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ABSTRACT 
 

Regulation of Pituitary Thyrotropin Production in Red Drum. (April 2009) 
 

Elizabeth Drone 
Department of Biology 
Texas A&M University 

 

Research Advisor: Dr. Duncan MacKenzie 
Department of Biology 

 
 
 
Thyroid stimulating hormone (TSH), also known as thyrotropin, is a pituitary hormone 

which stimulates the thyroid gland to synthesize and secrete the thyroid hormones, 

thyroxine (T4) and triiodothyronine (T3). In tetrapod vertebrates, the regulation of 

pituitary hormone production and secretion is accomplished by a portal system which 

delivers thyrotropin-releasing hormone to positively stimulate the pituitary to release 

more TSH. However, in teleost fish such as the red drum (Sciaenops ocellatus), TSH 

production appears to be negatively controlled through direct neurosecretory 

innervations of the pituitary by the hypothalamus. Further research has yet to establish 

the importance of precise regulation of TSH expression in the red drum pituitary gland 

via hypothalamic TSH inhibitory factors (TIFs). Examining pituitary glands in in vitro 

incubations should provide a direct method for testing possible TIFs while controlling 

for other factors. Unfortunately, the pituitary gland of the red drum provides a very small 

amount of tissue, and it can be difficult to extract enough RNA from single pituitary 
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glands to use in common mRNA expression analysis techniques such as Northern 

blotting. My objective is to determine if more sensitive techniques, dot blot and real-time 

PCR, are suitable for analyzing mRNA expression of red drum TSH.  Dot blot was 

found to be successful in determining relative quantification of TSH mRNA in samples 

of at least two pooled pituitary glands following in vitro incubation. Real-time PCR with 

TaqMan probes was also successful at amplifying a TSH mRNA signal from 50ng of red 

drum pituitary mRNA. Thus, real-time PCR should provide a sensitive technique to 

measure mRNA expression of TSH in single pituitary glands and allow further 

investigation of the existence of hypothalamic TSH inhibitory control factors.   
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NOMENCLATURE 

 

TSH     Thyroid Stimulating Hormone 

TIF     Thyrotropin Inhibiting Factor 

RNA     Ribonucleic Acid 

mRNA     Messenger Ribonucleic Acid 

PCR     Polymerase Chain Reaction 

T3     Triiodothyronine 

T4     Thyroxine 

TH     Thyroid Hormone 

MMI     Methimazole 

32P     Radioactive Phosphorus Isotope 

cDNA     Reverse Transcribed Deoxyribonucleic Acid 
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CHAPTER I 

INTRODUCTION 

 

Thyroid stimulating hormone (TSH), also known as thyrotropin, is one of several 

hormones produced by the pituitary gland. TSH is a 30 kilodalton glycosylated dimer 

which is manufactured by thyrotrophs in the pars distalis of the pituitary gland. It 

comprises two subunits, an α subunit which is common to other glycoprotein hormones 

and aids in receptor affinity and binding stabilization, and a β subunit which is unique to 

TSH and specifies TSH binding to thyroid receptors. TSH acts via membrane receptors 

to stimulate the thyroid gland to synthesize and secrete the thyroid hormones (THs), 

thyroxine (T4) and triiodothyronine (T3). TSH also activates other vital aspects of thyroid 

function including the transportation and concentration of iodide, manufacture and 

processing of the TH precursor thyroglobulin, and the growth and differentiation of the 

thyroid gland.  Thyroid hormones in turn are involved in controlling a host of genes 

which regulate metabolic rate throughout the body and maintain essential metabolic tone 

in cells. Thyroid hormones are also critical factors in the correct growth and 

development of many organs and tissues, especially of the central nervous system. Thus, 

the precise regulation of these hormones via TSH is vitally important in all vertebrate 

animals. 

_______________ 
This thesis follows the style of General and Comparative Endocrinology. 
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The distribution of pituitary hormones in the vertebrate lineage indicates that the shared 

α subunit is conserved all the way back to Cephalochrodata (e.g. Amphioxus) whereas 

the TSH β gene is present in Chondrichthyes (elasmobranch species such as sharks and 

rays) onward. Although TSH genes are highly conserved, the control of TSH production 

varies among vertebrates. In tetrapod vertebrates, the regulation of pituitary hormone 

production and secretion is accomplished by a portal system, called the hypothalamo-

hypophysial portal system, which delivers hormones directly from the hypothalamus to 

stimulate the pituitary’s pars distalis. By releasing thyrotropin-releasing hormone (TRH) 

into the portal circulation, the hypothalamus positively stimulates the pituitary to release 

more TSH. However, in teleost fish, such as the goldfish Carassius auratus, TSH 

production appears to be negatively controlled through direct neurosecretory 

innervations of the pars distalis by nerves of the hypothalamus. This inhibitory control 

was illustrated by in vivo studies of goldfish in which lesions were created in the 

hypothalamus to disrupt its control over the pituitary and consequently thyroid function 

was activated (Peter, 1970). Increases in TSH levels in isolated pituitaries in vivo or with 

lesion studies have also been seen in other teleost species (Ball et al., 1963; Olivereau 

and Ball, 1966). Further experiments by Dr. Peter demonstrated that autotransplanted 

pituitaries, those moved away from the brain and out of proximity to the hypothalamus, 

also increased production of TSH in goldfish (Peter, 1972).  It can thus be inferred that 

the hypothalamus had been exerting some inhibitory effect on the pituitary to down-

regulate the expression of TSH. Peter proposed that the hypothalamus produced a novel 

regulatory factor responsible for inhibition of TSH release from the pituitary gland: 
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thyrotropin inhibitory factor (TIF). However, a TIF molecule has never been identified. 

In a similar case, another important pituitary hormone, growth hormone (GH), has been 

experimentally proven to be inhibited by the hypothalamus in many species, particularly 

goldfish, by dopamine and somatostatin (Kwong and Chang, 1997). 

 

GH inhibition is common throughout vertebrates, but TSH inhibition in teleost fish is 

unique. This unique inhibition may be due to the unusual system of direct innervation of 

the teleost fish pituitary instead of a portal system. However, little is known about the 

physiological mechanism through which this inhibition is achieved. The objective of this 

project is to determine whether techniques developed for the study of pituitary hormone 

production in other fish species are suitable for the identification of inhibitory factors 

controlling TSH release in a common agricultural fish species, the red drum. The red 

drum provides an excellent species to study because extensive research on its thyroid 

system by the MacKenzie lab has shown dynamic daily changes of T3 and T4 (Leiner 

and MacKenzie, 2003). The studies on goldfish TSH inhibition can be used as 

background for examining the same effects in the red drum. The decreased presence of 

TSH and the feedback mechanisms of thyroid hormones led Eales and Brown to propose 

that in teleost fish peripheral control of thyroid hormone levels via deiodoniases are 

more crucial to thyroid system regulation than central control through the hypothalamo-

pituitary axis (Eales and Brown, 1993). In contrast, the discovery of hypothalamic TSH 

inhibitory factors would provide evidence that precisely-regulated TSH expression is 
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important in controlling a dynamically regulated thyroid system. If inhibition of TSH 

expression can be established for this teleost species, then the red drum can be used to 

conduct further research to discover novel factors important in TSH regulation and to 

characterize possible hypothalamic inhibitory control factors of TSH, particularly a 

candidate for thyrotropin inhibitory factor.  

 

When working with such a small amount of tissue as the pituitary gland of the red drum, 

extremely sensitive techniques must be developed for measuring hormones. Various 

methods have been used to successfully measure TSH mRNA expression in fish 

pituitaries, including dot blots, northern blots, radioimmunoassay, and most recently 

quantitative polymerase chain reaction (PCR). In the Coho salmon, TSH 

radioimmunoassay and RNAse protection assay were used to observe T3 inhibition of 

TSH in vivo and to evaluate stimulatory effects of molecules such as corticotropin-

releasing hormone (CRH), thyrotropin-releasing hormone (TRH) and gonadotropin-

releasing hormone (GnRH) on TSH expression in vitro (Moriyama et al., 1997, Larsen 

et al., 1998, Larsen et al., 1997). Additionally, northern blots have been used 

successfully in the past to examine T3 inhibition of TSHβ expression in vitro, for 

example in the European eel and goldfish (Schmitz et al., 1998, Sohn et al., 1999a). 

Because of its high sensitivity, real-time PCR has become the most commonly used 

method to measure TSHβ expression both in vivo and in vitro in many fish species, 

including the Japanese eel, turbot, Senegalese sole and bighead carp (Han et al., 2004, 
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Manchado et al., 2008, Chatterjee et al., 2001, Chowdhury et al., 2004). The MacKenzie 

lab has developed cDNA probes for red drum TSH α and β subunits by cloning and 

sequencing their genes. Using northern and dot blot techniques, the amount of RNA in 

pituitary samples can be detected with these probes labeled with radioactive 32P. 

However, the amount of RNA that can be obtained from a single pituitary can be highly 

variable depending on the size of the fish. Occasionally, the RNA obtained from one 

pituitary is not enough to use in northern or dot blot techniques. Thus, to maximize the 

number of data points that can be obtained from a limited number of fish specimens by 

ensuring that a single pituitary can be used, this project will incorporate the design and 

standardization of a quantitative PCR, or real-time PCR, technique for measuring red 

drum TSH α and β using TaqMan probes.  

 

 

In vitro cultures of pituitary cells provide a more controlled environment for examining 

very precise TSH mRNA level changes which may be of very small magnitude. This 

study therefore will utilize an in vitro pituitary incubation system to evaluate regulation 

of TSH production. The in vitro incubation protocol for isolated red drum pituitaries was 

developed based on the experiences of members of the MacKenzie lab and on previous 

culture techniques published in several laboratories (Li et al., 2002, Larsen et. al, 1998, 

Schmitz et al., 1998, Han et al., 2004, Sohn et al., 1999b, Chatterjee et al., 2001, 

Chowdhury et al., 2004). Additionally, preliminary work on the time course of TSH β 

mRNA expression has allowed me to establish basal TSH levels in single red drum 
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pituitaries as related to the size of the fish. We thus have preliminary evidence that TSH 

is expressed and detectable in in vitro red drum pituitaries. These in vitro experiments 

support the hypothesis that TSH expression will increase when pituitaries are removed 

from inhibitory hypothalamic control. 

  

 

Further in vitro experiments will include hormone-response tests in an effort to identify 

potential regulators of TSH production and possibly TIF. Both in vitro and in vivo 

studies of TSH production in teleost pituitaries have shown that thyroid hormones inhibit 

TSH mRNA expression (Schmitz et al., 1998; Pradet-Balade et al., 1997). Furthermore, 

studies in the bighead carp identified various neuropeptides, such as TRH and leptin, as 

potential regulators of TSH expression in cultured carp pituitary cells (Chowdhury et al., 

2004). To examine possible methods of increasing TSH expression in red drum, isolated 

pituitaries will be treated with thyroid hormones and hypothalamic hormones that are 

known to influence TSH expression and may exert stimulatory control on TSH 

production in vertebrates (Denver and Licht, 1989; Canosa et al., 2007). Pituitaries will 

also treated with agonists of dopamine, a known inhibitor of the pituitary hormones 

prolactin, growth hormone (GH) and gonadotropin; somatostatin, another GH inhibitor; 

and T3, which is a feedback inhibitor of TSH (Peter, 1971). These experiments will 

simulate physiological doses of these hormones (10-6 – 10-10 M). Overall, this project 

will strive to establish an inhibitory effect of the hypothalamus on TSH production in the 

red drum by demonstrating that TSH expression increases when pituitaries are removed 
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and examined in vitro. Once baseline TSH mRNA levels are established, it will be 

possible to identify specific neuropeptides that inhibit TSH production. These hormone-

response tests will validate the in vitro system and possibly identify the most potent 

neuropeptide for TSH regulation. 
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CHAPTER II 

METHODS 

 

Animals and animal procedures 

Red drum (Sciaenops ocellatus) were obtained from the Aquacultural Research and 

Teaching Facility at Texas A&M University. The red drum were maintained in a 4000 

liter recirculating artificial seawater system at a salinity of 5-6 parts per thousand, a 

temperature of 25oC, and fed a commercial diet. Fish used in these experiments had a 

body weight ranging from 200-700g. Before pituitary glands were extracted using 

forceps, the fish were anesthetized using tricaine methanesulfonate (MS-222) and then 

sacrificed by severing the spinal cord at the base of the skull.  

 

In vitro incubation of pituitary glands to test for RNA integrity 

Preparation of reagents  

Fresh incubation medium was prepared the day of each experiment according to the 

following recipe: 0.4755g Minimum Essential Medium (MEM), 0.11g Sodium 

bicarbonate, 0.238g  HEPES, 0.5ml Pen-Strep antibiotic, and buffered to a pH of 7.2-7.4 

using 1N Sodium hydroxide. Finally, the medium was QS to 50ml total volume.  

 

Pituitary gland extraction and incubation 

For measurement of mRNA expression, pituitary glands were removed from three red 

drum and placed in 1ml TRIzol each. All three samples were homogenized individually 
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by gentle aspiration through a 20g needle attached to a 3cc syringe. Homogenates were 

snap frozen on dry ice and stored at -80oC until further analysis. For in vitro incubation 

studies, pituitary glands were removed from three fish and were cut with a razor blade 

into at least four fragments. While being sliced, pituitary glands were placed on a flat 

glass plate and bathed in 100µl of medium. After this medium was pipetted into one well 

on a 24-well culture plate, another 100µl of medium was used to wash the surface of the 

glass dish and was also pipetted into that well to catch any remaining fragments. Each 

fragmented pituitary gland was thus placed in one well of a standard 24-well plate with 1 

ml of medium. The plate was then placed in an incubator at 28oC under 4% CO2 and 

incubated for 20 hours. Samples were then transferred to 1.5ml conical tubes and 

centrifuged at 12,000 x g and 4oC for 5 minutes.  The supernatant was discarded and the 

pellet was homogenized in 1ml TRIzol, snap frozen on dry ice, and stored in -80oC. 

RNA samples were later extracted using the TRIzol Reagent procedure and then 

analyzed by RNA Gel Electrophoresis according to the protocols below.  

 

In vitro incubation of pituitary glands with T3 and T4 treatments 

Preparing medium containing T3 and T4 treatments 

Medium was prepared using the same recipe above. 1µl of a 1mM thyroxine (T4) stock 

solution, containing T4 free acid in saline (1.8g NaCl, 0.2g Bovine Serum Albumin, QS 

to 200ml) was added to 999µl of media. This preparation provided medium with a 1µM 

concentration of T4. The medium containing triiodothyronine (T3) was prepared in the 

same way, except using a 1mM T3 stock solution, containing T3 free acid and saline.  
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Pituitary gland extraction and incubation  

Pituitary glands were removed from 18 red drum and placed into a small beaker of 

medium on ice. The medium had been placed on ice before beginning the experiment so 

that the pH could be adjusted to physiological levels of red drum (7.2-7.4) at the colder 

temperature. The pituitary glands underwent a one hour pre-incubation period while 

waiting on ice as they were being collected. Two pituitary glands were selected at 

random from the beaker and sliced into at least two pieces using the method described 

under “In vitro Incubation of Pituitary Glands to test for RNA integrity.” These two 

pituitary glands were then placed in the same well of a standard 24-well plate which 

contained 1ml of media and no hormone. This same procedure was used for all of the 

remaining pituitary glands. This gave a total of nine different samples which were 

separated into three groups of three. The first three samples had no hormone added and 

acted as a control group. The next three samples each had 1µl of a T4 stock solution 

added (as described in the media preparation section above). The final group had 1µl of 

a T3 stock solution added (also described above). All samples were incubated for 20 

hours at 28oC under 4% CO2. At the end of the incubation period, the samples with their 

medium were placed into conical tubes and centrifuged in a cold room for 5 minutes. 

1ml of TRIzol Reagent was then added and the samples were gently homogenized using 

20 g needles attached to 3cc syringes. Finally, the samples were snap frozen in liquid 

nitrogen and stored at -80oC. Later, RNA samples were extracted using the TRIzol 

Reagent procedure and analyzed by dot blot according to the protocols below. 
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RNA extraction using TRIzol reagent  

Phase separation 

Samples frozen in TRIzol were quickly thawed in a hot water bath for 10 seconds and 

then incubated at room temperature (15-30oC) for 5 minutes to permit the complete 

dissociation of nucleoprotein complexes. Then, 0.2ml of chloroform was added to each 

TRIzol sample. Tubes were shaken vigorously by hand for 15 seconds and then 

incubated at room temperature for 2-3 minutes. Samples were next centrifuged at top 

speed for 15 minutes which allows the sample to separate into a lower phase containing 

phenol-chloroform and DNA or protein contaminants, an organic interphase, and a 

colorless upper aqueous phase containing RNA.   

 

RNA precipitation 

The aqueous phase was then transferred to a fresh 1.5ml tube and 0.67µl of glycol-blue 

was added so that the RNA would be visible when precipitated. 0.5ml of isopropanol 

was then added to each sample in aqueous phase and incubated at room temperature for 

10 minutes. The samples were then centrifuged at top speed for 10 minutes and the 

supernatant was discarded. The RNA pellet was then washed once by adding 0.5ml of 

100% ethanol and centrifuging at top speed for 5 minutes. The ethanol was aspirated and 

decanted by inversion onto paper towels. The pellet was allowed to air dry for 5-10 

minutes.  
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Re-dissolving RNA and measuring concentration 

7µl of DEPC water was used to re-suspend the pellet. The pellet was pipetted repeatedly 

and occasionally was briefly heated in the 65oC water bath to assure that it was 

dissolved. If necessary, an additional 5µl of DEPC water was used if the pellet still had 

not dissolved. The concentrations of the samples were then measured using a Nanodrop 

ND-100 spectrophotometer. The concentration in nanograms per milliliter, the 

absorbance value at a wavelength of 260nm, and the ratio of the absorbance at 260nm to 

the absorbance at 280nm were recorded for each sample.  

 

RNA gel electrophoresis 

Preparing an RNA gel 

A 1.0-1.2% SDS gel was prepared by dissolving 0.5-0.6g of agarose in 45ml of double 

deionized water (ddH2O) and heating it in a flask for 10-20 seconds in a microwave. The 

gel was then cooled to approximately 60oC by submerging the base of the flask in 

running tap water. Once the agarose was cooled, 5ml of 10X formaldehyde gel buffer 

was added and mixed by swirling the flask. The gel was then immediately poured into a 

gel box with the teeth of the comb positioned 1-2mm from the bottom of the gel tray. 

After the gel had solidified it was placed in the gel box and the box was filled with 10X 

MOPS buffer (21g MOPS, 3.4g NaOAC, 1 ml 0.5M EDTA, 400ml ddH20). The gel was 

allowed to soak for 15 minutes.  
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Preparing the samples 

Using no more than 6µl of each sample, the amount of that corresponded to 5 µg of 

RNA was transferred to a new tube. RNA loading buffer (from Ambion) was then added 

in a 3:1 ratio to the volume of each sample. The samples were then vortexed, pulsed, and 

heated at 60-65oC for 10-15 minutes. Immediately after heating, the samples were pulse 

spun in a microcentrifuge and quenched on ice.  

 

Running the gel 

 The samples were loaded into the wells of the gel. The gel was run at 80-100 volts until 

the first dye front was two-thirds of the way down to the end of the gel. After it was 

finished running, the gel was removed from the running buffer and placed into a staining 

solution (25µl of concentrated ethidium bromide in 500ml of ddH2O). The gel was 

gently rocked in the covered staining solution tray for 30 minutes and then moved to a 

destaining solution of 500ml of H2O and gently rocked overnight. A picture of the gel 

was then taken using a UV transilluminator.  

 

Dot blot analysis of RNA content 

A volume of each sample that corresponded to 1.1µg was obtained and brought up to 

80µl with DEPC ddH2O.  240µl of master mix for each sample was then prepared with 

500 parts formamide, 162  parts formaldehyde, and 100 parts 10X MOPS. The 240µl of 

master mix was added to each sample, heated at 65oC for 15 minutes, and then chilled on 

ice. Finally, 80µl of 20X SSC was added to each sample and they were vortexed, pulse 
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spun, and placed on ice. The dot blotter was then prepared by cutting a piece of 

Whatman filter paper and a blotting membrane to the correct size to cover all of the dots 

that would be used for the samples. The two pieces were briefly rinsed in ddH2O and 

then 20X SSC. The Whatman paper was placed on the blotter first and then the 

membrane on top. Any unused dots were covered with Parafilm and the blot was 

clamped down. A vacuum was applied and the samples were carefully loaded to their 

corresponding dots. After the entire sample had passed through, each dot was washed 

with 500µl of 20X SSC. The RNA was fixed to the membrane by placing it in a UV 

crosslinker for 12 seconds and then by soaking the membrane in 2X SSC. The blot can 

then be analyzed. 

 

Validation of real-time PCR technique 

Sample preparation 

In order to validate the first use of the real-time PCR technique, samples were used from 

a previous in vivo experiment conducted by Richard Jones which had been previously 

analyzed by Northern blot and shown to have a large difference in TSHβ expression. 

Jones used injected treatments of methimazole (MMI), T3, and saline as a control 

treatment. MMI is a known thyroid hormone synthesis inhibitor which increases TSH 

expression by decreasing negative feedback of thyroid hormones at the level of the 

pituitary. T3 decreases TSH expression by increasing negative feedback to the pituitary. 

Red drum were injected with these three treatments and then pituitary glands were 

pooled into a single sample for each treatment group.  
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DNAse treatment using DNA-free kit 

To remove any DNA contamination, the RNA samples were treated with DNAse 

enzyme. 10µg of RNA from each sample was added to 5µL of buffer, 1µL rDNAse I, 

and brought up to a volume of 50 µL using DEPC ddH2O. These samples were then 

incubated at 37oC for 20-30 minutes. Then 5µL of DNAse Inactivation Reagent is added 

to each sample and mixed well by vortexing. The samples are incubated at room 

temperature for another 2 minutes while being occasionally mixed as the inactivation 

reagent stops the reaction. Centrifuging at 10,000g for 1.5 minutes separates the 

inactivation reagent from the sample; the aqueous RNA phase can then be removed to a 

new tube. After DNAse treatment, RNA samples were at a concentration of 0.2µg/µL. 

 

High-capacity cDNA reverse transcription kit  

Using the Applied Biosystem High-Capacity Reverse Transcription (RT) Kit specifically 

designed for use preparing real-time PCR samples. 400ng of RNA from each treatment 

group was used in separate reverse transcription experiments to prepare enough DNA for 

8 samples of 50ng each for use in real-time PCR. Thus, 2µL of each sample was added 

to 10µL of master mix. The master mix was made using 2µL 10X RT Buffer, 0.8µL 25X 

dNTP Mix, 2µL 10X TR Random Primers, 1.0µL Reverse Transcriptase, and 4.2µL 

DEPC ddH2O for each reaction. Once combined with master mix, the samples were 

mixed by pipetting up and down and then loaded into the thermocycler and run at the 

following conditions: Step 1: 25oC for 10 minutes, Step 2: 37oC for 120 minutes, Step 3: 
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85oC for 5 minutes, Step 4: Hold at 4oC.  After the RT reaction is complete, the RNA 

samples have now been converted to cDNA and are ready for real-time PCR.  

 

Real-time PCR run using TaqMan reagents  

Real-time PCR was run using TaqMan reagents because the combination of primer and 

probe that it utilizes ensures higher specificity for the target sequence than other real-

time methods. As polymerization begins, the probe with a fluorescent reporter dye (R) 

and quencher dye (Q) attached as shown in Figure 1 anneals to the target gene sequence. 

As the Taq Polymerase synthesizes a new strand of target DNA from the template, it 

reaches the probe and displaces it from the original DNA strand. The reporter dye is then 

cleaved from the probe and begins to fluoresce once it is out of proximity to the 

quencher. Thus, fluorescence increases as amplification increases. 

 

Figure 1. Process of real-time PCR amplification using TaqMan probes. Step 1: 
Polymerization begins. Step 2: Taq Polymerase displaces probe. Step 3: Reporter dye is 
cleaved from the probe and begins to fluoresce. Step 4: Polymerization of the target 
sequence is complete.  
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To set up the real-time PCR reaction, each sample was prepared according to the 

following formula: 12.5µL TaqMan Universal PCR Master Mix (2X), 2µL of 12X 

concentrated TaqMan Primer/Probe Mix, 2µL cDNA sample at a concentration of 

0.025µg/µL which gives 50ng cDNA, and 10.5µL nuclease-free ddH2O. Four 

replications of each sample type were run and each replication had its own endogenous 

control. The replications were created to test the precision of the real-time PCR 

technique. Thus, for the control saline injected sample, eight wells of a standard optical 

96-well plate were prepared containing reverse transcribed cDNA from the control 

sample and primer/probe mix for TSHβ was added to four of the wells and primer/probe 

mix for 18S ribosomal RNA was added to the other four wells to measure a 

housekeeping gene and serve as endogenous controls. The expression of 18S is 

measured in order to standardize for the amount of RNA in each sample. Eight more 

wells were prepared in the same manner for each of the remaining two samples, MMI 

treated and T3 treated. The plate was then loaded into an Applied Biosystems 7500 Real-

Time PCR thermocycler and run at the following conditions: Step 1: 50oC for 2 minutes, 

Step 2: 95oC for 10 minutes, Step 3: 40 cycles of  95oC for 15 seconds and then 60oC for 

1 minute. Data was collected and analyzed using Applied Biosystems SDS Software 

1.3.1 which uses the comparative Ct method of relative quantification of real-time PCR 

data.  
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CHAPTER III 

RESULTS 

 

In vitro incubation of pituitary glands to test for RNA integrity 

Incubation and RNA extraction protocols were successful in quantifying the RNA 

content of individual pituitary glands (Table 1). For pituitary glands incubated for 0 

hours, the TRIzol Reagent RNA extraction technique extracted an average of 3.533µg of 

RNA from each gland. The average amount of RNA extracted from single pituitary 

glands incubated for 20 hours was 3.4502µg. The large variation in RNA content of 

individual glands incubated for the same amount of time may be attributed to a large 

variation in mass of the individual fish between approximately 200g and 800g. 

Additionally, variation in the efficiency of the RNA extraction technique for each 

sample may have introduced variability in RNA content of various single pituitary 

glands.  

Table 1. Amount of RNA obtained from individual pituitary samples. T0 represents the Time 0 
samples which were not incubated. T20 represents the Time 20 samples which were incubated in 
medium for 20 hours. A-260 indicates the absorbance of the sample at 260nm wavelength and is 
an indicator of sample quality. The 260/280 value is a ratio of absorbance at 260nm to the 
absorbance at 280nm and is an indicator of contaminants in the sample when the ratio is above 
~2.30. 
 

Sample Total Amount of 
RNA (µg) 

A-260 260/280 

T0-1 1.6212 6.754 2.00 
T0-2 1.9092 7.821 1.96 
T0-3 7.0686 29.452 1.94 
T20-1 1.887 7.861 2.07 
T20-2 3.1212 13.004 2.01 
T20-3 5.3424 22.259 1.75 
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Samples were successfully visualized using gel electrophoresis of the entire samples 

(Figure 2). The differing RNA content of the samples, which can be observed by 

brighter bands containing more RNA, may be due to variability in the TRIzol RNA 

extraction protocol but also reflects that the amount of RNA loaded per well was not the 

same for each sample. Although the same volume of every sample was used, the RNA 

concentration of each sample varied. The amount of RNA was unimportant and the gel 

results still verify that RNA molecules in each pituitary gland remained intact during the 

incubation process.  

                        

Figure 2. UV exposed image of the RNA gel electrophoresis of incubated samples. From top to 
bottom, the sample in each well is as follows: 100 bp ladder, T0-1, T0-2, T0-3, T20-1, T20-2, 
and T20-3. 
 

In vitro incubation of pituitary glands with T3 and T4 treatments 

Dot blot analysis of the extracted from the samples (Table 2) was successful at 

visualizing the content of TSHβ mRNA. 1µg of RNA from each sample was blotted to 

the membrane. Two pituitary glands incubated in the same well yielded an average of 

2.23µg of RNA using the TRIzol RNA extraction technique.  



  20 

Table 2. Amount of RNA obtained from each sample of two pooled pituitary glands. Control 
samples without hormone treatment in incubation medium are indicated by the letter “C.” T3 and 
T4 treated samples are indicated as such. A-260 indicates the absorbance of the sample at 260nm 
wavelength and is an indicator of sample quality. The 260/280 value is a ratio of absorbance at 
260nm to the absorbance at 280 nm and is an indicator of contaminants in the sample when the 
ratio is above ~2.30 
 
Sample RNA Concentration

(µg/µL) 
A-260 260/280 µL RNA 

sample used 
for dot blot 

C1 0.6808 17.020 1.86 1.6157 
C2 2.8029 70.072 1.90 0.3924 
C3 0.9964 24.910 1.86 1.10324 
T3-1 2.9982 74.954 1.77 0.3668 
T3-2 2.1635 54.087 1.91 0.5084 
T3-3 2.6184 65.460 1.92 0.4201 
T4-1 1.1115 27.788 1.79 0.9865 
T4-2 2.78365 72.043 1.92 0.3951 
T4-3 1.9232 37.992 1.27 0.5719 
 

. 
 

Dot blot analysis results show a statistically significant decrease in TSHβ mRNA 

expression in samples treated with T4 as compared with the control samples (Figure 3). 

The data also show some decrease in TSHβ mRNA expression in T3 treated samples 

which might have been statistically significant had this experiment used a larger number 

of samples. 
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Figure 3. TSHβ expression based on strength of radioactivity on dot blot. Radioactivity 
was measured in pixels by a phorsphoimager. The Control bar represents the average 
value of the three samples which were incubated in media without hormone treatment. 
The T3 bar represents the average value of the three samples incubated in media 
containing T3. The T4 bar represents the average value of the three samples incubated in 
media containing T4. * denotes statistical relevance at P < 0.05.  
 

Validation of real-time PCR technique 

Real-time PCR was successful in amplifying TSHβ expression in each sample well 

(Figure 4). Three distinct clusters of curves corresponding to the three sample groups 

can be observed in the amplification plot. The first group to cross the threshold value of 

magnitude of fluorescence corresponds to the MMI samples and indicates that they had 

the highest TSHβ expression and thus the highest amount of fluorescence. The middle 

group corresponds to the control samples and the last group to cross the fluorescence 

threshold is the T3 treated samples.  
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Figure 4. Amplification plot of RNA samples. Graph shows change in fluorescence of 
each sample over time. Each line represents an individual sample. Green line represents 
threshold values above which fluorescence levels begin to be measured. Threshold value 
is set at the standard 0.200000 ∆Rn. 
 
 
In accordance with previous analysis of these samples, data show an increase in TSHβ 

mRNA expression of MMI treated samples compared to the saline treated control 

(Figure 5). The data also show a decrease in TSHβ mRNA expression of T3 treated 

controls. Additionally, precision of sample replicates seems intact as seen by the small 

deviation in expression value among replicates of the same sample.  
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Figure 5. Relative TSHβ mRNA expression per sample. Expression values were 
standardized against 18S expression levels. Values shown are relative to lowest control 
group sample expression, sample Con-3. Labels are as follows: Con: control group 
treated with saline and no hormone. MMI: treated with MMI. T3: treated with T3.  
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CHAPTER IV 

CONCLUSIONS 

 

In order to successfully test for TIFs in vitro, red drum pituitary gland incubations and 

RNA extraction techniques must be optimized to achieve the most sensitive results. The 

high yield of RNA and the preserved integrity of extracted RNA samples from an 

overnight in vitro incubation shows that our extraction and incubation methods will be 

effective methods to obtain RNA from further in vitro experiments. Although the 

average RNA obtained was 3.4502µg, the RNA content ranged from 1.6212µg to 

7.0686µg depending on fish size which suggests that very sensitive analysis techniques 

may be necessary to measure TSH expression in single pituitaries especially when using 

small fish.  

 

The dot blot technique was successful in quantifying TSHβ mRNA extracted from two 

pooled pituitary glands incubated in vitro. Two pituitary glands incubated in the same 

well yielded an average of 2.23µg of RNA, but only 1µg of that RNA was needed to 

analyze each sample.  The data shows a statistically significant decrease in the amount of 

TSH in the T4 treated group reflecting the negative feedback of T4 on TSH expression. 

The T3 treated group also showed some decrease in TSH expression although it was not 

statistically significant. The demonstration of negative feedback on TSH expression via 

thyroid hormones illustrates that in vitro incubations can reproduce the physiological 

conditions present in the fish. Although the dot blot adequately analyzed TSH levels, 
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more sensitive techniques are necessary if it is desirable to measure the TSH content of a 

single pituitary gland. 

  

Real-time PCR should provide a sensitive measure of mRNA expression of TSHβ in 

single pituitary glands. Running a single well used only 50ng of RNA for TSHβ 

measurement and another 50ng for 18S standardization for a total of 100ng of RNA 

needed per sample, which was 1.5µg less than the smallest amount obtained in any 

extraction of a single gland from an in vitro incubation. Real-time PCR was also shown 

to replicate the physiological data we expected from samples which had been previously 

analyzed by another technique; MMI treated samples had high TSHβ expression and T3 

treated samples had lower TSHβ expression compared to control saline-treated samples. 

Therefore, real-time PCR should allow further in vitro investigation of the existence of 

hypothalamic TSH inhibitory control factors.  

 

In conclusion, we have successfully tested an in vitro incubation system for red drum 

pituitary glands which can be sensitively analyzed individually by real-time PCR. This 

system should allow us to observe the effects of various compounds on TSHβ expression 

which will hopefully lead to the discovery of TIF and further the understanding of the 

teleost fish thyroid axis.  
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