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[1] Water quality evaluation entails both randomness and fuzziness. Two hybrid models
are developed, based on the principle of maximum entropy (POME) and engineering
fuzzy set theory (EFST). Generalized weighted distances are defined for considering both
randomness and fuzziness. The models are applied to 12 lakes and reservoirs in China, and
their eutrophic level is determined. The results show that the proposed models are
effective tools for generating a set of realistic and flexible optimal solutions for
complicated water quality evaluation issues. In addition, the proposed models are flexible
and adaptable for diagnosing the eutrophic status.
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1. Introduction

[2] With growing human population and attendant human
activities, eutrophication has recently become a severe
problem infresh as well as coastal waters in many regions
of the world. Elevated inputs of nutrients can produce
eutrophication that has been defined by the European
Environment Agency (EEA) as ‘‘an increase in the rate of
supply of organic matter to an ecosystem, which most
commonly is related to nutrient enrichment enhancing the
primary production in the system’’ [EEA, 2001]. The
effective control of lake and reservoir eutrophication has
therefore been attracting a great deal of interest these days
[Somlyody, 1998; Pei and Wang, 2003].
[3] Eutrophication of lakes and reservoirs is complicated

by physical, chemical, and biological processes. It is known
that water quality depends not only on natural processes,
such as precipitation inputs, erosion and weathering of
crustal material, and biota interrelationships, but also on
anthropogenic influences, such as urban, industrial, and
agricultural activities [Papatheodorou et al., 2006]. Inter-
actions between the water body and its surrounding region
are complex, but their analysis on the watershed scale is
required for eutrophication assessment and management
[Hession and Storm, 2000]. Furthermore, uncertainties,
including randomness and fuzziness, are ubiquitous in water
quality assessment and management. Issues of indeterminacy,
heterogeneity, extremes, and fractal processes represent
some of the most important and challenging environmental
research topics [Anderson et al., 2000; Kirchner et al.,
2000; Medina et al., 2002; Kirchner et al., 2004; Neal
and Heathwaite, 2005].
[4] The importance of uncertainty in the water quality

area is widely recognized and documented [e.g., Beck,

1987; Van der Perk, 1997; Beven and Freer, 2001; Beven,
2002; Vrugt et al., 2002; Harris and Heathwaite, 2005;
Zheng and Keller, 2006]. Several common problems, such
as the incompatibility of observations and the need for
implicit value judgments, are hard to solve. Two basic
and significant uncertainties during evaluation should be
considered simultaneously in the development of water
quality models. One is randomness, which is reflected in
the monitoring and analysis of data related to eutrophica-
tion. The other is fuzziness, which is reflected in the
evaluation of the classification standard, the evaluation
class, and the degree of pollution. The trophic status
classifications are well known to be fuzzy around their
boundaries, and the relationships between the parameters
[Vollenweider et al., 1998] are known to be uncertain. Thus
there is a need to promote uncertainty estimation and to
develop models and analytical tools [McIntyre et al., 2003].
In general, there are four approaches to investigate uncer-
tainty as regards water quality evaluation in lakes
and reservoirs: (1) the statistical and stochastic approach;
(2) the fuzzy set approach; (3) the artificial intelligence (AI)
approach; and (4) the hybrid approach. The above four
approaches are data-based modeling approaches. Each
approach must use high-quality data with explicit recogni-
tion of the spatial and temporal heterogeneity of hydrologic
and environmental processes, in order to more consistently
get right answers for right reasons [Kirchner, 2006]. Thus
adequate and advanced measurements are vital to obtain
such data.
[5] 1. In the statistical and stochastic approach, Shannon

[1948] in a seminal contribution showed that informa-
tion is statistical in nature. Many statistical methods,
such as multivariate statistical techniques [Yu et al.,
2003; Papatheodorou et al., 2006], are widely used to
characterize water quality. Over the past 10 years, another
statistical technique, the principal component analysis
(PCA), has been widely used in determining eutrophication
[Vega et al., 1998; Parinet et al., 2004].
[6] 2. Zadeh [1965] introduced fuzzy sets, which have

been widely used in many fields and specify uncertainty by
membership functions. Fuzzy set theory has been used to
evaluate environmental quality. Silvert [2000] stated that
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fuzzy logic could be applied to the development of envi-
ronmental indices in a manner that solves several common
problems. Many fuzzy methods have been used for water
quality evaluation [Lu and Lo, 2002; Liou and Lo, 2005;
Ghosh and Mujumdar, 2006]. Chen [1998] extended
Zadeh’s fuzzy set theory and named it the engineering
fuzzy set theory (EFST) which provides a new way to
ascertain the membership degree and membership function.
[7] 3. The artificial intelligence (AI) approach has recently

been employed in a number of water quality applications,
such as artificial neural network models (ANN) [Aguilera et
al., 2001; Schulze et al., 2005] and genetic algorithm (GA)
[Gentry et al., 2003; Kuo et al., 2006].
[8] 4. The hybrid approach combines two or more of the

aforementioned approaches above to develop a hybrid
model. It is a multiuse and powerful tool for modeling
complex processes and characterizing uncertainty in water
quality evaluation. Examples include combining the fuzzy
sets theory and grey systems theory [Chang et al., 1996];
self-organizing maps and fuzzy sets theory [Lu and Lo,
2002]; ANN embedded Monte Carlo method [Zou et al.,
2002]; and ANN and empirical models [Jain and Jha, 2005].
Another way to develop a hybrid model is to combine
informational entropy theory, especially the principle of
maximum entropy (POME), and engineering fuzzy set
theory (EFST). As far as we know, no study has been
reported using such a hybrid approach.
[9] To appreciate the usefulness of entropy, a short

discussion is in order. Shannon [1948] developed a math-
ematical theory of entropy. Nearly a decade later, Jaynes
[1957] formulated the principle of maximum entropy
(POME). Entropy, especially POME and maximum entropy
spectral analysis (MESA), has been applied in a wide range
of areas, including hydrology and environmental and water
resources [Singh, 1997]. For example, POME has been used
to derive a variety of distributions and estimate their
parameters [Singh, 1998]. Wang et al. [2004] used MESA
for annual maximum series of tide level of the Changjiang
River estuary. The state of the art of entropy applications in
environmental and water resources has been reported by
Singh [1997] and Wang and Zhu [2001].
[10] The government agencies must protect water bodies

from getting polluted and treat polluted water. To that end
they need to collect data and make decisions. In this kind of
environmental decision-making, the following issues are
normally of interest: (1) evaluation of the status of water
quality in rivers, reservoirs, and estuaries; (2) pollution of
water bodies and sources of pollution; (3) treatment of
polluted waters; (4) reduction of pollution and pollution
sources; (5) health effects of pollution; (6) ecosystem effects
of pollution; (7) migration of pollutants; and (8) others.
Comprehensive and reliable evaluation of the status of
water quality is of fundamental importance, and only then
can one clearly and accurately ascertain the status of the
environment. It is therefore no surprise that this has been a
growing area of research during the past years.
[11] The objective of this study is to improve the evalu-

ation method and promote growing awareness of the need
for properly incorporating uncertainty estimates into the
understanding of environmental quality. To that end, a
hybrid approach is proposed, based on the principle of
maximum entropy (POME) and engineering fuzzy set

theory (EFST), considering both the randomness and the
fuzziness in the evaluation and characterization of the water
quality status. Two hybrid fuzzy and optimal models, named
model I and model II, are developed and verified to
determine the trophic state of 12 lakes and reservoirs in
China as a case study with the use of official data. Both
models exhibit that more information with less uncertainty
during the water quality evaluation could be offered and
used for better environmental decision-making. The theory
used and the models developed here can also be applied to
other areas.

2. Basic Concepts

2.1. Informational Entropy

[12] Shannon [1948] developed the entropy (informational)
theory which numerically expresses a measure of uncertainty,
I[f] or I[x], associated with the probability density function
(pdf) f(x) of any random variable X as

I f½ � ¼ �
Z b

a

f xð Þ ln f xð Þ½ �dx: ð1Þ

Entropy allows choosing f(x), which minimizes the
uncertainty subject to specified constraints. Note that f (x)
is conditioned on the constraints used for its derivation.

2.2. Principle of Maximum Entropy (POME)

[13] For choosing the least biased probability distribution,
f(x), Jaynes [1957] formulated POME, which means that the
minimally prejudiced assignment of probabilities is that
which maximizes the entropy subject to the given informa-
tion. Mathematically, it can be stated as follows: Given m
linearly independent constraints Ci as

Ci ¼
Z b

a

yi f xð Þdx; i ¼ 1; 2; � � � ;m; ð2Þ

where yi(x) are some functions whose averages over f(x) are
specified, then the maximum of I( f ) subject to the
conditions given by equation (2) is given as

f xð Þ ¼ exp �l0 �
Xm
i¼1

li yi xð Þ
" #

; ð3Þ

where li, i = 1, 2, � � � , m, are the Lagrange multipliers, and
can be determined from equations (2) and (3) along with the
normalization condition:

Z b

a

f xð Þ ¼ 1: ð4Þ

2.3. Fuzzy Sets Theory: Degree of Membership and
Membership Function

[14] In the development of his fuzzy sets theory, Zadeh
successfully introduced fuzzy sets (FS), fuzzy systems,
fuzzy logic, linguistic variable and approximate reasoning,
fuzzy information granulation, fuzzy logic and soft com-
puting with words, fuzzy logic and perception-based theory,
and the generalized theory of uncertainty (GTU). GTU
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adopts a much more general conceptual structure in which
statistical information is just one, albeit an important one, of
many forms of information. The centerpiece of GTU is the
concept of a generalized constraint, a concept drawn from
fuzzy logic [Zadeh, 2005]. In the fuzzy set theory, a fuzzy
set is a class of objects with a continuum of grades of
membership. Such a set is characterized by a membership
(characteristic) function which assigns to each object a
grade of membership varying between zero and one. A
fuzzy set can be defined as follows:
[15] Let X = {x} denote a space of points (objects), with x

denoting a generic element of X. Then a fuzzy set A in X is a
set of ordered pairs

X ¼ x;mA xð Þ½ �gf ; x 2 X ; ð5Þ

where mA(x) is termed the grade of membership of x in A.
Thus, if mA (x) takes on values in space M, termed
the membership space, then A is essentially a function from
X to M. The function mA : X!M, which defines A, is called
the membership function of A. For simplicity, M is the
interval [0, 1], with grades 0 and l representing, respectively,
nonmembership and full membership in a fuzzy set.
[16] For example, let A = {xjx 
 1} (that is, A is the

fuzzy set of real numbers that are much larger than 1). Then,
such a set may be defined subjectively by a membership
function as equation (6):

mA xð Þ ¼
0 for x � 1;

1þ x� 1ð Þ�2
h i�1

; for x > 1:

(
ð6Þ

If x � 1, such as x = 1, then with the use of equation (6),
mA(x = 1) = 0, which means the grade of membership of
x(= 1) in A( = {xjx 
 1}) is 0. If x > 1, such as x = 10, then
with the use of equation (6), mA(x) = 0.987805, which means
the grade of membership of x(= 10) in A(= {xjx 
 1}) is
0.987805. While x = 1000, then with the use of equation (6),
mA(x) = 0.999999, which means the grade of membership of
x(= 1000) in A(= {xjx 
 1}) is 0.999999.

2.4. Degree of Relative Membership and Relative
Membership Function in Engineering Fuzzy Set Theory

[17] Chen [1998] extended Zadeh’s fuzzy set theory and
named it engineering fuzzy set theory (EFST), which
provides a new way to ascertain the membership degree
and membership function. Consider a fuzzy subset A

�
A in

the domain of interest. Let two apices of A
�
take on 0 and 1

to form a continuum on the closed interval [0, 1]. Then, for
establishing a reference system on the number axis of this
continuum, let a couple of arbitrary points of the reference
system as the two apices of its coordinate take on 0 and 1.
This leads to a reference continuum on the number axis
[0, 1] of the reference system. A number m

A
�

(u), 8 u 2 U,

is designated in the reference continuum and is named as
the relative membership degree of u to A

�
, and the

following mapping is named as the relative membership
function of A

�
:

mA
�
: U ! 0; 1½ �

uj ! mA
�
uð Þ 2 0; 1½ �:

)
ð7Þ

[18] For example, in the field of water quality evaluation,
such as evaluation of eutrophication, two types of classi-
fication indices exist. One type of index is the descending
classification index, such as chlorophyll a (chl a), total
phosphorous (TP), total nitrogen (TN), and chemical oxy-
gen demand (COD). The larger the values of these classi-
fication indices are, the higher the nutrient level is. The
other type is the ascending classification index, such as
Secchi disc depth (SD); the larger the values of these
classification indices are, the lower the nutrient level is.
[19] As to the descending classification indices, if the

relative membership degree is used, then the following is
stated: (1) In class 1, the relative membership degree si1 = 0,
which is of the standard concentration yi1 of classification
index i toward the evaluation concept A

�
. (2) In class c, the

relative membership degree sic = 1, which is of the standard
concentration yic of classification index i toward this eval-
uation concept A

�
. Then the relative membership degree

denoted by sih, which is of the standard concentration yih
of classification index i in class h, can be expressed with the
use of a linear relation as

sih ¼
yih � yi1

yic � yi1
: ð8Þ

[20] It is the same for the ascending classification indices.

3. Hybrid Fuzzy and Optimal Evaluation Models
for Eutrophication

3.1. Data Processing

[21] Let the number of classification standard for the
evaluation of lake eutrophication be denoted by c, the
number of evaluation classification index be denoted by
m, and the concentration value of each index of the
classification standard be denoted by yih. Then a matrix of
concentration values can be constructed and denoted as
Y: [yih]m�c with dimensions of evaluation classification
index m and classification standard c:

Y ¼

y11 y12 � � � y1c
y21 y22 � � � y2c

� � � � � � � � � � � � � � � � � �
ym1 ym2 � � � ymc

2
664

3
775 ¼ yih½ �m�c: ð9Þ

[22] For example, in China, Shu [1990] defined the
trophic state as a function of nutrient levels, where chloro-
phyll a (chl a), total phosphorous (TP), total nitrogen (TN),
chemical oxygen demand (COD) and Secchi disc depth
(SD) are the classification indices, as shown in Table 1.
Now there are n water samples for evaluation. In each
sample there are monitored values xij of the m classification
index. Then the matrix of monitored concentration values of
these samples can be obtained as

X ¼

x11 x12 � � � x1n
x21 x22 � � � x2n

� � � � � � � � � � � � � � � � � �
xm1 xm2 � � � xmn

2
664

3
775 ¼ xij

� �
m�n

: ð10Þ
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[23] Using equation (8), the matrix of concentration val-
ues Y given by equation (9) for the evaluation of eutrophi-
cation and classification standard can be transformed to the
matrix of concentration values of the relative membership
degree with the classification standard S

�
: [sih]m�c as

S
�
¼

s11 s12 � � � s1c
s21 s22 � � � s2c

� � � � � � � � � � � � � � � � � �
sm1 sm2 � � � smc

2
664

3
775 ¼ sih½ �m�c: ð11Þ

[24] A monitored value xij can be transformed to the
corresponding relative membership degree rij as

rij ¼
1 xij > yic
xij � yi1

yic � yi1
yi1 � xij � yic

0 xij < yi1

8><
>: ð12Þ

or

rij ¼
1 xij < yic
xij � yi1

yic � yi1
yi1 � xij � yic

0 xij > yi1

:

8><
>: ð13Þ

[25] Consequently, the matrix of monitored values in the
samples for evaluation, X: [xij]m�n, is transformed to the
matrix of monitored values of the relative membership
degree R

�
: [rij]m�n as

R ¼

r11 r12 � � � r1n
r21 r22 � � � r2n

� � � � � � � � � � � � � � � � � �
rm1 rm2 � � � rmn

2
664

3
775 ¼ rij

� �
m�n

: ð14Þ

[26] Furthermore, in order to determine the trophic state
in China, five classification indices are used, namely,
chlorophyll a (chl a), total phosphorous (TP), total nitrogen
(TN), chemical oxygen demand (COD), and Secchi disc
depth (SD), as shown in Table 1. Nevertheless each classi-
fication index takes on a different role in determining the
nutrient level. Thus the influence weight of each evaluation
classification index is introduced. For example, chl a index
plays the most important role among the five, so the
influence weight of the chl a index should be the maximum
(max). The influence weight of each evaluation classifica-
tion index can be denoted with the use of classification
index weight vector v

*
as

v
*¼ v1; v2; � � � ; vmð ÞXm
i¼1

vi ¼ 1:

8><
>: ð15Þ

[27] Now the synthesis weight matrix A: [vi vij]m�n can be
constructed as

A ¼

v1 0 � � � 0

0 v2 � � � 0

� � � � � � � � � � � � � � � � � �
0 0 � � � vm

2
664

3
775

�

r11 r12 � � � r1n
r21 r22 � � � r2n

� � � � � � � � � � � � � � � � � �
rm1 rm2 � � � rmn

2
664

3
775

¼

v1r11 v1r12 � � � v1r1n
v2r21 v2r22 � � � v2r2n

� � � � � � � � � � � � � � � � � �
vmrm1 vmrm2 � � � vmrmn

2
664

3
775 ¼ virij

� �
m�n

:

ð16Þ

[28] Similarly, when A returns to 1 according to its
column, the classification index synthesis weight matrix W,
[wij]m�n, can also be constructed as

W ¼

w11 w12 � � � w1n

w21 w22 � � � w2n

� � � � � � � � � � � � � � � � � �
wm1 wm2 � � � wmn

2
664

3
775 ¼ wij

� �
m�n

ð17Þ

wij ¼
virijXm

i¼1

virij

Xm
i¼1

wij ¼ 1 j ¼ 1; 2; � � � ; n

8>>>>><
>>>>>:

ð18Þ

[29] If the matrix of relative membership degrees of n
samples toward class c is U

�
: [uhj]c�n,

U
�

¼

u11 u12 � � � u1n
u21 u22 � � � u2n

� � � � � � � � � � � � � � � � � �
uc1 uc2 � � � ucn

2
664

3
775 ¼ uhj

� �
c�n

ð19Þ

then the first constraint condition is

Xc
h¼1

uhj ¼ 1

uhj � 0; j ¼ 1; 2; � � � ; n
:

8><
>: ð20Þ

[30] Many matrices, such as U
�

:[uhj]c�n consistent with

equation (20), can be obtained. The objective of this study is
to obtain an exclusive fuzzy optimal matrix U

�
:[uhj]c�n.

Table 1. Trophic State as a Function of Nutrient Levels as Defined by Shu [1990] in China

Trophic State Chl a, mg/m3 TP, mg/m3 TN, mg/m3 COD, mg/L SD, m

Oligotrophic <1.0 <2.5 <30 <0.3 >10.0
Oligo-meso 2.0 5.0 50 0.4 5.0
Mesotrophic 4.0 25 300 2.0 1.5
Meso-eutro 10 50 500 4.0 1.0
Eutrophic 65 200 2000 10 0.4
Worse than eutrophic >160 >600 >6000 >25 <0.3
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3.2. Hybrid Fuzzy and Optimal Evaluation Model I

[31] Matrix U
�

:[uhj]c�n entails both randomness and
fuzziness. In fact, the randomness here occurs at least
for two reasons: (1) randomness during evaluation, and
(2) random error in observed values. Here the random-
ness during evaluation is considered using the concept of
relative membership degree.
[32] The uhj term denotes the relative membership degree

of sample j belonging to class h. If uhj is treated as the
probability of sample j belonging to class h, then the
Shannon entropy can be employed to assess this stochastic
uncertainty as

Hj ¼ �
Xc
h¼1

uhj ln uhj: ð21Þ

[33] The difference of sample j belonging to class h can
be expressed as a generalized weighted distance 1Dhj as

1Dhj ¼ uhj
1dhj ¼ uhj

Xm
i¼1

wij rij � sih
� �� �p( )1

p

; ð22Þ

where p is a distance parameter. When p = 2, it is named the
Euclidean distance, which is often used.
[34] The [uhj]c�n matrix should minimize the sum of

generalized weighted distances of whole samples to each
class of the classification standard, namely,

min
uhj

1 D ¼
Xn
j¼1

Xc
h¼1

uhj
Xm
i¼1

wij rij � sih
� �� �p( )1

p

s:t:

Xc
h¼1

uhj ¼ 1

uhj � 0; j ¼ 1; 2; � � � ; n

8><
>:

ð23Þ

[35] On the basis of the principle of maximum entropy
(POME), the [uhj]c�n matrix should also maximize the
Shannon entropy, namely,

max
uhj

H ¼
Xn
j¼1

�
Xc
h¼1

uhj ln uhj

 !

s:t:

Xc
h¼1

uhj ¼ 1

uhj � 0; j ¼ 1; 2; � � � ; n

ð24Þ
8><
>:

[36] Equations (23) and (24) constitute a dual-objective
programming problem, which can be solved using a weight-
ing method, a constraint method, or a hybrid method. In this
study, the weighting method was used. Thus a single-
objective programming is constructed as follows:

min
uhj

Y ¼ 1Dþ 1

h1
H ¼

Xn
j¼1

Xc
h¼1

� uhj
Xm
i¼1

wij rij � sih
� �� �p( )1

p

þ 1

h1
uhj ln uhj

8<
:

9=
;

s:t:

Xc
h¼1

uhj ¼ 1

uhj � 0; j ¼ 1; 2; � � � ; n

ð25Þ8>><
>>:

where h1 is the weighting factor.

[37] The optimal solution of equation (25) should be
consistent with the Kuhn-Tucker conditions [Cohon, 1978].
By changing the value of h1, and solving equation (25)
iteratively, a noninferior solution can be derived. The
Lagrange function of this programming problem is

L uhj;l1

� �
¼
Xn
j¼1

Xc
h¼1

uhj
Xm
i¼1

wij rij � sih
� �� �p( )1

p

þ 1

h1
uhj ln uhj

8<
:

9=
;

þ l1

Xc
h¼1

uhj � 1

 !
; ð26Þ

where l1 is the Lagrange multiplier.
[38] By differentiating equation (26) with respect to uhj

and equating to zero, one obtains

@L

@uhj
¼

Xm
i¼1

wij rij � sih
� �� �p( )1

p

þ 1

h1
ln uhj þ 1
� �

þ l1 ¼ 0: ð27Þ

Equation (27) results in

uhj ¼ exp �h1
Xm
i¼1

wij rij � sih
� �� �p( )1

p

� h1l1 � 1

2
4

3
5: ð28Þ

[39] By differentiating equation (26) with respect to l1
and equating to zero, one obtains

@L

@l1

¼
Xc
h¼1

uhj � 1 ¼ 0 ð29Þ

[40] Equation (28) and equation (29) yield

exp � h1l1 þ 1ð Þ½ � ¼
Xc
h¼1

exp �h1
Xm
i¼1

wij rij � sih
� �� �p( )1

p

2
4

3
5

0
@

1
A
�1

:

ð30Þ

[41] By inserting equation (30) in equation (28), one
obtains

uhj ¼ exp �h1
Xm
i¼1

wij rij � sih
� �� �p( )1

p

2
4

3
5

�
Xc
h¼1

exp �h1
Xm
i¼1

wij rij � sih
� �� �p( )1

p

2
4

3
5

0
@

1
A

�1

: ð31Þ

[42] This is the hybrid fuzzy and optimal evaluation
model based on the fuzzy set theory and entropy.

3.3. Hybrid Fuzzy and Optimal Evaluation Model II

[43] The difference of sample j belonging to class h can
be also expressed as generalized weighted distances 2Dhj as

2Dhj ¼ uhj
2dhj ¼ uhj

Xm
i¼1

wij rij � sih
    � �" #

: ð32Þ

ð24Þ

;
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In the same way as above, a single-objective programming
is constructed as

min
uhj

Y ¼ 2Dþ 1

h2
H

¼
Xn
j¼1

Xc
k¼1

uhj
Xm
i¼1

wij rij � sih
    � �" #

þ 1

h2
uhj ln uhj

( )

s:t:

Xc
h¼1

uhj ¼ 1

uhj � 0; j ¼ 1; 2; � � � ; n

8<
:

;

where h2 is the weighting factor.
[44] The Lagrange function of this programming problem

is

L uhj;l2

� �
¼
Xn
j¼1

Xk
h¼1

uhj
Xm
i¼1

wij rij � sih
    � �" #

þ 1

h2
uhj ln uhj

( )

þ l2

Xk
h¼1

uhj � 1

 !
; ð34Þ

where l2 is the Lagrange multiplier.
[45] Differentiating equation (34) with respect to uhj and

equating to zero, one obtains

@L

@uhj
¼
Xm
i¼1

wij rij � sih
    � �

þ 1

h2
ln uhj þ 1
� �

þ l2 ¼ 0: ð35Þ

Equation (35) results in

uhj ¼ exp �h2
Xm
i¼1

wij rij � sih
    � �

� h2l2 � 1

" #
: ð36Þ

[46] Differentiating equation (34) with respect to l2 and
equating to zero, one obtains

@L

@l2

¼
Xc
h¼1

uhj � 1 ¼ 0: ð37Þ

[47] Equation (36) and equation (37) yield

exp � h2l2 þ 1ð Þ½ � ¼
Xc
h¼1

exp �h2
Xm
i¼1

wij rij � sih
    � �" # !�1

:

ð38Þ

[48] Inserting equation (38) in equation (36), one obtains

uhj ¼ exp �h2
Xm
i¼1

wij rij � sih
    � �" #

�
Xc
h¼1

exp �h2
Xm
i¼1

wij rij � sih
    � �" # !�1

: ð39Þ

[49] This is the hybrid fuzzy and optimal evaluation
model II.

4. Application

4.1. Study Sites

[50] For the past three decades, enormous changes have
been occurring at virtually all levels in China. The increase
in population and the need for economic growth have
inevitably accelerated more development projects, especially

water resources development and utilization projects. How-
ever, the rapid pace of development has environmental
consequences. For example, pollution in waterways and
reservoirs has increased significantly. For example, for
12 lakes and reservoirs employed in this study, monitored
values of eutrophication indices are listed in Table 2 [Shu,
1990]. These lakes are important to the local environment
and human lives in China.

4.2. Data

[51] In China the Ministry of Water Resources of China
and State Environmental Protection Administration of Chi-
na have professionals whose primary responsibility is to
collect water quality data. These data are subject to a variety
of national standards and professional standards, such as
those of the State Environmental Protection Administration
of China [2002] and of Ministry of Water Resources of
China [1999, 1998, 1994], etc., which assure and control
the quality of the data. These standards also regulate
sampling, monitoring, inspecting, analyzing, and experi-
menting of water quality data in a comprehensive manner.
The data used in this study are mainly from branches of the
Ministry of Water Resources of China and the State Envi-
ronmental Protection Administration of China. These data
have been used for a variety of research endeavors, such as
the discussion of methods for evaluation of eutrophication
of Chinese lakes [Shu, 1990], the use of fuzzy set theory for
the assessment for lake and reservoir eutrophication [Chen
and Xiong, 1993], and so on.

4.3. Application of Models

[52] Using the monitored values of eutrophication indices
of lakes and reservoirs in Table 2, step by step application of
the models is outlined: (1) With the use of equation (8), sih
is obtained. (2) With the use of equations (12) and (13), rij is
obtained. (3) With the use of equations (16), (17), and the
following v

*
, wij is obtained:

~v ¼ r1j jXm
i¼1

ri

;
r2j jXm

i¼1

ri

; � � � ; rmj jXm
i¼1

ri

2
6664

3
7775;

where r1, r2, � � � , rm is the correlation coefficient of the
index m to chlorophyll a (chl a). The correlation coefficient
of the index chl a to itself is 1, and then its weight is greater
than any other from the above equation. Here the same
classification index weight vector v

*
as Shu’s [1990] is

adopted as ~v = (0.233,0.217,0.189,0.210,0.151). (4) With
the use of equation (31), taking p = 2, which means the
Euclidean distance, the values of the hybrid fuzzy and
optimal evaluation model I are obtained and showed in
Table 3.
[53] Taking sample 6 as an example, the relative mem-

bership degree of 6 to the trophic state O (oligotrophic) is 0,
the relative membership degree to the trophic state O-M
(oligo-meso) is 0.0003, the relative membership degree to
the trophic state M (mesotrophic) is 0.0710, the relative
membership degree to the trophic state M-E (meso-eutro) is
0.1610, the relative membership degree to the trophic state

ð33Þ
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E (eutrophic) is 0.7668, and the relative membership degree
to the trophic state W-E (worse than eutrophic) is 0.0009.
Thus the trophic state of 6 is eutrophic using the fuzzy and
optimal evaluation model I.
[54] In step 4 using equation (39), the values of the hybrid

fuzzy and optimal evaluation model II are also obtained and
shown in Table 4.

4.4. Model Verification

[55] The results of evaluation of eutrophication obtained
by the use of hybrid fuzzy and optimal models I and II are
given in Table 5. The results of evaluation with the use of
the fuzzy model [Chen and Xiong, 1993], in which only
fuzziness is taken into account, are also given in Table 5.
The results produced from model I and model II are almost
the same, and the results produced from these two models
are consistent with field surveys.
[56] Contrasting with Chen and Xiong’s fuzzy model, the

results produced from model I and model II are more
informative. For example, for samples 2, 4, and 6, models
I and II provide more information about the eutrophication
status. With these two models, the trophic state of 2 is
M (mesotrophic) and partial M-E (meso-eutro), while with
Chen and Xiong’s fuzzy model, the trophic state is just
M (mesotrophic). The trophic state of 4 is M-E (meso-eutro)

and partial M (mesotrophic) using these two models, while
with Chen and Xiong’s fuzzy model, the trophic state is just
M-E (meso-eutro). The trophic state of 6 is E (eutrophic)
and partial M-E (meso-eutro) using these two models, while
with Chen and Xiong’s fuzzy model, the trophic state is just
E (eutrophic).
[57] The Shannon entropy of eachmodel is given in Table 6.

The Shannon entropy values of model I and model II are less
than Chen and Xiong’s fuzzy model, except for samples 4, 5,
and 6. This means less uncertainty and more reliability of
models I and II.

4.5. Discussion of Results

[58] Eutrophication has recently become a severe prob-
lem in the world. The government agencies need to make
decisions to protect and treat water bodies. That is the
reason that an accurate, comprehensive, and reliable evalu-
ation of the status of water quality takes on an added
importance and this is a growing area of research these
days. Uncertainties, including randomness and fuzziness,
are ubiquitous in water quality assessment and management.
This study improves the evaluation method and advances
the awareness of the need for properly incorporating uncer-
tainty estimates into the understanding of environmental

Table 2. The Monitored Values of Eutrophication Indices of Lakes and Reservoirs in Chinaa

Number
Name of Lake or

Reservoir Chl a, mg/m3 TP, mg/m3 TN, mg/m3 COD, mg/L SD, m

1 Qionghai 0.88 130 410 1.43 2.98
2 Erhai 4.33 21 180 3.38 2.40
3 Bositeng Lake 4.91 50 969 5.42 1.46
4 Yuqiao Reservoir 16.20 26 1,020 5.16 1.16
5 Cihu Lake 15.38 87 1,540 4.40 0.65
6 Chaohu Lake 14.56 140 2,270 4.34 0.27
7 Gantang Lake 77.70 135 2,140 6.96 0.36
8 Mogu Lake 82.40 332 2,660 14.60 0.49
9 West Lake in Hangzhou 95.94 136 2,230 10.18 0.37
10 Xuanwu Lake in Nanjing 202.10 708 6,790 8.86 0.31
11 Moshui Lake in Wuhan 262.40 500 16,050 13.60 0.15
12 Dongshan Lake in Guangzhou 185.10 670 7,200 14.80 0.26

aFrom Shu [1990].

Table 3. The Values of the Hybrid Fuzzy and Optimal Evaluation Model I for 12 Lakes and Reservoirs in Chinaa

Number
Name of Lake or

Reservoir O O-M M M-E E W-E

1 Qionghai 0 0.1470 0.5918 0.2118 0.0487 0.0007
2 Erhai 0 0.0050 0.7875 0.1815 0.0239 0.0021
3 Bositeng Lake 0 0.0003 0.4777 0.4499 0.0717 0.0004
4 Yuqiao Reservoir 0 0.0001 0.3403 0.5928 0.0664 0.0003
5 Cihu Lake 0 0.0002 0.1866 0.4860 0.3264 0.0007
6 Chaohu Lake 0 0.0003 0.0710 0.1610 0.7668 0.0009
7 Gantang Lake 0 0.0006 0.0132 0.0258 0.9595 0.0008
8 Mogu Lake 0 0.0014 0.0078 0.0176 0.9613 0.0118
9 West Lake in Hangzhou 0 0.0007 0.0065 0.0133 0.9775 0.0019
10 Xuanwu Lake in Nanjing 0 0 0 0 0.0002 0.9998
11 Moshui Lake in Wuhan 0 0 0 0 0.0012 0.9988
12 Dongshan Lake in Guangzhou 0 0 0 0 0.0003 0.9997

aAbbreviations of trophic states: O, oligotrophic; O-M, oligo-meso; M, mesotrophic; M-E, meso-eutro; E, eutrophic; W-E, worse than
eutrophic.
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quality. Thus more information with less uncertainty can be
offered and used for better environmental decision making.
[59] More attention should be paid to two issues:
[60] 1. The first issue is data. The hybrid approach as well

as the other three approaches mentioned in the introduction
section are all data-based modeling approaches. They must
be based on high-quality data with explicit recognition of
spatial and temporal heterogeneity of hydrologic and envi-
ronmental processes. To that end, adequate and accurate
measurements are vital. On the other hand, assessment of
data uncertainty and its effect on the evaluation should be
emphasized more and more during each assessment and
management. Otherwise, regardless of advances being made
in modeling approaches, it may still be possible to get the
‘‘right answer for the wrong reasons’’ [Kirchner, 2006]. For
example, in the case of the stochastic observation error of
the data, most studies merely take the influence of physical
weight of the observed index on the water-environment
evaluation into account, but the influence of stochastic
observation error is ill-considered. It has been found that
the stochastic observation error of the data can even change
the grades of evaluation in another study.
[61] 2. The second issue is subjectivity. Randomness and

fuzziness are two uncertainties in water quality assessment
and management. The trophic status classifications are well

known to be fuzzy around their boundaries, and the relation-
ships between the parameters [Vollenweider et al., 1998] are
known to be stochastic. Since the assessment results
obtained from considering only one uncertainty may easily
mislead or bias the user, this study provides a useful
approach to integrating randomness and fuzziness to deter-
mine the trophic status of lakes and reservoirs. At the same
time, subjectivity should be given special attention. For
example, one of the main reasons that people are concerned
about lake water quality is offensive odors, while bad smells
from a lake may or may not be due to water quality
problems per se. Thus the value of an objective measure
of eutrophic status has some inherently subjective compo-
nents. Such subjective judgments involved represent an
important and a challenging environmental research topic.

5. Conclusions

[62] Considering both randomness and fuzziness in water
quality evaluation, generalized weighted distances are
defined, and models for quality evaluation based on the
principle of maximum entropy (POME) and engineering
fuzzy set theory (EFST) are developed. Application of the
models to the determination of the trophic level of 12 lakes
and reservoirs in China shows that the proposed models are

Table 4. Values of the Hybrid Fuzzy and Optimal Evaluation Model II for 12 Lakes and Reservoirs in Chinaa

Number
Name of Lake or

Reservoir O O-M M M-E E W-E

1 Qionghai 0 0.1671 0.4902 0.2770 0.0655 0.0002
2 Erhai 0 0.0274 0.6622 0.2875 0.0225 0.0004
3 Bositeng Lake 0 0.0028 0.4936 0.4552 0.0484 0
4 Yuqiao Reservoir 0 0.0020 0.3234 0.6315 0.0430 0.0001
5 Cihu Lake 0 0.0017 0.1849 0.5747 0.2385 0.0002
6 Chaohu Lake 0 0.0011 0.0752 0.2250 0.6982 0.0005
7 Gantang Lake 0 0.0004 0.0105 0.0321 0.9576 0.0003
8 Mogu Lake 0 0.0002 0.0024 0.0076 0.9849 0.0049
9 West Lake in Hangzhou 0 0.0002 0.0038 0.0116 0.9893 0.0005
10 Xuanwu Lake in Nanjing 0 0 0 0 0.0001 0.9999
11 Moshui Lake in Wuhan 0 0 0 0 0.0005 0.9995
12 Dongshan Lake in Guangzhou 0 0 0 0 0.0001 0.9999

aAbbreviations of trophic state: O, oligotrophic; O-M, oligo-meso; M, mesotrophic; M-E, meso-eutro; E, eutrophic; W-E, worse than
eutrophic.

Table 5. Comparison of Eutrophication Evaluation of Lakes and Reservoirs in China Using Fuzzy and Optimal Model I

and II With Fuzzy Model of Chen and Xiong [1993]a

Number
Name of Lake
or Reservoir

Hybrid Fuzzy
and Optimal Model I

Hybrid Fuzzy
and Optimal Model II

Fuzzy Model of
Chen and Xiong [1993]

1 Qionghai M M M
2 Erhai M (partial M-E) M (partial M-E) M
3 Bositeng Lake M (partial M-E) M (partial M-E) M-E (partial M)
4 Yuqiao Reservoir M-E (partial M) M-E (partial M) M-E
5 Cihu Lake M-E (partial E) M-E (partial E) M-E (partial E)
6 Chaohu Lake E (partial M-E) E (partial M-E) E
7 Gantang Lake E E E
8 Mogu Lake E E E
9 West Lake in Hangzhou E E E
10 Xuanwu Lake in Nanjing W-E W-E W-E
11 Moshui Lake in Wuhan W-E W-E W-E
12 Dongshan Lake in Guangzhou W-E W-E W-E

aAbbreviations of trophic state: O, oligotrophic; O-M, oligo-meso; M, mesotrophic; M-E, meso-eutro; E, eutrophic; W-E, worse than
eutrophic.
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an effective tool for diagnosing the eutrophic status of lake
waters. From the results of this study, the following con-
clusions are drawn:
[63] 1. Although the evaluation of eutrophication of very

different waters is hard to achieve, the two fuzzy and
optimal models generate more acceptable alternatives,
which are useful for objectively determining the trophic
level.
[64] 2. The hybrid approach is appropriate for taking both

randomness and fuzziness into account in the water quality
evaluation and to characterize a highly uncertain, heteroge-
neous, and dynamic water-environmental system. As the
case study shows, the hybrid approach can provide more
information than considering just one uncertainty, such as
fuzziness.
[65] 3. The hybrid approach possesses smaller uncertainty

and more reliability as indicated by the Shannon entropy of
each model.
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