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ABSTRACT

A rational function is defined as the ratio of two polynomials.
The Pade approximant (P[M,N]) is a special kind of rational function.
Basically, the Pade approximant of the power series expansion of a
function f(z), (z€¢ ) is formed by approximating the power series via
the ratio of two polynomials (degree M in numerator, degree N in the
denominator). The coefficients of the two polynomials which forms the
ratio are called Pade coefficients.

When working with approximations,it is necessary to determine how
accurate the approximations are. This is expecially true when working
with Pade approximants since the denominator of the approximant has N
zeros (N is the degree of the polynomial in the denominator). There
is not a formula which bounds the error like the remainder term of the
Taylor approximation. Once the poles of the Pade approximant are found,
it is important to know how they migrate in the complex plane as the
degrees of the numerator and denominator increase. If, as the degrees
increase, the poles do not move away from the origin rapidly, then
the Pade approximant of the given function is of little use because,
P[M,N] becomes unbounded for small value of z near the poles.

It is helpful to find the disk centered at the origin, which
contains no zeros of the denominator polynomial. This is accomplished
by using a minimum modulus theorem. Inside the disk of radius, o,
(i.e., |z| < p) the theorem guarantees no zeros of the denominator.
This assures that f(z) remains bounded inside the disk of the radius, p.

A Fortran program was written to accomplish this task. Using

Gaussian elimination, the Pade coefficients are computed. Knowing the
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Pade coefficients of the denominator, the subroutine MULLER (1) is used
to find the roots of the polynomial (MULLER finds complex roots if they
exist). The values of the zeros are evaluated in f(z) to determine the
accuracy of MULLER. The modulus of the zero is computed to determine
its distance from the origin of the complex plane. The minimum modulus
theorem is incorporated into another subroutine. The output is

printed in tabular form.

As is common in research, the mistakes and unexpected results are
as important, if sometimes not more important, than the expected
results. This research project was no exception. The many mathematical
and computer-related mistakes are fully described in the second part of

this report.



SUBJECT

This research report investigates numerically the Pade approximant

7 =

of several functions (i.e., sin(z), cos (z), e, e “), focusing in
particular on the migration of the poles of the Pade approximant of
these functions. A Fortran program has been written to compute the
Pade coefficients of a given function. The routine MULLER is usad to
compute the zeros of the polynomial in the denominator (i.e., the poles
of the Pade approximant). By computing the modulus of the poles, the
distance from the origin of the complex plane is computed. A minimum
modulus theorem is used to determine the radius of the disk in which
no zero of the denominator polynomial are found. The many problems
which arise from analyzing the Pade approximant numerically are also
discussed, such as round-off error, maximum number of iterations
required in the MULLER routine, and the restrictions imposed by using
the reciprocal of the factorial coefficients. Possible solutions to
some of these problems are suggested, but are not thoroughly investi-

gated.



PURPQSE

Since mathematics is an approximation of the physical world, it is
important for one who is trying to apply a particular branch of mathe-
matics to know how accurate their approximations are and how closely
the mathematics models the physical world. The Pade approximant,
which is frequently used in nuclear physics, mathematics, and engineering,
does not have a theoretical method for determining the accuracy of the
approximant (unlike the Taylor series approximation, which contains the
remainder term, Rn(x).This investigation uses a numerical approach to
the Pade approximant, focusing in particular on the troubling problem
of the poles of the Pade approximant and the migration of the poles
as the degree of the Pade approximant increases. The ability to
predict the migration of the poles is essential to anyone who wishes

to understand Pade approximants.



HISTORICAL BACKGROUND

In 1892, H. Padé, in his thesis entitled "Sur la représentation
approache'e d'une function par des fractiones rationelles", compiled the
first tables of coefficients for the Pade approximant of several power
series, originally attributed to Frobenius (2). Presently, Tittle
attention has been given by mathematicians to the subject of Pade
approximants. For instance, today there are very few theorems which
address the usual questions pertaining to series approximation of
functions, such as the criteria for convergence or divergence and the
accuracy of the approximation, which have been rigorously explored in
other types of series approximations such as Taylor and Fourier series.
Lack of this information pertaining to the Pade approximant is unfor-
tunate, because Pade approximants have proved to be very useful in
providing quantitative information for many interesting problems in

physics and chemistry (3).



THEORETICAL BACKGROUND

The usual form of a power series is

- n
+a,z+ ... = Zaz.
1 n
0 n=0

The [M,N] Pade approximant for a formal power series in terms of the

power series coefficients is defined by the following:

aM-NH aM-N+2 cen aM+1
det Ay AIM+] AM+N
M . M _ M .
. N j . j
aj-NZ % aj-N+1Z z an
J=N J=N=i j=0
[(M,N] (z) =
AM-N+] AM-N+2 AM+1
det ay 341 BRIV
ZN zN_T 1

where the power series of the numerator has degree M, and the degree of
the denominator is N (4).

Although this is the formal definition of the [M,N] Pade approxi-
mant, it is absent of any intuitive feeling of how the Pade approximates
a power series expansion of a function by the ratio of two polynomials.

Also, in the formal definition, a method to be used to compute the zeros



of the denominator of the Pade, i.e., the poles of the Pade, is not
readily evident. To solve these problems, an alternate definition has
been used. As one will observe, the second definition is longer than the
previous definition, but is mathematically more simple.

The secaond definition of the Pade approximant uses the fact that
Pade approximants are special types of rational functions. A rational

function, R(z) is defined as the ratio of two polynomials,

R(z) =
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where the aj's and bj's E'd:and z is a complex variable. This definition
is essential since the Pade approximant of a function expanded via a
power series are special types of rational functions.

A Pade approximant of anMarbitrary function f(z) is:
z P2

® n . n=0
f(z) =raz . -
(z) i N , where the pn, qn & 4: called

Zqzn
n=0 N
Pade coefficients.
The relationship between the Pade coefficients completes the

definition of the Pade approximant. Assume all terms in which z has

degree less than M+N+1 are zero. Thus,

_ M+N+1 M+N+2
f(2)Q(z) - P(z) = 0 + dy\ g Den2 T
Then,
2 2k K
f(z)Q(z) =(zaz)(2q2z) = £ Ia.q .z
k=0 K g K k=0 i=0 | K71

(taking the Cauchy product).
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From this equation, the relationship between the Pade coefficients is

derived. The equations are:

k

RICFL I T 0, for 1< k< M 1.
i=0

k

Iq.a .= 0, for 1T#M < k< M#N  (5) §i.
i=0 ' <71 o

Thus, if one can compute the power series of a given function, f(z), then
using the coefficients of the power series and equations i. and ii. from
above the Pade approximant of the function can be easily computed. An
example of computing the [2,2] and [3,3] approximants of f(z) = e”? s
found in Appendix A.

It should be noted that there is not any a priori reason to assume
the P[M,N] Pade approximant of a function f(z) properly approximates
the function. At present time, there are not any convergence theorems
in the literature to guarantee the Pade approximant converges to the
function.

A readily apparent problem involving Pade approximants to approxi-
mate a function f(z), is the position of the zeros in the denominator
of the Pade approximant. An analytic function such as f(z) = e’ does
not have any poles, but clearly the Pade approximant of this (and
every) function expanded via a Pade approximant has poles. Around the
poles of the Pade, the approximation becomes unbounded and, therefore,

cannot approximate the function.



Since the poles of the Pade approximant are of great importance,
to determine how good the Pade approximation is, it was necessary to
chart the migration of the poles. That is, at what'rate" did the
poles of a function, f(z), move from the origin of the complex plane.
If, as the values of M and N increased, the poles migrated away from
the complex origin, then a radius of convergence, o, could be established
such that, inside the disk of radius p, i.e., |z| < o, it is guaranteed
that no zeros of the denominator are found. Then, in this disk, it is
a good assumption that the Pade approximant estimates the function.

Of course, this estimation is subject to verification by analytically
evaluating the function.

To find the radius of the disk, o, in which we are guaranteed no
zeros of the denominator polynomial are found. This is accomplished
by using a minimum modulus theorem. First, it is necessary to define

the ( ;) binomial coefficients;

n, _ n! .
(m) ~ (n-m)m!

Given a polynomial of degree n >1 with complex coefficients

o _.n n-1
p(z): =z + a 42 toeotagz ta

and given a point, Zg> in the complex plane, the disk constructed
about Z ( in this case zO=O, the origin of the complex plane) which
will not contain any zeros of p(z), the polynomial in the denominator

of the Pade approximant. Use the notation

oL smg) MLz (5e)
m m.
2

so that p(zo+h) = bO + b]h + b2h + ...+ 1" for all complex h.



Now, let

)
07 < m<n | M | m|

. T—n lbOIJ K
B(z,): min i( >{5_
Then, no zero of p is contained in the disk iz-zol f(ﬁ%—)[B(ZO)]'
The proof of this theorem is omitted here, but is contained in the
reference cited.

With these tools the analytical work begins. First, the Pade
coefficients of a function, f(z), are computed. Then, using a well
known algorithm called MULLER, the zeros of the denominator of the
Pade approximant are computed. As a check for the accuracy of zeros
routine, the computed zeros are substituted into the denominator
polynomial to insure the numbers computed are indeed the zeros. The
modulus of the zeros is computed to determine the zeros' distance from
the origin of the complex plane. Then, as a second check, the minimum

modulus theorem is used to verify that no zeros of the denominator

polynomial Tie inside the minimum modulus.



ANALYSIS OF THE RESULTS

As is usually the rule in research one seldon obtains the intended
results and is usually considered lucky if one can correctly interpret
the incorrect results. There is no a priori reason to believe that
this research would violate the above observation - in fact it has
not, it is only hoped that in this research the incorrect results
were correctly interpreted. Therefore, it is necessary to divide
the results in three categories Expected Results, Unexpected Results
and Areas to Further Study. The areas open to further study category
is intended to leave open the door for more research info this inter-
esting subject.

Expected Results

The main thrust of the research was to determine the migration
of the poles of the Pade approximant. This is one method which can
be used to determine the accuracy of the Pade approximant, that is
as the poles of the Pade approximant get larger it is hoped that the
Pade approximant will better estimate the function. To this end a
FORTRAN Program was written to compute the Pade coefficients (M,N=<10)
of the function f(z) given as input the coefficients of the power
series expansion of f(z). The program then computed the zeros of
the denominator polynomial, the modulus of these zeros and (using
the minimum modulus theory discussed previously) minimum radius in

which no zeros of the denominator polynomial can be found. Then
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using different functions (i.e., e'z, ez, 1OOOe'Z) the poles were com-
puted and chart the migration of the poles. The results of this program

Z, e-Z for values of M and N between 2 and

for the functions f(z)=e
4 and for 1"(z)=1000e'Z for M and N between 2 and 6 is contained in

Tables I. thru IV. following this setup. Because of the ensuing problems,
which will be discussed in the next section, the only information

which can be learned from this table is the fact that for values

of M and N Tess than 5 there are much better methods (i.e., Taylor
series) to approximate a function, f(z). This is because minimum

modulus of the zeros is small, that is not greater than 10 for any

of the examined functions.

It was expected that as the values of M and N increased the
poles of the P[M,N] Pade approximant would migrate away from the
origin of the complex plane. If this could have been concluded from
the analytical approach it could have provided a large step in showing
that the Pade approximant conveages to the function, f(z), since
few convergence theorms are presently in the Titerature.

There is, however, a very important result of applying Pade
approximants to viscosity equations contained in Appendix A. This
application was discovered in a simultaneous research project carried
out in the TAMU Chemistry Department under the direction of Professor
Bruno J. Zwolinski and his graduate student Miss Dawn L. Wakefield.

Unexpected Results

From the results of the program 1ittle can be concluded about
the migration of the poles. It was intended to analyize some common

complex functions to determine where the poles of the Pade approximant
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migrate away from the complex origin as the values of M and N increase.
There were quite a few difficulties with the program and the choice
of functions which did not allow the calculation of the Pade approximants
for values of M and N greater than 5.

The functions which were primarily examined were ez, e_z, and 1000e%.
Only for the function f(z)=1OOOeZ could the P[6,6] Pade approximant be
calculated. The reason why M and N had to be lTimited to values less

than 5 was the coefficients of the power series contained the reciprocal

factorial term (i.e., %T). Since the program was in single precision the

1 8

reciprocal functioral seems to get small very fast (i.e., (11!) =2.5x10"
which is used for the [5,5] Pade approximant in all of these functions).
This problem would have been aleviated if the program was written in
double precision, allowing up to sixteen digits instead of the eight
digits used in single precision. The entire program could not be trans-
ferred into double precision because the Gaussian elimination subroutine
(see Appendix C) was initially in double precision. This problem was
not disccvered until Tate in the research period. Every effort was

made to modify the single precision program, but due to the time
constraints the transition could not be accomplished.

To solve the problem of precision it was decided to examine the
complex function f(z)=1000ez. The Pade approximant of this function is
the same as g(z)=ez, but the coefficients of the power series expansion
of f(z)=1000e? are larger than those of g(z)=e® by a factor of one
thousand. These results are contained in the following tables. It
should be noted from the table for f’(z)=1000e'Z that there is the beginn-

ing of a trend. As M and N increase to six the modulus of the zeros of



the denominator increases to approximately 8.0. That is with the ex-

ception of one zeros of the denominator polynomial in P[6,6] which has

3, this it is believe is due to round off error. That

is because when adding a number like 2.3 X 10-5 to 1.0 x 103 the sum

3

a zero at 4.0 x 107
is 1.0 x 10” still, this is especially true when using the single pre-
cision program, even if we used double precision could only use [10,10]
because }7T’< 1070,

As a test to determine whether a slight change in the coefficients,
A(I)'s, of the power series produces a change in the Pade coefficients,
P(M)'s and Q(N)'s the fourth, ninth and tenth coefficients were changed
in the fifth, seventh, and fifth decimal places respectively. This
extremely small change in the coefficients produced a change in P(2)
greater than one corder of magnitude (note, P(1) is always chosen to be
[1.0], the differences in the other P(M)'s and Q(N)'s were almost as
drastic. This extreme change in the Pade coefficients is due to
instability in the system. In other words when solving the equation
Ax=B (where A is a nxn matrix, B and X are vectors) then the equation
becomes x=A']B, the above results indicate A'] is almost singular. If
A—] were almost singular it would account for the vast differences in
the P(M)'s and Q(N)'s while the power series coefficients stayed
relatively constant, that is constant in the first four decimal places.

As was mentioned earlier the functions C0Sz and sinz were also
going to be discussed. However, using the Gaussian elimination sub-
routine on the matrix formed by the coefficients of the sine function

resulted in a singular matrix and thus no information could be obtained.

Thus, the sine function was not examined by further. Since both the
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cosine and sine function depend upon the %T»term in their power series
expansion the cosine function was also not examined any further.

Areas For Further Study

Due to the lack of conclusive results pertaining to the migration
of the poles of the Pade approximant and thus no information on accuracy
of the approximation the areas of investigation on this problem are
still open. In the following paragraphs a few of the ways are mentioned
in which one might modify the program to obtain further information on
the migration of the poles.

Probably the most obvious short term solution to the problem of
not being able to have values of M and N greater than four or five is
to convert the program into double precision. However, when working
with power series coefficients which depend upon the reciprical factoral
of n, 1.e.,-%T, a double precision program could only handle coefficients

16

as small as 1 x 10"~ (assuming 16 digit accuracy) which is approximately

1
7T

e”% only the [8,8] Pade could be calculated for 1000e”% the [10,10] Pade

4 and

So even with double precision using the same functicns i.e., e
could be calculated. One possible solution to the factional problem is
. . . 1 .

simply to choose a function Tlike Tg:}j»whose power series depends upon
the term %ﬁ not %T. [t is clears that this function has a pole when
Re(z)=2 so we assume as M and N yet large the poles of the Pade approxi-
mant of this function will be migrating towards 2.

More important than the double precision problem, since alternate
functions can be examined, as was indicated above, is the problem of

the instability of the system, one example of this is observed by com-

paring the coefficients of the power series, A(I)'s and the [6,6]



14

Pade coefficients of the function f(z)=1OOOe_Z. This information is
contained in Tables III. and IV. It was determined above that
probably the reason for the large deviation in the Pade coefficients
was due to the inversion matrix (i.e., A'], where xA=B is a system
of n equations with n unknowns, A is an nxn matrix, B and x vectors)
being almost singular. Assuming the inversion matrix, A'], is almost
singular then for even very small changes in the enteries in the
matrix A, a very large difference x=A']B will be noticed.

Another possible place for instability is in the zeros routine
from examining the program which is contained in Appendix C one
observes that the maximum number of interactions need was 500 and that

4 and EP2 had the value 1.0 x 10-6. As is observed

EP1 was 1.0 x 10~
in the tables which follow this section when the zero was re-evaluated

in the polynomial, i.e., f(zero), the solution was very close to 0.00000.
By altering the values of EP1 and EP2, that is setting their values too
close together, could cause f(zero) to deviate from 0.000000 which

would cause instability in the program. That is the zeros of the Pade
denominator would be incorrect and in term the modulus would also be
incorrect.

There several solutions to the problems of instability in the
program. To prevent the instability incurred by the inversion matrix
being almost singular one could use a subroutine in place of the
Gaussian elimination algorithm. This new subroutine would be error
sensitive. That is, the subroutine would be sensitive to the round

8 5

off error of adding two numbers like 1.0 x 10” and 2.3 x 10°°. One

possible answer to the instability brought into the program by the EP1



and EP2 being too close would be to monitor (like was done) the
polynomial evaluated at the zero. If the value of f(zero) deviated
from desired accuracy the EP1 and EP2 would need to be altered and

if this did not solve the problem then possibly another algorithm would
need to be used. From this summary it should be obvious that there are
several possible problems with instability in this program and one must
analize the results of the program in light of the possible problems

with instability.

15
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OUTLINE OF THE PROGRAM

The computer program written and used to evaluate the coefficients
of Pade approximants is found in Appendix C. The program contains many
explanatory comment statements but will be described briefly here.

There are two main parts to the program. The first computes the Pade
coefficients of a given power series. The second part computes the
zeros of the Pade denominator, i.e., poles of the Pade approximant, and
the modulus of the zeros, i.e., the distance from the origin of the
compiex plane.

The coefficients of the power series, i.e., A(I)'s, and the
degree of the Pade approximant (M and N) are input as data. The
coefficients of the power series are then placed in matrix form. This
is denoted by the two-dimensional array, MATRX. Using Gaussian elimina-
tion on the array MATRX and the A(I)'s, the Q(N)'s are computed. Then,
making the usual assumption that p0=1.0, the P(M)'s are computed in a
recursive fashion.

The second part of the program finds the zeros of the polynomial in
the denominator of the Pade approximant. This is accomplished by the
use of the MULLER subroutine (7). The MULLER algorithm is fully
explained in Appendix C. Once the zeros are calculated, then the zeros
are re-evaluated in the polynomial to determine the accuracy of the
MULLER routine, i.e., how close f(zero) is to zero. The minimum modulus
theorem is then used to determine the minimum radius in which no zeros
of the Pade denominator are contained. The output is then printed in

tabular form.
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CONCLUSIONS

In mathematics an extremely important question is if an arbitary
function, f(z), can be approximated via one of the many methods used to
estimate functions. Most of the methods of approximating functions
such as the Taylor and Fourier Series have theorems discribing when
the approximation converges to the function. However, currently
in the literature there are not any theorems discribing the conditions
needed to insure the Pade approximant of a function converges.

Because of the lack of Titerature an analytical approached was
used. It was hoped if the poles of the [M,N] Pade approximant migrated
away from the origin of the complex plane, that is the modulus of the
zeros of the Pade denominator bécame very large, then the Pade approxi-
mant would become very close to the value of the function. Due to the
l1imitations of using the single percision program as well as the
instability inherent in the program no conclusive data was obtained.

So a similar program in double precision with built in checks for
instability would be a great help to anyone trying to determine the
migration of the poles of the Pade approximant and thus the convergence

of the Pade approximant.
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APPENDIX A

The [2,2] and [3,3] Pade Approximants of the Reciprocal

Exponential Function

To give an example of how one could compute the Pade approximant
from the power series expansion of an arbitrary function, this appendix
is included which describes how the [2,2] and [3,3] Pade approximants
of f(z) = e % are calculated.

To determine the Pade coefficients for the reciprocal exponential
function, the function must first be expressed as a power series. The
method used to expand the reciprocal exponential function into a power
series was the Taylor series expansion. The Taylor series (or power

series) expansion of the reciprocal exponential function is a polynomial

of the form

© i i
-z 2 3 + = T (-1) z

f(z) =e“=1-2z2+2"-2 = :
27 37 j=0 1
where, by definition, 0! = 1 and

_ _ _ 1 ]
aO =1, al— -1, a2— 5T a3

‘

T T30 T T

Now that the aj's are known, the Pade coefficients need to be computed.

Recall the two formulae,

k

R LI 0 for k < n and
i=0

n
i§0q1ak'i =0 for k > mn.

Using m = n = 2, that is the [2,2] Pade approximant for the reciprocal

exponential function, the above equations reduce to a system of five
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equations and five unknowns. The five homogeneous equations, which

were obtained for values of k ranging from zero to k=m+n=2+2=4, have

the form
k=0 9939 ~ Pp = 0 i
k=1 qoa1 + qlaO p1 =0 ii
k=2 425 * 453 & 4,8y = Py = 0 ii1i.
k=3 qu3 + SR + 9,284 +0 iv.
k=4 Goag * G133 * 9,3, = 0 v. (8)

The five unkowns are 99> 91 995 Py» and Py The Pade coefficient, Po>
is commonly given the value of one, so it is not considered an unknown.
Recall the values of aps 3y, s, and a, are already known from the power
series expansion of the reciprocal exponential function. To solve the

system of equations, take equation i. and solve it for g5 it becomes

p
qO = 59 , but p0=1 and a0=1; therefore, qO=].
0

Now, to find 9q and 9o solve equations iv. and v. simultaneously, so

1,1 1 _ .

'g(gT 54, * q2) = iv.

1 1 P P 0

T Y3 T % T v
Thus, g,= Syl and g, = 1

* 1] 2 2 12

Using the values of qq and q5 and equations ii. and iii., the values of
Py and p, can be determined. The values are determined in a manner
similar to the method used to compute 44 and 9ps by solving a system of

two equations and two unknowns. The values are
1 1

So the [2,2] Pade approximant of the reciprocal exponential function



takes the form:

74 22 7.3
e =]-Z+§T—?+.

The computation of the [3,3] Pade approximant for

exponential function is calculated in a similar manner.

following system of cquations is ob

k=0 quO - Py = 0

k=1 SRS + 4939 = Py =
RS2 g, ayE a5y
SERR R AT P
k=b Ggag * d33 * a2,
k=5 Gplg + 493y + 9535
k=6 dgag * 4335 *+ 453,
Again, choose p0=1, SO equation 1.
9% ~ gg -
0

Now, solve equations v., vi.,

z + 12

1 - 17

2

1
2
1 ]

1T + §2 + T?Z

tained.

0

- pZ =0

*A33p - P3 =0
+ 933y = 0

* A58, = 0

T 452, = 0
reduces to

and vii. simultaneously for q], qz,

5 -

the reciprocal

Eirsity the

i.

ii

iid

%

s

Vi

vii. (9)

and 3, as was done in the case of the [2,2] Pade approximant. Upon
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solving the system of three equations and three unknowns, the values of

the Pade coefficients in the denomi
2 1

nator are

_ _1 N
49 = 5> 9 =35> and 93 = 55 37

Finally, in a manner similar to that used in the [2,2] Pade approximant

case, solve equations ii., iii., and iv. to determine P1s Pos and Ps-

The values are

_ 1 _ 11
Py = - 7> Py =5 77> and ps



So, the form of the [3,3] Pade approximant

36

for the reciprocal

exponential function is 1 ! Z2 1 Z3
1«52+ 557 - 55 37

-7 22 2 5 2! 20 3!
et =l -zt5r- T 2, 122 1 z3

' 5 5 2! 20 3!

A precalculated Pade table, which contains
reciprocal exponential function for values

zero through four is on the following page.

the Pade approximants for the

of m and n ranging from
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TABLE V. PADE TABLE FOR THE RECIPROCAL EXPONENTIAL FUNCTION

The Pade table below contains the Pade table for the reciprocal
exponential function. Along the horizontal axis, the value of m, the
degree of the numerator, increases from zero to three. Along the
vertical axis, the value of n, the degree of the denominator, increases
from zero to four. It is of particular interest to look at the [2,2]
and [3,3] Pade approximants. This table confirms the methods used in

the text were correct to compute the [2,2] and [3,3] Pade approximants.

Rade Table for e *

L i
| 1 : ) o B
i 1 -2z ot e — = -
o 1 . e o
e | o T S
’ 154 =iz 1oL L 1
2 IRy 1
- i 2
i ’ T = e
R | =z ] L _
-2 ! & _ Y
[ S e ! 9 1 %2 E ==
51 ] 2 T ]
g | SEE e Pges ;
— I - —— e e e+ e e e
y | 1 X
‘,..1 Tl f’ 1 - —(r = —_ - i
I i e | 9 r? s o -
2T | 14274504 LE !
! ! N2 ! | g :
B _ ~-’ B S L T _————\ o
l .
1 * 1—:z ! Voo s =
i - 3 A b !
37 - . | ' 2 T T4 T = ———
N 31 it i 1'1‘:‘1'4 R b x i = P
} 5 521 54 | 1O 50 = R
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APPENDIX B

VISCOSITY EQUATIONS

Pade approximants are currently used in many branches of science,
including nuclear physics, engineering, and physical chemistry. In
the Tatter field, a unique application of Pade approximants has been
applied to liquid viscosity equations, expecially the Auslander and
McAllister viscosity equations. The various liquid viscosity equations
are believed to be rigorously derived from theory. This does not seem
to be the case, since the Auslander equation is reducible to a Pade
approximant and there is every indication that the McAllister equation
is also reducible to a form of a Pade approximant. This interesting
aspect of the Pade approximants has been investigated by Professor of
Chemistry, Bruno J. Zwolinski and his graduate student Dawn Lee
Wakefield at Texas A&M.

Since it appears that these two 1liquid viscosity equations are
Pade approximants, the question arises as to the accuracy of the
approximation to the true viscosity of the liquid, and thus the poles
of the Pade approximant are important. Obviously, after the proper
Pade approximant is derived for the viscosity equation, then one must
be careful not to use this equation around the poles of the approximant
to avoid erroneous results. Therefore, it is important to determine
the Pade approximant of these liquid viscosity equations to find the
poles to inform the engineer or chemist using such equation just

exactly where these equations break down and are, thus, not useful.
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The Auslander Equation as a Pade Approximant

The Auslander liquid mixture equation has the form
Xy (g # BypXo) (v - vy) = AgyXp(BygXy + X5) (v - vp) (B.1)
where,
Vs Vi and Vo are kinematic viscosities,

A21’ 812, and 821 are constants representing binary interactions,

and X_ and X2 are mole fractions. (10)

Since the hydrodynamic property, viscosity, is assumed to be a
thermodynamic property, the exact methods of thermodynamics may be used.
This means for the Auslander equation to truly and precisely represent
the viscosity of a liquid mixture, it must be an exact thermodynamic
relation. The hypothesis is that the Auslander equation can be reduced
to a ratio of two polynomials, a form of Pade approximant. So, the
Auslander equation is only an approximation of the viscosity and not an
exact thermodynamic relation as it is currently believed.

The Auslander equation reduces to a form similar to a [2,2] Pade
approximant. The following are the algebraic steps required to reduce
the Auslander equation to the ratio of two polynomials. The ratio of
V-V

viscosities, is solved for,

V-V
1
The Auslander equation originally had the form

x](x] + By oK )(v - v]) + A21X2(BZ]X] + X2)(v - v2) =0

Moving one term to the other side of the equation gives

X (X] + B]ZX ) (v - v1) = 'A21X2(821X1 + XZ)(V - v2)

1

and then solving for the ratio of viscosities gives

(v - v2) _ X](X] + B]ZXZ)
(v - v]) 'A21X2(BZ]X] + X£7
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When working with solvents and solutes the usual convention is to let

X1 = X and X2 =1 -X

Then equation (B.1) becomes

(v - v2) X(X + 812(1 - X)) ’
(v - V;) C T A21(1 - X)(B]ZX + (1 - X))

which reduces to

= 2
= = Bk - (1 - By,)X

12
gy + (Byy + Ay )X+ (AyyByy - A

.
21)x

Comparing this to a [2,2] Pade approximant of the form

Py t PiX + pyX
£(X) = Sl Tl
Gy + 99X + X

the coefficients of the reduced Auslander equation (B.2) and the [2,2]

Pade approximant can be equated. The coefficients are
9% = A1 Iy T By Ay 9y = Ay By - 1),

Py =0, py =By, andp, = (1- 812). (B.3)

Recall the coefficients A B 9> and B 1 are constants representing

217 71 2
binary interactions. They are determined from a least-squares fit of

the experimental data (11).

Practical Importance

The immediate application of the research is twofold. First, since
the Auslander equation reduced to a Pade approximant, it is not an
exact thermodynamic equation. This means that while the Auslander
equation is a viable method for calculating the viscosity of a liquid
mixture, given the correct constants, it is not based solely on theory.

The Auslander equation must be based on some approximations. This leaves
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the door open for more research to determine an equation, based
strictly on theory, which describes exactly the viscosity of a liquid
mixture, given the correct constants.

Secondly, and probably the most important application, is the
possibility of compiling Pade tables in which the user would have to
supply the data and the approximant viscosity would be determined.

This process will be made easier once the relation between the values of
the binary interaction constants (A21, 812, and BZT> and the Pade
coefficients are understood more clearly. At present it is believed
that there is a direct relation between the Pade coefficients and

the binary interaction constants, but it is still uncertain.

A Look at the McAllister Equation

The Tiquid viscosity McAllister equation has the form

3 2 2. 3
]Tnv] + 3X]X31nv]2 + 3X]X21nu2] + lenv2

3 2
X21nv2 - 1n(X] + X2(M2/M])) o> 3X]X21n[(2 + MT/MZ)/3]

Tnv X

3X]X§1n[(1 + (2My/M))/3] + xgm(MZ/M]),

+

where, X] and X2 are mole fractions,
V12 and Vyp are fitting constants,

M] and M, are molecular weight,

2
and v is the kinematic viscosity. (12)
The McAllister equation considers the interactions between like and
unlike molecules developed from a correlation for three-body interactions.
The molecular size was restricted to a ratio of 1.5 (13). Recall the

reciprocal exponential function is the inverse function of the natural
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lTogarithm function. Since the McAllister equation involves the

natural Togarithm of the viscosity, that is Inv, it is required to use
the reciprocal exponential function to find the viscosity. Because

the exponential function is not distributive, the McAllister equation
is much more difficult to manipulate algebraically than the Auslander
equation. By not being distributive, it is meant that the exponential
of the sum of the two numbers is not equal to the exponential of each
of the two numbers spearately added together. Current research efforts
involve showing how the McAllister equation reduces to a Pade
approximant, if this is possible.

The Tiquid mixture viscosity Auslander equation is reducible to
a form of a Pade approximant. This indicates that the Auslander
equation is not exact, but rather is an approximation. This approxi-
mation relates the kinematic viscosity (v, V1> and vz), the constants
representing binary interactions (A21’ B]Z’ and 821)’ and the mole
fractions (X1 and XZ)' So the viscosity of Tiquid mixtures computed
by the Auslander equation could also be computed via the proper
Pade table.

A1l evidence indicates the Tiquid viscosity McAllister equation
can be reduced to a Pade approximant. This means the McAllister
equation is also not an exact equation. So the viscosity calculated
through the McAllister equation probably could be calculated through

a Pade approximant with the proper choice of coefficients (14).



APPENDIX C

Program Listing
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