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A Distributed Converging Overland Flow Model 
3. Application to Natural Watersheds 

VIJAY P. SlNGH 

New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 

The proposed distributed converging overland flow model is utilized to predict surface runoff from 
three natural agricultural watersheds. The Lax-Wendroff scheme is used to obtain numerical solutions. 
For determination of the kinematic wave friction relationship parameter a simple relation between the 
parameter and topographic slope is hypothesized. The simple relation contains two constants which are 
optimized for each watershed by the Rosenbrock-Palmer optimization algorithm. The model results are in 
good agreement with runoff observations from these watersheds. It is shown that if the model structure is 
sound, it will suffice to optimize model parameters on hydrograph peak only even for prediction of the 
entire hydrograph. The model results suggest that a distributed approach to kinematic wave modeling of 
watershed surface runoff is potentially promising and warrants further investigation. 

INTRODUCTION 

In part 1 of this series we developed mathematical solutions 
for nonlinear watershed runoff dynamics. In part 2 we de- 
scribed the effect of infiltration on the runoff process. In the 
present paper, the concluding part of the series, we apply the 
proposed model to natural agricultural watersheds and exam- 
ine its predictive performance in relation to surface runoff 
observations from these watersheds. 

In part I we noted that analytical solutions are not feasible 
for time-varying (complex) rainfall input. The most practical 
method is to utilize hybrid solutions. For a complete dis- 
cussion on hybrid solutions, see the work by Singh [1974, 
1975a]. We will only give numerical solutions here. The cou- 
pling of the continuity equation and the kinematic approxima- 
tion to the momentum equation [Singh, 1974] yields 

Oh _3_ na(x)h•_ • Oh h,• Oo•(x) a(x)h" ot • + Ox - q(x' t) + ( œ - x) (•) 
where h is the depth of flow; L is the length of the converging 
section; q(x, t) is the rate of effective lateral inflow per unit 
area, varying in time and space; x is a space coordinate; t is a 
time coordinate; n is an exponent fixed at 1.5 [Singh, 1975b]; 
and a(x) is the kinematic wave friction relationship parameter, 
varying in space. The Lax-Wendroff scheme [Houghton and 
Kasahara, 1968], which has been successfully used in many 
investigations on kinematic wave modeling of watershed run- 
off [Kibler and Woolhiser, 1970; Singh, 1974, 1975a], is form u- 
lated to solve (1). 

We can write 

Oh _ --a(x)nh"-' Oh Oa(x) a(x)h" Ot Ox Ox -T- q(x, t)q- (L -- x) (2) 
Expanding h(x, t + At) by Taylor series, we get 

Oh (•Xt)'-' 
h(x, t -T- At)-- h(x, t)-T- Ate- -T- 2 Ot-+ Ho•, (3) 
where Hot denotes higher-order terms. Differentiating (2) with 
respect to t, we get 

021, 0 ( h,,_, Oh ) Oo•(x) , Oh 
a(x)nh"-' Oh + Oq(x, t) + •-•- _-- •c-)- at (4) ot 
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Inserting (2) and (4) into (3) and neglecting Hot, we obtain 

h(x, t -Jc At) : h(x, t) q- At[--na(x)h '•-• Oh Ox 

_ h,• O•(x) + •(x, t) + + ---- --c•(x) 0 Ox ( L -- x)J Ox 

'( nh'•-' ?tt) Oa(x) _, Oh Ox nh" Ot 

+ oq,:x, t) l;1 at + •- -• •c• ot_] (5) 
Writing (5) in a compact form, we get 

I 0 h" h,• Oa(x) h(x, t + Zt) -- h(x, t) + --•(x) • Ox 

+ q(•, t) + (Z'Z •r)J •xt + (•xt)'-'• h"-' 

[ 0•(•) , •(x) l} ß 0• (//- i•)j + 

{Oq(x' t)-- a(x) 0 [ '( -- ß Ot •xx nh"- --a(x) Oh" Ox 

-- h"-•- x -T- q(x, t) -T- (L -- x)/ (6) 
Following the notation in Figure 1, we can write (6) in finite 

difference form as 
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i- , '"+h;". , a •. 
ß 

ZXx 2 

2 2 2 

2 )]) , [2L -- (xi+l + x, •x 

.hi + hi-, . _ a, + 
2 2 

hi -- hi_• _ i + h,_•" , -- 
, 

•x 2 •x 

2 

.h•' + h,_, 2 (7) 
' 2 [2L-- (x• +x,_,)] 

Assume that the depth of flow is to be determined at N 
nodal pointsß Then the depth of flow at nodal points j = 1, 2, 
ß .., (N - 1) will be computed by the scheme in (7) in con- 
junction with the following boundary conditions: 

h(O, t) = 0 h(x, t) = 0 (•) 

Equation (8) represents an initially dry surface. The finite 
difference scheme of (7) is explicit, second order, and single 
step. The depth of flow at the downstream boundary 0' = N) 
can be computed by the first-order scheme. That is, 

h(x, t + at) = h(x, t) + at at/at (9) 

Substituting (2) into (9), we get 

h(x t + •t)= h(x t)+ •t•--a(x) Oh" • • OX 

- h"O•?•+q(x t)+ ..... 
ox ' (L -- x• 

(lO) 

Writing the difference form of (10), we get 

hx '+• = hN' -Jr- At --ax' hN' -- h•_• Ax 

These numerical schemes can be combined with analytical 
solutions in an appropriate manner to yield hybrid solutions 
[Singh, 1974, 1975a]. It must be pointed out that the Lax- 

Fig. 1. Notation for finite difference scheme. 

I.-' / r'•/ /7--"----.. • ''/-- 

', •g•ng 
• S•of•on 

',, 
>, 

• • . '• • Drainage Area 

-- Watershed Bnundary 
• Contours • meter 

e Recording Rain gage 

SCALE 

298 

meters 

Fi•. 2. Watershed W-2, Eicscl (Waco), Texas. 

Wendraft scheme is one of the most popular numerical 
schemes for solving partial differential equations of hyperbolic 
type. Because of its explicit nature it is only conditionally 
stable. The criterion for its conditional stability is derived in 
Appendix A. The observance of this criterion automatically 
ensures its convergence. For an elaborate discussion on nu- 
merical stability and convergence, see Mitchell [1969] and 
Smith [1965]. 

APPLICATION TO NATURAL WATERSHEDS 

The distributed converging overland flow model was applied 
to three natural agricultural watersheds near Riesel (Waco), 
Texas. They include watershed W-2, 53 ha in area, as is shown 
in Figure 2: watershed W-16, 17 ha in area, as is shown in 
Figure 3; and watershed G, 1772 ha in area, as is shown in 
Figure 4. Deep fine-textured granular slowly permeable alka- 
line throughout and slow internal drainage are typical charac- 
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Fig. 3. Watershed W-6, Riesel (Waco), Texas. 
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Fig. 4. Watershed G, Riesei (Waco), Texas. 

teristics of the soils in these watersheds. The dominance of 
Houston black clay is notable. These soils are also noted for 
the formation of large extensive cracks upon drying. Surface 
drainage is usually good, but no we!l-defined drainageways 
exist on these watersheds. Normally, water is drained by rills 
and poorly defined field gullies. 

Most of the time these watersheds are covered with agricul- 
tural crops. Because of the low permeability of the soils, these 
watersheds respond rapidly to rainfall and produce quickly 
rising hydrographs. For the rainfall events that were consid- 
ered in this study most of the rainfall was observed as surface 
runoff, and infiltration was only minor. For a more complete 
discussion of these watersheds and rainfall-runoff data 
thereon, see publications of the U.S. Department of Agricul- 
ture on hydrologic data of experimental agricultural water- 
sheds in the United States. These publications appear almost 
every year and contain, on the average, one event per water- 
shed. 

Determination of rainfall excess. Rainfall excess forms in- 

1957], which can be written as 

f-- a + bt -ø'5 (12) 

where f is the infiltration loss rate, t is time, and a and b are 
parameters dependent on soil characteristics and initial soil 
moisture conditions. These parameters vary from one storm to 
another for the same watershed and from one watershed to 
another for the same storm. H owevet, parameter a was consid- 
ered roughly equivalent to steady infiltration and was thus 
rendered amenable to determination from physical character- 
istics of the soil. Parameter b was allowed to vary with each 
rainfall episode, antecedent soil moisture conditions thus 
being accounted for. Parameter b was estimated for each storm 
by Newton's algorithm [Conte, 1965], subject to the preserva- 
tion of the volume continuity of flow. In a recent study [Singh, 
1974] these parameters were specified for all available events 
on these watersheds. We utilized these results in the present 
study. 

Geometric representation. The objective is to transform the 
put to the model. We do recognize that the concept of rainfall geometry of a natural watershed into a simpler geometry hav- 
exzess is more an artifice than a reality. The processes of ing a similar hydrologic response. The only perfect representa- 
rainfall, infiltration, and runoff occur concurrently in nature. tion of a watershed is, of course, the watershed itself. In studies 
Simultaneous consideration of these distinct processes injects 
intractable complexity in runoff modeling. It is therefore not 
surprising that despite this recognition a great many in- 
vestigators have utilized this artificial notion of rainfall excess 
in their investigations on rainfall-runoff modeling and that a 
great many continue to do so even today; in addition, very 
little attention has been paid to this fundamental problem. 

For simplicity we ourselves adhered to the traditional prac- 
tice. Infiltration was determined by Philip's equation [Philip, 

of the response characteristics of the linearly converging sec- 
tion [Woolhiser, 1969] it was suggested that such a geometry 
might be a useful abstraction of a watershed regardless of its 
complexity. This hypothesis was later incorporated in a study 
by Singh [1974, 1975a] and was found promising. Therefore 
the linearly converging section of a cone, as is shown in Figure 
5, was utilized to represent the geometry of a natural water- 
shed. From this figure it is apparent that the converging sec- 
tion geometry has four geometric parameters including L(1 - 
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Fig. 5. Geometry of converging overland flow model. 

r), r, 0, and So, where L(1 - r) is the length of flow, So is the 
slope, r is the parameter related to the degree of convergence, 
and 0 is the interior angle. Because of the radial symmetry, 0 
does not affect the relative response characteristics. It is neces- 
sary only to preserve the watershed area and is therefore 
dependent on L and r. The converging section geometry pos- 
sesses some interesting properties. 

1. Its discrete analog is, from a systems viewpoint, a sys- 
tem composed of a cascade of unequal nonlinear reservoirs. 

2. Its response is similar to that of a cascade of planes of 
decreasing size. 

3. The convergence may account for the concentration of 
runoff at the mouth of a natural watershed. 

The converging section geometry has three geometric pa- 
rameters, L(I - r), r, and 0, that need to be specified. Since the 
area of a watershed is usually known, only two parameters 
need to be estimated. The study [Singh, 1974] showed that for 
a watershed under consideration, parameter L(I - r)could be 
taken to be equal to the longest horizontal projection from the 
most remote portion of the watershed to the outlet and that 
parameter r could be taken to be equal to 0.01. Thus the 
topographic map of a watershed suffices to transform the 
natural geometry into a simpler geometry. 

Choice of objective function. The following objective func- 
tion, based on hydrograph peak, was used in the present study: 

M 

F: m in Y'• [Q,o (J) - Q,,e (J)]'2 (13) 

where F is the objective function or error criterion, Q,o0') 
is the observed hydrograph peak for thejth event, Qvew)j) is 
the estimated hydrograph peak for the jth event, and M is the 
number of events in the optimization set. The choice of this 
objective function is based on the findings of Kibler and Wool- 
hiser [1970] and Singh [1974, 1975a, b]. Besides its usefulness 
in flood studies and some statistical properties that it pos- 
sesses, it has the advantage that it does not suffer from the 

friction equation is used and the flow Reynolds number is 
high. 

For computational purposes the converging section geome- 
try was decomposed into several segments, for example, 10 
segments for watershed W-2, 11 segments for watershed W-6, 
and 10 segments for watershed G, as is shown in Figures 2-4. 
For each segment the weighted slope is known from the topo- 
graphic map. Two sets of rainfall-runoff events were selected 
for each of the three watersheds; one set was called the optimi- 
zation set, implying that the events in that set were used for 
optimization only, and the other set was named the prediction 
set, implying that those events were used for hydrograph pre- 
diction only. These two sets were mutually exclusive; that is, 
they did not have any events in common. The optimization 
sets consisted of five events each on watersheds G, W-2, and 
W-6. The prediction sets consisted of three events each on 
watersheds G, W-2, and W-6. The constants were obtained by 
optimization over the optimization set for each watershed. The 
optimization was performed by the Rosenbrock-Palmer al- 
gorithm [Rosenbrock, 1960; Himmelblau, 1972], utilizing the 
objective function of (13). The optimized values of constants c• 
and c•. were 3.3 and 4.95 for watershed G, 3.6 and 5.0 for 
watershed W-2, and 1.5 and 2.94 for watershed W-6. 

Hydrograph prediction. Through the utilization of opti- 
mized values of constants c• and c•., hydrograph predictions 
were made for the events in the prediction set of each water- 
shed. Sample predicted hydrographs are shown in Figures 6-8. 
On comparing predicted runoff peaks with observed runoff 
peaks, we found that they were in reasonable agreement. Hy- 
drograph time and shape characteristics were predicted quite 
well by the model, especially when its simplicity is considered. 
However, a few points prompt discussion. 

1. In some cases the error in the prediction of the hydro- 
graph peak was as high as about 50%, although in most cases it 
remained well below 20%. There might be several reasons for 
high prediction error. The following two reasons appear to be 
most prominent. First, the size of the optimization set is very 
small, and therefore we cannot hope to obtain representative 
values of constants c• and c•., especially since the rainfall- 
runoff events for each watershed under consideration repre- 
sent a long stretch of time, often 15 years or more. During this 
period of time several changes in land management and crop- 
ping pattern must have taken place on these watersheds. These 
changes can in no way be represented by such small samples as 
we have considered. Second, there is difficulty in determining 
rainfall excess, which in fact generated observed runoff. The 
determination of true rainfall excess seems to be the major 
problem in most rainfall-runoff models, and our model is no 
exception. Philip's equation, utilized in this study,, is too 
simple to predict the time distribution of infiltration accu- 

timing errors that result from improper synchronization of rately, and then there is the difficulty of estimating its parame- 
rainfall and runoff observations. ters. Our model was used primarily for its simplicity. 

Parameter optimization. A simple relation between param- 
eter a and topographic slope was considered: 

a(x) = c, + c•.[S(x)] '/•' (14) 

where S(x) is the topographic slope, varying in space and c• 
and c•. are parameters. These parameters will supposedly vary 
from one watershed to another. At present we can only hope 
to obtain them by the technique of optimization. The topo- 
graph slope varies in space, and so does parameter a corre- 
spondingly. The choice of this relation is based on recent 
studies conducted by Singh [1974, 1975c]. From a physical 
standpoint this relation will be valid if the Darcy-Weisback 

2. Figures 6-8 illustrate that our model predicts the time 
distribution of runoff quite well. We must note that the opti- 
mization of parameters cs and c•. employed an objective func- 
tion that was based on hydrograph peak only. Runoff timing 
was not considered explicitly, yet the hydrograph shape and 
time characteristics are well predicted. It seems to us that if the 
model structure is sound, it might suffice to perform optimiza- 
tion of parameters on some prominent characteristics of the 
runoff hydrograph even for the prediction of the entire hydro- 
graph; therefore there is no need to consider the entire hydro- 
graph explicitly in the optimization. 

Considering its simplicity the distributed converging over- 
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Fig. 6. Prediction of surface runoff hydrograph for rainfall event of 
April 24, 1957, on watershed W-2, Riesel (Waco), Texas. 

land flow model appears to be a promising tool. There is, 
however, a need For exhaustive testing of the proposed model 
on a number of natural watersheds in a variety of phys- 
iographic and climatic settings. Another aspect would be to 
investigate the problem of determining constants c• and cs 
From physically measurable watershed characteristics. IF the 
problem of a priori estimation of parameters c• and c•. can be 
tackled, the utility of the proposed model will be greatly en- 
hanced. 

CONCLUSION 

On the basis of the limited testing it can be safely argued 
that the proposed model is potentially promising and deserves 
further investigation. Its simplicity is sufficient to justify the 
above argument. The model is capable of predicting hydro- 
graph peak, time, and shape characteristics. The model re- 
quires specification of' parameters c• and c•., which need further 
investigation. 

APPENDIX A' STABILITY ANALYSIS 

Stability is essential for the convergence of a difference 
scheme. In an unstable scheme, small numerical errors in- 

troduced in the computational method are amplified and 
dominate the solution. A linear stability analysis For the Lax- 
Wendroff scheme is given. Although the method is not rigor- 
ous For nonlinear equations, it does identify the unsuitability 
of the difference scheme and determine the appropriate step 
For conditional stability. 

In a linear stability analysis it is assumed that instabilities 
first appear in a small region of space, so that if the coefficients 
of the derivative are smooth functions, they can be approxi- 
mated as constants in this region. We write (1) in a linearized 
form as 

Oh • Oh Oa(x) 
at +• nøt(x)•n- •xx + h•n-' Ox 

a(x)h n-' 
= q(x, t) -n L (A1) 

(L -- x) 

where h is a constant. Now at any point (/, k) the numerical 
solution hd equals the true solution h(/Ax, kAt) plus an error 
term •?. Thus we can write 

hj • = h(jAx, kAt) + •j• (A2) 

Since the system of (A1) and (A2) is linear, it may suffice to 
consider only one term of the Fourier series expression For the 
error term. That is, 

•u N = •0 exp [i(MaAx + N3, At)] (A3) 

where •0 is a constant, a and ? are wave numbers in space and 
time, and i = (-1)•/:. It is assumed that the errors are per- 
turbations added to the solution of the linear system. If the 
linearized finite difference equation is Written in terms of the 
correct solution plus the error term and then the exact solution 
is subtracted, a differential equation in the error terms can be 
obtained. That is, 

O• O• Oa(x) a(x)•h n-' 
O'--• + fiOL(x)hn-1 •XX + •hn-1 OX -- (L _ x) 

(A4) 

L Ox (L 

Equation (A4) can be written in a simplified form as 

O• + g(x) O• + l(x) = o (AS) 
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Fig. 7. Prediction of surface runoff hydrograph for rainfall event of March 29, 1965, on watershed W-6, Riesel (Waco), 
Texas. 
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Then we can write 

0e 

Ot -- - -- g(x) •xx -- el(x) (A6) 
0326 
.... g(x) • - g(x) • - 4(x) 

Oe _ •/(x)l -- f(x)I-- g(x) 
= g(x) g(x) o-• + • g'(x) + •/(x) 

Oe e/(x)l + ef'(x)] + f(x)[g(X)•x + (A7) 

From the Taylor series expansion of e(x, t + At), 

e(x, t -Jr- At) = e(x, t) 

0e (At)2 02e -Jr- O(At a) + /Xt•+ 2 0• i (A8) 

Substituting (A6) and (A7) in (A8) and neglecting higher- 
order terms, we get 

•(x, t + /xt) = •(x, t) - /xt g(x) • + •/(x) 

+ •f- g(x) g(x) 0•' + • g'(x) 

+ •/(x) + •/'(x) +/(x) g(x)• + •/(x) (A9) 

Writing (A9) in a simplified form, we get 

e(x, t q- At) = e(x, t) -Jr- (at)'/(x) 1 -at +-- - 
g(x) • + •/(x) + 2- g(x) 

ß g(x) o• + • [g'(x) + /(x)] + •/'(x)} (AlO) 
Expressing (A10) in Lax-Wendroff finite difference form, we 
get 

• = • + -at +---2--/(x) 

ß g(x) •+' - •-' + •/(x) + --2-- g(x) 2Ax 

I k k k k ß g(x) •i+• -- 2ei k + e•_, •+, -- •-• (•x)' + 2•x 

ß [g'(x) +/(x)] + • •/' (x) (A • •) 

Let M = N = 0 for the point O, k) (which we can do with no 
loss in generality); then 

e•+• = e0 exp (i7&t) e• = e0 

es-• = e0 exp (-ia&x) e•+• = e0 exp (ia&x) 

Substituting these expressions in (A 11) and dividing by •0, we 
get 

e = 1 + --•t + •--/(x) 

ß g(x) e -- e + f(x) + •--g(x) 2•x 

ß g(x)e -- 2 + e (•x)' 

+e --e 2ax [g'(x) +/(x)] +/'(x) 
With appropriate trigonometric substitutions, 

(A12) 

TABLE 1. Stability Criteria 

sin cos 

a•x aAx aAx Criterion 
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e = 1 + --At q- ---• /(x) 

.[ig(x) Sin aAx ](At)' + l(x) + --2-- g(x) 

ß {[g(x)/(/Xx)•.](2 cos ./Xx -- 2) q- (i//Xx) 

ß sin aAx[g'(x) q- /(x)] q- /'(x)} (A13) 

For stability the quantity e t?/•t must lie within the unit circle on 
the complex plane. The real part of(A13) is 

1 -+- --At q--•2--/(x) /(x)-+- [X•/ 2 
ß [g(x)(2 cos trax -- 2) q- /'(x)(Ax) 2] 

and the imaginary part is 

I At (At) 2 + 2zxx I (/xt)• /(x) [g(x)sin aAxl q- -•- g(x) 

ß sin aZXx[g'(x) + /(x)] 

Squaring the real and imaginary parts and dropping the terms 
of smaller magnitudes and especially those involving O(At), 
we get 

(2 cosO-2) 

+ -- g(x) sin 0 =< 1 (A14) 

where 0 = trax. Equation (A14) gives the stability criterion. 
Let us consider the most critical condition, when the left-hand 
side of (A14) is evaluated at the values of aAx shown in Table 
1. From this analysis it is apparent that the criterion stated in 
Table 1 is satisfied when 

_-< g(x) --< 
or 

At/Ax <_ [na(x)•n-•] -• (A15) 
Equation (A 16) shows that the point (/, k + 1) must lie within 
the zone of determinacy of the line from (/- 1, k) to (/+ 1, K). 
The Lax-Wendroff scheme is linearly stable subject to condi- 
tion (A15). 
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