.37	1.27
38-3-1	9.0	17	72.2	13.0	14.8	7.03	1.37	1.27
39-3-1	8.8	18	72.8	11.9	15.4	7.92	1.37	1.27
1-3-2	19.0	50	66.1	15.0	18.9	8.06	1.45	1.36
2-3-2	16.6	40	66.4	15.5	18.1	7.78	1.45	1.36
3-3-2	28.5	69	62.3	18.8	18.9	7.45	1.45	1.36

	Tree	Tree		Texture			Oven Dry	0.03 MPa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
4-3-2	28.6	69	66.9	14.7	18.4	6.90	1.45	1.36
5-3-2	19.1	99	48.6	27.0	24.4	6.59	1.45	1.36
6-3-2	43.9	92	56.8	24.4	18.8	6.68	1.45	1.36
7-3-2	11.5	36	70.7	12.0	17.3	6.07	1.45	1.36
8-3-2	19.2	44	46.9	28.4	24.7	6.43	1.45	1.36
9-3-2	46.0	98	69.7	35.4	24.9	5.82	1.45	1.36
10-3-2	29.1	75	45.6	28.8	25.6	6.74	1.45	1.36
11-3-2	6.8	14	65.0	11.9	23.1	7.60	1.45	1.36
12-3-2	20.5	52	54.2	22.2	23.5	8.19	1.45	1.36
13-3-2	13.1	59	50.6	20.7	28.7	8.12	1.45	1.36
14-3-2	31.0	75	60.5	18.4	21.0	6.84	1.45	1.36
15-3-2	29.1	71	65.9	17.4	16.7	7.91	1.45	1.36
16-3-2	16.8	45	65.7	17.1	17.1	8.09	1.45	1.36
17-3-2	24.1	99	66.4	17.9	15.7	7.94	1.45	1.36
18-3-2	12.4	29	54.9	21.3	23.8	7.31	1.45	1.36
19-3-2	6.7	15	55.4	21.8	22.8	7.13	1.45	1.36
202	12.0	39	54.1	21.2	24.7	7.25	1.45	1.36
21-3-2	28.5	57	52.2	22.8	25.0	7.29	1.45	1.36
22-3-2	40.5	94	56.5	22.1	21.4	7.12	1.45	1.36
23-3-2	13.8	52	57.8	19.7	22.6	7.53	1.45	1.36
24-3-2	33.5	80	54.9	21.4	23.7	7.21	1.45	1.36
25-3-2	21.0	31	53.5	21.9	24.6	7.45	1.45	1.36
26-3-2	26.8	49	59.2	18.0	22.8	6.89	1.45	1.36
27-3-2	10.0	26	55.0	20.0	24.9	7.12	1.45	1.36
28-3-2	44.0	106	42.0	28.5	29.5	7.41	1.45	1.36

	Tree	Tree		Texture			Oven Dry	0.03 MPa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
29-3-2	23.2	72	49.0	23.3	27.8	6.51	1.45	1.36
30-3-2	18.2	55	47.3	33.3	19.4	6.75	1.45	1.36
31-3-2	25.2	54	34.4	31.0	34.6	6.82	1.45	1.36
32-3-2	10.5	50	40.2	27.0	32.8	7.19	1.45	1.36
33-3-2	42.5	88	43.3	25.5	31.2	6.91	1.45	1.36
34-3-2	35.3	72	39.5	32.0	28.5	7.07	1.45	1.36
35-3-2	22.8	52	49.6	22.6	27.8	7.56	1.45	1.36
36-3-2	6.1	10	54.4	19.4	26.2	7.71	1.45	1.36
37-3-2	39.5	93	52.7	27.0	20.3	7.74	1.45	1.36
38-3-2	9.0	17	65.9	15.9	18.3	7.10	1.45	1.36
39-3-2	8.8	18	66.0	13.6	20.4	7.69	1.45	1.36
1-4-1	0	0	64.5	18.3	17.2	7.55	1.37	1.31
2-4-1	0	0	70.1	16.3	13.6	7.81	1.37	1.31
3-4-1	0	0	69.1	17.0	13.9	7.58	1.37	1.31
4-4-1	0	0	75.9	11.4	12.6	8.15	1.37	1.31
5-4-1	0	0	70.7	15.9	13.4	7.40	1.37	1.31
6-4-1	0	0	59.0	27.4	13.7	7.15	1.37	1.31
7-4-1	0	0	70.9	13.3	15.8	7.65	1.37	1.31
8-4-1	0	0	69.9	13.9	16.2	7.74	1.37	1.31
9-4-1	0	0	69.7	12.2	18.1	7.71	1.37	1.31
10-4-1	0	0	73.3	12.5	14.2	7.59	1.37	1.31
11-4-1	0	0	72.5	13.9	13.7	8.01	1.37	1.31
12-4-1	0	0	71.2	13.2	15.6	7.51	1.37	1.31
13-4-1	0	0	65.9	15.2	18.9	7.54	1.37	1.31
14-4-1	0	0	65.1	14.7	20.1	7.67	1.37	1.31

ample	Tree Diameter	Tree Age		Texture (%)			Oven Dry Bulk Density	0.03 MPa Bulk Density
ode	(cm)	(yr)	Sand	Silt	Clay	Hd	g/cm ³	g/cm ³
5-4-1	0	0	69.1	14.0	16.9	7.35	1.37	1.31
5-4-1	0	0	80.3	15.1	4.6	7.35	1.37	1.31
-4-1	0	0	80.7	10.4	8.9	7.61	1.37	1.31
3-4-1	0	0	82.0	8.3	9.7	7.56	1.37	1.31
9-4-1	0	0	81.7	7.8	10.5	7.55	1.37	1.31
-4-1	0	0	82.7	8.3	9.0	7.32	1.37	1.31
4-1	0	0	81.2	8.0	10.8	7.31	1.37	1.31
4-1	0	0	63.9	21.9	14.2	7.50	1.37	1.31
8-4-1	0	0	70.2	13.9	15.9	7.42	1.37	1.31
-4-1	0	0	72.5	13.0	14.4	7.31	1.37	1.31
-4-1	0	0	78.0	11.0	11.0	7.12	1.37	1.31
-4-1	0	0	78.6	12.1	9.3	7.55	1.37	1.31
-4-1	0	0	80.5	10.8	8.6	6.92	1.37	1.31
-4-1	0	0	82.4	9.1	8.5	6.88	1.37	1.31
-4-1	0	0	79.9	11.1	0 [.] 0	6.91	1.37	1.31
-4-1	0	0	82.4	8.0	9.6	6.76	1.37	1.31
-4-1	0	0	81.4	10.0	8.6	6.75	1.37	1.31
-4-1	0	0	81.9	8.9	9.2	6.91	1.37	1.31
-4-1	0	0	78.7	11.5	9.8	7.15	1.37	1.31
-4-1	0	0	74.0	14.3	11.8	7.08	1.37	1.31
-4-1	0	0	80.1	12.1	7.8	7.39	1.37	1.31
-4-1	0	0	74.6	12.3	13.1	7.20	1.37	1.31
-4-1	0	0	77.4	11.8	10.8	7.29	1.37	1.31
-4-1	0	0	75.8	10.6	13.6	7.31	1.37	1.31
1-4-1	0	0	81.1	5.9	13.0	7.35	1.37	1.31

0.03 MPa	Bulk Density	g/cm ³	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
Oven Drv	Bulk Density	g/cm ³	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
		Нd	7.37	7.75	7.66	8.22	7.32	7.45	7.66	7.72	7.71	7.81	7.95	7.30	7.45	7.81	7.40	7.24	7.42	7.79	7.55	7.23	7.28	7.57	7.67	7.15	7.02
		Clay	18.6	15.7	15.7	13.8	15.7	15.1	17.7	17.7	19.3	18.7	16.4	19.0	20.3	21.3	18.1	10.6	9.3	11.1	10.9	9.5	8.5	14.4	16.6	17.5	14.0
Texture	(%)	Silt	14.2	12.2	14.4	9.8	10.3	14.1	13.9	14.5	11.4	8 [.] 8	13.5	11.5	14.4	15.4	18.2	6.4	10.2	7.9	8.0	8.9	8.0	15.7	11.8	12.0	10.3
		Sand	67.2	72.1	69.9	76.4	74.0	70.8	69.4	67.8	69.3	72.5	70.1	69.6	65.3	63.3	63.6	83.0	80.4	81.0	81.1	81.6	83.6	69.9	71.6	70.5	75.6
Tree	Age	(yr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tree	Diameter	(cm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sample	Code	1-4-2	2-4-2	3-4-2	4-4-2	5-4-2	6-4-2	7-4-2	8-4-2	9-4-2	10-4-2	11-4-2	12-4-2	13-4-2	14-4-2	15-4-2	16-4-2	17-4-2	18-4-2	19-4-2	20-4-2	21-4-2	22-4-2	23-4-2	24-4-2	25-4-2

	Tree	Tree		Texture			Oven Drv	0.03 MPa
Sample	Diameter	Age		(%)			Bulk Density	Bulk Density
Code	(cm)	(yr)	Sand	Silt	Clay	Ηd	g/cm ³	g/cm ³
26-4-2	0	0	77.7	10.9	11.4	7.71	1.36	1.29
27-4-2	0	0	80.8	10.1	9.1	6.80	1.36	1.29
28-4-2	0	0	80.9	10.0	9.1	7.13	1.36	1.29
29-4-2	0	0	80.4	9.7	9.9	7.01	1.36	1.29
30-4-2	0	0	80.5	9.1	10.4	6.95	1.36	1.29
31-4-2	0	0	80.4	9.9	9.7	6.75	1.36	1.29
32-4-2	0	0	81.0	9.7	9.4	6.80	1.36	1.29
33-4-2	0	0	7.77	12.5	9.8	7.24	1.36	1.29
34-4-2	0	0	76.6	11.1	12.3	7.15	1.36	1.29
35-4-2	0	0	80.6	8.7	10.8	7.32	1.36	1.29
36-4-2	0	0	72.3	13.0	14.7	7.12	1.36	1.29
37-4-2	0	0	76.2	11.7	12.0	7.29	1.36	1.29
38-4-2	0	0	80.2	7.7	12.1	7.41	1.36	1.29
39-4-2	0	0	76.7	11.4	12.0	7.51	1.36	1.29

APPENDIX 2. Soil nutrient concentrations and masses per unit area. The first number in the sample code identifies the sample number, the second number in the sample code identifies the landscape unit (1=cluster, 2=grove, 3-drainage, and 4=grassland.) The last number in the sample code identifies the soil depth (1=0-10 cm depth, 2=10-20 cm depth.)

area.
er unit
ss pe
mas
and
ations
entra
conc
rient
il nut
So
IX 2.
END
APP

	с	m-2	231	250	144	162	132	77	91	137	146	599	269	237	191	83	159	129	94	149	138	102	88	00	127	62	210	247
Total	Nitroge	1 ⁻¹ g	55	2	20	. 2		55	35			i 9	1	80		60	ε	32	57	. 9(. 86	, S	33	2	1	14	6	.0
		g k	1.6	1.7	1.0	. .	0.0	0.5	0.6	0.0	1.0	4.2	<u> </u>	1.6	.	0.5	.	0.0	0.6	1.0	0.0	0.7	0.6	0.7	0.0	0.4	1.4	1.7
oiner.	urbon	g m ⁻²	2300	2639	1597	1772	2056	860	877	1203	865	3153	3067	2913	2101	943	1835	1450	1033	1605	1503	1153	907	1064	1283	641	2242	2911
	Со Со Со	g kg ⁻¹	16.31	18.72	11.33	12.57	14.59	6.11	6.22	8.53	6.14	22.37	21.76	20.66	14.90	6.70	13.02	10.29	7.33	11.39	10.66	8.18	6.44	7.55	9.10	4.55	15.90	20.65
	CaCO ₃	equivalent	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.3	0	0.2	0	0	0
Trad	Age	(yr)	65	57	44	33	16	34	25	25	18	50	42	59	52	14	48	33	15	30	14	22	15	39	12	57	43	46
Trad	Diameter	(cm)	24.3	20.0	12.2	7.9	5.1	8.0	9.1	6.7	5.2	20.2	16.8	21.8	26.3	1.6	17.0	14.5	2.5	10.1	2.1	6.1	3.5	10.5	3.8	17.5	15.4	22.5
	Sample	Code	1-1-1	2-1-1	3-1-1	4-1-1	5-1-1	6-1-1	7-1-1	8-1-1	9-1-1	10-1-1	11-1-1	12-1-1	13-1-1	14-1-1	15-1-1	16-1-1	17-1-1	18-1-1	19-1-1	20-1-1	21-1-1	22-1-1	23-1-1	24-1-1	25-1-1	26-1-1

1																										
otal	ogen	g m ⁻²	56	257	142	107	130	118	141	122	70	61	74	60	147	110	136	73	167	107	44	44	66	185	481	130
Ĕ	Nitr	g kg ⁻¹	0.40	1.82	1.01	0.76	0.93	0.84	1.001	0.87	0.50	0.44	0.53	0.43	1.05	0.77	0.95	0.51	1.17	0.75	0.31	0.31	0.69	1.30	3.36	0.91
anic	bon	g m ⁻²	680	2844	1634	1328	1463	1319	1627	1331	737	672	841	664	1684	1417	1536	951	1974	1422	598	448	740	610	1492	1468
Org	Car	g kg ⁻¹	4.83	20.18	11.59	9.42	10.38	9.36	11.55	9.45	5.23	4.77	5.97	4.72	11.94	9.90	10.73	6.64	13.79	9.93	4.18	3.13	5.17	4.27	10.42	10.26
	CaCO ₃	equivalent	0	0	0	0	0	0.1	0	0	0.1	0.2	0	0	0	0	0.7	0	0	0	0	0	0	0	0	0
Tree	Age	(yr)	31	59	36	48	18	25	46	34	64	32	22	32	63	65	57	44	33	16	34	25	25	18	50	42
Tree	Diameter	(cm)	8.0	21.8	14.0	14.2	5.7	9.3	16.0	11.4	16.0	8.5	7.5	7.3	20.5	24.3	20.0	12.2	7.9	5.1	8.0	9.1	6.7	5.2	20.2	16.8
	Sample	Code	27-1-1	28-1-1	29-1-1	30-1-1	31-1-1	32-1-1	33-1-1	34-1-1	35-1-1	36-1-1	37-1-1	38-1-1	39-1-1	1-1-2	2-1-2	3-1-2	4-1-2	5-1-2	6-1-2	7-1-2	8-1-2	9-1-2	10-1-2	11-1-2

otal	rogen	g m ⁻²	181	151	91	130	177	107	101	105	92	81	87	126	69	128	158	49	175	192	130	97	95	182	110	44	46
F	Nit	g kg ⁻¹	1.27	1.06	0.64	0.91	1.24	0.75	0.71	0.74	0.64	0.57	0.61	0.89	0.48	0.90	1.11	0.35	1.22	1.35	0.91	0.68	0.66	1.27	0.78	0.31	0.33
anic	noc	g m ⁻²	2125	1763	1013	1543	1344	1256	1095	956	983	860	831	861	659	1474	1854	639	1980	2113	1412	1141	1090	1952	1157	571	588
Orga	Cart	g kg ⁻¹	15.03	12.32	7.08	10.78	9.39	8.77	7.65	6.68	6.87	6.01	5.81	6.02	4.61	10.30	12.95	4.47	13.83	14.76	9.87	7.97	7.62	13.63	8.09	3.99	4.11
	CaCO ₃	equivalent	0	0	0	0	3.0	0	0	0	0	0.3	0.4	2.4	0.5	0	0.2	0	0	0	0	0	0.1	0	0	0	0
Tree	Age	(yr)	59	52	14	48	33	15	30	14	22	15	39	12	57	43	46	31	59	36	48	19	25	46	34	64	32
Tree	Diameter	(cm)	21.8	26.3	1.6	17.0	14.5	2.5	10.1	2.1	6.1	3.5	10.5	3.8	17.5	15.4	22.5	8.0	21.8	14.0	14.2	5.7	9.3	16.0	11.4	16.0	8.5
	Sample	Code	12-1-2	13-1-2	14-1-2	15-1-2	16-1-2	17-1-2	18-1-2	19-1-2	20-1-2	21-1-2	22-1-2	23-1-2	24-1-2	25-1-2	26-1-2	27-1-2	28-1-2	29-1-2	30-1-2	31-1-2	32-1-2	33-1-2	34-1-2	35-1-2	36-1-2

(panu
(contii
area.
unit
per
mass
and
ons
itrati
oncer
ant c
iutrie
oil n
۰ آ
X
ION
APPE

.

otal	ogen	g m ⁻²	40	38	82	117	100	218	170	242	109	110	172	79	155	111	122	174	120	116	110	181	120	123	85	75	59
T.	Nitr	g kg ⁻¹	0.28	0.27	0.58	0.87	0.74	1.62	1.26	1.79	0.81	0.82	1.27	0.59	1.15	0.83	0.90	1.28	0.89	0.86	0.81	1.34	0.89	0.91	0.63	0.56	0.44
anic	bon	g m ⁻²	544	515	988	1351	1278	2574	2054	2570	1239	1213	1828	865	1774	1248	1274	1485	1301	1344	1084	1920	1238	1388	1120	931	711
Org	Car	g kg ⁻¹	3.80	3.60	6.90	9.96	9.43	18.99	15.15	18.96	9.14	8.95	13.49	6.39	13.09	9.21	9.40	10.96	9.60	9.92	8.00	14.16	9.13	10.24	8.27	6.87	5.25
	CaCO ₃	equivalent	0	0	0.04	0	0	0	0.8	1.7	0	2.0	1.3	0.6	0	0	2.0	2.0	5.6	0	1.2	2.0	0.8	0	0	0	0.2
Tree	Age	(yr)	22	32	63	34	13	54	49	39	21	12	53	27	50	40	39	34	48	40	14	91	54	60	14	15	19
Tree	Diameter	(cm)	7.5	7.3	20.5	15.6	8.5	24.7	27.1	14.0	11.1	2.25	23.5	13.2	25.9	11.9	18.9	9.5	21.6	11.5	3.9	15.5	22	28.5	4.0	4.2	8.3
	Sample	Code	37-1-2	38-1-2	39-1-2	1-2-1	2-2-1	3-2-1	4-2-1	5-2-1	6-2-1	7-2-1	8-2-1	9-2-1	10-2-1	11-2-1	12-2-1	13-2-1	14-2-1	15-2-1	16-2-1	17-2-1	18-2-1	19-2-1	20-2-1	21-2-1	22-2-1

	,																										
otal	ogen	g m ⁻²	95	106	124	141	148	122	80	133	60	175	189	207	182	06	248	107	80	125	81	63	104	84	95	62	196
F	Nitr	g kg ⁻¹	0.71	0.79	0.92	1.04	1.10	0.90	0.60	0.99	0.45	1.29	1.40	1.53	1.35	0.66	1.84	0.80	0.59	0.92	0.58	0.45	0.75	0.60	0.68	0.45	1.40
anic	bon	g m ⁻²	1077	1155	1244	1594	1312	1260	006	1425	684	1555	1657	1961	1742	899	2107	957	768	1317	1119	939	1395	1266	1288	797	217
Ord	Car	g kg ⁻¹	7.94	8.52	9.18	11.76	9.68	9.30	6.64	10.51	5.05	11.47	12.23	14.47	12.85	6.63	15.55	7.06	5.67	9.72	7.86	6.68	9.93	9.01	9.16	5.67	1.55
	CaCO ₃	equivalent	0	4.8	0	0	1.7	0	0	0	0	1.5	2.2	1.1	1.1	0	1.0	0.5	0.3	0	0	0	0	0	0	0	12.1
Tree	Age	(yr)	20	76	11	63	49	61	50	18	14	40	37	64	52	40	41	27	20	38	34	13	54	49	39	21	12
Tree	Diameter	(cm)	7.2	28.8	5.3	30.2	15.5	26.2	23.0	6.0	3.1	17.5	20.8	30.5	25.3	17.5	21.2	15.5	7.6	22.5	15.6	8.5	24.7	27.1	14.0	11.1	2.3
	Sample	Code	23-2-1	24-2-1	25-2-1	26-2-1	27-2-1	28-2-1	29-2-1	30-2-1	31-2-1	32-2-1	33-2-1	34-2-1	35-2-1	36-2-1	37-2-1	38-2-1	39-2-1	40-2-1	1-2-2	2-2-2	3-2-2	4-2-2	5-2-2	6-2-2	7-2-2

otal	rogen	g m ⁻²	126	50	58	64	74	73	104	84	92	176	134	142	65	79	71	78	120	102	186	125	87	151	96	59	144
F	Nit	g kg ⁻¹	0.90	0.36	0.42	0.46	0.53	0.52	0.74	0.60	0.66	1.26	0.96	1.01	0.47	0.56	0.51	0.56	0.86	0.73	1.33	0.89	0.62	1.08	0.61	0.42	1.03
anic	bon	g m ⁻²	1544	699	804	824	931	949	1150	1040	1051	1901	1765	1469	978	886	751	947	1233	1243	1454	1053	972	869	973	699	1346
Org	Car	g kg ⁻¹	10.99	4.76	5.72	5.87	6.63	6.75	8.19	7.40	7.48	13.52	12.56	10.45	6.96	6.31	5.35	6.74	8.77	8.85	10.35	7.50	6.92	6.18	6.83	4.76	9.58
	CaCO ₃	equivalent	0.23	0	0.1	0	0	0	1.9	0	0.7	1.1	0	2.4	0	0.3	0.4	0	4.2	0	4.0	5.7	0.4	4.5	0	0	+.+
Tree	Age	(yr)	53	27	50	40	39	31	48	40	14	91	54	60	14	15	19	20	76	1	63	49	61	50	18	14	40
Tree	Diameter	(cm)	23.5	13.2	25.9	11.9	18.9	9.5	21.6	11.5	3.9	15.5	22	28.5	4.0	4.2	8.3	7.2	28.8	5.3	30.2	15.5	26.2	23.0	6.0	3.1	14.5
	Sample	Code	8-2-2	9-2-2	10-2-2	11-2-2	12-2-2	13-2-2	14-2-2	15-2-2	16-2-2	17-2-2	18-2-2	19-2-2	20-2-2	21-2-2	22-2-2	23-2-2	24-2-2	25-2-2	26-2-2	27-2-2	28-2-2	29-2-2	30-2-2	31-2-2	32-2-2

(continued)
nit area.
lass per u
ons and n
concentratio
I nutrient
Soi
APPENDIX 2.

otal	rogen	g m ⁻²	193	172	148	133	178	113	97	84	168	221	355	274	215	303	227	252	390	358	147	138	112	257	265	247	326
F	Nit	g kg ⁻¹	1.38	1.23	1.06	0.95	1.27	0.81	0.69	0.60	1.23	1.32	2.60	2.01	1.58	2.23	1.67	1.85	2.86	2.63	1.08	1.02	0.83	1.89	1.95	1.81	2.39
anic	hon	g m ⁻²	1916	1761	1595	1312	1550	951	811	920	1533	2242	2627	2872	2605	3361	2192	2859	4168	3832	1609	1436	1173	2866	2658	2548	3102
Org	Car	g kg ⁻¹	13.63	12.53	11.35	9.34	11.03	6.77	5.77	6.55	11.22	16.42	26.63	21.03	19.07	24.61	16.05	20.94	30.52	28.06	11.78	10.52	8.59	20.98	19.56	18.65	22.72
	CaCO3	equivalent	0	0.7	0	0	0.7	1.0	0.6	0	6.0	0	0	0	0	0	1.1	0	0.7	0	0.9	13.0	14.0	1.2	2.9	3.8	3.2
Tree	Age	(yr)	37	64	52	40	41	27	20	38	50	40	69	69	66	82	36	44	98	75	14	52	59	75	71	45	66
Tree	Diameter	(cm)	20.8	30.5	25.3	17.5	21.5	15.5	7.6	22.5	19.0	16.6	28.5	28.6	19.1	43.9	11.5	19.2	46	29.1	6.8	20.5	13.1	31.0	29.1	16.8	24.1
	Sample	Code	33-2-2	34-2-2	35-2-2	36-2-2	37-2-2	38-2-2	39-2-2	40-2-2	1-3-1	2-3-1	3-3-1	4-3-1	5-3-1	6-3-1	7-3-1	8-3-1	9-3-1	10-3-1	11-3-1	12-3-1	13-3-1	14-3-1	15-3-1	16-3-1	17-3-1

otal	rogeň	g m ⁻²	357	392	260	404	374	260	333	300	311	263	854	337	246	363	365	328	534	268	298	425	180	131	107	148	165
-	Niti	g kg ⁻¹	2.62	2.87	1.91	2.97	2.74	1.91	2.44	2.20	2.28	1.93	6.26	2.48	1.81	2.66	2.68	2.41	3.91	1.97	2.18	3.11	1.32	0.97	0.74	1.03	1.15
anic	bon	g m ⁻²	4149	4575	3115	4702	4380	3041	3663	3555	3695	3173	4994	4075	3106	4558	4387	3997	6218	3094	3190	4317	2214	1577	1194	1656	1925
Org	Car	g kg ⁻¹	30.37	33.50	22.81	35.16	32.07	22.27	26.82	26.03	27.05	23.23	36.56	29.84	22.74	33.37	32.12	29.26	45.53	22.65	23.36	31.61	16.21	11.55	8.25	11.43	13.29
	CaCO ₃	equivalent	0	0	0	0	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0	1.2	2.0	0	0	3.6	0	0
Tree	Age	(yr)	29	15	39	57	94	53	80	31	49	266	106	72	55	54	50	88	72	52	10	93	17	18	50	40	69
Tree	Diameter	(cm)	12.4	6.7	12.0	28.5	40.5	13.8	33.5	21.0	26.8	10.0	44.0	23.2	18.2	25.2	10.5	42.5	35.3	22.8	6.1	39.5	9.0	8.8	19.0	16.6	28.5
	Sample	Code	18-3-1	19-3-1	20-3-1	21-3-1	22-3-1	23-3-1	24-3-1	25-3-1	26-3-1	27-3-1	28-3-1	29-3-1	30-3-1	31-3-1	32-3-1	33-3-1	34-3-1	35-3-1	36-3-1	37-3-1	38-3-1	39-3-1	1-3-2	2-3-2	3-3-2

APPENDIX 2. Soil nutrient concentrations and mass per unit area. (continued)

.
otal	rogen	g m ⁻²	138	144	216	118	177	225	202	127	163	108	241	235	191	256	283	279	206	261	286	198	237	218	211	207	388
F	Nit	g kg ⁻¹	0.96	1.00	1.49	0.82	1.23	1.56	1.40	0.88	1.13	0.75	1.67	1.63	1.32	1.77	1.96	1.93	1.43	1.81	1.98	1.37	1.64	1.51	1.46	1.43	2.68
anic	bon	g m ⁻²	1673	2305	2801	1312	2576	3053	2694	1570	1615	1172	2790	2330	1898	2641	3607	3608	2940	3537	3624	2638	3053	3026	2834	2817	4841
Org	Car	g kg ⁻¹	11.55	15.91	19.33	9.06	17.85	21.07	18.60	10.84	11.15	8.09	19.26	16.08	13.11	18.23	24.90	24.90	20.29	24.41	25.01	18.21	21.08	20.88	19.56	18.45	33.41
	CaCO ₃	equivalent	0	0	0	0	0	0.8	0	0.3	10.8	13.6	1.1	4.2	3.9	3.2	0	0.5	0	0	0	0	0	0	0	0	0
Tree	Age	(yr)	69	99	92	36	44	98	75	14	52	59	75	71	45	99	29	15	39	57	94	52	80	31	49	26	106
Tree	Diameter	(cm)	28.6	19.1	43.9	11.5	19.2	46.0	29.1	6.8	20.5	13.1	31.0	29.1	16.8	24.1	12.4	6.7	12.0	28.5	40.5	13.8	33.5	21.0	26.8	10.0	44.0
	Sample	Code	4-3-2	5-3-2	6-3-2	7-3-2	8-3-2	9-3-2	10-3-2	11-3-2	12-3-2	13-3-2	14-3-2	15-3-2	16-3-2	17-3-2	18-3-2	19-3-2	202	21-3-2	22-3-2	23-3-2	24-3-2	25-3-2	26-3-2	27-3-2	28-3-2

APPENDIX 2. Soil nutrient concentrations and mass per unit area. (continued)

68

	Tree	Tree		Org	anic		otal
Sample	Diameter	Age	CaCO ₃	Car	bon	Niti	rogen
Code	(cm)	(yr)	equivalent	g kg ⁻¹	g m ⁻²	g kg ⁻¹	g m ⁻²
29-3-2	23.2	72	0	27.73	4017	1.94	281
30-3-2	18.2	55	0	21.73	3147	1.55	224
31-3-2	25.2	54	0	31.38	4547	20.5	296
32-3-2	10.5	50	0	30.48	4416	2.23	323
33-3-2	42.5	88	0	33.91	4913	2.52	365
34-3-2	35.3	72	0	46.46	6731	3.56	515
35-3-2	22.8	52	0	24.03	3482	1.97	285
36-3-2	6.1	10	1.1	21.06	3051	1.75	253
37-3-2	39.5	93	2.0	28.54	4135	2.72	393
38-3-2	0.6	17	0	13.93	2017	1.16	168
39-3-2	8.8	18	0	13.25	1920	1.09	157
1-4-1	0	0	0	7.63	1046	0.76	104
2-4-1	0	0	0	8.50	1165	0.80	110
3-4-1	0	0	0	8.85	1213	0.73	100
4-4-1	0	0	0.4	4.63	635	0.42	57
5-4-1	0	0	0	6.23	854	0.57	78
6-4-1	0	0	0	8.93	1224	0.98	135
7-4-1	0	0	0	7.40	1015	0.67	92
8-4-1	0	0	0	7.95	1091	0.71	96
9-4-1	0	0	0	7.47	1024	0.69	94
10-4-1	0	0	0	7.97	1093	0.73	66
11-4-1	0	0	0	7.61	1044	0.69	94
12-4-1	0	0	0	8.29	1136	0.73	100
13-4-1	0	0	0	11.46	1572	0.88	120
14-4-1	0	0	0	11.18	1533	0.88	120

APPENDIX 2. Soil nutrient concentrations and mass per unit area. (continued)

69

otal	rogen	g m ⁻²	135	58	60	99	70	62	67	96	81	06	45	53	48	47	44	44	41	44	48	87	55	88	58	91	70
	Niti	g kg ⁻¹	0.99	0.42	0.44	0.48	0.52	0.45	0.49	0.70	0.59	0.66	0.33	0.39	0.35	0.35	0.32	0.32	0.31	0.33	0.35	6.41	0.41	0.64	0.43	0.67	0.52
anic	bon	g m ⁻²	1585	655	758	840	821	787	739	1009	983	1022	614	769	635	675	636	641	615	695	723	1138	725	1078	825	1186	1013
Org	Carl	g kg ⁻¹	11.55	4.78	5.53	6.13	5.99	5.74	5.49	7.36	7.17	7.45	4.48	5.61	4.63	4.93	4.64	4.68	4.49	5.17	5.28	8.30	5.29	7.86	6.02	8.65	7.69
	CaCO ₃	equivalent	0.7	0	0	0	0.3	0	0	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tree	Age	(yr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tree	Diameter	(cm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sample	Code	15-4-1	16-4-1	17-4-1	18-4-1	19-4-1	20-4-1	21-4-1	22-4-1	23-4-1	24-4-1	25-4-1	26-4-1	27-4-1	28-4-1	29-4-1	30-4-1	31-4-1	32-4-1	33-4-1	34-4-1	35-4-1	36-4-1	37-4-1	38-4-1	39-4-1

APPENDIX 2. Soil nutrient concentrations and mass per unit area. (continued)

	Tree	Tree		Org	anic	F	otal
Sample	Diameter	Age	CaCO ₃	Cai	bon	Nitr	ogen
Code	(cm)	(yr)	equivalent	g kg ⁻¹	g m ⁻²	g kg ⁻¹	g m ⁻²
1-4-2	0	0	0	7.79	1055	0.69	92
2-4-2	0	0	0	8.27	1121	0.68	91
3-4-2	0	0	0	7.20	976	0.66	89
4-4-2	0	0	0	5.29	717	0.43	58
5-4-2	0	0	0	6.19	839	0.51	69
6-4-2	0	0	0	7.43	1007	0.63	85
7-4-2	0	0	0	7.15	970	09.0	81
8-4-2	0	0	0	7.73	1048	0.63	85
9-4-2	0	0	0	7.92	1073	0.67	91
10-4-2	0	0	0	7.57	1012	0.61	83
11-4-2	0	0	0	7.24	981	0.57	77
12-4-2	0	0	0	7.08	960	0.55	74
13-4-2	0	0	0	10.81	1465	0.74	100
14-4-2	0	0	0	10.47	1418	0.87	117
15-4-2	0	0	0	11.28	1529	0.88	119
16-4-2	0	0	0	4.04	547	0.30	40
17-4-2	0	0	0	4.65	630	0.34	46
18-4-2	0	0	0.3	4.51	611	0.34	46
19-4-2	0	0	0	4.74	642	0.34	46
20-4-2	0	0	0	4.69	635	0.39	52
21-4-2	0	0	0	4.14	561	0.34	45
22-4-2	0	0	0	7.10	963	0.62	83
23-4-2	0	0	0	7.01	950	0.58	79
24-4-2	0	0	0	7.12	965	0.58	78
25-4-2	0	0	0	4.70	637	0.33	45

APPENDIX 2. Soil nutrient concentrations and mass per unit area. (continued)

	Tree	Tree		Org	anic		otal
Sample	Diameter	Age	CaCO ₃	Car	bon	Nit	rogen
Code	(cm)	(yr)	equivalent	g kg ⁻¹	g m ⁻²	g kg ⁻¹	g m ⁻²
26-4-2	0	0	1.0	5.22	707	0.40	54
27-4-2	0	0	0	4.05	549	0.25	33
28-4-2	0	0	0	4.62	626	0.31	42
29-4-2	0	0	0	4.40	597	0.24	32
30-4-2	0	0	0	4.44	602	0.29	39
31-4-2	0	0	0	3.84	521	0.22	29
32-4-2	0	0	0	4.22	572	0.33	44
33-4-2	0	0	0	5.55	751	0.32	43
34-4-2	0	0	0	7.97	1080	5.34	724
35-4-2	0	0	0	5.15	698	0.34	46
36-4-2	0	0	0	7.34	995	0.54	73
37-4-2	0	0	0	5.54	751	0.38	51
38-4-2	0	0	0	6.80	921	0.44	58
39-4-2	0	0	0	6.93	939	0.42	56

APPENDIX 2. Soil nutrient concentrations and mass per unit area. (continued)