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ME617 - Handout 9 

Solving the eigenvalue problem - 
Numerical Evaluation of Natural Modes and 
Frequencies in MDOF systems 
 
The standard  eigenvalue problem is   

 

λAx = x                                          (1) 
 

The solution of eigenvalue systems is fairly complicated. It is 
one of the few subjects in numerical analysis where I do 
recommend using canned routines. This handout will give you an 
appreciation of what goes on inside such canned routines. The 
knowledge below will help you to make an intelligent choice when 
using or selecting one of the methods detailed.  

The references listed at the end of this document are the ones 
your lecturer is familiar with. Nowadays there are many resources 
available on line. 

 
A good eigenpackage provides separate routines, or separate 

paths through sequences of routines, for the following (desired) 
calculations: 

* all eigenvalues and no eigenvectors (a polynomial root solver) 
* some eigenvalues and some corresponding eigenvectors 
* all eigenvalues and all corresponding eigenvectors. 

 
Take the items above into consideration when selecting an 
eigenvalue solver to save computing time and storage. 
 
- A good eigenpackage also provides separate paths for special 
forms of matrix A. 

• A is real and symmetric: A=AT (full, banded, tridiagonal). 
• A is real and not symmetric (full, banded, tridiagonal). 
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• A is complex, Hermitian or not Herminian. 
 
Most packages solve the generalized eigenproblem 

 

= λAx  Bx                                         (2) 
 
Bathe and Wilson (1976), Ref. [3], recommend: 

1. The Householder-QR inverse(HQRI) solution is the 
most efficient for calculation of all eigenvalues and 
eigenvectors and if A is full. 
 

2. The determinant search technique (polynomial root 
solver) is most appropriate to determine the lowest 
eigenvalue and corresponding eigenvectors of systems with a 
small bandwidth. 

3. The subspace iteration solution is effective for the 
lowest eigenvalue and eigenvectors in very large systems 
with a large bandwidth. 

 
In mechanical vibrations, the general eigenvalue problem for 

an undamped MDOF system must satisfy: 
 

[ ] ( ) 1,...,i i i nλ =−M +K φ =0                      (3) 
 
where ωλ 2

ii  =  is the square of the i-th natural frequency and 
TK = K , TM = M are symmetric stiffness and mass matrices, 

usually positive definite. 
  

Eigen methods that exploit Eq. (3) are called vector iteration 
or (power) methods.  

 
Matrix transformation methods are based on the orthogonality 
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properties of the NORMALIZED natural modes: 
 

1 0
 = 0 0  ; 

0

0

0 n

λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

T T  K  Φ   M  Φ = IΦ Φ%
                       (4) 

 
and are based on finding  regular transformation to the original 
problem Eq. (3) until Eq. (4) becomes true.  The Householder (H) 
QR and Jacobi’s methods are among those which use orthogonal 
transformations.    
 

Finally, from Eq. (3), recall that: 
 

|  -  | 0λΔ= =K M                         (5) 
 

( )2 3
0 1 2 3

0
0 ....

n
n i

n i
i

a a a a a aλ λ λ λ λ
=

Δ= = + + + + =∑  

i.e. a characteristic equation; and by using a root solver, the set of 
eigenvalues  {λi}, i=1,…n  can be obtained. 
 
 The HQRI method uses a combination of iteration procedures 
and transformations. 
 

Before proceeding further, let’s show how Eq. (3) is brought 
into the standard eigenvalue problem Eq. (1), i.e. Ax = λx, where 
A is a symmetric matrix.  Note that the computational solution of a 
symmetric system is most effective in time and cost.  

 
From Eq. (3) 

λ=Kφ Mφ                                    (6) 
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One can define the product     1−B = M  K                           (6a) 
and write Eq. (6) as 

λBφ = φ                                      (6b) 
 
but,  unfortunately, matrix  B  is not (necessarily) symmetric, i.e.  
B ≠ BT.  
 
However, since M=MT is symmetric and positive definite, there 
exists a decomposition of M as 
 

TM = LL                                      (7) 
 
where L is a lower triangular matrix and LT is the upper 
triangular transpose of  L.  (better known as the Choleski 
decomposition, and takes Order (n) operations to be performed.) 
 
Replacing Eq. (7) into Eq. (6) gives: 
 

( )λ TKφ = LL φ                               (8a) 
 

Premultiply  both sides by  L- 1  to get: 
 

( )1 1λ λ− − =T TL Kφ = L L L φ L φ                   (8b) 
 
define vector 

= TX L φ                                       (8c) 
 
so then: 
 

=-T -T TL X =L L φ φ                                (8d) 
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Substitute Eq. (8d) into Eq. (8b) to get: 
 

λ-1 -TL K L X = X                                   (9) 
 
and let: 

-1 -TA = L K L                                     (10) 
 
so then Eq. (9) becomes: 
 

λA X = X                                    (11) 
 
which is the equivalent of Eq. (6), i.e., the eigenvalues are the same
 (identical) but the eigenvectors  φ  are obtained from Eq. (8d) 
= -Tφ L X . 

 
Notice that TA = A , i.e. a symmetric matrix. 
  

 
since

≡

≡ ≡ ≡

T T TT -1 -T -T -1

-1 T -T -1 -T

T

 =     (  K  ) ( ) (  K )A L L L L
   K A L K L L L

           K = K
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Thus, solve eigenvalue problem defined by Eq. (11), obtain the set 
of ( ){ }

 = 1
 

n

i i
λ and associated eigenvectors  ( ){ }

= 1
 

n

i i
X  and, then, later 

obtain the eigenvectors for the problem with ( )( )i i= -Tφ L X . 
 
Note also that, from the eigenvectors orthonormal property: 

TΦ M Φ = I  
 
replacing = -Tφ L X  on the LHS of this equation: 
i.e., 

( ) ( )
( )( )

LHS ; and since
T T= = =

T -1 -T T

T -1 T -T

= X L M L X  = I M = L L

X L L L L X X I I X X X  

 
i.e., eigenvectors X are also orthonormal! 
 

The following theorem due to Gershgorin is a helpful tool to 
localize eigenvalues. 
Theorem: 

Let the  n x n  matrix  A  have eigenvalues {λi} , i = 1, 2, . . . n.  
Then, each  λi lies in the union of the circles 

1
;

N

ii i i ij
j
j i

z a r r a
=
≠

− ≤ =∑                               (12) 

 

 

iia

ir
area where eigenvalues are located
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The knowledge above is very important to estimate the largest and 
smallest eigenvalues of a system. 
 
 
Vector Iteration Methods (Power Methods) 

When only a few eigenvalues and eigenvectors are needed, then 
the power method is the simplest to use. This method is an 
iterative technique which gives simultaneously eigenvalues and 
eigenvectors. 
 
Consider the general eigenvalue value problem 
 

λ=Kφ Mφ                                    (13) 
 
now, assume that the fundamental frequency  λ1  is distinct from 
zero and that the eigenvalues are ordered as: λn ≥ λn- 1 . . .>λ2> λ1. 
 

An iterative procedure is set up by writing Eq. (13) in the form: 

( ) ( ) 1,2,....1 ss s =+K ν =Mu          (14) 
 
or                               ( ) ( )1s s+ν = Du                                           (15) 
 
where                     -1D =K M = FM                                      (16) 
 
D is a dynamical matrix with -1F =K as the flexibility matrix (note 
that K must be non-singular, that is a zero  eigenvalue is not  
possible).  

Note that Eq. (14) can be interpreted as solving the deflection 
produced by the inertia force ( ) ≡ iMu f . 
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Then, the next trial vector u(s + 1) is defined to be: 
 

                                     ( ) ( ) ( )1 1 1s s sλ+ + +u = ν                           (17a) 
 
where  λ(s + 1)  is an appropriate scaling factor such that              

( )1 max
1, ors+u =                                          (17.a.1) 

 
selected to make 

( ) ( )1 1 1T
s s+ + ≡u Mu                                          (17.a.2) 

 
or, (b) by using Rayleigh’s quotient as 
 

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1
1

1 1 1 1

T T
s s s s

s T T
s s s s

λ + + +
+

+ + + +

= ≡
ν K ν ν Mu

ν M ν ν M ν
                        (17.b.1) 

and, 

( )
( )

( ) ( )

1
1 1/ 2

1 1

s
s

T
s s

+
+

+ +

≡
⎡ ⎤
⎣ ⎦

ν
u

ν M ν
                               (17.b.2) 

 
The procedure is carried out for s = 0, 1, 2,... until  P  iterations 

when: 

( ) ( )1p pν ν+ ≅  and ( ) ( )1p pλ λ+ ≅ within a close tolerance. 
 

Now, let’s prove that the method described above produces 
convergence to the first fundamental mode of the system. Recall 
that any vector in Rn can be expanded in terms of the eigenvectors. 
Thus, write an initial guess vector as:  

( ) ( )0
1

n

i i
i

C
=

=∑u φ                                             (18) 
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From Eq. (13): 

( ) ( ) ( )
1 11 , withi i i

iλ
− −⎛ ⎞ ≡ = =⎜ ⎟

⎝ ⎠
φ K Mφ Dφ D K M  

Then: 

( ) ( ) ( )0
1 1

n n
i

i i i
i i i

CC
λ= =

≡ ≡∑ ∑Du Dφ φ                           (19) 

 
 
Assume that λ1 < λ2 < . . .  Each iteration cycle use Eq. (15) 

( ) ( )1 1s s+ +u =Mu  . Note that the scaling step is omitted without loss 
of generality. 
 

After s applications of Eq. (15),  
 

1 0u =Du  
2

2 1 0 0u =Du =DDu =D u  

( ) ( ) ( )0
1

1n
s

is is
i iλ=

≡∑u = D u C φ                       (20a) 

 

( ) ( )
1

11

1
ss n

is i
i i

λ
λ λ=

⎛ ⎞⎛ ⎞
≡ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑u C φ                       (20b) 

 
and since  1 , 2,3....i i nλ λ< = ;  then 

1 0 ,
s

i

λ
λ

⎛ ⎞
→⎜ ⎟

⎝ ⎠
2,....i =  and s →∞  

 
so Eq. (20b) becomes 

( )

2

1 1
1 1 2 2

1 2

1 ....
ss

n ns
n

C C Cλ λ
λ λ λ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥≡ + + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

u φ φ φ  
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Then, as s →∞   

( ) ( ) 1 10
1

1
S

s
s C

λ
⎛ ⎞

= →⎜ ⎟
⎝ ⎠

u D u φ                            (21) 

 
So upon convergence, the method returns a vector proportional to 

( )1φ .  It is also obvious that the convergence rate depends on the 

ratio 1

i

λ
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and in particular 1

2

λ
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

, and on the iC ’s that make up the 

starting (guess) vector. 
 

The method can also be used to calculate the other natural 
frequencies ω2 ,ω3 , etc., provided that at each time, previous 
eigenvectors 2 3,φ φ , etc., are removed from the iteration 
procedure. This method is called MATRIX DEFLATION or 
GRAMSCHMIDT ORTHOGONALIZATION PROCEDURE, 
and it is explained as follows:  
 

To determine the second natural frequency, ω2 (> ω1 ), let the 
trial (guess) vector be determined as: 

 
 ( ) ( ) 1 1ˆ S S α= −u u φ                                      (22) 

 
where the coefficient  1α  is chosen so that û  is orthogonal to ( )1φ  , 
i.e., 

( )1 ˆ 0T
S =φ Mu                                          (23) 

 

( ) ( )1 1 1 1 1ˆ 0T T T
S S α= − ≡φ Mu φ Mu φ Mφ    then  ( )1

1
1 1

T
S

Tα ≡
φ Mu

φ Mφ
    (24) 
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Or, 

( ) ( ) ( ) ( )
1 1

1 1

ˆ
T

S S S ST= ≡ −1
φ φ Mu S u u u
φ Mφ

                       (25) 

 
where 

1 1

1 1

T

T−1
φ φ MS = I
φ Mφ

                                       (26) 

 
To produce convergence to ( )2φ , use the fundamental relation: 

( ) ( ) ( ) ( )21 s sˆs s+ = = =1ν Du DS u D u                            (27) 
 
where: 

1 1

1 1

T

T= = −2 1
Dφ φ MD DS D
φ Mφ

                                 (28) 

                                          
with   -1D = K M = FM  
 

and from the fundamental relation: 1
i i

iλ
Dφ = φ   

then, 
1 1

1 1 1

1 T

Tλ
= −2

φ φ MD D
φ Mφ

                                 (29) 

 
A procedure analogous to Eqs. (22) to (29) can be used to define 
D3 , D4 , etc. for removing higher modes.  This procedure is called 
MATRIX DEFLATION. 
 
Rather lengthy algebraic and matrix manipulation (left as an 
important exercise for the reader) lead to expressions of the form: 
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1 1 2 2 2 2
3

1 1 1 2 2 2 2 2 2

1 1 1T T T

T T Tλ λ λ
= − − = −2

φ φ M φ φ M φ φ MD D D
φ Mφ φ Mφ φ Mφ

 

….. etc. 
1

1

1 Ti
j j

i T
j j j jλ

−

=

= −∑
φ φ M

D D
φ Mφ

                               (30) 

2,3,..... .i n≡  
 
Note that the products (

1 1

T

n nn n ×× ×
φ φ M ) give a matrix of n x n elements.  

The matrix deflation technique is used by more advanced 
methods (HQRI, for example) to determine eigenvectors once a 

sequence { } 1

j
i i=

φ  has been obtained.   
 

Exercises (homework): 
1. Determine an iterative scheme to find the largest eigenvalue and 

corresponding eigenvector for the problem  
 

λ=Kφ Mφ  
 
based on the power iteration scheme. Show that the procedure 
developed indeed converges to the largest eigenvalue. Hint:    
Assume M-1 exists. 
 
2. The method of INVERSE Iteration with SPECTRUM 
SHIFT allows to determine the eigenvalue closest to a shift 
number eμ∈\ .  The method is based on the Eq.: 
 

( ) ( ) 1 0iμ λ μ⎡ ⎤− − − ≡⎣ ⎦K M M φ  
 
Show that the scheme:  ( ) ( )1+s+1 sν =Du  
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where ˆ ˆ; μ−-1D = K M K = K M  converges to î iλ λ μ≡ − .  
 
 
Methods Based on Similarity Transformations 
(From Numerical Methods by Dahlquist and Bjork, Prentice Hall, pp. 208-ff.) 
 
The fundamental eigenvalue problem 
 

[ ] ( )i iλ−K M φ =0                           (3)→(31) 
 
is recast in the general form: 

[ ]iλ−A I X =0                                         (32) 
 
where  T -1 -TA = A = L KL   (symmetric) 
            TM = LL                  (Choleski decomposition of M)   (33) 
   and   T−X = L φ                  (Eigenvector relationship). 
 
Note that eigenvalues of a real symmetric matrix are always real 
and if A is positive-definite, then all  eigenvalues are greater than 
zero, i.e. λi > 0. 
 

Eqs. (31) and (32) are the same problem: i.e., they have the 
same eigenvalues and with eigenvectors related by −TX = L φ . 
 

If P is any non-singular matrix, then the matrices A and PAP-1 
have the same eigenvalues.  Indeed, they have the same 
characteristic equation, since PP-1=I, and 
 

( ) ( ) ( ) ( ) ( )
( )

det det det det det

det

λ λ λ

λ

− = − −

≡ −

-1 -1 -1 -1I PAP PP PAP P I A P

I A
  (34)  
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since             ( ) ( )det det 1 from   ≡ =-1 -1P P PP I   
Also since    λ=Ax x  , it implies that  
 

( )( ) ( )
,  and with   λ

λ

= = =

=

-1 -1

-1

PAx Px PP I P P

PAP Px Px
                           (35) 

 
where it follows that if: 

x is an eigenvector of A , then Px is an eigenvector of (PAP- 1). 
 

The matrices A and (PAP- 1) are said to be SIMILAR and the 
transformation (PAP-1) of A is called a similarity transformation. 
 If the matrix P is orthogonal, P-1 = PT , then the condition of the 
eigenproblem is not affected. 
 
Many methods for solving the eigenvalue problems are based on a 
sequence of SIMILARITY TRANSFORMATIONS with 
ORTHOGONAL MATRICES. A sequence of matrices A0, A1, 
A2, . . . is formed by: 

 
; ; 1,2,...k≡ =T T

k k k-1 k k kA = Q A Q Q Q I                      (36) 
 
The matrix Ak is similar to A and the corresponding eigenvector

s are related by 
1 2......= k kX Q Q Q X                                          (37) 

 
(The ultimate goal is to have Ak in diagonal form after a finite 
number k of transformations; then, the eigenvalues are just the 
elements in the diagonal of Ak).   
 
Note that the sequence of transformations, Eq. (36), preserves 
symmetry since 
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( ) ( )
1 ; 1,2,...k−

≡

≡ =

T TT T T T
k k k-1 k k k k-1

T T T
k k k k

A = Q A Q Q Q A

A Q A Q
                     (38) 

 
and if  1−= T

k-1 kA A  so does =T
k kA A . 

 
The orthogonal transformations used in practice are of two 

different types: PLANE ROTATIONS and/or REFLECTIONS. 
 

A plane rotation in the (p, q) plane is defined by the matrix Rpq(φ ) ; 
φ π≤ , which is equal to the unit matrix except for the elements 
 

 rpp = rqq = cosφ  ,    rpq = -rqp = sinφ            (39) 
 
 

note that RT
pq = Rpq(-φ ) 

 

 
 

1
1

1
cos sin

1
1

sin cos
1

1

φ φ

φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

prow 

qrow 

0

0 

pcolumn qcolumn 
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if the product A’ = A Rpq(φ ) is formed, then only the elements in 
columns p and q will be changed so then 
 

if   and , and 

cos sin

sin cos

ij ij

ip ip iq

iq ip iq

a a j p j q

a a a

a a a

φ φ

φ φ

= ≠ ≠

′ = −

′ = +

                 (40) 

 
In the same way, when completing the similarity transformation by 
forming  
A'' = Rpq(-φ ) A', then only rows p and q will change. 
 

The φ  values are obtained so as to make the off-diagonal values 
equal to zero. This is the basis for the so-called Jacobi method.  
It is easily shown that in order to do this, the angle φ needs to 
satisfy 

-
cotangent  

2
pp qq

pq

a a
a

φ =                                       (41) 

 
This reduces the element pqa′′  equal to zero. When pqa  is the largest 
nondiagonal element φ  is usually chosen in the range 

4
πφ ≤ . 

 
The convergence of Jacobi’s method is quadratic, and taking 

symmetry into account, the total number of operations for 
computing all the eigenvalues of a symmetric matrix A are of the 
order 

( ) 31
25 -1 4 10  n n n n�                                    (42) 

 
If the eigenvectors are also desired, then compute  
 

1 1 1.... ; 1,2,...k k k k k− =X = Q Q Q = X Q                   (43) 
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where ( )1 2.... T
k n k

x x xX = will approach to the eigen-matrix Χ even 
when A has multiple or closely spaced eigenvalues.  Since only 2 
columns in Χk will change in each step, then only 4n operations per 
step are required. This procedure will exactly double the operation 
count for the Jacobi method. 
 

In practice it is not possible to reduce a given matrix to diagonal 
form in a FINITE sequence number of similarity transformations.  
Many methods therefore start with an initial transformation of the 
matrix A to form other compact forms, which can be attained in a 
finite number of steps.  For symmetric matrices, a suitable form is 
symmetric tridiagonal, while for non-symmetric matrices is 
almost triangular or of Hessemberg form. 
 

Once a compact form is obtained, any simplified numerical 
method could be used to determine the eigenvalues.  In particular 
Gerschgorin theorem is extremely helpful to determine starting 
guess values for the calculations. 
 

If the final form is tridiagonal and symmetric then one can 
perform a Choleski decomposition such as: 

k
TA = LL                                                  (44) 

 
where the eigenvalues are obtained from the diagonal elements of  
L. 
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Householder Method: (from Ref. [1]) 
This algorithm, based on reflection transformations, reduces an n x 
n symmetric matrix A to tridiagonal form by n-2 orthogonal 
transformations. Each transformation reduces to zero the required 
part of a whole column and whole corresponding row.  The basic 
ingredient is a Householder matrix P which has the form: 
 

1 1
2 T

n n× ×
− ×P = I ω ω                                            (45) 

 
where ω is a real vector such that  2 1T= =ω ω ω .   

The matrix P is orthogonal and symmetric since 
 

( )( )2 2 2

       4 4

= − −

≡ − + ≡

T T T

T T T

P P = P I ωω I ωω

I ωω ωω ωω I
                          (46) 

 
Hence: 

-1 TP = P = P                                                (47) 
 
Rewrite P as: 

H
−

TuuP = I                                                (48) 

 
where scalar H is 

( )2 2 2 2
1 2

1 1 ......2 2 nH u u u= ≡ + + +u                         (49) 

 
and u can now be any vector. 
 

Suppose x is the vector composed of the first column of A , i.e. 
{ }1,1 1,1 ,1...... na a a=Tx                                    (50) 
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with 2 2 2
1 2 ..... nx x x≡ + +x   as its L2 norm 

and choose 
1=u x x e∓                                            (51) 

 
where { }1 1,0,0,...0T

ne = . 
The choice of signs in Eq. (51) will be discussed later.  Then: 
 

       

( )

( )

( )

1

2

2

     -

     -
1

2

T

H H

H

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠

⎡ ⎤⎣ ⎦≡

≡

TT

T

1

u u xuuPx = Ι x x

u x x e x
x

u x x x
x

u

∓

∓

 ;     

2

1,1

21
2

a

H

=

= =

=

T

T
1 1

x x x

e x x

u

               

                   
 
Recall that { }1 , ,....... n= ≡ 1 2u x x e x x e x x∓ ∓ .    

                        ( )

22 2 2
2

22 2 2
1 2

22 2 2
1 2

2 2

2

.......

     2 .......

     .... 2

     2

     2

n

n

N

⎡ ⎤= + +⎣ ⎦

≡ ± + +

≡ + + +

≡ +

⎡ ⎤≡ ⎣ ⎦

1

1

1

1

1

u x x x x

x x x x x x

x x x x x x

x x x x

x x x

∓

∓

∓

∓

∓

 

 
Then 
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( )
( )

2

12

1
0
0

    .
.
.
0

= ≡ = ±

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪≡ ± ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

1

1

x x x
P x x - u x - u x e

x x x

x

∓

∓

                    (52) 

 
which shows that the Householder matrix P acts on a given vector 
x to zero all its elements except the first one. 
 

To reduce A = AT to tridiagonal form, select vector x for the 
first Householder matrix to be the lower (n – 1) elements of the 
first column.  Then, the lower (n – 2) elements will be zeroed: 

 
 

( )

11 11 11 1 11 12 1

21

31

1

1

. .1 0 0 . . 0 . . .
0
0 0

.. 0

.. 1 0
0 0

       

n n

n

a a a a a a a
a k
a

irrelevantn P irrelevant
a

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

≡⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

1P A =

 (53) 

 

where the quantity 21 2....... Nk a a≡ ±  and the complete orthogonal 
transformation is: 
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11 0 0 0 0

0
;

0
0
0

a k
k

irrelevant

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 TA = P = P
            (54) 

 
Now choose the vector x for the second Householder matrix to be 
the bottom (n-2) terms of the second column, and from it construct 
 

( ) 2

1 0 0 . . 0
0 1 0 . . 0
0 0
. .
. . 2
0 0

n P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

2P =
                                         (55) 

 
 The identity block on the upper left corner insures that the 
tridiagonalization vector will not be spoiled in this case, while the 
(n - 2) Householder matrix (n - 2)P2 creates one additional column of 
the tridiagonal output. Clearly, a sequence of (n-2) such 
transformations will reduce A to tridiagonal form. 
 

In practice, instead of performing the matrix multiplication 
PAP, compute vector  

H
Aup =                                         (56) 

 

Then 
H H

⎛ ⎞
= − ≡ −⎜ ⎟

⎝ ⎠

T Tuu puAP A Ι A  

and 
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1 2k
H

⎛ ⎞
= = − = − − +⎜ ⎟

⎝ ⎠

T
T T TuuA PAP Ι AP A pu up uu         (57) 

 
where the scalar 

2
k

H
≡

Tu p                                             (58) 

 
and if  

k−q = p u                                          (59) 
 

then 
1 T TA = A - qu - uq                                   (60) 

 
The reduction to tridiagonal symmetry takes 2n3/3 operations if 
original matrix A is symmetric. 
 
 
The QR Algorithm 

The basic idea behind the QR algorithm is that any non-
singular real matrix can be decomposed in the form 

where
→ TA = QR R = Q A                       (61) 

  
and Q is orthogonal, i.e., QTQ = I and R is upper-triangular.  For a 
general matrix, the decomposition is constructed by applying 
theHouseholder transformation to zero-the successive columns of 
A below its diagonal. 
 

Now consider 

                               
′

′ T

A = QR
A = Q AQ

 

 
thus ′A  is an orthogonal transformation of A . 
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Exercise: Show that the decomposition A = QR for A symmetric 
and positive definite IS UNIQUE ! 
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