
Kyle M. Allain

COMPUTER CLASSIFICATiON OF BREAST Tu.MOR�
USING DIGITIZED MAMMOGRAMS

University Undergraduate Fellow, 1992-1993

Texas A&M University
Bioengineering Program

Department of Industrial Engineering'

\
"

APPROVED

\



TABLE OF CONTENTS

ABSTRACT 1

I. INTRODUCTION 1

II. FEATURE EXTRACTION 5

A. TUMOR CIRCULARITY 6

B. BOUNDARY ROUGHNESS 7

C. SURFACE ROUGHNESS 8

III. METHODS AND MATERIALS 8

A. MAMMOGRAMS 8

B. IMAGING SYSTEM 9

C. SOFTWARE SELECTION AND DEVELOPMENT 10

D. TUMOR SEGMENTATION 11

E. CIRCULARITY AND SURFACE ROUGHNESS 12

F. BOUNDARY ROUGHNESS 13

IV. RESULTS 16

V. DISCUSSION 18

VI. ACKNOWLEDGEMENTS 21

VII. REFERENCES 22

LIST OF FIGURES AND TABLES 24 \
"

\



and benign breast tumors. The scope was limited to two

ABSTRACT:

A semi-autonomous computer-aided diagnosis system was

developed to characterize the distinctions between malignant

tumor types which are known to have general geometric and

histological differences: stellate carcinomas and

fibroadenomas. The goal was to construct a user-friendly,

modular analysis system capable of using only the

information contained in the image to distinguish between

the two tumor classes. By analyzing tumor circularity,

surface roughness, and boundary roughness, the system was

successful in achieving distinct class separation of the

sample set of 13 fibroadenomas and 13 stellate carcinomas.

I. INTRODUCTION

Fear of the unknown is one of the more terrifying

anxieties that all people must face. In the pathological

world, the class of diseases we call 'cancer' induces this

fear in its victims. Today, women, as a group, 'are among

those most concerned with cancer because they face a ope in
,

\
"

-

nine chance of getting breast cancer in their lifetime [1].

In 1992, an estimated 175,000 women were diagnosed with

breast cancer and approximately 44,000 lost their lives to

,the disease [1]. A proven combatant against this life-

threatening disease has been film-screen mammography. When

properly performed and the images properly diagnosed, this
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imaging procedure has consistently demonstrated its

capability for detecting the presence of cancerous tissue at

minimally and even pre-invasive stages [2]. Early detection

of the cancer is a well-established indicator of the

patient's likelihood to survive the invasive disease. Of

patients with tumor diameters measuring less than 1.5

centimeters, only 5 to 10% will succumb to the disease

within 10 years of the diagnosis [3]. However, for tumors

between 2 and 3 centimeters, only 50% of the patients will

survive beyond 10 years [3]. Early detection also reduces

the need for the emotionally- tragic and physically

disfiguring mastectomy [4].

Unfortunately, there are many barriers which prevent

the benefits of mammography and early detection from being

available to all women. Any large-scale screening program

is plagued by obstacles in manpower, f inane ing , and

technology [5,6,7]. While radiological technicians are

licensed to perform the mammogram procedure, the official

diagnosis must be done by a doctor who is specially trained

in radiology. As this is a costly and subjective-limitation
on manunography, there has been an initiative in meddca.l,

.

\
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research toward developing computer systems which can

facilitate interpretation of the film-screens. The ideal

system, in absence of a trained rad:lologist, would locate

'and classify any tumors that may be .present in the

manunogram. A computer-based diagnostic tool such as this

could operate either autono�ously in the ideal case, or,

\
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more practically, under the direction of a radiological

technician. Because the computer does not demand an hourly

wage, the initial capital investment is diluted as its

workload increases. While it would be preferable to have a

professional radiologist to view all of the mammograms, the

implementation of a large- scale screening program for the

entire population will require the use of such technological

and cost-saving innovations as the aforementioned computer

diagnostic system.

In ;1991, the National Cancer Institute assembled to

discuss the future of breast imaging [8]. The establishment

of a National Digital Mammography Development Group was

proposed, whose five primary objectives included the

validation and development of neural networks, machine

intelligence and novel algorithms to facilitate computer-

aided diagnosis of breast tumors [8]. Several research

efforts have been conducted in this area both prior to and

subsequent to the above proposal. For example, in 1988

Olson and Fam published their work on the detection and

analysis of calcifications on film mammograms [9,10]. In

1987, Chan documented the results of his- experi��nts
\

"

involving the detection of microcalcifications in digital

mammography [11] . More recently, there have been

publications relating the application of expert systems to
\

,the diagnosis of breast tumors. An "Expert Learning System

Network for Dia�no8is of Breast Calcifications" was

described by Patrick in 1991 [12]. Cook and Fox employed an

\
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expert system to integrate user-supplied information such as

mammographic observations, patient history, and clinical

information [13]. Their rule base was designed to allow

people who are not specially trained in radiology or

cysts, an� cancers [14].
./ ,

Cote and Fox compared the textures

mammography to make a reasonably accurate diagnosis of the

tumor type [13]. Kilday submitted a master's thesis to the

University of Connecticut in 1991 describing the use of

linear discriminant analysis to compile information relating

the gross and fine shape descriptors of fibroadenomas,

of various tumor surfaces in ,digitized mammograms' by

performing the binary joint transform on the intensity

patterns of stellate carcinomas, lobule carcinomas, and

fibroadenomas [15]. Through the efforts of the researchers

mentioned above as well as the significant contributions of

others in this challenging field, progress is being - made

toward the development of an autonomous or at least a semi-

autonomous computer system capable of
_

tumor' detection and

classification. Currently, there exists the need to

assimilate the merits of the previous accomplishments in

computer-assisted diagnostic mammography into a sirigle
\

"

system. This study seeks to continue to charact.ez-Lse the

differences between malignant 'and benign tumors based on

computerized analysis of the film-screen mammograms.

,Furthermore, this work introduces the development of a user

friendly, modular software system which will eventually be

used as a field diagnostic tool. For the initial

\
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construction of this system, the focus will be on analyzing

the geometric and intensity distribution patterns of

malignant and benign tumors. Because of its modularity, new

levels of complexity can then be added easily later. The

releasable product will be a merger between tumor analysis

vectors and patient information incorporated into an expert

system, providing the user with a high-level diagnostic
.

system.

II. FEATURE EXTRACTION

To facilitate the implementation of the described

system, the current task has been limited to the

differentiation of two tumors with fairly distinguishable

characteristics: stellate carcinomas and fibroadenomas. The

stellate mass is most notably characterized by its - star-

shaped appearance [16]. Its uncircumscribed, sp1cular

border relates the stellate's maligna�cy as it invades the

surrounding breast tissue [16]. The central body of the

stellate carcinoma is comprised of fibrous tissue while its

activity is in the proliferating cells in the spicule� [16].
\

"

In contrast to the star-like projections of· --'the at.e.LLat.e

carcinoma, the fibroadenoma is usually well circumscribed

[16]. Three fibroadenoma images were removed from the study

because with the given border detection algorithm they.were.

not circumscribed. The fibroadenoma's border is generally

smooth, as it is not malignantly proliferating into the

\
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breast tissue around it. It also has a relatively uniform,

low- contrast intensity distribution, which is due to its

gross histology [16]. While the characteristics described

here are not all-inclusive or exclusively unique, they do

provide a general guideline for developing the prototype

tumor analysis system.

To properly analyze a breast tumor, it is necessary to

obtain a feature vector describing both its boundary and its

intensity distribution. The relative roundness of the

tumor's boundary is, in this study, represented by tumor

circularity. Boundary roughness is measured by the total

power contained in the Discrete Fourier Transform of the

perimeter. The standard deviation of the pixel values

within the tumor was selected to highlight, the histological

differences in intensity uniformity between the stellates

and the fibroadenomas, yielding a measure of· surface

roughness.

A. TUmor Circularity

Circularity is a standard image processing tool used to

represent the roundness of a selected object. Because this
--,

!

study seeks to differentiate the st.ar=Li.ke
\ '

stellate

carcinoma border from the relatively round border of the

fibroadenoma, circularity should be a useful measure.

t Supported by its utility in other studies, circularity is

defined here as

\
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c.
I

p.2
- I

A.
I (1)

where Pi is the perimeter and Ai is the area of ith tumor

[14] .

B. Bounda� Roughness

While the circularity feature is valuable as a general

geometric descriptor, it is necessary also to have a measure

of the relative 'roughness' of a tumor's boundary. A radial

representation of the boundary wa� obtained. and mapped into

a one - dimens ional vector. The measure of ' roughness' is

generated by performing the one-dimensional Discrete Fourier

Transform (DFT) of these values. By summing the squares of

the magnitudes of the DFT, a total power was calqulated for

the boundary of the ith tumor as [17]:

(2)

D(u) =��t�exp(--j2mJi/M)
-

./ (3�"

where di is the deviation of the ith boundary coordinate from

the average radius of the tumor, M is the total number of

points used to represent the tumor boundary, D (u) is the

Discrete Fourier Transform of the radial deviation vector,

\
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and P'l'ot1. is the total spectral power of the i th tumor

boundary.

c. Surface Roughness

Because the fibroadenoma differs from the stellate

carcinoma in that it is histologically noted for its smooth,

uniform surface, the standard deviation of the pixel

intensity values within the tumor boundaries is used to

reflect the degree of surface roughness:

(J.=
I

1 '

- l l(f(x,y) -f(X,y))2
N x.;eJ ytrA: (4)

where (11. is the standard deviation of the- intensity values

of the N pixel s enclosed by the boundary of the ith tumor,

f(x,y) is the intensity value of a point that is considered

to be part of the tumor' (T), and f(x,y) is the average

intensity value within the tumor.

III. METHODS AND MATERIALS

\
"

A. Hammograms

The film-screen mammogramsl from a single patient

constitute a set of films. Each set generally contained

four films, representing both the right and left

mediolateral and craniocaudal views. Twenty-one mammography

\
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sets contained tumors which were previously diagnosed as

stellate carcinomas. A total of 20 sets contained images of

clinically diagnosed fibroadenomas. Among the entire

library of film-screens, 12 carcinoma sets and 5

fibroadenoma sets were rejected because the tumor was either

not discernible or was not completely contained within the

film-screen. All of the images in this experiment were the

original film-screens.

B. Imaging System.

A standard white-light transilluminator with a light-

diffusing surface illuminated the x-rays. In order to

minimize the amount of stray light entering the optical

system, an opaque shroud with a small rectangle excised was

placed over the viewing box. Also, the lights in the

digitizing room were turned off during the Gapturing

procedure. These practices, combined with the dif'fusing

screen on the transilluminator, yielded an extremely uniform

backfield illumination for which no background subtraction

was required. The film-screens were translated to a digital

picture of 256 grey levels by using a SOmm lens to foc�s the
, ,

\
"

radiated light pattern onto the phot.ozecept.or" field of' a

model JE2062IR Javelin MOS Solid State Video Camera. To

achieve maximum magnification, the lens was focused at its

, minimum focal depth of approximately 1.5 feet. The lens

yielded an approximate 3.5 to 1 magnification ratio, which

was mapped into the 640 by 480 pixel matrix of the frame-

\
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grabbing board. These parameters combine to produce a

resolution of 10 pixels/rom. In order to reduce the noise

introduced by the scanning nature of the camera, 50 frames

were averaged for each archived image. Because of the great

variability in the contrast levels and maximum intensities

of the different film-screens, it was not desirable to keep

the lens aperture fixed. Instead, the aperture was adjusted

for each image such that the resulting image was not

saturated and the dynamic range was maximized. An

illustrat:.ion of the imaging system appears in Figure 1. In

a finalized analysis system, it would be possible to bypass

the film digitization procedures by directly importing the

digital information from the X-ray mammography unit.

c. Software Selection and Development

As one of the primary goals of this proj ect; is to

construct the foundation of a user-friendly, modular,

inexpensive computer diagnostic tool, the selection of the

imaging software was a critical decision.
.

It was most

desirable to choose a software package which 'provided a

strong image display and manipulation environment whil� also
.

\
"

allowing the complete integration of user-defined functions.

Furthermore, if the costs of a final system are to be

minimized, then the computer itself must also be affordable.

, For this reason, the experiments were performed on a

Macintosh IIx computer. The imaging software shell selected

was Image 1.44, developed as a share-ware research tool by

\
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Wayne Rasband at the National Institute of Health. Image's

principle advantage is that its Pascal source code is freely

circulated by its developer. Using Symantec Corporation's

Think Pascal 4. 0 for the Macintosh, it was possible to

incorporate the image processing techniques outlined in this

experiment into customized pull-down menus. special

analysis algorithms were designed to Lmp.Lement; the

circularity and boundary roughness calculations. These

functions were developed as separate Pascal units and were

fully integrated into the Image shell. Another advantage of

using Image is that the paraJ!l.eters of the processing

algorithms. can be easily altered through the use of 'pop-up'

boxes, allowing for analysis over a wide range of

variability. Also, the results 'can be presented immediately

after each processing function, and in any form the

programmer desires.

D. Tumor Segmentation

The first phase in the analysis of any tumor is

seqment.at.Lon , Because the tumors are generally denser than

the surrounding breast tissue, they are represented in the
'. ,)

\ '

digitized film-screens by higher intensity 'pixel 'values.

Fairly successful segmentation' was obtained by using Image's

built-in density slicing function. Density slicing is a

, technique in which a specified intensity range of a grey

scale image is highlighted in a non-grey color such as red.

For tumor segmentation, the upper end of the density slice

\
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was fixed at 255 while the lower end was manually adjusted

such that a reasonable representation of the tumor was

highlighted. The boundary around the tumor was easily

obtained by using the Macintosh mouse and Image's 'wand'

selection tool to select the appropriate density-sliced

region as the 'region of interest'. While this method of

segmentation proved to be adequate for the majority of the

tumors, it was not able to segment all of them. Due to the

limitations of this tumor isolation technique, one of the

carcinoma views and 10 of the fibroadenoma views were

removed from the study due to pOQr segmentation. However,

satisfactory segmentation was achieved on a total of 13

carcinoma views and 13 fibroadenoma views, which comprise

the data set of this study. The tumor outlines resulting

from segmentation are shown in Figure 2 (stellate

carcinomas) and Figure 3 (fibroadenomas).

B. Circularity and Surface Roughness

Once the tumor has been segmented and seLect.ed as the

'region of interest', Image's built in 'Measure' conunand can

be invoked to calculate the perimeter length and area of- the
-..,

!

tumor.
\ '

The units for both measurements are 'whole pixels.
The circularity feature is then calculated with the aid of a

Pascal unit created by the investigator which accesses

Image's internal parameters for perimeter length and area.

The perimeter is squared and divided by the area, and the

result is immediately - relayed to t.he user through a pop-up

\
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message box. It is important to make the distinction that

the Pascal unit which allows access to, processing of, and

display of the desired information on tumor features is a

completely separate sub-program which has been created by

the investigator and compiled into the source code of the

Image application. Image's 'Measure' command will also

calculate the standard deviation of the pixel intensity

values enclosed within the tumor boundary. Through the

investigator-defined Pascal unit interface, this standard

deviati0:r:l parameter is accessed and.displayed to the user as

an indicator of surface roughness_

F. Boundary Rougb.rJ.ess

While the circularity and surface roughness features

are fairly direct calculations, the boundary roughness

measure is more complex. The first obstacle to obtaining

this information is to acquire an accurate coordinate

mapping of the tumor boundary. Unfortunately, Image does

not record its boundary information as a list of neighboring

pixels. Image's border data is stored instead' as an x, y

paired array of points connected by lines. For examp.Le, ,if
'\

"

the boundary encloses a 10 pixel by 10 pixel .squar-e , Image" s

internal representation would not necessarily be 40 pixels

but could be as few as four, which are known to be linked by

,straight lines. To overcome the limitations of this

internal data structure, a separate procedure was created to

interpolate between each pair of points that are not 8-

\
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neighbors. In order to keep the spacing of the new boundary

coordinates uniform, the interpolation is performed such

that the distance between two successive coordinate pairs is

approximately one pixel. The coordinates of this

interpolated boundary representation are generated by an

investigator-created Pascal procedure and stored as an array

of records containing the x and y locations of 'the points

comprising the boundary. Information on the centroid of the

area enclosed by the tumor boundary is acquired by executing

Image' s .� XY center' option under the 'Measure' menu. This

data is combined with the boundary coordinates to calculate

the tumor's average radius:

(5)

where R;l is the average radius of the ith tumor, M is the

total number of boundary coordinates, Xc and. Yo are the' x, y

center of the tumor, and bjx and bjy represent the x, y

location of the jth element of the boundary coordinate list.

Because of the great variability in tumor size�, - t,he
.

\
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calculated average radius is used as a means of

normalization. Each, tumor is 'linearly scaled by a scaling

factor, 8£:1.' such that it will have a new average radius of

80 pixels:

\
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80
Sf _I R.

I (6)

If a tumor has a scaling factor greater than one, then it is

smoothed by a 3x3 lowpass averaging filter prior to further

processing. The boundary of the normalized tumor is

computed using the same density slicing and interpolation

techniques described above.

In order to perform the Fourier analysis of the tumor

boundary, it is necessary to convert the two-dimensional

visual representation to a one-dimensional vector contai�ing

the Euclidean distance between each boundary coordinate and

the tumor's centroid. For comparative purposes, it' is

desirable to have all of the sequences _

be o-f the same

length. To achieve these specifications, the array
-

of

interpolated boundary coordinate radial lengths for each

tumor is sampled to yield a similar array of 1024 samples.

Prior to the Fourier analysis of this mapping, the average

radius of the scaled· tumor (-SO pixels) is subtracted such

that the mean value of the input signal is zero. Because

the size of the sample set is a power of 2, the spec_tral

analysis is rapidly performed by using the
-

Fast \ 'Fourier

Transform algorithm [17]. The. total power of the resulting

Fourier spectrum for each tumor boundary is calculated and

used as a measure of boundary roughness. Figure 4

illustrates the procedures involved in obtaining the total

spectral power of a tumor border. Like the previous feature

\
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descriptors, the procedures involved in its calculation and

representation have been developed as independent Pascal

sub-programs and integrated into the Image shell as

investigator-created menu options.

IV. RESULTS

The results generated by the computer diagnostic tool

developed for this study are tabulated in Table 1 (stellate

carcinomas) and Table 2 (fibroadenomas). The average

circularity of the 13 stellate tumors in· this study .was

77.60 with a standard deviation of 22.98. The 13

fibroadenoma tumors had an average circularity of 52.07 and

a standard deviation of 11.35. Recalling-that circularity

is a measure of the perimeter squared divided by the area of

the tumor, the data indicates that, as exPected,_ the

fibroadenomas are closer than the carcinomas to the peufect

circularity value of 4r.

The surface roughness feature, which is measured by the

standard deviation of the pixel intensity values enclosed

within the tumor boundaries, revealed that .t.he
!

fibroadenomas, as anticipated, had considerably
\'

-

smoother

surfaces than the stellate carcinomas. The fibroadenomas

had an average surface roughness value of 10.02 (0"=5.34),

compared to a much higher average value of 20.61 (0"=8.19)

for the carcinomas.

\
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The final parameter employed to differentiate the

tumors is the spectral analysis of the deviation of the

points on the tumor boundary from the tumor's calculated

average radius. By summing the resulting power spectrum of

each tumor, a measure of boundary roughness is obtained.

with an average boundary roughness value of 315.86

(0-=135.65), the stellate carcinomas had a rougher, more

variant border than the fibroadenomas. The relative

smoothness of the fibroadenoma borders was reflected by

their mean roughness value of only 129.54 (u=96.78).

The relationships between these three tumor features

are illustrated in Figures 5,6, 7, and 8. Figure 5 plots

surface roughness against circularity. with only mild

intermixing, the fibroadenomas and stellate carcinomas lie

in separate, distinct clusters. Figure 6 illus.trates the

relationship between the boundary roughness and circularity

of the two tumor types. As in Figure 5, the carcinomas and

fibroadenomas precipitate into two 9ifferent clusters.

Figure 7 reveals that comparing surface roughness to

boundary roughness does not contain as much class

distinction as the other relationships. Finally, Fisure) 8

.

\
"

coalesces all of the elements of the feature vector into' a

three-dimensional representation. Through the aid of this

visualization, it becomes apparent that the features

calculated by this study clearly separate the fibroadenomas

and stellate carcinomas into two distinct classes.

\
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V. DISCUSSION

The compiled data of this study supports the known

histological and geometric differences between stellate

carcinomas and fibroadenomas. The greater mean circularity

value for the carcinomas coincides with their star-shaped

appearance, which gives the tumor a much larger perimeter to

area ratio than the rounder fibroadenoma. The fibroadenoma

tumors are generally composed of tissue which is of uniform

density, giving them a smooth surface texture [161 .

However, no such surface uniformity distinction is given'for

the stellate carcinomas, which implies that their surface

textures are greatly varied. These statements are supported

by the data, which indicates the fibroadenomas have a

surface which is only one-half the roughness of the stellate

carcinomas. Because the stellate tumors are malignant, it

is expected that their borders would be much rougher and

more jagged than those of the non-invasive, benign

fibroadenomas. This pathologic characteristic is reflected

in the data, which indicates that the mean boundary

roughness of the carcinomas is more than twice that Qf-the
'\

"

fibroadenomas.

The success of this study lies not only in its positive

results, but also in the design of the system from which·

,they were obtained. The entire analysis procedure was

performed without exiting the Image sof twar'e shell.

Furthermore, the end user is isolated from the intricacies

\
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of the processing algorithms because the functions are

executed by selecting investigator-created menu choices.

The user is required only to digitize the film-screen,

select the most appropriate density slice, 'click' on the

tumor with Image's 'wand' tool, and execute the processing

functions which have been incorporated into a menu. The

values calculated for each feature are then immediately

presented to the user in a message box. This user-friendly,

integrated design is a great advantage over other systems

which require the use of several different software packages

and/or hardware units. FurtherIJlore, the' modulari ty with

which this system was designed allows higher levels of

diagnostic complexity to be added easily without increasing

the burden on the user.

Perhaps the most limiting factor on this study of

stellate carcinomas and fibroadenomas was the -tumor

segmentation procedure. While the density slicing technique

was adequate for most of the tumors, cher'e is a clear need

for the development of a segmentation algorithm which would

provide accurate segmentation for all tumors. Once such a

procedure is developed, it can be inserted into this �y-st:;em
.

\
"

and used in conjunction with the feature analysis functions.

The next phase of this on-going project involves

several parallel research pursuits. One of the more

important tasks is, as mentioned previously, to design a

more accurate and objective tumor segmentation algorithm.

It is also necessary to continue the testing of the current

\
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system by expanding the data set beyond the 26 views which

were analyzed in this study. New relationships between the

stellate carcinomas and fibroadenomas should be explored and

implemented so that the classes can be distinguished with a

greater confidence level. The output parameters of this

system should be linked to an expert system which can be

trained to assimilate the data, include patient history

information, and make a high-level classification decision

by weighting the various inputs.

should be introduced into future

system's diagnostic utility.

As new ideas and innovations continue to develop in

Also, more

studies to

tumor types

expand the

this field of computer-aided diagnosis of breast images, the

creation of an inexpensive, reli�le, - automated tumor

analysis system will indeed become a reality. With the

development and production of such a system, mammoqnaph.i.c

screening can be extended to many more women and ultimately

save many more lives.

.

\
"
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Figure 1: Diagram of imaging system.

Figure 2: Stellate carcinoma segmentation result.

Figure 3: Fibroadenoma segmentation result.

Figure 4: Illustration of procedure used to calculate

boundary roughness.
(a) Segmented tumor.

(b) Circle of computed average radius

superimposed on (a).
(c) Tumor scaled to an average radius of 80

pixels.
(d) Plot of Euclidean distance from each boundary

coordinate to t.umor centroid'.
(e) Plot (d) sampled to 1024 samples.
(f) Discrete Fourier Transform of (e).

Figure 5: XY scatter plot of surface roughness and

circularity.

Figure 6: XY scatter plot of boundary roughness and

circularity.

Figure 7: XY scatter plot of surface roughness and boundary
roughness.

Figure 8: 3D point plot of circularity, surface roughness,
and boundary roughness.

Table 1: Results data for stellate carcinomas.

Table 2: Results data for fibroadenomas.
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Figure 2. Stellate carcinana. Segrrentation
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Figure 3. Fib!l"OOdenoma Segroontat·l.on
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Sampled Boundary Plot of Scaled Tumor
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Fourier Transform of Sampled Boundary Plot
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Tumor Surface Roughness vs. Circularity
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Tumor Boundary Roughness vs. Circularity
600�------�------�------�------�------�------�------�

)

500

I

400�

CIJ i

� i

300L
i I
� I

�
!

200�

! I

1001r
I
i

I
i

0
20

x = fibroadenoma
o = stellate carcinoma

o

00 o

o

x 0

0
x

0 0
0

x

x x

x
0

x 0x
x

x x

xX
40 60 80 100 120

"

Circularity

i

i
-l

o I
I

J
I
I
i
-i

!
i
I
I

140, 160

Figure 6.

\
"

\



I
•

Tumor Surface Roughness vs,'Boundary Roughness
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STELLATE CARCINOMAS

. '<Paramet��Q! I. .urtlQr <:

Image View # of Perimeter Area Average Radius Circularity Surface Roughness Scaling Factor Boundary
Points Rouahness

cal ML 1635 20953 84.n n.36 29.23 0.944 348.76
cal CC 1495 19906 85.05 67.61 19.45 0.941 283.6
ca3 CC 1579 19222 81.45 76.48 27.47 0.982 205.69
ca3 ML 1181 13865 68.133 59.08 17.94 1.174. 217.5
cal0 ML 1789 20187 86.32 93.26 19.94 0.927 424.16

ca12 CC 1881 26882 101.27 78.96 24.01 0.79 467.74

ca12 ML 1767 24244 94.79 76.8 25.95 0.844 468.46
ca13 ML1 1085 9018 58.94 n.62 11.25 1.357 504.86

ca13 CC 1781 13810 69.95 140.94 11.93 1.144 293.68

ca13 Ml2 1033 7204 48.41 86.52 5.59
-

1.653 436.37
ca14 CC 1607 20988 84.65 73.25 20.3 0.945 219.75

ca15 ML 1375 21141 83.21 56.01 18.6 0.961 104.16

ca15 CC 1267 21725 85.75 44.91 36.22 0.933 131.44

X=n.60
SO=22.98

Y=2O.61
SO=8.19

Z=315�86
SO=135.65

Table I.
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FIBROADENOMAS

Image View

fibr02 CC

fibr03 CC

fibr03 ML

fibr05 ML

fibro7 CC

fibr08 CC

fibr08 ML

fibr09 ML1

fibr011 CC

fibro t t ML

fibro15 ML

fibro16 CC

fibro17 CC

\

.. :: :: :.?: ::::? :'::::::/��:�J!�t�:i�:r!i#'@(}> :::
...

# of Perimeter Area Average Radius Circularity 8urface Roughness
Points

411 34n 34.16 28.53 4.79
619 5189 41.81 44.25 8.79
623 5480 43.41 41.54 9.34
481 3999 37.15 33.56 19.83
707 8478 51.98 36.31 6.20
689 4656 39.15 62.14 5.95
475 4399 38.09 32.87 12.09

947 10937 60.48 50.12 8.51
943 10158 57.1 51.53 8.29
n9 6668 46.61 55.11 5.38
865 14728 68.67 30.15 22.19

639 4321 38.81 55.65 7.86

947 17118 73.82 31.45 11.02

X=52.07 Y=10.02
80=11.35 80=5.34

Table 2.

Scaling Factor Boundary
RouQhness

2.342· 141.53

1.913 188.87

1.843 348.52

2.153 264.28

1.539 44.99

2.043 161.64

2.100 96.43

1.323 42.23

1.401 109.14

1.714 81.73

1.165 20.25

2.061 156.58

1.� 27.80

Z=129.54

80=96.78
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