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NOTES 5 
DYNAMICS OF A RIGID ROTOR-FLUID FILM BEARING SYSTEM 
 
Lecture 5 restates the analysis for static equilibrium in a journal bearing. Next, it considers the 
dynamics of the simplest rigid rotor bearing system supported on journal bearings. For small 
amplitude journal motions about an equilibrium position, the analysis proceeds to linearize the 
fluid film forces and introduces the concepts of bearing force coefficients, namely, 4 stiffnesses, 
4 damping and 4 inertia coefficients. Formulas for the direct and cross-coupled stiffness and 
damping coefficients of a short length journal bearing are derived. The analysis focuses on the 
stability of the rigid rotor-bearing system to determine the threshold rotor speed at which the 
system loses its equivalent damping and develops ever growing motions at a whirl frequency that 
coincides with the rotor-bearing system natural frequency. The low and high magnitudes of the 
Sommerfeld number show whereas the system operates stably or not. The ½ whirl frequency 
ratio reveals a typical stability limit of lubricated journal bearings. The effect of rotor flexibility 
on further reducing the threshold speed of instability is noted since the rotor-bearing natural 
frequency is also lowered.  An appendix provides a physical explanation of the follower force, 
induced by the cross-coupled stiffnesses, that drives the rotor bearing system into whirl. 
Remedies to avoid or delay the instability are given. Actual examples of instabilities and 
measurements in the author’s laboratory make evident the harmful, potentially catastrophic, 
whirl instability. A list of industrial or commercial bearing configurations with noted advantages 
and disadvantages complements the lecture.   
 
Nomenclature 

C  Radial clearance [m] 
Cij  Bearing damping force coefficients, i,j=X,Y [N.s/m] 
D=2R Bearing diameter 
e Journal eccentricity [m]  

,e eφ  Vr, Vt .  Journal center radial and tangential velocities [m/s] 
F Fluid film force acting on journal surface [N] .  2 2 2 2

X Y r tF F F F F= + = +  
Fo ½ Static load [N] 
h Film thickness. H=h/c 
Kij Bearing stiffness force coefficients, i,j=X,Y [N/m] 
Ke Bearing equivalent stiffness [N/m] 
Krot Elastic rotor stiffness (one side) [N/m] 
L Bearing axial length  
M ½ Mass of rigid rotor [kg] 
Mij Bearing added mass force coefficients, i,j=X,Y [N.s2/m] 
mc=ps

2 Dimensionless critical mass 
P Hydrodynamic pressure [Pa] 
R Bearing radius [m] 
r, t  Moving coordinate system 
S Sommerfeld number 
t Time (s) 
u Mass imbalance [kg] 
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X, Y Inertial coordinates system 
ΔX, ΔY Small amplitude displacements in (X,Y) coordinate system 
Δe,eo Δφ Small amplitude displacements in (r,t) coordinate system 
ε  e/C. Journal eccentricity ratio 
δ  u/C. imbalance parameter 
ρ  Fluid density [kg/m3] 
σ  2

4 o

LR L
F C

μ Ω ⎛ ⎞
⎜ ⎟
⎝ ⎠

. Modified Sommerfeld number 

μ  Absolute viscosity [N.s/m2]
Γ o rotF K .  Static (elastic) sag at rotor midspan [m]
φ  Journal attitude angle 
Θ, θ Circumferential coordinates 
ω Characteristic whirl frequency [rad/s] 
ωn (Keq/M)½ . Rotor-bearing system natural frequency [rad/s] 
Ω  Journal rotational speed [rad/s] 
Ωs Threshold speed of instability [rad/s] 
 
Subscripts 

 

a Ambient value 
o Static or equilibrium condition 
s, fs Threshold of instability for rigid and flexible rotor 
XX,XY,YX,YY Indices of force coefficients in fixed (X,Y) coordinate system  
rr,rt,tr,tt Indices of force coefficients in moving (r,t) coordinate system  
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Equations of motion of a rigid rotor supported on plain journal bearings 
Consider, as shown in Fig. 5.1, a symmetric rigid 
rotor of mass 2M that carries a static load (2Fo=W) 
along the X axis. Two identical plain journal 
bearings support the rotor. The equations of 
motion of the rotating system at constant rotational 
speed Ω  are given by: 
 

2

2

sin( )

cos( )
X o

Y

M X F M u t F

M Y F M u t

= + Ω Ω +

= + Ω Ω
  (5.1) 

 
where u is the magnitude of the imbalance vector, 
X(t) and Y(t) are the coordinates of the rotor mass 
center, and (FX, FY)are the fluid film bearing reaction forces. 
 

Since the rotor is rigid, the center of mass displacements are identical to those of the journal 
bearing centers, i.e. 
 

)()(),()( tetYtetX YX ==              (5.2) 
 
The rotor-bearing static equilibrium is defined by 
 

OOYXYoX eeeFFF
OOOO

φ,or,,0, ⇒=−=     (5.3) 
 
where (eo ,φo) are the static equilibrium journal eccentricity and attitude angle, respectively. The 
static fluid film reaction force components are such that: 
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Figure 5.1. Rigid rotor supported on journal bearings. 
(u) imbalance, (e) journal eccentricity 
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Recall that 2 2 2 2
X Y r tF F F F F= + = +  

 
At equilibrium, the region of positive fluid film pressure extends from θ1 = 0 to θ2 = π. In a short 
length journal bearing, the radial and tangential components of the 
static fluid film force Fo are 
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  (5.5) 
 

where R= D/2, L and C are the journal radius, axial length and radial 
clearance, respectively. ε=eo/C is the journal center eccentricity ratio,  
ε<1.0; μ is the lubricant absolute viscosity, and Ω=(rpm π/30) is the 
rotor speed in rad/s. Figure 2 depicts the force components, radial and 
tangential, growing rapidly (nonlinearly) with the journal eccentricity e/C.   
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Note that the short length bearing forces are proportional to the lubricant viscosity and rotor 
surface speed (ΩR), the bearing length (L3), and inversely proportional to the radial clearance 
(C2). Most importantly, the bearing forces grow rapidly (non-linearly) with the journal 
eccentricity (ε=e/C). 
 
Each bearing reaction force balances a fraction of the applied static load Fo = ½ W for a 
symmetric rotor bearing system. Thus, 
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      (5.6) 
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Figure 5.2. Radial and tangential 
forces in short length journal 
bearing 
 
μ=0.019 Pa.s, L=0.05 m, C=0.1 mm,  
Speed 3, 000 rpm 
L/D=0.25 
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The equilibrium attitude angle (φo) between the static load direction and the eccentricity vector is 
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Note that as ε → 0,  φo → ½ π (journal eccentricity is perpendicular to the static load direction), 
whereas ε → 1, φo → 0 (journal eccentricity parallel or aligned to load direction). 
 
The bearing design parameter is the modified Sommerfeld number (σ) 
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For a rated operating condition, σ is known since the bearing geometry, speed, fluid type 
(viscosity) and load are known.  Then Eqn. (5.8) gives a relationship to determine (iteratively) 
the equilibrium eccentricity ratio, ε =e/c, that generates the film reaction force balancing the 
applied static load Fo. Recall that, 
 
Large Sommerfeld (σ) numbers (small load W, high speed Ω, large lubricant viscosity μ) 
determine small operating journal eccentricities or nearly centered operation, i.e. ε → 0.0 and 
attitude angles approaching 90°; and 
 
Small Sommerfeld (σ) numbers (large load W, low speed Ω, light lubricant viscosity μ) 
determine large operating eccentricities, i.e. ε→1.0 and attitude angle approaching 0° 
 
Figures 4.6-8 in Lecture 4 depict the Sommerfeld number and attitude angle versus the journal eccentricity and the 
locus of the journal center within the clearance circle. The same figures are reproduced here in a smaller format. 
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Fig. Eccentricity ratio (ε) and attitude angle (φ) versus Sommerfeld number (σ) in a short 
journal bearing 
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Consider, as represented in Figure 5.3, small amplitude journal motions about the equilibrium 
position. These motions are defined as 

 
)(),( teeeteee YYYXXX OO

Δ+=Δ+=   (5.9.a) 
or 

)(),( tYYYtXXX OO Δ+=Δ+=     (5.9.b) 
or conversely, 
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The journal dynamic displacements in the (r, t) coordinate system are related to those in the (X,Y) 
fixed system by the linear transformation 
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Similar relationships hold for the journal center velocities and accelerations. 
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Figure 5.3. Small amplitude journal 
motions about a static equilibrium 
position 
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Note that the small amplitude motions assumption means Cee YX <<ΔΔ , , i.e., the journal 
dynamic displacements are much smaller than the bearing clearance. 
 
The fluid film forces are general functions of the journal center displacements and velocities, i.e. 
 

YXteteteteFF YXYX ,)],(),(),(),([ == ααα    (5.12) 
 
The assumption of small amplitude motions about an equilibrium position allows expressing the 
bearing reaction forces as a Taylor Series expansion around the static journal position (eXo, eYo), 
i.e. 
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= + Δ + Δ + Δ + Δ + Δ + Δ
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   (5.13) 

 
 
Definition of dynamic force coefficients in fluid film bearings 
Fluid film bearing stiffness (Kij) ij=X,Y , damping (Cij) ij=X,Y and inertia force coefficients are 
defined as 
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For example, KXY = -∂FX/∂Y corresponds to a stiffness produced by a fluid force in the X 
direction due to a journal static displacement in the Y direction. By definition, this coefficient is 
evaluated at the equilibrium position with other journal center displacements and velocities equal 
to zero. The negative sign in the definition assures that a positive magnitude stiffness coefficient 
corresponds to a restorative force.  
 
The coefficients (KXX, KYY) are known as the direct stiffness terms, while the coefficients (KXY,  
KYX)  are referred as cross-coupled. Figure 5.4 provides an idealized representation of the 
bearing force coefficients as mechanical parameters. 
 

Fluid inertia or added mass coefficients ;
j

i
ij X

F
M

∂
∂

−=  i,j=X,Y where { }YX ,  are journal center 

accelerations.  Fluid inertia coefficients are of particular importance in superlaminar and 
turbulent flow bearings and seals handling liquids (large density). The inertia force coefficients 
or apparent masses have a sound physical interpretation and are always present in a fluid film 
bearing. Inertia coefficients are of large magnitude especially in dense liquids. However, the 
effect of inertia forces on the dynamic response of rotor-bearing systems is only of importance at 
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large excitation frequencies (This fact also holds for most mechanical systems subjected to fast 
transient motions). 

  
Note that the defined force coefficients allow the representation of the dynamic fluid film 
bearing (or seal) forces in terms of fundamental mechanical parameters {K, C, M}. However, this 
does not mean that these coefficients must be accordance with customary knowledge. For 
example, the “viscous” damping coefficients may be negative, i.e. non-dissipative, or the 
stiffness coefficients non restorative or non conservative. 
 
Fluid film force coefficients in the radial and tangential directions (r, t) are also defined. Thus, 
the radial and tangential fluid film forces are expressed as (stiffness and damping for simplicity) 
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Note that { φΔΔ oee, } are the journal center radial and tangential (small) velocities in the (r, t) 
coordinate system, respectively. 
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Cij = -ΔFi/d(ΔXj)/dt 
 

Figure 5.4. The “physical” representation of dynamic force coefficients in 
fluid film bearings  
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The relationship between the force coefficients in both coordinate systems is easily determined 
from equation (5.11) as: 
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Substitution of the force coefficient definitions (5.14) into equation (5.13) gives the following 
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And, the governing equations of motion for the rigid-rotor-bearing system, Eqn. (5.1) become 
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where FXo = Fo= ½W and FYo = 0. These differential equations are linear and represent the rotor-
bearing system dynamics for small amplitude motions about the equilibrium position. 
 
Fluid inertia effects are altogether neglected in the traditional stability analysis of rotor-
lubricated bearing systems.   
 
Force coefficients for the short length journal bearing 
The general definition of fluid film bearing dynamic force coefficients is above. The analytical 
derivation of these coefficients for the short length journal bearing follows.  
 
The film thickness for an aligned cylindrical journal bearing is 
 

cos ;h C e(t) ( )θ θ ϕ= + = Θ −     (5.19) 
 

For small amplitude motions about the equilibrium position, )()();()( ttteete oo φφφ Δ+=Δ+= , 
where Δe and Δφ are small radial and angular displacement quantities, respectively.  
 
Eqn. (5.19) is rewritten with θ =Θ -φo as 
 

( ){ },sinsincoscos φθφθ Δ+ΔΔ++= eeCh o   
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and, for small amplitude motions note that cos(Δφ)~1, sin(Δφ) ~Δφ. Then neglecting second 
order terms,  

θφθθ sincoscos Δ+Δ++= oo eeeCh = 1oh h+     (5.20) 
where, 

θφθθ sincos;cos 10 Δ+Δ=+= oo eeheCh     (5.21) 
 
are the zeroth-order and first-order or perturbed film thicknesses, respectively. 
 
Recall that the Reynolds equation for the short length journal bearing model is1: 
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Substitution of (5.23) into (5.22) gives: 
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Integration of Eqn. (5.24) in the axial direction and applying the boundary conditions at the sides 
of the bearing, i.e. P = Pa at z =  ± ½ L, gives:  
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where H = h/C. Integration of the pressure field on the journal surface gives the radial and 
tangential components of the fluid film force, i.e., 
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1 This equation is valid for (L/D)<<0.50 and incompressible, isoviscous lubricants. No thermal effects are accounted 
for in this simple form of the classical Reynolds equation. 
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where the positive (uncavitated) pressure region lies between θ1 = 0 and θ2 = π when Pa is set as 
zero (nil). Note that it is assumed the perturbed pressure field, due to small amplitude journal 
motions about the equilibrium position (eo, φo), does not affect the extent of the steady state 
lubricant cavitation region, i.e. from 0 to π. This assumption is clearly void if the motions are 
large in character. By the way, the concept of linear force coefficients is also inadequate when 
motion amplitudes are large. 
 
Substitution of Eqn. (5.25) into Eqn. (5.26) and integration in the axial direction renders 
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However, the cubic term in the denominator (H3) also depends on the perturbed journal center 
displacements. A first-order Taylor series expansion of this terms gives for h/C=H 
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where θφθθ sincos;cos 10 Δ+Δ=+= oo eeheCh . Substitution of Eqn. (5.28) into (5.27) 
and neglecting second-order terms, i.e. products of small quantities such as Δe ·Δφ, etc., gives 
after some considerable algebraic manipulation 
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  (5.29) 
 

where θθθ
πθ

θ

d
H

J i

jk
kj
i

0
0

)(cos)(sin
2

1

∫
=

=

=   are definite integrals and Ho =( 1 + ε cos θ ).   

 
The bearing stiffness and damping force coefficients are, from Eqn. (5.29), specified as 
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The ( φΔΔ   e  ,e o

) correspond to the journal center radial and tangential velocities in the  (r, t) 
coordinate system, respectively. Note that the stiffness coefficients (Kij) ij=r,t are proportional to 
the rotational speed (Ω) and fluid viscosity (μ). The damping coefficients (Cij) ij=r,t are not a a 
direct function of the angular speed but depend only on the fluid viscosity and the journal 
equilibrium position. Without journal rotation there cannot be a fluid film bearing stiffness. 
 
Dimensionless Force Coefficients 
The literature presents the force coefficients in dimensionless form according to 
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;
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Ω
==  i,j=X,Y    (5.32) 

 
where Fo is the static load applied on each bearing (in the X direction). [Note that the total load 
W=2Fo is shared by the two bearings in a symmetric rotor mount].  
 

Recall that ( )
σ

μ
4
/ 2 RLCLFo

Ω
= , where (σ) is the modified Sommerfeld Number defined as (See 

Notes 4) 
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the dimensionless force coefficients in the (r, t) coordinate system become, 
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Force coefficients in the (X,Y) coordinate system are easily obtained using the matrix 
transformation Eqn. (5.16). After a lengthy algebraic procedure, 
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            (5.35) 
recall that the X-direction is along the static load Fo. 
 
Figures 5.5 and 5.6 depict the dimensionless force coefficients, stiffness and damping, as 
functions of both the journal eccentricity and the modified Sommerfeld number (σ), respectively. 
Both representations are necessary since sometimes the journal eccentricity is known a priori 
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while most often, the design parameter, i.e. the Sommerfeld number, is known in advance. In 
general, the physical magnitude of the stiffness and damping coefficients increases rapidly 
(nonlinearly) with the journal eccentricity (load too!).  
 
Note that the dimensionless force coefficients do not represent the actual physical trends. For 
example, at eo=0, KXX=KYY=0, but the dimensionless values kXX=kYY=0 in the figures show a 
definite value. This peculiar result follows from the definition of dimensionless force coefficients 
using the applied load (Fo). Thus, as eo→0 , the bearing load Fo is also nil. 
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Figure 5.5. Short length journal bearing (dimensionless) stiffness and damping force 
coefficients vs. journal eccentricity (ε)
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Figure 5.6. Short length journal bearing (dimensionless) stiffness and damping force 
coefficients vs. modified Sommerfeld number (σ) 
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Dynamic force Coefficients for journal centered operation, i.e. static load=0 
As the journal center approaches the bearing center, eo→0, and from the formulas,   
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At e→0, φo = 90o, so the force coefficients in the (X,Y) system are given as: 
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Thus, at the centered journal position the bearing offers no direct (support) stiffness but only 
cross-coupled support. A small static load applied on the bearing will cause a journal 
displacement in a direction orthogonal (perpendicular) to the load. This phenomenon is found in 
nearly all fluid film bearings of rigid geometry. 
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Stability analysis of rigid rotor supported on plain journal bearings 
For small amplitude journal motions about the equilibrium position (eo, φo), the equations of 
motion of a rigid rotor supported on (linear) fluid bearings are: 
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Introduce the dimensionless variables: 
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where C is the bearing radial clearance and Ω is the journal or rotor speed (regarded as 
invariant). Substitution of Eqn. (5.39) into (5.38) gives: 
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where  
F

  MC = p
d
d = 

o

2
2 Ω;)( '

τ
is a dimensionless mass, and  kij = Kij (C/Fo),  cij = Cij  (CΩ /Fo) 

are the dimensionless dynamic force coefficients. 
 
It is of interest to study if the rotor-bearing system is stable for small amplitude journal center 
motions (perturbations) about the equilibrium position. To this end, set the imbalance parameter 
δ  = 0 in the equations above to obtain, 
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If the rotor-bearing system is to become unstable, this will occur at a threshold speed of 
rotation (Ωs) and the rotor will perform (undamped2) orbital motions at a whirl frequency (ωs). 
These motions, satisfying equation (5.42), are of the form: 
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where ss Ωωω = is known as the whirl frequency ratio, i.e. the ratio between the rotor whirl 
or precessional  frequency and the rotor onset speed of instability. 
 
Substitution of Eqn. (5.42) into (5.41) leads to: 
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The determinant of the system of equations must be zero for a non-trivial solution of the 
homogenous system of equations, i.e. 
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After a rather lengthy algebraic manipulation, the real and imaginary parts of Δ above render, 
 

o

S

YYXX

YXXYXYYXXXYYYYXX
eqss F

MC
cc

kckcckckkp
2

22 ω
ω =

+
−−+

==   (5.45) 

 
and 

( )( ) 2
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

=
−

⋅−−−
=

s

s

YXXYYYXX

YXXYYYeqXXeq
s cccc

kkkkkk ω
ω   (5.46) 

 
 
For a given value of journal eccentricity (εo), i.e. a given Sommerfeld number (σ ), one evaluates 
Eqn. (5.45) to obtain the dimensionless equivalent stiffness keq, and then (5.46) to obtain the 
whirl frequency ratio Sω . This substitution then yields 22

Seqs kp ω=  (system critical mass) 
which in turn renders the onset speed of instability Ωs. 

                                                           
2 Recall that in a second order mechanical system an equivalent damping ratio>0 causes the damping or attenuation 
of motions induced by small perturbations. A damping equal to zero produces sustained periodic motions without 
decay or growth and indicates the threshold between stability and instability (amplitude growing motions).   
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Figures 5.7 and 5.8 depict the whirl frequency ratio ss Ωωω = and the dimensionless threshold 
speed of instability (ps) versus both the journal eccentricity and Sommerfeld number, 
respectively. Note that for near centered journal operation, i.e. large Sommerfeld numbers, the 
whirl frequency is 0.50, i.e. half-synchronous whirl.  
 
Other important information is also obtained. If one assumes that the current (operating) 
rotational speed Ω is the onset speed of instability, then from the relations above, the magnitude 
of ½ system mass (M) is obtained, and which would make the rotor-bearing system become 
unstable. This mass is known as the critical mass, Mc, and corresponds to the limit mass which 
the system can carry dynamically. If the total mass is equal or larger than twice Mc, then the 
system will be unstable at the rated speed Ω (3). 
 
The whirl frequency ratio, s sω ω= Ω , is the ratio between the rotor whirl frequency and the onset 
speed of instability. Note that this ratio, as given by Eqn. (5.46), depends only on the fluid film 
bearing characteristics and the equilibrium eccentricity, and it is independent of the rotor 
characteristics (rotor mass and flexibility). 
 
The parameter keq is a journal bearing (dimensionless) equivalent stiffness and depicted in 
Figures 5.5 and 5.6. From the definitions of threshold speed and whirl ratio, ( )oss FCMp 22 Ω=  
and sss Ωωω = , then 
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Thus, the whirl or precessional frequency is given by 
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i.e., the whirl frequency equals the natural frequency of the rigid rotor supported on journal 
bearings. 
 
For operation close to the concentric position, εo → 0, i.e. large Sommerfeld numbers (no load 
condition), the force coefficients are, see Eqn. (5.37),  
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3 Recall that each bearing carries half the static load, and also half the dynamic or inertia load (2.McC Ω2). 
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The 0.5 magnitude for whirl frequency ratio (WFR) (or 50% whirl as is called in industry) is a 
characteristic of hydrodynamic plain journal bearings. It shows us that at the onset of instability 
the rotor whirls at its natural frequency, which equals to 50% of the rotor speed. Furthermore, 
under no externally applied loads, Fo=0, as in vertically turbomachinery, the bearing possesses 
no support stiffness, i.e. Keq=0 and the system natural frequency (ωn) is zero, i.e. the rotor-
bearing system whirls at all speeds.  
 
Note that if kXY = 0, i.e. the fluid film bearing does not show cross-coupled effects, then the WFR 
= 0, i.e. no whirl occurs and the system is ALWAYS stable. (Asymmetrical) cross-coupled 
stiffnesses are thus responsible for the instabilities so commonly observed in rotors mounted on 
journal bearings.  
 
If the whirl frequency ratio is 0.50, then the maximum rotational speed that the rotor-bearing 
system can attain is just, 

max 2 2
0.50

s
s n

ω ω ωΩ = = =     (5.49) 

i.e., twice or two times the natural frequency (or observed rigid rotor critical speed). 
 
Figures 5.7, 5.8, and 5.9 show, respectively, the whirl frequency ratio, the dimensionless critical 
mass parameter (ps), and the dimensionless critical mass (ps)2  versus the Sommerfeld number 
and operating journal eccentricity. The results show that a rigid-rotor supported on plain journal 
bearings is always STABLE for operation with journal eccentricity ratios ε > 0.75 (small 
Sommerfeld numbers) for all L/D ratios. Note that the critical mass and the whirl ratio are 
relatively insensitive for operation with eccentricities εo < 0.50. 
 
Keep in mind that increasing the rotational speed of the rotor-bearing system determines larger 
Sommerfeld numbers, and consequently, operation at smaller journal eccentricities for the same 
applied static load. Thus, operation at ever increasing speeds will eventually lead to a rotor 
dynamically unstable system as the results show. 
 
Effects of Rotor Flexibility 
A similar analysis can be performed considering rotor flexibility. This analysis is more laborious 
though straightforward. The analysis shows that the whirl frequency ratio is not affected by the 
rotor flexibility. However, the onset speed of instability decreases dramatically!  
 
The relationship for the threshold speed of instability of a flexible rotor is: 
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where the sub index  f  denotes the flexible rotor, Krot  is the rotor stiffness on each side of the 
center disk, and o rotF KΓ = is the rotor static sag or elastic deformation at midspan. 

bearing 
2M KRot 
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The elastic shaft and bearing are mounted in series, i.e. the bearing and shaft flexibilities add 
(reciprocal of stiffnesses), and thus the equivalent system stiffness is lower than that of the 
bearings alone, and therefore the system natural frequency is lower.  
 
Figure 5.10 shows the threshold speed of instability (psf) for a flexible rotor mounted on plain 
short length journal bearings. Note that the more flexible the rotor is, the lower the threshold 
speed of instability. If the fluid film bearings are designed too stiff (small Sommerfeld numbers), 
then the natural frequency of the rotor-bearing system is just (Krot/M)0.5, irrespective of the 
bearing configuration. 
 
Postcript 
See the Appendix to these notes for further understanding on the nature of the cross-coupled 
coefficients driving the whirl motion.  
 
The MATHCAD programs attached include the algebraic formulas for evaluation of the bearing 
force coefficients in actual applications. 
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Figure 5.7. Whirl frequency ratio vs. modified Sommerfeld number (σ) and journal 
eccentricity (ε) 
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Figure 5.8. Dimensionless threshold speed of instability (ps) vs. modified Sommerfeld 
number (σ) and journal eccentricity (ε) 
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Figure 5.9. Dimensionless critical mass (mc=ps
2) vs. modified Sommerfeld number 

(σ) and journal eccentricity (ε). 
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Damping ratio of flex rotor system
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Synchronous response

y yc cos ω t⋅( )⋅ ys sin ω t⋅( )⋅+=x xc cos ω t⋅( )⋅ xs sin ω t⋅( )⋅+=

Y Yc cos ω t⋅( )⋅ Ys sin ω t⋅( )⋅+=X Xc cos ω t⋅( )⋅ Xs sin ω t⋅( )⋅+=

The rotor disk (X,Y) and journal center displacements (x,y) are synchronous with the imbalance excitation, i.e. 
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The equations of motion for both rotor and journal bearings are given below. The coordinates of rotor and disk  
motion have their origin at the static equilibrium position. No damping at rotor midspan, no mass lumped at 
the  bearings.

Synchronous imbalance response of flexible rotor
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Natural frequency - flex rotor and simple 
formula (rigid rotor)
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Exercise: Calculate the major and minor axes of the ellipses describing the (X,Y) motions. See Appendix A of 
Childs' Rotordynamics Book:.

Notes: You could update this program to account for 
a) bearing mass MB, a fraction of total rotor mass,
b) introduce damping at the rotor midspan, Cs.



Damping ratio of flex rotor system
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Synchronous response

y yc cos ω t⋅( )⋅ ys sin ω t⋅( )⋅+=x xc cos ω t⋅( )⋅ xs sin ω t⋅( )⋅+=

Y Yc cos ω t⋅( )⋅ Ys sin ω t⋅( )⋅+=X Xc cos ω t⋅( )⋅ Xs sin ω t⋅( )⋅+=

The rotor disk (X,Y) and journal center displacements (x,y) are synchronous with the imbalance excitation, i.e. 
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The equations of motion for both rotor and journal bearings are given below. The coordinates of rotor and disk  
motion have their origin at the static equilibrium position. No damping at rotor midspan, no mass lumped at 
the  bearings.

Synchronous imbalance response of flexible rotor
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×=

Natural frequency - flex rotor and simple 
formula (rigid rotor)
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Exercise: Calculate the major and minor axes of the ellipses describing the (X,Y) motions. See Appendix A of 
Childs' Rotordynamics Book:.

Notes: You could update this program to account for 
a) bearing mass MB, a fraction of total rotor mass,
b) introduce damping at the rotor midspan, Cs.
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NOTES 5. APPENDIX B 
OTHER TYPES OF LUBRICATED JOURNAL BEARINGS 
Compressors, turbines, pumps, electric motors, electric generators and other rotating machines 

are commonly supported on fluid film bearings. In the past, the vast majority of these bearings 

were plain journal bearings. As machines have achieved higher speeds, rotor dynamic instability 

problems such as oil whirl have brought the need for other types of bearing configurations. 

Cutting axial grooves in the bearing to provide a different oil flow pattern across the lubricated 

surface generates some of these geometries. Other bearing types have various patterns of variable 

clearance (preload and offset) to create a pad film thickness that has strongly converging and 

diverging regions, thus generating a direct stiffness for operation even at the journal centered 

position. Various other geometries have evolved as well, such as the tilting pad bearings which 

allow each pad to pivot, and thus to take its own equilibrium position. This usually results in a 

strongly converging film region for each loaded pad and the near absence of cross-coupled 

stiffness coefficients. 

 

 

 

 

TYPES OF HYDRODYNAMIC BEARINGS: 

The Tables below list in a condensed form some of the advantages and disadvantages of various 

practical bearing configurations.
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FIXED PAD NON-PRE LOADED JOURNAL BEARINGS 
 

Bearing Type        Advantages                Disadvantages       Comments                   
    

 
Plain Journal 
 

1.  Easy to make 
2.  Low Cost 

1.  Most prone to  
subsynchronous whirl 
 

Round bearings are nearly 
always “crushed” to make 
elliptical bearings 
 

Partial Arc 1.  Easy to make 
2.  Low Cost 
3.  Low horsepower loss 

1.  Poor vibration resistance 
2.  Oil supply not easily 
contained 

Bearing used only in rather 
old machines 
 
 
 

Axial Groove 1.  Easy to make 
2.  Low Cost 

1.  Subject to oil whirl Round bearings are nearly 
always “crushed” to make 
elliptical or multi-lobe 
 

Floating Ring 1.  Relatively easy to make 
2.  Low Cost 

2.  Subject to oil (two whirl 
frequencies from inner and outer 
films (50% shaft speed, 50% 
[shaft + ring] speeds) 

Used primarily on high 
speed turbochargers for 
diesel engines and P/C 
vehicles 
 

Elliptical 1.  Easy to make 
2.  Low Cost 
3.  Good damping at 

critical speeds 
 

1.  Subject to oil whirl at high 
speeds 

2.  Load direction must be 
known 

Probably most widely used 
bearing at low or moderate 
rotor speeds 

Offset Half (With 
Horizontal Split) 

1.  Excellent suppression 
of whirl at high speeds 

2.  Low Cost 
3.  Easy to make 

1.  Fair suppression of whirl at 
moderate speeds 

2.  Load direction must be 
known 

High horizontal stiffness 
and low vertical stiffness - 
may become popular - used 
outside U.S. 
 
 

Three and Four 
Lobe 

1.  Good suppression of 
whirl 

2.  Overall good 
performance 

3.  Moderate cost 

1.  Some types can be 
expensive to make properly 

2.  Subject to whirl at high 
speeds 

Currently used by some 
manufacturers as a standard 
bearing design 
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FIXED PAD JOURNAL BEARINGS WITH STEPS, DAMS OR POCKETS 
       Bearing 
Type 

Advantages Disadvantages Comments 

 
Pressure Dam (Single 
Dam) 

 
1.  Good suppression of whirl 
2.  Low cost 
3.  Good damping at critical 

speeds 
4.  Easy to make 

 
1.  Goes unstable with 

little warning 
2.  Dam may be subject to 

wear or     build up 
over time 

3.  Load direction must 
be known 

 
Very popular in the 
petrochemical industry.  
Easy to convert elliptical 
over  to pressure dam 

 
 
Multi-Dam Axial 
Groove or Multiple-
Lobe 

 
 
1.  Dams are relatively easy 

to place in existing 
bearings 

2.  Good suppression of whirl 
3.  Relatively low cost  
4.  Good overall performance 

 
 
1.  Complex bearing 

requiring detailed 
analysis 

2.  May not suppress 
whirl due to 
nonbearing causes 

 
 
Used as standard design 
by some manufacturers 

 
 
Hydrostatic 

 
 
1.  Good suppression of oil 
whirl 
2.  Wide range of design 

parameters 
3.  Moderate cost 

 
 
1.  Poor damping at 
critical speeds 
2.  Requires careful 
design 
3.  Requires high pressure 

lubricant supply 

 
 
Generally high stiffness 
properties used for high 
precision rotors 

 

NON-FIXED PAD JOURNAL BEARINGS 
Bearing Type Advantages Disadvantages Comments 

 
Tilting Pad Journal 
bearing 
 
Flexure pivot, tilting 
pad bearing 

 
1.  Will not cause 

subsynchronous 
whirl (no cross 
coupling) 

 
1.  High Cost 
2.  Requires careful design 
3.  Poor damping at critical 

speeds 
4.  Hard to determine actual 

clearances 
5. High horsepower loss 
6. Load direction must be 
known  
 

 
Widely used bearing to 
stabilize machines with 
subsynchronous non-
bearing related 
excitations 

Foil bearing 1. Tolerance to 
misalignment. 

2. Oil-free 
 

1.High cost. 
2.Dynamic performance not 
well known for heavily loaded 
machinery. 
3.Prone to subsynchronous 
whirl 

Used mainly for low load 
support on high speed 
machinery (APU units). 
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Plain journal 
bearing 

Partial arc journal 
bearing 

Journal bearing 
with axial grooves 

Elliptical journal 
bearing 

Two lobe bearing 
with offset 

Three lobe bearing 
w/wo offset 

Four lobe bearing 
w/wo offset Floating ring 

journal bearing 

Tilting pad journal 
bearing 

Typical configurations of cylindrical journal bearings (1) 
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Top half 
 
Bottom half 

Dam 
 
 
 
Groove 

Pressure dam journal 
bearing 

Typical configurations of cylindrical journal bearings (2) 

  

hydrostatic 
journal 
bearing

Supply 
port 

recess 

film 

journal 
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flexure pivot hydrostatic bearing 
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(a) Elliptical bearing  (b) 3-pad bearing 

(c) 4-pad bearing  (d) 5-pad bearing 
 

        Tilting pad bearing 
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