
   

 

 

 

 

 

 

 

 

 

 A NOVEL SENSITIVE METHOD OF DETECTING MNEMONIC 

DECLINE IN MOUSE MODEL OF ALZHEIMER’S DISEASE 

 

Major: Psychology 
 

April 2009 

Submitted to the Office of Undergraduate Research 
Texas A&M University 

in partial fulfillment of the requirements for the designation as 
 
 

UNDERGRADUATE RESEARCH SCHOLAR 

A Junior Scholars Thesis 

by 

REBECCA KAYE SIMMONS 



   

 

 
 

A NOVEL SENSITIVE METHOD OF DETECTING MNEMONIC 

DECLINE IN MOUSE MODEL OF ALZHEIMER’S DISEASE 

Approved by: 
 
Research Advisor: Jennifer Bizon  
Associate Dean for Undergraduate Research: Robert C. Webb 

Major: Psychology 

April 2009 

Submitted to the Office of Undergraduate Research 
Texas A&M University 

in partial fulfillment of the requirements for the designation as 
 
 

UNDERGRADUATE RESEARCH SCHOLAR 

A Junior Scholars Thesis 

by 

REBECCA KAYE SIMMONS 



  iii 

ABSTRACT 
 

A Novel Sensitive Method of Detecting Mnemonic Decline in Mouse Models of 
Alzheimer’s Disease. (April 2009) 

 

Rebecca Kaye Simmons 
Department of Psychology 

Texas A&M University 
 

Research Advisor: Dr. Jennifer Bizon 
Department of Psychology 

 

Deficits in transferring generalized information of past learning to new problems are 

related to mild hippocampal atrophy in the elderly and appear to be an early marker of 

age-related cognitive decline.  This inability to transfer information could be used as an 

early diagnostic tool for such decline, and a rodent model that is sensitive to this deficit 

could be valuable in the search for therapies to prevent or reverse such impairments.  

The goal of this study is to develop an analogous animal model to be used for assessing 

cognitive abilities in a variety of transgenic mouse models of Alzheimer’s disease (AD).  

Such a rodent model will be valuable for identifying specific biomarkers associated with 

early age-related cognitive decline and should prove useful for developing and testing 

therapies directed at preventing or reversing such impairments. 

 

Three month old APP+PS1 mice were not impaired in initial discrimination learning or 

on the ability to ransfer this learned information to the altered context.  In contrast, at 12 

months of age, APP+PS1 mice learned the initial concurrent discriminations on par with 
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NTgs but were impaired when required to “transfer” this learning into a new 

configuration/context.  There were no differences in Morris water maze performance 

between the APP+Ps1 and NTgs at 12 months of age.  These data are the first to 

demonstrate deficits associated with reconfiguration of stimuli or transfer learning 

thought to be dependent on the hippocampal formation is impaired in a mouse model of 

AD.  Moreover, these data suggest that this deficit may precede or is more sensitive in 

detecting deficits than water maze in this model. 
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CHAPTER I 

INTRODUCTION 

 

According to the National Institute of Aging, Alzheimer’s disease affects as many as 4.5 

million Americans and the numbers are continuing to climb P

1
P.  Current research suggests 

that Alzheimer’s disease is caused by a build up of β-amyloid protein caused by a 

mutation in the of β-amyloid precursor protein (APP).  This is commonly referred to as 

the amyloid hypothesisP

2
P.  However, the amyloid hypothesis is lacking in detail and there 

is evidence to suggest that observations do not fit easily with the hypothesis P

2
P.  Despite 

current efforts and research to determine the neurobiological causes of this disease, 

sensitive behavioral assays that identify individuals at early preclinical stages remain 

elusive. 

 

Functional changes in the medial temporal lobe system and the hippocampus is among 

the earliest associated with AD P

3,4,5
P.  One example of early neuropsychological change is 

delayed paragraph recall, which has about a 90% accuracy rate in distinguishing which 

among a group of non-demented elderly will progress into cognitive decline P

4,6
P. Previous 

animal models have suggested that some memory tasks are sensitive to hippocampal 

region damage P

7
P.  However, current cognitive screens in both humans and rodents are not  

_______________ 
This thesis follows the style of Journal of Geriatric Psychiatry and Neurology. 
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sufficiency sensitive or selective to detect functional decline at early ages. 

 

If hippocampal atrophy is indeed a predictor of cognitive decline and AD, then it ought  

to be possible to estimate hippocampal atrophy by behavior alone.  Myers, Gluek, and 

colleagues have developed a computational model of hippocampal function that appears 

sensitive to age related dysfunction.  This computational model has suggested that the 

hippocampus is critically involved in encoding new information during learning so as to 

support subsequent transfer when familiar information is presented in novel 

recombinationP

7,8
P. Recently, a computer based task has been used to test some of these 

predictions in humans P

9
P. The task involves nondemented patients on a series of eight 

concurrent discriminations with each pair consisting of two objects that vary in color or 

two colors that vary in shape.  Therefore, each pair consists of a relevant and irrelevant 

feature.  Patients discriminate between a pair of figures presented on a computer screen 

until they reach criterion.  After reaching criterion, recombinations of the shape and 

color featured in the concurrent learning phase are presented.  During recombination, the 

irrelevant feature is changed while the same feature still predicted the correct choice.  

For example, a patient would be presented with two triangles, one yellow and one red 

during the concurrent learning phase.  The patient would learn that the red circle is 

positive.  During the transfer phase, the triangles, which are the irrelevant feature, would 

be changed to circles however the red circle would still be correct.  Thus, a set of 

response rules that emphasized the relevant features in the learning phase would 

perfectly predict the reward stimuli in the transfer phase. 
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Results showed that patients with or without hippocampal atrophy learned the initial 

discriminations however patients with mild hippocampal atrophy had difficulty during 

the transfer phase of the task.  This suggests that patients with mild hippocampal atrophy 

have trouble combining learned associations to make novel combinations. 

 

The computational predictions were recently confirmed in a group of amnesic patients 

with bilateral hippocampal damage.  Patients could learn the basic discrimination pairs 

but performed at near chance during the transfer test component P

10
P. Similarly, non-

demented elderly individuals with and without hippocampal atrophy show a similar 

pattern on the transfer test. There is preserved learning of the discrimination pairs, 

followed by poor transfer when irrelevant information is altered P

7
P.  Interestingly, these 

individuals were not impaired relative to non-atrophied controls on the delayed 

paragraph recall, suggesting that transfer performance may be a more sensitive or an 

earlier marker of hippocampal dysfunction.  In fact, a small scale longitudinal study 

suggests that , in non-demented elderly individuals, poor performance on the transfer 

portion of this task may be predictive of short term cognitive decline P

10
P. This task may 

offer a selective and sensitive memory assessment relevant to hippocampal function and 

has predictive value for determining long-term cognitive health in humans. 

 

There is a similar need for sensitive assays of age related hippocampal impairment in 

rodent models of AD as the water maze (the primary task used to evaluate hippocampal 
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function in rodents) yields varied results with relatively minimal changes in transgenic 

models of the disease P

11,12,13,14,15
P.  The water maze task is also not ideal for 

pharmacological studies and a more sensitive task is needed to evaluate hippocampal 

function in rodent models of AD. 

 

The goal of the present study is to develop an analogous mouse version of the human 

concurrent discrimination task with feature irrelevant transfer task and to asses the task 

during a longitudinal study.  A naturalistic odor discrimination task was modified for the 

mouse model with odors and digging media used as the discriminadaP

16
P.  In the first 

experiment, the experimental design and procedures were validated using young adult 

C57B6J mice. In experiment 2, aged APP+PS1 mice expressing a chimeric 

mouse/human amyloid precursor protein (Mo/HuAPP695swe) and mutant human 

presenilin 1 (PS1-dE9) and NTg mice were assessed in the task P

17,18
P. In experiment 3, 

APP+PS1 and aged-matched controls were longitudinally studied in the transfer 

generalization task and in the reversal task.  Spatial learning abilities of aged APP+PS1 

and NTg were assessed by testing them in the hidden version of the Morris water maze 

in experiment 4. Collectively, our results indicate that aged APP+PS1 mice have 

difficulty generalizing previously learned information when presented in novel 

recombinations. In contrast, young pre-plaque APP+PS1 and NTg controls are able to 

generalize the learned information without difficulty. As seen in other studiesP

 
Pyoung 

APP+PS1 mice demonstrate a deficit in reversal learning P

19,20,21
P. When the same cohort 

was tested at 14 months in a different odor pair, the reversal deficit was no longer 
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present P

19
P. Notably, the same mice were not impaired in a hippocampal-dependent spatial 

version of the Morris water maze. Based on the human version of the task, we have 

reason to believe that the mouse version of the transfer generalization task is also 

hippocampal-dependent. To determine which structures are necessary for the learning 

and completion of the task, lesion must be performed. Because the human version of the 

task may be an early detection tool for AD, the mouse task will allow for discriminating 

of the brain mechanisms necessary. Also, this new cognitive assessment tool for rodents 

should have great utility in evaluating the effectiveness of drugs and other interventions 

aimed at halting or even reversing cognitive decline associated with AD.   
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CHAPTER II 

METHODS 

 

Subjects 

Experiment 1: C57BL/6J (n=10, 5 months old) female retired breeders from Jax Mice 

were used for validation of the Transfer Task. 

 

Experiment 2: Three month old female Tg (APPswe, PSEN1dE9) (n=13 to 15) and age-

matched non transgenic littermates of B6C3F1/J background strain (n=7) were used.  

The APP+PS1 double transgenic mice express a chimeric mouse/human amyloid 

precursor protein (Mo/HuAPP695swe) and the mutant human presenilin 1 (PS1-dE9).  

These mice develop beta-amyloid deposits throughout the brain, including the 

hippocampus, beginning at 6 to 7 months of age and have large amounts of deposits 

reported by 12 months of age P

17
P.  Animals were first tested at three months of age then 

again at twelve months of age in order to assess performance over time. 

 

For both experiments, mice were individually housed in the AAALAC-accredited 

vivarium in the Psychology Building at Texas A&M University in College Station.  

Mice were maintained on a 12 hour light/dark cycles and climate controlled at 25°C.  All 

testing was conducted during the light cycle and mice in the study were screened daily 

for health problems.  All animal procedures were conducted in accordance with 

approved institutional animal care procedures and NIH guidelines.  All mice were given 
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at least two weeks with ad lib access to food and water to habituate to the vivarium.  

After habituation period, mice were food restricted to 85% of their free feeding weight 

and handled one week prior to testing. 

 

Testing apparatus 

The testing box was an open topped Plexiglass black plastic box with two small 

terracotta pots securely attached to the floor.  The stimuli for discrimination were either 

odors that were applied to the rim of the pots or media that filled the pots and hid the 

food reward.   

Testing Apparatus 

 

Figure 1.  Testing apparatus.  The middle column shows the matching odor/media 
pairs used during the learning phase of the task in which three different pairs were 
learned.  The last column on the right shows the transfer phase in which the 
irrelevant dimension of the task was changed. 
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Transfer generalization task 

Shaping: Shaping took place in the box described above and consisted of training the 

mice to dig in the two terracotta pots filled with mix media which obscured a chocolate 

food pellet.  On each trial the mouse was placed in the start zone and allowed to explore 

both pots.  Mice were considered shaped to dig when they could retrieve both rewards in 

less than 3 minutes in 12 consecutive trials.  Mice were tested the day after completing 

shaping. 

 

Initial discrimination: For the initial discrimination, one of the two pots is seeded with a 

chocolate reward with either the odor or the digging media as the relevant stimuli.  

Several crushed chocolate pellets are added to the tops of each pot to disguise the reward 

of the chocolate pellet.  Also to help disguise the reward, another chocolate pellet is 

placed underneath the pot without the reward where the mouse cannot access the pellet.  

For the first four trials of every new discrimination problem, mice were allowed to dig in 

both pots until they obtained the reward. On these trials, only their first choice was 

scored.  On trials thereafter, mice were only allowed to dig in one pot and were removed 

from the testing apparatus after the one dig.  A dig in a pot was scored if a mouse 

displaced the digging media with either its paws or nose.  The positive and negative 

pairs of discrimination and the sequence of the discriminations were randomized across 

mice.  Once six consecutive choices of the correct pot were made, mice were considered 

to have learned the discrimination and allowed to move on to the next discrimination 
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problem.  Both number of trials and number of errors to criterion are recorded and used 

as measures of performance. 

 

Concurrent discrimination/learning phase: In the concurrent discrimination phase, mice 

are presented with three pairs of odor/digging media combinations.  Within each pair the 

pots differ in odor or digging media but not both.  Mice are considered to have reached 

criterion when they have achieved six consecutive digs where each pair is presented 

twice.  Both number of trials and number of errors to criterion are recorded and used as 

measures of performance. 

 

Transfer phase: Immediately after the concurrent discrimination, mice begin the transfer 

phase.  In the transfer phase, the irrelevant dimension of the task is changed and 30 trials 

are presented pseudo-randomly.  This design allows an opportunity to assess the ability 

of the mouse to generalize the predictive value of the positive odor/digging media to 

food in a new context.  The percent of correct responses is used to assess performance. 

 

Odor threshold testing 

Anosmia has been shown to emerge as a consequence of chronological age and in 

Alzheimer’s disease P

22
P, therefore, mice were assed for their ability to detect and respond 

to decreasing concentrations of odorants.  Odor threshold testing was performed in the 

same apparatus as in Figure 1.  First, mice discriminated against full strength sandal 

wood and mineral oil applied directly to the rim of the terracotta pots.  The food reward 
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was in the bottom of the sandal wood pot and mice were required to reach criterion 

before moving to the next step.  After reaching criterion, the mice were tested with a 

series of discriminations on which the odor was systematically diluted versus mineral oil 

alone.  Mice were given 16 trials at each dilution and the percent error is compared.   

 

Reversal testing 

Reversal testing is performed in the same apparatus as Figure 1.  Mice are tested with the 

odor pair hazelnut and peppermint and mixed media is used.  First mice have to reach 

criterion when one of the odors is the positive stimulus (eg. Hazelnut is positive).  After 

reaching criterion, the positive and negative stimuli are switched and mice are required 

to reach criterion on the new discrimination (eg. Peppermint is now positive).  The order 

that the pairs are presented is randomized across mice and mice are considered to have 

reached criterion when they have achieved six consecutive digs.  Both number of trials 

and number of errors to criterion are recorded and used as measures of performance. 

 

Water maze 

The spatial version of the Morris water maze is a standard task used to assess 

hippocampal/medial temporal lobe function in rodents.  Data from assessments of aging 

and AD models have had varied results with many studies finding subtle or no deficits 

on the task.  To compare the sensitivity of the transfer task to the Morris water maze, the 

APP+PS1 and aged-matched NTg mice were tested in a hidden version of the Morris 

water maze. 
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The water maze consisted of a 4 foot diameter tank filled with water clouded by 

nontoxic paint.  The tank was surrounded by black curtains affixed with white geometric 

cues.  The tank was divided into four quadrants, each with a platform position 

equidistant from the center to the wall.  During the spatial reference memory assessment, 

a retractable escape platform was located in the southwest quadrant of the maze and 

submerged 1.2 cm below the water’s surface.  During cue training, the tank was filled to 

1cm below a black visible platform.  Each mouse’s swim was tracked and analyzed 

using a computer-based video tracking system.  Before every trial, a black beaker was 

used to carefully place the mice in the water facing the wall of the tank.  Throughout the 

experiment, mice that failed to reach the platform after the designated amount of time 

were guided to it with a wand. 

 

Cue training was used to assess visual acuity and motor ability of the mice to escape to 

the platform independent of their spatial learning ability.  During cue training, the 

platform and start positions were varied on each trial.  Training consisted of 2 days, in 

which mice were given 60 seconds per trial to find the visible escape platform.  After 

find the platform or being guided there by an experimenter, mice remained on the 

platform for 30 seconds before being removed from the tank.  At the conclusion of each 

trail, mice were returned to a holding cage, which is placed on a heating pad for 

approximately 10 minutes between trails. 

 



  12 

Beginning on the day after cue training was completed, mice received 6 consecutive 

days of training to a hidden, stationary platform to assess spatial reference memory.  

During each trail, mice were given 60 seconds to search for the hidden platform, 

followed by 30 second post-trial period in which they were allowed to remain on the 

platform.  Mice completed four trials per day.  The eighth and the twenty fourth trials 

were a probe trail during which the escape platform was retracted to the bottom of the 

tank for the first 30 seconds of the 60 seconds trial.  As in cue training, mice were given 

a 10 minute inter-trial rest interval between trials for both training and the two probe 

trials.  The start position varied on each trial. 

 

The water maze data was analyzed using a computer-based video tracking system; Water 

2020, developed by HVS Image.  To further assess performance and to eliminate 

confounds, the HVS system was programmed such that is the subjects’ speed decreased 

to below 0.05 m/sec, performance was recorded for an analysis of “floating” and time 

spent in the outer 10 percent of the tank was recorded for an analysis of “thigmotaxis”.  

Swim speed was also analyzed across cue training and training trials.  Training trial 

performance was analyzed using pat length, the total distance traveled from the start 

position to the platform.  A two factor repeated measures ANOVA was used to evaluate 

differences across training days.  To analyze performance on the probe trials, percent 

time in quadrant was compared between exposed groups using a two-factor repeated 

measure ANOVA. 
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CHAPTER III 

RESULTS 

 

Experiment 1 

 The goal of Experiment 1 was to confirm that the mice could learn a series of 

concurrent discriminations and could perceive and respond to the recombination of 

stimuli in the transfer phase of the task. C57BL/B6 mice (n=10) were trained on a series 

of 3 concurrent discrimination problems. Immediately after reaching criterion 

performance, half of the mice (n=5) received 30 trials in which the irrelevant dimension 

not predictive of food was altered (i.e., a novel recombination of stimuli, “test group”) 

and half of the mice (n=5) received 30 trials that were identical to those learned initially 

(i.e., no recombination, “control group”). As shown in Fig. 2, both groups learned the 

concurrent discriminations comparably (errors to criterion: F (1, 8) =00, p=0 – identical 

means).  However, during the transfer phase, those subjects that had the irrelevant 

dimension changed performed significantly worse than the mice that received 

discrimination problems identical to those presented in the concurrent discrimination 

phase (F (1, 8) = 8.73, p =0.02). These data demonstrate that mice are sensitive to 

alterations in the non-predictive stimulus dimension, suggesting that similar cognitive 

processes mediate performance in the mouse and human versions of the transfer 

generalization task.  
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Verification of the task in young C57BL/6 mice (n=5 per group)

(F(1,8)= 00, p=0 – identical means) (F(1,8)= 8.73, p= 0.02)
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Figure 2.  Verification of the task in young C57BL/6 mice(n=5 per group). Errors to 
criterion in the concurrent learning phase (A) and percent error in the transfer 
phase (B) of the mouse version of the transfer generalization task. Panel (A) shows 
groups of C57BL/6J mice (n=5 each) counterbalanced by performance into 
“control” and “test” groups such that no differences between groups were evident 

in the learning of concurrent discriminations. Panel (B) shows a significant increase 
in errors in the “test” group that received a change in the irrelevant stimulus 

during the transfer phase as compared to the control group that received identical 
discrimination problems to those presented during the learning phase.  See text for 
statistical analysis.  
 

Experiment 2 

The goal of experiment 2 was to determine if aged APP+PS1 mice  were impaired on the 

transfer phase of the transfer generalization task relative to aged-matched controls (n=7) 

as would be expected if the mouse task is sensitive to age-related pathological changes 

associated with pathological aging. 
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Concurrent learning phase 

A one factor ANOVA (genotype) revealed no difference of genotype during the final 

concurrent discrimination learning using errors to criterion as the performance measure 

(Figure 3(A); F(1,17)= 0.118, p=0.735).  

 

Transfer generalization task 

APP+PS1 mice were significantly impaired relative to aged-matched control mice in 

their ability to perform the discrimination problems when the irrelevant stimulus was 

changed during the transfer phase of the task (Figure 3(B), main effect of genotype ;F (1, 

17) = 12.161, p= 0.003). 
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Performance of APP+PS1 and Control NTg mice on the Transfer Generalization 
Task
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Figure 3. Performance of APP+PS1 and control NTg mice on the Transfer 
Generalization Task. (A) shows errors to criterion in the concurrent discrimination 
learning phase and (B) shows percent error in the transfer phase of the task. Note 
that while there is no difference in performance between control and APP+PS1 in 
number of errors while learning the initial discriminations, APP+PS1 mice were 
significantly impaired relative to the NTg age-matched controls on the transfer 
phase of the task. See text for statistical analyses.  
 
 
Experiment 3 

 A second cohort of mice was tested longitudinally in the transfer generalization task and 

reversal learning. Three month-old APP+PS1 mice tested in the Transfer Generalization 

Task did not commit more errors than NTg when learning the concurrent discriminations 

(figure 4(A); F(1,15)= 0.001, p= 0.98). Furthermore, as seen in figure 4(B), young 

APP+Ps1 performed comparably to the NTg in the transfer phase of the task ( F(1,15)= 

0.001, p= 0.98). 
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At 6 moths, the same cohort of APP+PS1 and control mice presented comparable 

learning in a simple odor pair discrimination without an irrelevant feature (figure 4(C); 

F(1,15)=2.09, p>0.05). However, in agreement with previously reported data in Tg2576 

mice, young APP+PS1 mice were impaired when learning the reversal discrimination, 

performing worse than controls ( figure 4(C); F(1,15)= 6.34, p<0.04). 

 

Performance of young APP+PS1 and Control NTg mice on the Transfer Generalization 

Task and reversal learning
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Figure 4. Performance of  young APP+PS1 and control NTg mice on the 
Transfer Generalization Task and reversal learning.  Performance of young (3 
mon) APP+PS1 (N=8) and age-matched NTg (N=9) on the Transfer Generalization 
task and reversal learning. (A) shows errors to criterion in the concurrent 
discrimination learning and (B) shows percent error in the transfer phase of the 
task. No difference in performance between APP+PS1 and control mice was 
observed in either phase of the task. (C) However, in agreement with previously 
reported data in Tg2576 mice, reversal learning deficits were observed at this early 
age in APP+PS1 mice compared to the NTg mice. See text for statistical analyses. 
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Reversal learning was tested again in the same cohort at 14 to 15 months. A repeated 

measures ANOVA revealed that there was no difference in errors to criterion due to 

genotype on the learning of the new media and odor pairs (F (1, 15) = 1.33, p>0.05). 

There was also no difference in performance between genotypes (demonstrated by no 

difference in errors to criterion) in the reversal learning of the pairs (F (1, 15) = 0.196, 

p>0.05).  

 

The second cohort of APP+PS1 and NTg mice was retested on the transfer 

generalization task at 13 months of age. In agreement with the first study, 13 month old 

APP+PS1 mice learned the concurrent discriminations on par with age-matched NTg 

control mice (Figure 5 (A); F(1,15)= 0.018, p=0.89) but the transgenic mice were 

considerably impaired on transfer phase of the task (Figure 5(B); F(1,15)= 4.693, 

p=0.047)..  
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Figure 5. Performance of aged APP+PS1 and control NTg mice retested on the 
Transfer Generalization Task.  (A) shows errors to criterion in the 
learning/concurrent discrimination phase and (B) shows percent error in the 
transfer phase of the task. There is no difference in performance between control 
and APP+PS1 in number of errors in the learning of concurrent discriminations.  
However, APP-PS1 mice were significantly impaired relative to the NTg age-
matched controls on the transfer phase of the task.  Note, the deficits in reversal 
learning observed at 3 months of age were not present at 12  months (data not 
shown; see text for statistical analyses).  
 

 Odor detection threshold testing   

To ensure a decreased ability to detect odors the APP+PS1 mice was not a factor in the 

transfer deficit observed, following the transfer generalization testing, mice were trained 

on one additional olfactory discrimination problem. Figure 5 (A)  shows both groups 

learned the simple discrimination problem comparably  and that  there was not a 

difference due to age (errors to criterion, F(1,30)= 0.708, p= 0.4067) or genotype (errors 
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to criterion, F(1,30) = 0.201, p= 0.6571); also, no interaction was observed between age 

and genotype (trials to criterion, F (1,30)= 0.996, p= 0.3262; errors to criterion, F(1,30)= 

0.772, p= 0.3867). Moreover, figure 5(B) shows that the odor threshold did not differ as 

all groups performed similarly as concentrations of the odorant were decreased  (age: 

F(1,30)= 0.38, p= 0.5424; genotype: F(1,30)= 0.220, p=0.6426; age versus genotype 

interaction: F(1,30)= 0.057, p= 0.8122). Thus, no significant difference between odor 

detection abilities was observed between the two groups.  

Odor detection threshold in young and aged APP+PS` and control NTg mice
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Figure 6. Odor detection threshold in young and aged APP+PS1 and control NTg 
mice.  Odor detection threshold in 3 month (n=8 APP+PS1, n= 9 NTg control) and 
12 month (n=7 APP+PS1, n=12 NTg control) APP+PS1 and NTg age-matched mice 
(performed after training in the Transfer Generalization task).  Errors to criterion 
to learn a novel odor discrimination pair is shown in (A) and the percent error of 
responses made at decreasing dilutions of the odorant is shown in (B). As expected, 
all groups’ ability to detect the odors decreased with diminishing concentrations of 
the odorants nearing chance performance at a 1:1000 dilution of that used during 
training.  However, no differences in age or transgene were observed in the ability 
to detect odorants. See text for statistical analyses.  



  21 

 

Experiment 4 

Following olfactory discrimination threshold testing, mice were trained in visible (cued) 

and hidden platform versions of the water maze. As shown in Fig. 6(A), APP+PS1 and 

NTg age-matched control mice showed comparable path length to reach the visible 

platform  across days (F (1, 18) = 0.083, p=0.776) and there was no interaction between 

genotype and day (F (1, 18) = 0.158, p=0.70). Fig. 6(B) shows path length across 

training days 1 through 6. A repeated measures ANOVA revealed that both groups 

improved performance across training (F (5, 90) = 2.921, p=0.02) but there was no main 

effect of genotype (F (1, 18) = 0.169, p= 0.69) and no interaction between day and 

genotype (F (5, 90) = 0.563, p=0.73). Probe trial performance is show in Fig. 6(C). 

Percent time in target quadrant significantly increased for both groups from the early 

probe trial on day 2 and the last probe trial on day 6 (F (1, 18) = 12.164, p=0.003) but no 

main effect of genotype (F (1, 18) = 0.547, p=0.47) nor interaction between genotype 

and probe trial (F (1, 18) = 0.260, p=0.62) were observed.  

 

Finally, in Fig. 7, note that no main effect of genotype was found on swim speed during 

the first trial of cue training (F (1, 18) = 1.349, p=0.26) nor on the first hidden platform 

training trial (F(1,18)= 2.022, p=0.17), two measures not confounded by learning. 
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A) B) C)

Cued and spatial reference memory performance of APP+PS1 and control NTg mice 

assessed in the Morris Water Maze
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Figure 7. Cued and spatial reference memory performance of APP+PS1 and control 
NTg mice assessed in the Morris water maze. Panel (A) shows that both 
groups were able to find a visible platform comparably, demonstrating a lack of 
sensorimotor or motivational differences between groups. Panel (B) shows that the 
path from the start position to the stationary hidden platform decreased across the 
6 training days for both groups although there was no main effect nor interaction 
of genotype. These training trial data were confirmed by probe trial data shown in 
panel (C). Note that mice from both groups show a significant spatial bias for the 
quadrant where the platform had been during training on the second probe trial 
but again, no difference was observed between  APP+PS1 mice and NTg age-
matched controls. See text for statistical analyses. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

We have developed a translational memory task that seems to be sensitive to detect 

memory impairment at early stages of hippocampal dysfunction. There are at least two 

ways to learn each discrimination problem in both the human and the rodent versions of 

the transfer generalization task. Using the rodent task as an example, the first is to simply 

learn the correct mappings from pots to responses (the pot that smells like rose containing 

sequins is preferential to the pot that smell like citrus containing sequins, etc.). The 

second is to modify stimulus representations to emphasize relevant information and de-

emphasize irrelevant information (rose odor is preferential to citrus odor, regardless of 

digging media). Based on the evidence from the human task P

7
P, the latter strategy appears 

to be closely tied to  hippocampal function.  

  

First we validated the transfer phase of the task, and confirmed that indeed there was a 

difference in difficulty level between the transfer and the learning of the concurrent 

phase. We observed no difference in learning between C57B6 mice that received the 

“test” condition (i.e., transfer) and those that did not (control). These observations 

indicate that both groups of animals took about the same number of trials to achieve 

criterion and the number of errors were also equivalent. However, when the transfer 

phase of the task was introduced, the mice in the “test” condition performed significantly 

worse than mice in the “control” condition, demonstrating that the change in the 

irrelevant stimulus influenced the correct choice even in young subjects. These data 
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support that by changing the irrelevant stimulus, a secondary cognitive process is 

occurring (compared to simple recall of discrimination information acquired during the 

learning phase). They also suggest that different neural substrates may be involved in the 

acquisition of discrimination problems and the ability to recall this information when 

contingencies (even ones irrelevant to solving the problem) are altered. We also noted 

that although young mice in the “test” condition performed significantly worse than 

mice in “control” condition, the mice still performed well and thus decrements 

associated with age and/or disease/brain damage should be detectable. These results also 

suggest that different cognitive processes underlie the discrimination learning and the 

generalization if this learned information in an altered context (i.e. with the irrelevant 

dimension changed). Overall, we were able to confirm that mice can successfully learn 

up to 3 different discriminations simultaneously and when an irrelevant dimension is 

changed, mice perform significantly worse.  

 

The aged APP+PS1 mice are impaired in the transfer but not in the concurrent 

discrimination/ learning phase of the task. In our longitudinal study of the transfer 

generalization task we were able to reproduce the results of our aged cohort and observed 

that young mice were not impaired in the transfer phase of the task. This result agrees 

with the prediction from human studies in which the patients with hippocampal atrophy 

were able to learn the concurrent discriminations as well as non-atrophied peers. 

Furthermore, the longitudinal study also demonstrates that the transfer generalization task 

can be used in a within subject, test-retest manner in mice. The second cohort was also 
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impaired at 6 months in reversal learning. Interestingly, 6 months of age is the reported 

age in which the AB plaques start appearing in this mouse model. Just as previous 

studiesP

19,20
P, mice that were impaired early in their lifespan were not impaired at a later 

age (in our study 14 to 15 mon), when AB plaques could be more abundant in the brain. 

We could speculate that the early impairment is erased later in the lifespan of the mice 

due to an alternative compensatory mechanism that allows for the mice to acquire 

reversal learning. Another explanation could be that reversal learning testing is too 

simplistic and cannot be used in within subject group testing. More studies are necessary 

to test both hypotheses. 

 

Our water maze assessment results are also in accordance with the human data, which 

found no impairment of the atrophied individuals on other hippocampal-dependent tasks. 

The transgenic mice were not impaired in the spatial reference version of the water maze. 

These data suggest that generalizations involving recombinations of familiar stimuli 

(transfer learning) may be particularly dependent on the hippocampus (based on human 

data) and is an early indicator of mild cognitive impairment and Alzheimer’s disease, and 

thus may be more sensitive to detecting impairment than other standard cognitive 

assessments. We must acknowledge, however, that other brain regions (prefrontal cortex, 

striatum, basal forebrain) may be necessary for unimpaired performance on the transfer 

generalization task.  
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Considering that the deficits seen in the transfer phase are not due to detection 

impairments (see results from odor detection testing), we believe we have developed and 

successfully established the parameters of the rodent model of the human transfer task, 

which is highly predictive of mild hippocampal atrophy seen in non-demented elderly P

7
P 

and which is predictive of future cognitive declineP

6,7
P. Our experiment also provides a 

better behavioral paradigm for translational research between rodents and humans, 

resolving a high-priority need for current AD research.  

 

Our next goal is to develop a highly sensitive, largely-automated task that can be used for 

inexpensive, high-throughput drug screening with transgenic mice. The mouse 

generalization transfer task, which requires only 3 successive days of shaping and testing, 

is well-suited for this purpose. There is also a need for confirmation of the neural 

substrate for the transfer generalizations. Hippocampal lesion studies and 

pharmacological studies are needed address this question. 

 

Due to the ability of the rodent transfer task to be used for longitudinal experimental 

designs, it will allow for evaluation of t therapeutic interventions. One of the 

impediments to translational research has been trying to extend cross-sectional 

experimental designs used in rodent to the interpretation of longitudinal experimental 

designs used in human clinical trials. Tasks such as the water maze are not easily 

adaptable for re-assessment due to the large amount of procedural components of the 

task that are retained and make the re-test less sensitive to detect differences due to 
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ceiling effects (a practice effect). The adaptability of the transfer task to a longitudinal 

design with the use of novel exemplar pairings is an added advantage to this task. 

Ultimately, as promising agents are identified, longitudinal studies with chronic 

pharmacological treatments can be conducted with the goal of preventing all cognitive 

deficits (including those associated with transfer generalizations). 

 

The transfer task sensitively measured robust deficits in cognitive function when deficits 

are not observed on standard assessments of basal forebrain/ medial temporal lobe 

function (e.g., a spatial reference version of the Morris water maze task). Thus, in 

agreement with the human data, the newly developed analogous transfer task for rodents 

appears more sensitive in detecting cognitive deficits in an animal model of AD.    
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