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Notes 10.  
Thermohydrodynamic Bulk-Flow Model in Thin Film 
Lubrication 
  
General flow characteristics in oil lubricated fluid film bearings 

a) Incompressible liquids of large viscosity (mineral oils) 
b) Dominance of shear driven (Couette) flow over pressure (Poiseuille) driven flow  
c) Fluid inertia and flow turbulence are usually NOT important (low circumferential 

flow Reynolds numbers) 
d) Heat transfer to bearing cartridge and to/from shaft are important along with 

mechanical deformations induced by temperature gradients  
e) Fluid temperature gradient along axial plane is negligible 
f) Thermal effects change the lubricant viscosity and operating clearance, thus 

affecting significantly to the bearing static load performance 
 
Thermohydrodynamic analyses are important in heavily loaded hydrodynamic bearings 
such as pressure dam bearings, tilting pad bearings, etc. See Notes 7 
 
General flow characteristics in process fluid film bearings 
applicable to damper annular seals and hybrid (hydrostatic + hydrodynamic) bearings 

a) Process liquids have low viscosity (water, R134, LH2, LOx) 
b) Material compressibility important, low bulk modulues (LH2) 
c) Large pressure drops along axial direction with significant mass flow rates (annular 

damper seals & hydrostatic bearings – up to 6,000 psig in cryogenic turbopumps) 
d) Large heat capacity for transport of energy along axial direction 
e) Large rotor speeds (up to 100 krpm) will induce large shear flow energy 

dissipation 
f) Typically use macro-textured surfaces (roughened stator) to avoid generation of 

cross-coupled stiffness and to promote dynamic stability 
g) Inlet fluid flow circumferential swirl is important (for rotordynamic stability) 

 
These operation characteristics determine the need to account for 

a) Flow turbulence (induced by shaft rotation and pressure driven flow conditions) 
b) Fluid inertia effects – temporal and advective types. 
c) Fluid properties depend on pressure and temperature (needs equation of state) 
d) Adequate physics based modeling of machined surface texture (roughness)  
e) Two-phase flow conditions under certain operating regimes 
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Bulk-Flow Equations for Thin Fluid  Films  
The fluid flow within a thin film region, see Fig.1, is governed by the continuity (mass 
conservation), momentum and energy transport equations. In the flow region 

       0, , 0, , , , 0,x D y H x z t z L   , the smallness of the film thickness allows a 

simplification of the general transport equations.  

 
The coordinates in the plane of the bearing are circumferential (x=Rθ), axial (z), and 
across the film (y). Let  , , , ,U V W P T      be the fluid velocity field components along the (x, 

y, z) directions,  the fluid pressure and its temperature, respectively.  
 
 
The thin film fluid flow equations are (see Notes 8): 
 

Mass conservation   
( ) ( ) ( )

0
U V W

t x y z

      
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Figure 1. Geometry of flow region in a fluid film bearing (H<<Lx,Lz) 
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Circumferential-momentum transport  


xyDU P

Dt x y





  

 


   (2) 

 

Axial-momentum transport   


zyDW P

Dt z y





  

 


    (3) 

 

Cross film momentum     


0
P

y





    (4) 

 

Energy-Transport (Bird et Al., 1960) 
 

            2 2

2p t xy zy

DT D T DP P P
C U W K T U W U W

Dt Dt y y Dt x z y

   
       

                 


 (5) 

 

 where       D
U V W

Dt t x y z

   
   
   

    (6) 

 
is the material derivative.   , , , ,P tC k    represent the fluid properties of density, 

viscosity, specific heat, thermal conductivity, and volumetric expansion coefficient, 
respectively. 
  
In a turbulent flow, the effect of the turbulent mixing far outweighs the 
fluid molecular diffusivity.  In consequence, the temperature raise by 
viscous dissipation tends to be distributed uniformly across the film 
thickness. Thus, temperature gradients across the film (y-dir) are 
confined to (very thin) boundary layers attached to the bearing and 
journal surfaces.  The fluid velocity field presents the same 
characteristics in regions without reversed flow or recirculation.  
 
Bulk-flow primitive variables (velocities and temperature) represent average quantities 
across the film thickness, i.e., 

 

  
0 0 0

1 1 1
; ;

H H H

U Udy W Wdy T Tdy
H H H

         (7) 

 
Integration of Eqs. (1-5) across the film thickness renders the bulk-flow equations (fully 
developed condition): 
 

Continuity:    
     

0
H HU HW

t x z

    
  

  
    (8) 
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Circumferential momentum:  
     2

0
H

xy

HUHU HUW P
H

t x z x

 


  
    

   
  (9) 

 

Axial momentum:   
   2

0

( ) H
zy

HWHW HUW P
H

t x z z

  
  

    
   

  (10) 

Energy transport:  

         2 2 2
( ) 1

2
t t t

p

HV HU V HW VHU T HW TH T
C

t x z t x z

         
               

  

 

    1 H
S t t xy

P P P
Q T H T H U W R

t x z
               

    (11) 

 
Where 2 2

tV U W   is the bulk-flow speed, and     S B B J JQ h T T h T T      (12) 

is the heat flowing from the film to the bounding (bearing and journal) surfaces at 

temperatures TB and TJ. Above, Bh  and Jh  denote heat transfer convection coefficients to 
the bearing and journal surfaces.  The fluid properties (density, viscosity and specific 
heat) depend on the fluid thermo physical state, i.e., functions of the fluid pressure and 
temperature. 
 

     , , , , , ,..., .p pP T P T C C P T etc          (13) 
 

From the bulk-flow theory for turbulence in thin film flows, the wall shear stress 
differences are (Hirs, 1973, Launder and Leschziner, 1978): 
 

0 ;
2

H
xy x J

R
k U k

H

     
 

   0 ;H
zy zk W

H

      
2 4

H
xy B J

H P
Uk U R k

x H

 
      

  (14)  

 
where the turbulent flow shear parameters  ,x zk k and  ,J Bk k  are local functions of the 

Reynolds numbers and friction factors based on the Moody friction factor. See Notes 8. 

Note that for the volumetric expansion coefficient, 1
t T 




     
     

    0, for incompressible liquids
1, for idealgasestT     (15) 

For example, tT  for 2LH  is not in the range of 0 to 1. 
 
Substitution of the bulk-flow momentum Eqs. (9-10) into Eq. (11) and using the mass 
conservation principle, Eq. (8), renders a more suitable form of the energy transport 
equation : 
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     
p S

H T HU T HWT
C Q

t x z

     
       

 

 

0 0

H H H
t xy xy zy

P P P
T H U W R U W

t x z
               

   (16a) 

 
And after substitution of the wall shear stress differences: 
 

     
p S

H T HU T HWT
C Q

t x z

     
       

 

 

         2 2

2 2 4t x J

P P P R P R R
T H U W H k U W U k R U

t x z x H

                                     
 (16b) 

 

This equation shows the energy transport and balance in the fluid film as: 
CONVECTION + DIFFUSION=COMPRESSION WORK + DISSIPATION 

(Energy Disposed) = (Energy Generated) 
 

In annular seals and hydrostatic bearings, the variation of temperature along the axial 
direction and the energy needed for compression work are retained since the pressure 
drops across a seal or bearing can be quite large.  These conditions differentiate this 
development from conventional THD analyses of incompressible fluid film journal 
bearings, for example (see Notes 7) 
 
Dimensionless Bulk-Flow Equations 
Define dimensionless coordinates  

*

; ; ; ;
x z H

x z h t
R R c

      

and flow variables 

* * * *

; ; ; ;
U W P T

u w p T
U U P T

        (17) 

and properties   *
* * *

; ; ;p
tp t

p

C
C T

C

    
 

     

 

with       

2
* *

*
*

c P
U

R
       (18) 

 
as a characteristic flow speed due to pressure.  The subscript * denotes characteristic 
values.  In dimensionless form, the flow equations in the film lands become:  
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Continuity    
 

( ) ( ) 0;
h

hu hw
x z


  



 
  

 
   (19) 

 
Circumferential Momentum

      * 2Re Re
2x J s p

p
h k u k hu hu hu w

hx x z

   


                    
 (20) 

 
Axial-Momentum  

         * 2Re Rez s p

p
h k w h w hu w h w

hz x z

   


            
  (21) 

 
Energy Transport 

        *Re Rep ps pC hT C huT h wT
x z

  

         

            (22) 

 

* 2 21 1
Re

2 2 4tp c x t Js

p p p p
Q E h u w T h k v u k u

hx z x

 


                                       
 

 
The dimensionless flow parameters are  

2
*

* * * *

; ; c
p

UR R
E

U U T C

 
     ;  

 
2

* ** * * * * *

* *

Re Re ; Re ; Re ReS p p p p

c U c c

R

  
 

      
 

    (23) 

 
The frequency    and speed    numbers denote the importance of squeeze film and 

shear flow effects relative to the pressure induced flow, respectively.  The reference 
Reynold numbers  Re p  denotes the ratio of fluid advection forces to viscous flow 

induced forces due to pressure.  Recall that in hydrostatic bearings and annular seals, the 
large pressure differentials can generate flow turbulence even without journal rotation. 
The Eckert number  cE denotes the ratio of kinetic energy to heat convection in the fluid 

film. The ratios  Re p cE  or  ReS cE  represent the effect of heat convection relative to 

shear dissipation.   
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APPENDIX. Heat Transfer Convection Coefficients to Bearing 
and Journal 

 
In the bulk-flow model, the heat transfer from the fluid film to the bounding surfaces is: 
 

   S B B J JQ h T T h T T        (A.1) 
 

where, Bh  and Jh are the heat transfer convection coefficients to the bearing and journal 
surfaces, respectively.  The Reynolds-Colburn analogy between fluid friction and heat 
transfer determines the heat convection coefficients (Holman, 1986).   
 
The average heat transfer over the entire laminar/turbulent boundary is: 
 

2/3

2t r

f
S                  (A.2) 

where: 
t

t
p t

h
S

C V
    (Stanton number)     (A.3) 

 

p
r

C

k


       (Prandtl number)      (A.4) 
 

1
me

m
m m

e

br
f a c

H R

  
    
   

      (A.5) 

 
is the Fanning friction factor based on Moody friction diagram.  From the relationships 
above, the heat transfer convection coefficient is: 
 

2/3

1

2
p t

t
r

C V f
h





      (A.6) 

and by analogy, 

2/3 2/3

1 1
;

2 2
p B B p J J

B J
r r

C V f C V f
h h

 
 

 
    (A.7) 

Where (VB, VJ) and (fB, fJ) are the fluid velocities and friction factors relative to the 
bearing and journal surfaces, respectively.  
 
The archival literature presents many other formulas – empirically based - for turbulent 
flow heat transfer coefficients (Holman, 1986). These formulas depend on the heat 
transfer process, for example a constant wall temperature or a constant heat flux 
magnitude and for a fully developed condition or one of evolving thermal flow 
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conditions.  Eq. (A.6) is used because of its simplicity and ability to include surface 
texturing effects (through the friction factor).   
 

Numerical Analysis of Unsteady Turbulent Bulk-Flow in 
Fluid Film Bearings 
 
Consider the unsteady flow fully developed turbulent bulk-flow in the thin film lands of a 
fluid film bearing or an annular seal. The governing equations are: 
 

Continuity:         0i
i

H U H
x t

  
 

 
  i=1(x),2(z)  (1) 

 

Momentum:      2
i

i i J

i i j
i i

k U k
P

H HU HU U
x H t x


 

 
 

      
  

  (2) 

i,j=1(x),=2 (y) 
 

Energy:     
2p i S t i

i i

P P H P
C H T HU T Q H T U R

t x t x x
  

       
             

 

     

    
2 2

2 2

2 4
x

x x y J x

RU R
k U U k U R

H

             
    

   (3) 

 
where i, j = x, y are the circumferential and axial coordinates1; and 0x yR     denote 

journal surface speeds in the x- and y-directions. , ,x y Jk k k  are the turbulent flow shear 

parameters. The fluid properties; namely density, viscosity, specific heat, and thermal 
expansion coefficient, are thermodynamic variables, i.e.  
 

   ( , ) ; ( , )P T P T          ( , ) ; ( , )p p t tC C P T P T    
 

In Eq. (3), ( ) ( )S B B J JQ h T T h T T     is the heat flow conducted into the bearing and 
journal surfaces. The film thickness H in an aligned journal is  
 

    ( , ) cos sinx y X YH c e e         (4) 

where c(x,y) is the bearing or seal radial clearance function, and  ( ) ( ),X t Y te e  are time 

dependent journal center displacements along the inertial coordinates (X,Y). See Figure 2 
for a schematic view of the coordinate systems, eccentric journal (rotor) and a bearing 
(pad). 

                                                 
1 Note the change in notation with coordinate y replacing z for the axial direction. Velocity V is in the axial direction. The 
discrepancy in notation will be fixed in the near future. 
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Film thickness:

l

p

t

X

Y

x/R

journal

e

Bearing center

Pad with 
preload



( , ) cos sinx y X Yh c e e   

Note: angle origin 
starts from -X axis

eY

eX

 
 

Figure 2. Depiction of bearing pad, eccentric journal, and coordinate 
system 

 
Dimensionless equations of motion 

Continuity:         0x yhu hu h
x y
   


  

  
  

    (5) 

 
Circumferential momentum: 

      * 22
Re Re

x x J

S x p x x y

k u k
p

h hu hu hu u
x h x y


  



                 
  (6.a) 

 

Axial momentum: 

  
       * 2Re Re

y y

S y p x y y

k Up
h hu hu u hu

y h x y


  


    

         
  (6.b)  

 
where:  x x R ; y y R ; t   ;       */h H c  

  *x xu U V  *y yu U V  *R V    ;  
2

*
*

sac P
V

R
 ; *R V   

  ( )a sap P P P  ;  *   ;   *     
 

* 2* * *
*

*

Re Rep p

c V
c

R R




   is a typical advection flow Reynolds number,  
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2 **
*

*

Re ReS pc
  


   is a typical squeeze film Reynolds number and ω is a characteristic 

whirl frequency (typically equal to the shaft rotational speed).  
 
The flow domain is divided into a number of staggered control volumes (CVs), as 
shown in Figure 3. Each control volume encloses a particular flow variable 
(circumferential and axial velocities, pressure and temperature) as a nodal quantity 
denoted by its P value. The boundaries of the CV are surfaces through which flow comes 
in or out. The control volumes are surrounded by nodal variables denoted as East, West, 
North and South. The notation defines with lower-case the fluxes (mass, energy or 
momentum) through the surfaces of the CVs, i.e. east, west, north and south.   
 

VN

VP

UEUW

PP PE

U,P,V-cvs
PS

VS

PW

x=R

y

PN

UP

 
 

Figure 3. Depiction of staggered control volumes for integration of flow 
equations 
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Integration of Axial Momentum Transport 
Equation 
 
Integrate the axial momentum transport equation (6.b) 
over the axial velocity V-control volume. 
 
 

7 
 
 
 
 

       * 2Re Re
e n e n e n

y y

S y p x y y

w s w s w s

k up
h dx dy dx dy hu hu u hu dxdy

y h x y


  


     

           
       (7) 

 

Consider the following approximations for the various terms in Eq. (7), 
 

     V
e n e

nV V
p p S Ps

w s w

p
h dxdy h p dx h p p x

y
 

   
        (8.a) 

i.e., assume the pressure is uniform over the south and north faces of the control volume,  
with an average uniform film thickness evaluated at the center of the V-control volume.   

      
V

e n
y y y V V

P

w s P

k u k
dx dy V x y

h h

 
 

 
  
 

        (8.b) 

i.e., assume an average film thickness, viscosity and turbulent shear coefficient yk  for the 

whole control volume.  
For the momentum flux terms, assume uniform circumferential flows  V

xhu y   

across the east and west faces,   

       
e n n

e e
V

x y x y x y
w w

w s S

hu u dxdy hu u dy hu u y
x
   


       (8.c) 

And, a uniform axial flow across the south and north faces of the V-control volume.   

       
e n e

n n
V

y y y y y y
S S

w s w

hu u dxdy hu u dx hu u x
y
   


       (8.d) 

 

For the temporal (unsteady) term,   

     
e n e n

y y

w s w s

hu dxdy hu dxdy 
 
 


          (8.e) 

 

Since the control volume size is fixed in space. Thus, Eq. (7) over the V-control volume 
becomes: 

VP

VN

VS

VE
VW

PP

PS

Fe

Fw

Fn

Fs

V-cv

Axial velocity control volume

xV

yV

VP

VN

VS

VE
VW

PP

PS

Fe

Fw

Fn

Fs

V-cv

Axial velocity control volume

VP

VN

VS

VE
VW

PP

PS

Fe

Fw

Fn

Fs

V-cv

Axial velocity control volume

xV

yV

xV

yV
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       *Re Re

V
e nyV V V V V V

P S P P S y p x y y y
w s

P

k
h p p x V x y hu dxdy hu u y hu u x

h


       



              
 

      (9) 
Before proceeding further, integration of the continuity equation (1) over the V-control 
volume gives 

         0
e n

e n
V V

x y
w s

w S

hu y hu x h dxdy     



 
       (10) 

The flow rates across the faces (e,n,s,w)  of the control volume are denoted by 
 

       ;
e w

V V V V
e x w xF hu y F hu y         (11) 

 

       ;
n s

V V V V
n y S yF hu x F hu x      

 

With these definitions, Eq. (10) becomes 
 

      0
e n

V V V V
e w n s

w s

F F F F h dxdy 



    
       (12) 

 

which establishes a balance of flows (in and out) through the V-CV faces and equaling the 
rate of fluid mass accumulation within the CV. 
 
The momentum flux terms in Eq. (9) are treated using the upwind scheme of Launder 
and Leschziner (1978).  This scheme establishes a selection of velocity based on whether 
the flow is into or out of the face of a control volume. For example:  

 

  if 0

if 0

V V
e e P eV V e

x y e y V V
e E e

F V F
hu u y F u

F V F
 


 


  where  eV V

e xF hu y   (a) 

 

That is, if flow leaves the e-face, Fe>0,  it carries the upstream velocity, VP. On the other 
hand, if flow comes into the e-face, it carries the downstream velocity, VE. This procedure 
is known as UPWINDING. 
 

Define the following operator, 
         ,0 max ,0a a       (b) 

Then, statement (a) can be conveniently written as  
 

, 0 ,0V e V V
e y e P e EF u F V F V             

 

Hence, the momentum fluxes are written as:  

  ,0 ,0
w

V V w V V
x y w y w W w Phu u y F u F V F V                
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     , 0 ,0
e

v V e V V
x y e y e P e Ehu u y F u F V F V                    

     ,0 ,0
s

V V s V V
y y s s y s S s Phu u x F u F V F V                  (13) 

  ,0 ,0
n

V V n V V
y y n y n P n Nhu u x F u F V F V                

 

The differences in momentum fluxes in Eq. (9) become: 

   e n
V V V e V w V n V s

x y y y e y w y n y s y
w s

hu u y hu u x F u F u F u F u         

      ,0 ,0 ,0 ,0V V V V
P e w n sV F F F F                             (14) 

     ,0 ,0 ,0 ,0V V V V
e E w W n N s SF V F V F V F V                            

Let,  
 

* *Re ,0 ; Re ,0V V V V
E p e W p wa F a F             * *Re ,0 ; Re ,0V V V V

N p n S p sa F a F              (15) 
 

Using the identities: 

        1 1
,0 ; ,0

2 2
a a a a a a             

The following relationship for the RHS of Eq. (14) is obtained: 
 

 

*

,0 ,0 ,0 ,0

1

Re

VV V V V V V V V
e e w w n n s s e w n s

V V V V
E W S N

p

F F F F F F F F F F F F

a a a a

             

     

                     
  (16.a) 

And using the discrete form of the continuity equation, Eq. (12), 
  

  
  *

,0 ,0 ,0 ,0

1

Re

V V V V V V V V
e e w w n n s s

e n
V
nb

nbpw s

F F F F F F F F

h dxdy a 


          


 

  

                     
   (16.b) 

 

where nb refers to the neighbor nodes (e, w, n, s) on each of the surfaces bounding the 
control volume. Substitution of Eq. (16.b) into the axial momentum equation (14) gives:  

 

   

 
 

*

*

Re

Re ,0 ,0 ,0 ,0

Re ,0 ,0 ,0 ,0

V

yV V V V
P S P s y

P

V V V V
p P e w n s

V V V V
p e E w W n N s S

k
h p p x x y hu dxdy

h

V F F F F

F V F V F V F V


   



  
      

       

     

 

                     
                     

   (17) 

 

And substituting Eq. (16.b), 
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   

 

Re

Re

V

yV V V V
P S P nb nb nb P s y

nb nb
P

P s

k
h p p x a V a V hu dxdy

h

V h dxdy


 






              





   

 

  (18) 

Hence, the difference form of the axial momentum transport equation is: 
 

    Re

V
VyV V V V V V

P S P nb nb nb P s P
P

nb nb
P

k
h p p x a V a V h x y V

h


   



                   
   (19) 

 

A suitable approximation for the unsteady term (time derivative) is needed.  An implicit 
first-order scheme is used, i.e., 

     
*

P P PV V V

 
 


 

               (*) 
 

where PV is the axial velocity at time t t  , and *
PV is the axial velocity at time t, 

respectively.  For the scheme to be implicit, all field variables (velocity and pressure) in 
Eq. (19) must be evaluated also at time t t  .  
 
Finally, the discrete form of the axial momentum transport equation is 

  
 

*
Re

V
V V

sV V V VP
P S P nb nb P P P

nb

h x y
h p p x a V V a V

  



   

    (20) 

 

where   Re

V
V VVyV V V V

P nb s
P

nb
P

k x y
a x y a h

h

    


 
      

   

 
Integration of Circumferential Momentum 
Transport Equation 
 
 
Integration of the circumferential momentum transport 
Eq. (6.a) over the U-velocity control volume, and using 
the continuity equation to simplify some terms (same as 
for the V transport equation) leads to the following 
algebraic equation:  

 
 
 
   

UP

UN

US

UEUW

PP PE

Fe

Fw

Fn

Fs

U-cv

Circumferential velocity 
control volume

xU

yU

UP

UN

US

UEUW

PP PE

Fe

Fw

Fn

Fs

U-cv

Circumferential velocity 
control volume

xU

yU
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     *Re

2

U
u

U U U U U U U UJ s
P P E nb nb P P P

p
nb P

k
h p p y a U x y h U x y a U

h

     


 
       

  (21)  

 

where *
pU U at time t, and  

   Re

U
U UU

U U U Ux
P nb s

P
nb P

k x y
a a x y h

h

    


 
   

 
  

 

 * * * *Re ,0 ; Re ,0 ; Re ,0 ; Re ,0U U U U U U U U
E p e W p W N p n S p sa F a F a F a F                            

 

        ; ; ;
e w n s

U U u U u U u U
e x w x n y s yF hu y F hu y F hu x F hu x            

 

Hence, the difference equations for fluid momentum transport are  
 
Circumferential momentum in U-CV  
 

    *U U U U U U
P P E nb nb P P P P

nb

h p p y a U S S U a U       (22) 

 

Axial-momentum in V-CV: 

    *V V V V V V
P S P nb nb P P P P

nb

h p p x a V S S V a V       (23) 

where: 

   ; Re

V
V VVyV V V V V V

P nb s
P

nb
P

k x y
a x y a S S h

h  

    


 
    

  
  

   ; Re

U
U UU

U U U U U Ux
P nb s

P
nbP

k x y
a x y a S S h

h  
    


 

      
  

    ; 0
2

U

U U U VJ
P P

P

k
S x y S

h

  
 

  
 

 

In general: 

   
   
   

; ;

;

r r
r r r r

e x w x
e w

r r
r r r r

n x s x
n s

F hu y F hu y

F hu x F hu x

   

   

 

 
 where  r = U or V 
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Derivation of the pressure correction equation 
Integration of mass conservation Eq.  (5) over the 
pressure control volume (P-CV) leads to: 

   0
e n

P P P P
e w n s

w s

F F F F h dx dy 



    
    (24) 

 
where the flow rates across the faces of the CV are: 

       

   
   
   
   

;

;

;

P P
P P P

e x P
e e

P P
P P P

w x W
w w

P P
P P P

n x N
n n

P P
P P P

s x S
s s

F hu y h U y

F hu y h U y

F hu x h U x

F hu y h U x

   

   

   

   

 

 

 

 

  (25) 

The term containing the unsteady variation of fluid density and film thickness is 
approximated as:  
 

     
Pe n P

PP P P P PPP
P P

p
w s

h
h dxdy h x y h x y

      
   

               
   

 

which implies that the P-CV is fixed in space, with film thickness h and density   taken 
as uniform within the control volume.   
 
The algebraic form of the continuity equation establishes the flow balance on a finite size 
control volume as: 

   0
PP

PP P P P P P P PP
Pe w n s P

h
F F F F x y h

   
 

  
      

   
   (26) 

 

Since ( ) ( )( , ) cos sinX t Y th c x y       , then: 
 

      cos sin cos sin
P
P X Y

P P X P Y P

h       
  

  
   

  
   

 

Note that simultaneous solution of the rotor-bearing equations of motion determines the 
journal (shaft) center coordinates  ( )

,X Y    and its time derivatives  ,X Y   .   
 

Incidentally,   
*

*
 where ( ) and 

P P P
P P

P P P
P Pt t

       
 

 
    

 
 

 

The algebraic form of the continuity equation in the P-CV is thus  
 

PN

PS

PE

PP

PW

FeFw

Fn

Fs

P-cv

Pressure
control volume

xP

yP

PN

PS

PE

PP

PW

FeFw

Fn

Fs

P-cv

Pressure
control volume

PN

PS

PE

PP

PW

FeFw

Fn

Fs

P-cv

Pressure
control volume

xP

yP
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*

0
P P

PP P P P p p P P
Pe w n s P PF F F F x y h h

    


 
      

  

    (27) 

 
The pressure correction method (Launder and Leschziner, 1978] 
Let the flow variables be expressed as:  
 

    ' ; ' ; 'U U u V V v p p p          (28) 
 

where the current velocities ( ,U V ) satisfy the momentum equations but not the mass 
continuity equation. Above u’, v’, and p’ are correction fields. Substituting Eq. (28) into 
the momentum equations (22) and (23) leads to: 
   

  
 
 

*

' ' ' '

U U U U U
nbP nb P PP E

nb

U U U U u
PP P E nb nb P P P

nb

h p p y a U S S U

h p p y a u a U a u





   

    




     (29) 

Then   ' ' ' 'U U u U
P P E nb nb P P

nb

h p p y a u a u         (30.a) 

and identically, from the axial transport equation: 
   

   ' ' ' 'V V v V
P S P nb nb P P

nb

h p p x a v a v         (30.b) 

 
Introducing the SIMPLEC procedure (Van Doormal & Raithby, 1984] 

  ' ' ; ' 'U U V V
nb nb nb P nb nb nb Pa u a u a v a v        (31) 

 
Equations (30) become: 

    

 

 

' '
' ;

' '
' ;

U
P P E U U U

P P PU U
P nb

V
P P E V V V

P P PV V
P nb

d p p
u d h y

a a

d p p
v d h x

a a






 




 






     (32) 

 

where   

 

 

; Re

; Re

U
U UU

U U U U U Ux
P nb s

P
P

V
V VVyV V V V V V

P nb s
P

P

k x y
a x y a S S h

h

k x y
a x y a S S h

h

 

 

    


    


 
    

 

 
       




  

Let    ;
U V

U VP P
P PU U V V

P nb P nb

d d
D D

a a a a
 

  
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Substitution of the correction fields, Eq. (28), into the continuity Eq. (27) gives: 

       
*

' ' ' ' 0
P P

P P P P
p p P P

e w n s Pe w n s P PF F F F F F F F x y h h
    



 
          

  
 (33) 

where    
   
    , etc.

P P
P

e x P
e e

P P
P

s y P
s s

F hu y h U y

F hu x h V x

   

   

 

 
    (34) 

 

and          ' ' ' ' ' ' ;
P P p

P U P P P P U
e P P P E e P E e P

e e e
F h u y h D p p y a p p a h y D            

  

              ' ' ' ' ' ' ;
P P P

P V P P P P V
s P P S P S S P S P

s s s
F h v x h D p p x a p p a h x D            (35) 

 

       ' ' ' ; ' ' 'P P
w W W P n N P NF a p p F a p p     

 

Let    
*

*

P
P P P P P P P P
e w n s PP P PS F F F F x y h h

    


 
      

  

     (36) 

 

Then, Eq. (33) becomes 
     

*
' ' ' ' Pe w n sF F F F S          (37.a) 

 

or         *
' ' ' ' ' ' ' 'P P P P

PE P E N W P N P N S S Pa p p a p p a p p a p p S            (37.b) 

  

    
*

' 'P P
PP P nb nb

nb

a p a p S       (37.c) 

 

where     PP P
P E W N S nb

nb

a a a a a a          (38) 

 

Note that if *' ' 0 then 0nb P Pp p S   and mass continuity is satisfied.  Thus, the momentum 
equations are also satisfied and the (current) flow field is considered as the solution to the 
fluid transport equations. 
 
Once the  correction pressure field 'Pp is obtained, correction to the circumferential u and 
axial v fields are performed using Eqs. (27).  In the numerical procedure, the pressure is 
typically under-relaxed as  

      

'

'

'

new old

new old

new old

p p p

U U u

V V v

 

 

 
     (39) 

 

with α as a relaxation parameter, whose value is typically less than one. 
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Discretization of Energy Transport Equation 
The dimensionless equation for turbulent bulk-flow energy transport is (Yang, 1992): 
 

 
     

* *

2
2 2

Re ReRe

1

2 2 4

pp p ps
x y s

c c c

tx y x x y x J x

CC
hT hu T hu T Q

E E x y E

p p p p
u u hT h k u u u k u

x y x h

  


 


   
      

                                 

 (40) 

 

where  
 

 
* * * *

**

; ; / ; ;

/ ; ; ; ;

; ;

x x y y

a sa t t

x x R y y R t h H c

u U U u U U R U R U

T T T p P P P T

 
 

 

   
     

   

 

 
and    
 

 
  

 
   

2 *
* *

* 2
* * *

2
* *

 is the Eckerd number

Re Re R  is a (modified) Reynolds number

Re  is the squeeze film Reynolds number

 is the heat flow to bearing and journal surfaces

c p

p p

s

B JB Js

E U T C

c R U c

c

Q h T T h T T

 

  



 



   

 
 

Define the following source terms: 

1 tx y

p p p
S u u h

x y
 


   

      
; 

2
2 2

2

1

2 2 4x x y x J x

p
S h k u u u k u

x h

                     
 (41)  

Integration of Eq. (40) over the temperature control volume (T-CV) leads to 

       
* *

1 2

Re ReRe n e
e npp p ps

Px y sw s
c c cT cv s w

CC
hT dxdy hu T dy hu T dx Q x y S T S x y

E E E
  



                
   

(42) 
 
Implementation of the upwind scheme for the thermal flux transport terms gives 

        ,0 ,0
e

e P Ex e e ehu T y F T F T F T           

        ,0 ,0
w

w W Px w w whu T y F T F T F T          (43) 

        ,0 ,0
n

P Ny n nhu T x F T F T      

TN

TS

TE

TP

TW

FeFw

Fn

Fs

T-cv

Temperature
control volume

xP

yP

TN

TS

TE

TP

TW

FeFw

Fn

Fs

T-cv

Temperature
control volume

TN

TS

TE

TP

TW

FeFw

Fn

Fs

T-cv

Temperature
control volume

xP

yP
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        ,0 ,0
s

S Py s shu T x F T F T      

where        ; ; ;e x w x n y s y
e w n s

F hu y F hu y F hu x F hu x           are the momentum 

fluxes through the control-volume faces. Using Eq. (43), the LHS of Eq. (42) is rewritten 
as 

 
   

 

.42

* *

Re

Re Re

p s
P nbEq nb nb

c T cv

p p p
Pe w n s s

c c

C
LHS hT dxdy a T a T

E

C
F F F F T Q x y

E E





  



      

  
    (44) 

where        
* * * *Re Re Re Re

,0 ; ,0 ; ,0 ; ,0
p p p pp p p p

e e w w n n s s
c c c c

C C C C
a F a F a F a F

E E E E
      (45) 

 

The discrete form of the continuity equation in the T-CV gives 

      e w n s

T cv

F F F F h dxdy 



    

       (46) 

Substitution of Eq. (46) into (44) gives:   

  

   

   

*

.42

*

ReRe

Re Re

p ps
P nbEq nb nb s

c cT cv

p
P s p

c T cv T cv

C
LHS hT dxdy a T a T Q x y

E E

hC
T dxdy h dxdy

E





 

 



 


     



    
  

 

  

   
 (47) 

Since *Re Res p  , the last two terms on the RHS of the previous expression add to zero; 

i.e., they satisfy the continuity equation.  Then: 

  
*

.42

ReRep ps
PEq nb nb nb s

c cT cv

C T
LHS h dxdy a T a T Q x y

E E





     

      (48) 

The integral form of the energy transport Eq. (42) becomes 

  
 

 

*

1 2

ReRep ps
Pnb nb nb s

c cT c

P

C T
h dxdy a T a T Q x y

E E

S x y T S x y


 


    



     

      (49) 
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Let  
*

p pT T T

 
 


 

 and     P B JB J B JsQ T h h h T h T    ; with 
*
pT  as the film temperature 

in the previous time step.  Then, the discrete form of Eq. (49) becomes: 

  
   

 

*

1

*
*

2

Re Re

ReRe

p Ps P P
PBnb J

c c

p pPs P
nb P B JB Jnb

c c

C h
a x y h h x y S x y T

E E

C h
a T S x y x yT h T h T x y

E E







 
           

          





  (50) 

The algebraic form of the energy transport equation is finally written as: 

  
T T T T T T

P E W N Sp E W N S ca T a T a T a T a T S         (51) 

where: 

* *

* *

Re Re
,0 ; ,0

Re Re
,0 ; ,0

p pT T T TP P
E e W w

c c

p pT T T TP P
N n S s

c c

C C
a F a F

E E

C C
a F a F

E E

   

   

         

         

     (52.a) 

  1 2 3,0T T T T T T T T
P E W N S P P Pa a a a a S S S                (52.b) 

  
*

1 2 3 4 2 ,0T T T T T T
Pc C C C C PS S S S S S T               (52.c) 

  

 
     

*

1

*

2

3

Re

Re

P

T P
B JP

c

P PT
tP P P e w P n s

pT Ps P
P

c

S h h x y
E

p p
S h x y U p p y V p p x

C h
S x y

E









   

 
         

  

  


  (52.d) 

  
 

 

2
2 2

1

2

*

3

*

4

1

2 4

2

Re

Re

T
C x x y x J x

P

T
C P e w

T P
B JB JC

c

pT Ps P
PC

c

S k u u u k u x y
h

S h p p y

S h T h T x y
E

C h
S x yT

E






                
     


  

   

  


    (52.e) 
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Note the terms involving  correspond to unsteady flow conditions.  As for the source 
term -  1 PS x y T  : 

1)    1 1 goes into  if 0;  orPS x y a S x y        

2)    1 1 into the source term of the RHS if 0.PS x y T S x y       

Assembling and solving the flow equations 
The generic algebraic form of the flow equations is  

   P P E E W W S S N N Pa a a a a S                 (53) 

where  is the flow variable and PS
is a source-like term. In Eq. (53) the nodal value 

(P) of the flow variable in the control volume is a function of its four neighbors (E, W, 
N, S) and the source term. Eq. (53) applied to all the CVs in the grid leads to a system of 
(penta) algebraic equations easily solved using efficient schemes for banded linear 
equations.  

In particular, when the flow direction is well known as in annular seals (axial flow 

dominance), 0Na  and the flow equations reduce to the tri-diagonal form    

   P P E E W W P S Sa a a S a                (54) 

where S , the upstream value, is known from solution of the prior equation. Eq. (54) is 
readily solved using very-fast schemes such as the TDMA solver. 
 
For unsteady journal (shaft) motions leading to unsteady flow conditions, at the current 
time (t), the algebraic flow equations are  
 

( )t t
P P E E W W S S N N P p pa a a a a S B t                     (55) 

 

where = {U, W, P, T},and 
( )t t
p
  is the value of the variable one time step before. That 

is, at each time step, the previous flow field must be known fully; in particular the one at 
the initial time when the solution procedure starts. 

Once the solution of the set flow equations is obtained at time t, integration of the 
pressure field P over the journal (rotor) surface gives the components of the bearing or 
seal reaction force (FX, FY)  
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2

( ) 0 0

cos

sin

L R
X

Y t

F
P R d dz

F

 



   

   
  

     (56) 

These reaction forces are also known as (nonlinear) impedances since they depend on the 
journal center position and its velocity components, i.e.  

   YXYXfFYXYXfF YYXX
 ,,,;,,,     (57) 

A rotordynamics model predicting the transient response of a rotor-bearing system needs 
to integrate the (nonlinear) bearing reaction forces at each time step. The typical 
equations of motion are of the form 

     t R ext BM u + C + G u + K u = F u,u, + F u,u,      (58) 

where Ω is the rotor speed, and M, K, C and GR denote the system mass, stiffness, 
damping and gyroscopic matrices. The vector u represents rotor displacements 
(translations and rotations),  textF u,u,  contains the external forces such as weight and 

those due to mass imbalance, and  BF u,u,  corresponds to the bearing forces, for 

example those from Eqn. (57).  

Note that the solution of the rotor-bearing system equations of motion, Eqn. (58), is 
linked to the solution of the bulk-flow equations for each bearing (or seal), Eqs. (55).  

POSTCRIPT 2006, 2009 
The CFD method detailed above was quite popular in the 1980s and throughout the mid 
1990s. The author published many papers related to the numerical solution of the flow 
field in bearings and seals dominated by flow turbulence and with fluid inertia effects.  
 
Nowadays, however, CFD methods use efficiently non-staggered and non-structured 
grids and implement very fine meshes (large number of nodal points) without incurring 
into excessive computational costs. The CFD field has rapidly evolved thanks to the ever 
increasing speeds (and low cost) of personal computers. The governing equations 
remain unchanged, however. 
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