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ABSTRACT 

Defect Site Prediction Based Upon Statistical Analysis of Fault Signatures.  

(August 2003) 

Michael Robert Trinka, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. M. Ray Mercer 

Good failure analysis is the ability to determine the site of a circuit defect quickly 

and accurately.  We propose a method for defect site prediction that is based on a site’s 

probability of excitation, making no assumptions about the type of defect being 

analyzed.  We do this by analyzing fault signatures and comparing them to the defect 

signature.  We use this information to construct an ordered list of sites that are likely to 

be the site of the defect. 
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INTRODUCTION 

 Integrated circuit manufacturers devote significant time and resources to 

improving the quality of the products they ship by filtering out those ICs that contain 

manufacturing defects.  In some cases, especially when many circuits are found to 

contain defects, additional effort is expended in diagnosing precisely what types of 

defects are occurring.  If the source of the defective behavior can be found, it may be 

possible to make improvements to the production process that will decrease the number 

of defective chips and improve the overall yield. 

 Unfortunately, a simple visual inspection of the defective integrated circuit is not an 

effective method for identifying the source of most manufacturing defects.  Instead, 

analysis of the output responses of the failing chip must be used.  For example, Ratford 

and Keating suggested in 1986 that the comparison of fault dictionary signatures to the 

failing circuit behavior should be implemented along with guided probe analysis to 

diagnose failing boards and devices [1]. 

 These fault dictionary signatures are obtained through fault simulation of the circuit.  

A signature often contains information about which outputs fail when a fault is present 

in the circuit and a given test pattern is applied.  Alternatively, the actual output values 

that result when the test pattern is applied may be stored.  Regardless of which version is 

used, such a dictionary will essentially describe how the introduction of a fault affects  

__________ 

This thesis follows the style and format of IEEE Transactions on Automatic Control. 
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the circuit outputs for a given test pattern set. 

 A significant amount of previous work in the field of diagnosis has generally focused 

upon using fault dictionaries to find which faults best match the actual circuit behavior 

[2], [3], [4].  However, the fault model chosen may vary and often depends upon the 

assumptions made about what kind of defect is actually present in the circuit.  This can 

present problems because the type of defect present in a circuit may be very different 

from the fault model chosen.  It is therefore desirable to diagnose circuits without 

making any assumptions as to the types of defects that may occur. 

 Therefore, the most important information to obtain from diagnosis is not fault 

information, but site information.  Once a defective site has been identified, physical 

examination or additional data collection from circuit simulation may be used to further 

classify the defect type and behavior, or to take corrective action on a faulty 

manufacturing process. 

 The common requirement for the detection of all defects is observation.  Each time a 

site that contains a defect is observed, there is some probability that the defect occurring 

there is excited.  We will show that we can use fault dictionary information to calculate 

the probability of exciting a defect present in the circuit given that the defect occurs at 

that site.  Once this is done for all circuit sites, we will show that we can use that 

information to indicate which sites are most likely to be the actual source of the 

defective behavior with a high degree of accuracy and without the expenditure of a 

significant amount of resources beyond the creation of a traditional fault dictionary.  

Furthermore, once the site of the defect is identified, an estimate for the probability of 
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exciting the defect given observation of the site where it occurs will also have been 

obtained.  
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PREVIOUS WORK 

 Over the years many researchers have suggested ways of using fault signatures and 

fault dictionaries to aid in circuit diagnosis.  Specifically, many papers, such as [2], [3], 

and [4] compare the output signatures of a failing device to stuck-at fault signatures in a 

fault dictionary in order to identify faults that can be used to explain the failing circuit 

behavior.  Those faults whose behavior most closely matches the behavior of the 

defective circuit are considered the most likely candidates.  

 For example, the authors of [3] introduced a technique they call partial intersection 

that counts the number of times faults are associated with failing bits and failing vectors.  

Faults with counts above a user-defined threshold are returned to the user as candidates 

for the identity of the defect.   

 Similarly, the authors of [4] rank faults based upon the number of failing outputs that 

cannot be caused by a fault f and the number of vectors for which fault f cannot explain 

either an observed failure in the circuit being diagnosed or the lack of an observed 

failure.  These two conditions (one is based upon outputs and one is based upon vectors) 

are each assigned different weights.  Since the merit ranks increase when the defective 

circuit behavior does not match that of the fault, those faults with the smallest values 

assigned to them are considered the most likely causes of failure. 

 Finally, Waicukauski and Lindbloom introduced another method of using fault 

dictionaries to diagnose faults in [2].   They introduced three classes of defects: those 

that behave exactly like stuck-at faults, those that occasionally behave like stuck-at faults 
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at a single site, and those that affect multiple sites (such as AND and OR bridges).  If the 

circuit behavior exactly matches that of a stuck-at fault, then the defect is considered to 

belong to the first class, and that fault is considered to be responsible for the defective 

behavior.  Otherwise, the defect that explains the majority of the faulty behavior is 

identified.  If necessary, other faults are then chosen to account for the as yet 

unexplained faulty behavior.  

 The inherent difficulty in using these models is that they try to match stuck-at 

fault behavior to defects that may in actuality be very different from stuck-at faults 

(although the authors of [2] do try to use their three categories to identify these different 

types of defects).  In contrast, other researchers have tried to identify alternate fault 

models that they believe may be better able to describe many of the defects that occur in 

integrated circuits.  For example, erroneous shorts between circuit sites often can be 

better modeled as bridging faults than as stuck-at faults.  Both AND/OR and net-

dominating bridging faults have been shown to be useful for studying these erroneous 

shorts [5], [6], [7], [8].  Thus, significant research has been done with respect to 

diagnosing bridging faults with fault dictionary information. 

 For example, both [9] and [10] specifically targeted bridging faults while doing 

diagnosis.  In these cases, the authors considered the theoretical requirements for the 

detection of bridging faults and used these requirements to guide their diagnosis 

procedure.  The authors of [9] noted that in order for a bridge to be detected, one of the 

four stuck-at faults associated with the two bridged nodes must be detected as well. 
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 The authors of [10] expanded upon this work by taking into account additional 

requirements for the detection of a bridge.  For example, a vector which detects both A 

stuck-at one and B stuck-at one cannot detect a bridge between sites A and B.  

Furthermore, if A stuck-at zero is detected by the same vector as B stuck-at one, then a 

bridge between sites A and B should cause an error to occur for that vector.  These also 

introduce a ranking system to indicate which bridge candidates are most likely to have 

caused the defective behavior.  While this algorithm was able to obtain good diagnosis 

results for the simulated bridges, it is unlikely to be very helpful when the actual defects 

are not bridges. 

 Some researchers have also tried to handle non-modeled defect behavior by returning 

sets of faults that together appear to explain the defective circuit behavior.  For example, 

the authors of [11] introduced a “one-test-at-a-time” algorithm in which Dempster-

Shafer statistical analysis is used to calculate which sets of faults are most likely to be 

the source of the defective behavior. 

 Our approach differs from the other approaches described here in that it uses the 

underlying requirements of the detection of any defect to evaluate the likelihood that a 

defect is located at a particular circuit site.  This likelihood is calculated based upon an 

estimated probability of excitation given site observation.  Because no assumption is 

made about the precise mechanism by which the defect affects circuit behavior, it is 

general enough to allow for the diagnosis of a variety of different types of defects.  

Furthermore, it calculates information not obtained by any of these other methods: the 
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probability of excitation given site observation for the defect that is actually present in 

the circuit. 
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A NEW DIAGNOSIS ALGORITHM 

 No matter what type of defect occurs in an integrated circuit, two requirements must 

be simultaneously satisfied for that defect to be detected by a test pattern.  These two 

requirements are defect excitation and site observation.  Defect excitation refers to 

causing an incorrect logic value to be present at the location of the defect. This creates a 

difference at the defect site between the values in a defective and a non-defective circuit.  

For example, in order to detect a site P “stuck-at-one”, the input values must be assigned 

in such a way as to place a logic zero at point P in the non-defective circuit.  We would 

then say that those assigned input values excite the defect P stuck-at-one.  In Fig. 1, this 

would correspond to setting the primary input A to a value of 0. 

 

 

Fig. 1. Example circuit with stuck-at-one fault at point P 

 

 Unfortunately, a tester does not have access to all of the interior circuit points, and 

thus defect excitation is not enough to ensure detection.  The incorrect value at the defect 

location will also need to be propagated to an output (or to a scan element) in order for 
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the defect to be detected.  In other words, the value at the defect site will need to be 

observed.  In Fig. 1, setting input B to 1 and setting one or both of inputs C and D to 0 

would accomplish this. 

 The observation requirement is common for all possible defects and faults.  No 

matter what type of fault or defect is present in the circuit, the site where the incorrect 

logic value occurs must be observed at an output.  In contrast, excitation requirements 

vary among different types of defects.  For example, in order to excite a bridging defect 

such as the one depicted in Fig. 2, the two erroneously connected sites should be set to 

opposite logic values in a non-defective circuit.  In this case, inputs B and C would have 

to be set to opposite logic values.  In contrast, exciting the stuck-at fault described above 

merely involved setting the value of a single input. 

 

 

Fig. 2. Example circuit with a bridging fault 

 

 When diagnosis of a defective circuit is attempted, the type of that particular defect  

is not generally known a priori.  Thus, we do not know what excitation requirements 

need to be satisfied.  In contrast, we do know that a defective site will need to be 

Bridging fault 
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observed for any pattern for which the circuit behaves incorrectly, no matter what type 

of defect is present.  Thus, we propose a new method of circuit diagnosis based upon 

requiring site observation and calculating the probability of excitation. 

 We can use information contained within a fault dictionary to develop an estimate of 

the probability of exciting the defect given that that site is observed and given that the 

defect is actually present at that site.  We will then use these probabilities of excitation to 

indict the site, or sites, which are most likely to be the site of the defect.   

 The set of circuit outputs where a fault is detected forms a fault signature for that 

fault.  If there are N circuit outputs, then each fault signature is a number formed using 

N binary values, where zero indicates no detection at that output and one indicates 

detection at that output.  In essence, every entry in our fault dictionary contains a fault 

signature – in the form of an integer value between 0 (no errors) and 2N-1 (an error at 

every circuit output). 

 In certain cases, a real defect at a site can cause a good one to become a faulty zero 

for certain test patterns, and the same defect at the same site can cause a good zero to 

become a faulty one for other test patterns.  Therefore, we combine stuck-at-one 

detections with stuck-at-zero detections to produce site detections.  In particular, we 

combine the signature for the stuck-at-one fault at a site with the signature for the stuck-

at-zero fault at that same site to form a composite signature for that site.  Thus, the 

results from our fault simulation analysis are site signatures (for each test pattern) – as 

well as fault signatures. 
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 When the actual testing of an IC is done via a tester, we capture the outputs that 

contain errors via defect signatures.  Every applied pattern has a corresponding defect 

signature.  A defect signature is compatible with a fault signature if the defect signature 

is equal to the fault signature.  If this defect signature is compatible with the fault 

signature for one of the two stuck-at faults, F, at site S, then defect site S is indicted by 

the test pattern.  Thus, the results from analysis of actual test results are indicted sites 

(for each test pattern). 

 Next, we combine actual test results with simulation results.  For every site, we sum 

over all test patterns to calculate the total number of site observations (from simulation 

data) and the total number of site indictments (from tester data).  For each site, we divide 

the number of site indictments by the number of site observations.  The result is the 

excitation probability for the defect generating an error observed at that site (assuming 

excitation and observation are statistically independent).   

 Finally, the excitation probabilities for defects at each individual site in the network 

are analyzed.  Sites are ranked according to their defect excitation probabilities.  The site 

with the highest probability is the most likely candidate (assuming a single defect in the 

IC).  Further, the relative probabilities for different sites can be used to estimate a 

confidence level for the predictions produced.  This same information may give 

indications of the number of actual defect sites on the chip.  Actual defect excitation 

probabilities for real defects of interest can be successively determined based upon the 

results from the physical failure analysis process.  As more defective ICs are analyzed, 
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and the probabilities of excitation of these actual defects are determined, predictions of 

defect types can be based upon characteristic excitation probabilities. 
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IMPLEMENTATION AND RESULTS 

 In order to conduct our experiment, it was necessary to develop a tool that would 

allow us to collect the necessary data.  We developed a custom tool called Super Defect 

Analyzer, or SuperDA. 

 The first step in the process was to do normal stuck-at fault simulation.  SuperDA 

implements an event driven, parallel pattern simulation technique capable of simulating 

32 input vectors at a time.  Once the faults are inserted, the faulty circuit outputs are 

compared to the good circuit outputs, obtaining the fault signature.  The stuck-at one and 

stuck-at zero fault signatures for each site are then combined to form the site signatures.  

We also combine the number of times each fault for a given site was detected to find out 

how many times each site was observed during fault simulation.  Fault simulation was 

done using a set of ATPG input vectors. 

 In order to simulate a defective part, we introduce a surrogate into our circuit.  This 

surrogate can model one of three behaviors: an AND bridge, an OR bridge, or net 

domination.  We performed three sets of analysis: one which only introduced AND and 

OR surrogates, one which introduced only net domination surrogates, and one which had 

a mixture of all three.  In all cases, 5000 unique random pairs of non-feedback sites were 

chosen, and a random surrogate type was assigned.  Once the circuit has been simulated 

with the surrogate inserted, the surrogate signature is obtained.  The number of times 

each surrogate was detected was also stored. 
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 After a surrogate signature has been collected, it is possible to compare that 

surrogate signature to the fault signatures collected during fault simulation.  We then 

count the number site indictments: the number of patterns that cause an exact match 

between the surrogate signature and one of the two fault signatures at that site.  An exact 

match is defined as detecting the site and the surrogate on exactly the same set of circuit 

outputs for a given input vector.  This number can be used to find the excitation 

probability of a given site i by: 

 

   
][_#

][_#][_
insobservatiosite
isindictmentsiteiprobexcitation =    (1) 

 

 It is then possible to sort the list of all sites in the circuit based on this excitation 

probability.  The sites at the top of the list should have the greatest probability of being 

the site of the actual defect.  To be at the top of the list, a site must have exhibited 

defective behavior a large portion of the time that it was observed.  Tables 1, 2, and 3 

show the results of this ordering by excitation probability. 
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Table 1 
AND/OR Surrogate Results 

Circuit Average 
Position

Percent 
in Top 

Ten 

Percent Site 
is First in 

List 

Average 
Position 
when in 
Top Ten 

c432 5 94.57 45.63 2 
c499 11 69.16 27.8 2 
c880 5 88.94 31.68 2 
c1355 17 63.05 15.5 4 
c1908 11 70.82 19.84 3 
c2670 20 66.96 22.23 3 
c3540 19 79.63 25.41 3 
c5315 10 77.4 25.81 3 
c6288 54 38.57 8.22 4 
c7552 18 65.12 18.76 3 

Average 17 71.42 24.09 3 
 

Table 2 

Net Dominating Surrogate Results 

Circuit Average 
Position

Percent 
in Top 

Ten 

Percent Site 
is First in 

List 

Average 
Position 
when in 
Top Ten 

c432 3 98.28 60.81 1 
c499 9 74.08 26.69 2 
c880 3 90.59 47.74 2 
c1355 14 74.01 23.03 3 
c1908 10 77.1 33.27 2 
c2670 20 73.51 32.37 2 
c3540 18 87.31 36.69 2 
c5315 11 84.25 45.72 2 
c6288 67 38.99 11.68 3 
c7552 14 76.47 33.79 2 

Average 17 77.46 35.18 2 
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Table 3 
Mixed Surrogate Results 

Circuit Average 
Position

Percent 
in Top 

Ten 

Percent Site 
is First in 

List 

Average 
Position 
when in 
Top Ten 

c432 4 96.03 53.28 2 
c499 10 71.08 27.31 2 
c880 4 90.21 40.39 2 
c1355 15 69.57 20.48 3 
c1908 11 71.91 24.88 3 
c2670 18 71 28.92 2 
c3540 17 83.45 31.81 3 
c5315 10 82.3 36.59 2 
c6288 59 40.72 10.5 3 
c7552 15 71.99 27.43 3 

Average 16 74.83 30.16 3 
 

 The average position column tells the average position of the top ranked defective 

site over all trials.  We consider a diagnosis to be effective when the actual site of the 

defect is identified in the top ten suspected sites.  This is both because previous 

researchers have used this metric, and also because of the impracticality of searching ICs 

for large numbers of suspected sites.  Based on the number of surrogates that are 

detected by our simulation, we can determine how often the correct site is in the top ten 

indicted sites, yielding the Percent in Top Ten column.  Obviously, the higher the actual 

defective site’s ranking, the better.  We therefore record how often the defective site is 

first on the list and the average position of the defective site when the site is in the top 

ten indicted sites. 
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 As these tables illustrate, when a site is in the top ten, it is likely to be very high on 

the list.  With the exception of c6288 (an extremely permeable circuit), we are able to 

identify the defective site in the top ten quite often.  However, to be a viable option for 

real circuit diagnosis, we need to improve our results.  Punishing sites that are not likely 

to be the defective site can do this.  We can compute a “punishment probability” by 

using the percentage of times that a surrogate is detected but not matched exactly by the 

site to which we are comparing it: 

 

   
detections

matchesdetectionsprobpunish
#

#  #_ −=      (2) 

 

This punishment probability can then be used to alter the excitation probability of the 

site by: 

 

  )_*(__ probpunishweightproboldprobnew −=     (3) 

 

For our experiment, we ran several weighting factors, ranging from 0 to 3.6.  Tables 4, 5, 

and 6 show the results of this new technique. 
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Table 4 
AND/OR Surrogate Results With Punishment 

Circuit Average 
Position

Percent 
in Top 

Ten 

Percent Site 
is First in 

List 

Average 
Position 
when in 
Top Ten 

Best 
Punishment 

Weight 

c432 4 96.94 60.06 1 2.8 
c499 7 94.99 37 2 0.8 
c880 3 94.67 39.44 2 3.6 
c1355 11 90.84 41.41 2 0.8 
c1908 6 88.03 27.53 3 2 
c2670 10 86.14 37.61 2 3.6 
c3540 15 96.35 42.33 2 3.6 
c5315 4 93.13 41.28 2 3.6 
c6288 53 42.01 11.76 3 3.2 
c7552 8 91.62 36.38 2 3.6 

Average 12 87.47 37.48 2 2.8 
 

Table 5 
Net Dominating Surrogate Results With Punishment 

Circuit Average 
Position

Percent 
in Top 

Ten 

Percent Site 
is First in 

List 

Average 
Position 
when in 
Top Ten 

Best 
Punishment 

Weight 

c432 2 99.84 80.97 1 3.6 
c499 4 98.94 44.82 2 3.6 
c880 1 99.06 67.43 1 3.6 
c1355 7 98.38 65.41 1 3.6 
c1908 6 93.35 59.33 2 3.6 
c2670 13 92.65 61.15 1 3.6 
c3540 15 99.04 70.26 1 3.6 
c5315 6 95.67 74.58 1 3.6 
c6288 66 39.77 15.26 3 3.6 
c7552 7 94.89 69.03 1 3.6 

Average 13 91.16 60.82 1 3.6 
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Table 6 
Mixed Surrogate Results With Punishment 

Circuit Average 
Position

Percent 
in Top 

Ten 

Percent Site 
is First in 

List 

Average 
Position 
when in 
Top Ten 

Best 
Punishment 

Weight 

c432 3 98.31 71.34 1 3.2 
c499 5 96.82 39.02 2 0.8 
c880 2 96.74 53.86 2 2.8 
c1355 8 94.94 53.6 2 0.8 
c1908 6 89.9 42.41 2 3.6 
c2670 10 89.29 50.01 2 3.6 
c3540 13 97.19 57.2 2 3.6 
c5315 5 94.83 58.7 1 3.6 
c6288 58 42.56 13.75 3 1.6 
c7552 6 93.25 54.27 2 3.6 

Average 12 89.38 49.42 2 2.7 
 

 When we compute the original excitation probability, we do not consider any 

additional data about the surrogate being detected.  The punishment probability allows 

us to take in to consideration how observable the surrogate is.  If the surrogate is 

detected, the real defective site should be the one that has the most matches, thus getting 

punished the least. 

 As these tables demonstrate, the results are dramatically improved by applying this 

type of punishment to the excitation probability of a site.  As expected, the best 

weighting factor changes on a circuit-by-circuit basis.  This can most readily be 

explained by the relative permeability of the different circuits.  Also, since the net 

dominating surrogates can only affect one site, increasing the weight can only improve 

results.  Therefore, a weighting factor that caters to the AND/OR surrogates would be 

most suited to real life, where the possible defects are of many different types. 
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 With the addition of this punishment probability, we now have a method that 

consistently predicts the defective site with a high degree of accuracy. 
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CONCLUSION 

 Not knowing the type of defect present in a circuit makes deterministic excitation 

impossible.  We have therefore presented a new algorithm for diagnosing a circuit that is 

based on the excitation probability of the sites in a circuit, computed from fault 

observation data.  Our approach is unique because it is based on the fundamental 

requirement that a defect must be excited to be observed, and therefore is not sensitive to 

the type of defect being diagnosed.  This is important because real circuits are not 

limited to a certain few types of defects.  Our approach is also not sensitive to the layout 

of the circuit, only to its logical representation.  This allows for fast processing and little 

more data collection than a traditional fault dictionary. 

 We are also able to rule out sites that are unlikely to be the defective site by using a 

punishment probability to get even better results.  With this punishment in place, we 

were able to identify the defective site in our top ten list of indicted sites more than 89 

percent of the time in all circuits but one.  In addition, when the defective site was in the 

top ten, the average position of the site was 3 or less for all circuits, indicating very 

effective diagnosis. 
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