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ABSTRACT

Measured energy savings resulting from encrgy
conservation retrofits in commercial buildings can be used to
verify the success ol the retrofits, determine the payment
schedule for the retrofits, and guide the selection of future
retrofits. This paper presents a structured methodology,
developed for buildings in the Texas LoanSTAR program, for
measuring retrofit savings in commercial buildings. This
methodology identifies the pre-retrofit, construction and post-
retrofit periods, normalizes energy savings for changing
weather, accounts for missing encrgy consumption data, and
quantifics the uncertainty associated with the measured
savings. A case study from the Texas LoanSTAR program is
presented as an example.

INTRODUCTION

Energy conscrvation retrofits of commercial buildings are
typically initiated based on predictions of how much energy
and money the retrofit will save. Predicted encrgy savings are
generally calculated using the performance specifications of
energy-using equipment and estimates of the physical
characteristics and operating hours of the building.
Frequently, several values necessary for these calculations,
such as the operating hours of Lights and electrical ecquipment,
infiltration rates, solar loads, and outside-air flow rates for
ventilaling equipment are eslimated using "engincering
judgment”. The calculation procedure or software may also
make simplilying assumptions in order o reduce the
complexity and time required for the calculations. Because of
these factors, predicled savings often differ substantially from
measured savings. In a study of over 1,700 building cnergy
retrofits, fewer than one in six came within 20% of measured
results (Greely et al. 1990).

Because of the potentially large discrepancy between
predicted and measured savings, there is substantial interest in
measuring encrgy savings. Measured cnergy savings resulting
from cnergy conservation retrofits in commercial buildings
can be used Lo verity the success of the retrofits, determine the
payment schedule for the retrofits, and guide the sclection of
future retrofits.  Mcasured savings, in contrast Lo predicted
savings, can also benefit utilitics that support energy
conservation and demand side management programs.

The simplest method Lo measure energy savings is to
directly compare pre-retrofit and post-retrolil encrgy use.
However, varying weather conditions between the pre-retrolit

and post-retrofit periods can influence energy use and may
obscure the change in encrgy use caused by a retrofit. To
provide a more accurate mcasure of the energy saved by a
retrofit, the effect of changing weather conditions on energy
use should be removed. This is accomplished by developing a
weather-dependent model of a building's pre-retrofit energy
use. The building's pre-retrofit energy use can then be
simulated under post-retrofit weather conditions and
compared with post-retrofit energy use Lo determine savings.

The pre-retrofit model of encergy use may be cither an
cmpirical (statistical) or a simulation model.  Calibrated
simulation models of pre-retrofit energy use (Katipamula and
Claridge, 1991) can be uscd when pre-retrofit energy
consumption data is limited, however, the uncertainty
introduced by simulation models is difficult to assess.
Statistical maodels of pre-retrofil encrgy consumption are
almost always easicr to develop than simulation models, and
Lthe uncertainty associated with the resulling savings can be
calculated using accepted statistical procedures.

This paper describes a structured, statistical methodolog
o measure energy savings in commercial buildings. The
methodology can be subdivided into six steps as shown in
Figurc 1. The next six sections of the paper describe these
steps, followed by a case study example. This methodology is
currently used by the Texas LoanSTAR (Loans to Save Taxes
And Resources) Program (Claridge et al. 1991) as part of an
elfort to measure encrgy savings in state owned buildings.

( Data collection and preparation]

N
Pre and post-retrofit period identification and data cleani@

N
Dﬁodel identification )

Model selection

{Calculation of savingq
NP
[Calculation of uncertainty associated with savingq

Figure 1. Flow chart of the methodology for measuring
retrofit energy savings in commercial buildings.
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DATA COLLECTION AND PREPARATION

A statistical pre-retrofit model requires energy
consumption data from before a retrofit is installed. These
data provide baseline information about how much energy the
building consumes in its pre-retrofit condition and are
essential if savings are to be measured. The methodology
described here uses daily energy consumption data which has
been summed from hourly data.! Daily energy consumption
data may be available from a building's energy management
and control system (EMCS) with energy trending capabilities
(Claridge et al. 1992). In buildings without a trending EMCS,
an independent data acquisition system may have to be
installed in order to acquire daily energy consumption data.
In several cases, the continuous metering of energy use in
commercial buildings has saved many times the cost of the
data acquisition system by identifying inefficient operating
and control procedures (Haberl and Claridge, 1987, Haberl
and Vajda, 1988, MacDonald et al. 1989, Kissock et al. 1991).

To provide the best measure of energy savings, the energy
use of each type of equipment being retrofitted should be
separately metered. For example, if constant-volume air
handlers are being converted to variable-air-volume air
handlers, the total electricity used by the air handlers should
be metered. This can often be accomplished by metering the
electricity used by a distribution panel (often called a motor-
control-center) which distributes electricity to all of the air
handlers in the building.

If the energy savings generated by lighting retrofits are to
be exactly measured, then all of the electrical feeds to the
lighting fixtures must be identified and metered. In practice,
this is often difficult and expensive since lighting feeds are
usually distributed throughout a building. A less expensive
method to determine savings generated by a lighting retrofit is
to meter the whole-building electricity use and air handler
electricity use. The difference between these two channels is
lighting and equipment (LE) electricity use. Comparing a
short period of LE electricity use immediately before and
immediately after a lighting retrofit will yield a good estimate
of the electricity saved by the retrofit. Over a longer period of
time, however, this estimate of savings from the lighting
retrofit may become less accurate as other electrical
equipment is added to or removed from the building.

If a retrofit is expected to reduce heating and cooling
energy use, these channels should also be metered. In
buildings where heating and cooling are generated on-site,
metering the energy supplied to the heating and cooling
equipment is sufficient. If the building subscribes to district
heating and/or cooling, then whole-building heating and/or
cooling can be measured by metering heating and cooling
energy as it enters or leaves the building. For more
information about sub-metering energy use in buildings see
O'Neal et al. 1990 and Boecker et al. 1992,

Average daily outdoor air temperature is used as the
primary indicator of environmental conditions that affect

! Other methods, most notably the Princeton Scorekeeping Method (Fels,
1986), have used monthly billing data to normalize savings for changing
weather.
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building energy use. Outdoor air temperature data may be
available from a building's EMCS. If not, the National
Weather Service provides minimum and maximum daily
temperatures for most U.S. cities from which the average
daily temperature can be calculated.

PRE AND POST-RETROFIT PERIOD IDENTIFICATION
AND DATA CLEANING

Preferably, a full year of pre-retrofit data should be
collected to account for seasonal effects on energy use. The
pre-retrofit period should extend until retrofit construction
influences the energy consumption of the building. If a
detailed schedule of construction activities is available, then
determining when a retrofit becomes operational is trivial. In
some cases, however, exact retrofit construction dates are
difficult to obtain. In these cases, the end of the pre-retrofit
period and the beginning of the post-retrofit period can oflen
be determined by inspecting energy consumption data and
searching for discontinuities in the energy consumption
patterns. For example, when constant-volume air handlers are
converted to variable-air-volume air handlers, the time-series
plot of air handler electricity use changes from a nearly
constant signal to a signal with small discontinuities (during
construction) and then to a variable signal when the variable-
air-volume system comes on line (Kissock et al. 1992).

In practice, the construction and commissioning of a
retrofit may take a period of weeks or even months. During
this period, energy use may be different than in the pre-retrofit
period and different than the energy use after the retrofit is
fully operable. We call this period the "construction period”
and calculate the energy saved or the additional energy
consumed during this period. In our experience, most
buildings save energy during the construction period. In a few
cases, energy use actually increases during the construction
period. We try to identify the practices that cause the
increased energy use and to inform the installers of the retrofit
of these practices so that they can be minimized in the future.
In any case, we regularly include energy savings (or
"negative” savings) during the construction period in the total
energy saved by the retrofit.

Depending on the number of channels being monitored,
ensuring the quality of the data may be a formidable task.
Meters must be correctly calibrated when installed and re-
calibrated at frequent intervals to avoid "drift" in the signal.
Detecting bad data can also be difficult. There are several
pieces of software which can automate parts of the quality
control task, however, an extensive discussion of quality
control procedures is beyond the scope of this paper. As a
first step, producing time series and relational plots of the data
and comparing the values of measured data with expected
values can identify many instances of bad data. Energy
consumption data which is incorrect or highly questionable
should be removed from the data set in order to improve the
reliability of the results. We perform the tasks of period
identification and some quality control procedures using a
data browsing software (Lantern, 1990) that quickly makes
time-series and relational graphs (see Figure 4 for example).
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MODEL IDENTIFICATION

Nex, statistical modeis of the pre-retrofit energy use of
each type of energy influenced by the retrofit should be
developed. The functional form of each model is suggested
by our physical understanding of how a particular type of
energy use should vary. For example, constant-volume air
handler electricity consumption is independent of weather
conditions, but may vary with the operating schedule of the air
handlers. Therefore, constant-volume air handler electricity
use can be modeled as the mean electricity use during each
operational period. If the air handlers are shut-down on
weekends, then separate weckday and weekend models are
appropriate.

Lights and equipment (LE) electricity use is also
reasonably independent of the weather? and can be modeled as
mean values of weekday and weckend LE electricity use.
Mean models of energy use are called one-parameter models
because only one parameter, the mean, is determined
statistically.

Occasionally, it is not clear whether air handler or LE
electricity use vary sufficiently during different operational
periods to justify a separate energy use model for each period.
In these cases, separate models of energy use for each
operational period and for the entire period are developed. A
statistical procedure called a t-test is then administered during
the Model Selection procedure Lo determine whether the use
of separate models for each operational period is statistically
Jjustified.

Changes in the quantitics of heating and cooling energy use
Aare primarily determined by changing weather, internal loads
(heat generated by electrical equipment and people), and the
operating schedule of the air handlers. Since the operating
schedule of the air handlers is typically the same as the
schedule of occupancy (and internal loads), the influence of
both the air handler schedule and varying internal loads on
heating and cooling can be accounted for by separating the
data into bins which correspond to this schedule. For most
commercial buildings, separating the data into weekday and
weekend bins will account for the elfects on thermal encrgy
use of changing internal loads and air handler shut-olf. In the
Model Selection section, a statistical procedure called an F-
test is administered to determine whether separating the data
into weekday and weckend bins is statistically justified.

Once the effects of changing internal loads and air handler
operating schedules are accounted for by separating the data
into bins, the effect of changing weather on energy use must
be considered. In our experience, which is mainly with
institutional buildings in Texas supplied with district heating
and cooling, daily heating and cooling energy use are
adequately correlated with the average daily dry-bulb
temperature of the outside air (Kissock et al. 1992).
Numerous other studies (for example Fels, 1986, Fels et al.
1991, Schrock and Claridge, 1989) have also documented the

% LE elcctricity use in commercial buildings has been tested for seasonal
variation by regressing LE against outdoor air temperature. In all of the
cases that we have tested, the regression coefficient for the slope is
insignificant, indicating that LE electricity use in commercial buildings is
not significantly determined by seasonal effects.
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correlation between heating and cooling energy use and
average outdoor temperature. The effects of other weather
related parameters such as humidity and solar radiation on
building energy use are currently being investigated (Ruch et
al. 1991, Wu et al. 1992), but appear (o be less important
predictors of thermal energy use than outside air temperature.

Two functional forms of the relationship between thermal
energy use and outside air temperature are regressed on each
bin of cooling and heating energy use. The first and simplest
is the linear relation:

E=zaj+ap*T (n
where E is thermal energy use, T is outside air dry-bulb
temperature, and o) and a) are regression coefficients. This
relation is suggested by the steady state conduction and
convection equations in which heat transfer varies linearly
with temperature.® This functional form is called a two-
parameter model since two parameters, o] and a9, are
determined by regression.

The second lunctional form is a four-parameter change-
point model (Ruch and Claridge, 1991) of the form:

T<=ay
T>ay

E=aj+a2*(T-0a4) (2)

E=a)j+a3*(T-aq)

where o] is the energy consumption at the change-point
lemperature, ap and o3 are the low and high temperature
slopes, and a4 is the change-point temperature. This model
describes a relationship between energy use and temperature
in which energy use varies linearly with temperature in each
of the low-temperature and high-temperature regions;
however, the relationship (slope) is different in each
temperature region (Figure 2). There are several physical
processes which may initiate change-point behavior in
commercial buildings, however, the description of these
processes is beyond the scope of this paper and will be
addressed in future work.

3 The steady state conduction equation for heat transfer across a solid
medium is Q = UAAT where Q is the rate of heat transfer, U is the overall
conductance of the medium, A is the cross-sectional area of the medium
and AT is the temperature difference across the medium. The steady staic
convection equation for heat transfer from a sohd to a fluid is Q=hAAT,
where h is the convection coefficient, AT is the temperature difference
between the solid and the fluid and Q and A are the same as in the
conduction equation. In both of these equations, Q varies linearly with
lemperature.
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Figure 2. Examples of four-parameter change-point models
for hot water and chilled water energy use .

MODEL SELECTION

At the end of the Model Development procedure, several
models of energy use (weekday, weekend, all-day, and one,
two, and four-parameter models)? may be available for each
type of energy use affected by the retrofit. In the Model
Selection procedure, the best pre-retrofit model for each type
of energy use is selected. To accomplish this, models which
are unnecessary, such as separate weekday and weekend
models which are nearly identical, or physically inconsistent,
such as models with a negative cooling slope are eliminated.
Then, the remaining model that bests fits the data is selected
as the best model of that type of energy use.

Testing If Weekday And Weekend Models Are Identical
If the coefficients of weekday and weekend models are
very different, it is probable that weekday energy use is

4 A three parameter model, such as the models used by the Princeton
Scorekeeping Method's Heating Only and Cooling Only procedures (Fels,
1986), is a special case of the more general four-parameter model where
either the low-temperature slope or the high-temperature slope is
constrained to zero.
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different from weekend energy use. In this case, it is
appropriate to consider separate weekday and weekend
models. If the weekday and weekend model coefticients are
nearly identical, then it is probable that no difference between
weekday and weekend energy use actually exists and that the
building's energy use can be accurately represented by a single
model which includes both weekdays and weekends. The use
of separate weekday and weekend models in this case is
unnecessary and misleading. Statistical procedures such as a
t-test (for one-parameter models) or an F-test (for multiple
parameter models) can determine if separate weekday and
weekend models or if a single all-day model of energy use is
appropriate,

For one-parameter mean models, the t-test is the
appropriate test. The t-test procedure is as follows. The
sample standard deviation of weekday energy use (Box et al.
1978, pg. 76) is:

3
2

i (E,~E,)
d=t

)
=D 3)

s,y =

where E, is daily weekday energy use, EM, is the mean daily

weekday energy use, and n, is the number of weekdays in
the sample. The sample standard deviation of weekend
energy use is found by substituting values of weekend encrgy
use and the number of weekend days into Equation 3. The
combined sample standard deviation of the weekday and
weekend energy use (Box et al. 1978, pg. 76) is:

_ 2 _ 2 74
P [ CVE T WL TGV IETN0 S
(n, +n, —2)
The t-statistic, 15, is defined (Box et al. 1978, pg. 76)
E,-E, )~-(M,-M
IU =( wid we )/ ( wd ' L) (5)
ey Ju *

where M, and M, are the unknown values of the true
weekday and weekend population means. 1f the implicit
assumption of random sampling holds true, then 1 is
distributed as the well known t-distribution.

The t-distribution can be used to test any hypothesized
difference in population means. We are interested in testing
the hypothesis that weekday and weekend energy use are
identical. If this hypothesis is true, then separate weekday and
weekend models are unnecessary and energy use can be more
succinctly described by the use of a single all-day model. The
mathematical formulation of this hypothesis is known as the

null hypothesis and is M, = M. To test this hypothcsis, we
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assume that it is true and so M_, - M_, =0 in Equation 5.
The degrees ol freedom (df') associated with t, (Box et al.
1978, pg. 76) are:

df =n_+n, -2 . (6)
The probability that the null hypothesis is true, i.e., that
energy use is actually the same on weekdays and on
weekends, is determined by referring L, (o a t-table with df
degrees of freedom. T-tables are available in any standard
statistical text such as Box ctal. 1978 or Neter et al. 1989.

If the probability that weckday and weekend energy use is
actually the same is less than 0.05, we conclude that separate
weckday and weckend models are appropriate. [f the
probability that weekday and weekend energy use is actually
the same 18 greater than 0.05, we conclude that the
weekday/weekend models may have come from the same
population and we reject the weekday/weekend models. This
decision criteria rejects separate weekday and weckend
models unless there is strong evidence that weekday and
weekend energy usc are indeed difTerent.

For two and four-parameter models, the F-test® (Neter ct
al. 1989, pgs. 87-100, 368) is the appropriate statistical test to
determine il separate weekday and weekend models are
necded. The use of the F-test to determine il separate
weekday and weekend models are needed for the case of
simple linear models is described below. The lirst step is Lo
combine weekday and weekend models into a single
regression model using an indicator variable, I. The combined
weekday and weekend regression model for daily energy use
s

EA//:ﬁ|+ﬂ?Td+ﬁzl+ﬁ4le (7

where l:?,, is daily cnergy use predicted by the model, T, is the
average daily outdoor air dry-bulb temperature, [ is the
indicator variable, and 3,, B,, B,, and B,are regression
coelTicients.

The indicator variable is delined 1o be | for weekdays and
0 for weekends. For weekdays, 1=1 and daily energy use is
given by:

é./:(ﬁ1+ﬁ3)+(ﬁz+ﬂa)n' (¥)
For weekends, 1=0 and daily cnergy use is given by:
E./:(B1)+(ﬁ1)’rl/' 9

5 “The F-test is also referered to asA tiree-parameter model, such as uscd
by the Princeton Scorckecping Method (Fels, 1986), is a special case of
the more general four-parameter model where cither the low-temperature
slope or the high-wemperature slope is constrained o zero. the generalized
linear 1est.
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The F-test will test the null hypothesis, Ho: B, = B, =0,

against the alternative hypothesis, Ha: not both B, = B, =0
The null hypothesis is accepted when both weekday and
weekend encrgy use is adequately modeled by Equation 9 and
separate weekday and weekend models are unnecessary.

To test this hypothesis, the sum of squared error for the
"full” model, SSE(F), and the sum of squared error for the
"reduced” model, SSE(R), must be calculated. The sum of
squared error (Neter et al. 1989) 1s:

n 7

SSE= Y. (E,-E,)

d=1

(10)

where E, is daily measured energy use, E, is the daily energy
use predicted by the model, and n is the number of
observations of daily energy usc in the sample. To calculate

SSE(F) usc the full model, Equation 7, to calculate E, in
Equation 10. The "reduced” model is the model that results
when the conditions given by the null hypothesis are enforced
and is given by Equation 9. To calculate SSE(R) use

Equation 9 to calculate 1::,, in Equation 10. The number of
degrees of frecdom associated with the full model, df}, and

with the reduced model, df,, arc:

dfy =n—4 (1

dfy =n=2 (12)
where n is the number of observations of daily energy usc data
that arc usced in the regression models.

The gencral lincar F-Test (Neter et al. 1989, pg. 99) 1s:

_ SSE(R)-SSE(F) _SSE(F)

4 (1)
° dfy = dfy dfy

The probability that the null hypothesis is true, i.c. that
separate weekday and weekend models are essentially
identical, can be found by referring F, to the F-distribution
with df, —df, numerator degrees of frecdom and df,.
denominator degrees of freedom. Tables of the F-distribution
are found in any statistics text such as Box et al. 1978 or Neter
ctal. 1989, Our decision criterion is to use separate weekday
and weckend models if the probability that the weekday and
weekend models are identical (i.¢., that Ho is true) is less than
0.05. Like the decision criterion used lor the t-test of one
parameter models, this decision criteria rejects separate
weekday and weekend models unless there is strong evidence
that weckday and weekend energy use are diffesent.

Rejection Of Physically Inconsistent Models
We also reject models which are not consistent with our
physical understanding of energy use, such as a model which
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predicts decreasing chilled water use with increasing
temperature. Physically inconsistent models usually arise
because of small pre-retrofit data sets which may misrepresent
the actual energy use patterns of a building,.

Selecting The ""Best” Remaining Model

Finally, the remaining model with the best fit to the data is
selected as the best model. The coefficient of variation of the
standard deviation (CV-SD) is used for one-parameter models
to determine goodness-of-fit. The coefficient of variation of
the root mean square error (CV-RMSE) is used for two and
four-parameter models to determine goodness-of-fit. The CV-
SD and the CV-RMSE (SAS, 1990) are:

i(EME)?/(n—))T
E

CV-SD = 100*L‘ L (14)

CV-RMSE = 100*L‘

(15)

Z(Ed—lz"d)z/(n—p)}
E

where Eq is energy use on any day d, E is the mean daily

energy use in the pre-retrofit period, Ed is the daily energy
use predicted by the pre-retrofit model, n is the number of
days in the pre-retrofit period, and p is the number of
regression parameters in the model. The CV-SD and CV-
RMSE are non-dimensional measures of how well a model fits
the data; low values represent  good fits. The remaining
model with the lowest coefficient of variation is selected as
the best model of pre-retrofit energy use.

CALCULATING SAVINGS

Retrofit energy savings (S) are calculated by subtracting
measured energy use in the post-retrofit period (M) from the
energy use predicted by the pre-retrofit model (P). The
energy saved on any day (d) in the post-retrofit period is:

Sq =Pq - Myq. (16)
The total savings (S;) during any period of m days in the post-
retrofit period is the sum of the individual daily savings:

(NeE!

S[: Sd (17)

d

H

This method of determining energy savings compares
energy use predicted by a pre-retrofit model to measured
energy use from the post-retrofit period. It is also possible to
determine savings by comparing the energy use predicted by a
pre-retrofit model to the energy use predicted by a model of
post-retrofit energy use. Each method has advantages and
disadvantages. The advantage of comparing the energy use
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predicted by a pre-retrofit model with measured energy use
from the post-retrofit period is that this method avoids the
additional uncertainty introduced by using a model to estimate
post-retrofit energy consumption. Hence, this method
provides a more precise measure of the energy saved during
the post-retrofit period.

The disadvantage of this method is that savings depend on
the weather during the post-retrofit period. An unusually cold
post-retrofit winter, for example, may increase steam savings
if the retrofit reduced steam use more during cold weather
than during warm weather. The savings during "average"
weather conditions can be determined by comparing the
energy use predicted by a pre-retrofit model with the energy
use predicted by a post-retrofit model if "average" weather
data is used in the models. The Princeton Scorekeeping
Method (Fels, 1986) uses this method to compute the
Normalized Annual Consumption of buildings based on
approximately ten years of measured daily temperature data.

Occasionally, energy consumption data from the post-
retrofit period are unavailable due to equipment failure or
normal maintenance of the metering equipment. In these
cases, a statistical model of post-retrofit energy use is
developed using the same procedures described earlier for pre-
retrofit models.® Post-retrofit energy use can then be
predicted and substituted for My in Equation 16 to estimate
energy savings.

CALCULATING THE UNCERTAINTY OF SAVINGS

It is important to assign a measure of uncertainty to the
calculated savings. This enables users of the calculated
savings to know how confident they can be of the reported
results. There are essentially threc types of error (or
uncertainty) which can influence the reported savings:
extrapolation error, systematic error, and random error. Only
random error can be quantified using statistical procedures,
however, knowledge of the nature and causes of extrapolation
and systematic errors can enable the practitioner L0 minimize
or avoid these types of errors.

The pre-retrofit models of thermal energy use described
above are regression models which describe the relationship
between thermal energy use and outdoor air temperature over
the range of outdoor temperatures present in the pre-retrofit
data set. If the pre-retrofit period is less than a full year,
outdoor temperatures from the missing season(s) may not be
represented in the data set. In these cases, daily outdoor air
temperatures during the post-retrofit period may be well
outside of the range of the daily temperatures encountered
during the pre-retrofit period, requiring extrapolation of the
pre-retrofit model outside of the range of temperatures for
which it was developed. This extrapolation of the pre-retrofit
model requires an assumption that energy use will continue to
increase (or decrease) linearly into the new temperature
region, an assumption which may or may not be correct.

6 The post-retrofit model may or may not have the same functional forin
as the pre-retrofit model.
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The simplest way to avoid model extrapolation error is Lo
ensure that the pre-retrofit period extends for a full year, or at
the minimum for a six-month period which includes both hot
summer days and cold winter days. In situations where this is
not possible, the modeler should inspect the range of
temperatures over which the pre-retrofit models are developed
and note the temperatures which will require that the model be
extrapolated. The modeler can then report that an assumption
of linearity was made during these periods.

Systematic error occurs when values are incorrectly
reported in a consistent manner, such as when a sensor
consistently reports values which are 10% greater than the true
value. In practice this type of error can be minimized by
selecting high quality metering equipment and installing it
correctly, but it can never be completcly eliminated.
Experience gained during the Texas LoanSTAR program can
suggest some procedures to minimize systematic error. One
of the most important lessons learned is that for the purpose of
calculating retrofit savings, the continuity of metered data is
more important than the precision of the data, For example,
the procedure of replacing a sensor may introduce an
unwanted source of sysicmatic error into the savings
calculations if the sensors are not exactly calibrated with each
other. Uncalibrated sensor change-outs frequently introduce a
discontinuity into the data which makes an accurate
comparison of pre and post-sensor-replacement impossible
and thus renders a part of the data set useless. To minimize
such problems, sensor replacement should be limited to those
cases when it is absolutely necessary. Whenever a sensor
must be replaced the new sensor should be pre-calibrated
before it is installed, and the field sensor should be post-
calibrated as soon as it is removed from the field. In this way,
a measure of the difference in the values reported by the
sensors can be determined and the new (or old) data can be
adjusted to preserve the continuity of the data set. For more
extensive discussions of the calibration procedures used by the
Texas LoanSTAR program see (Robinson et al. 1992, O'Neal
et al. 1992, Boecker et al. 1992).

Even with a resolute elfort to minimize systematic error,
some will always be present. The statistical determination of
the uncertainty associated with savings that follows does not
account for systemalic error and so underestimates the true
uncertainty of savings. Engineering judgment should
therefore be applied in the interpretation of all statistical
determinations of uncertainty, especially when the practitioner
has reason o believe that significant systemaltic error is
present in the data.

There are two components of random error, which is the
random fluctuation of dala about an "expected” or "truc"
value. The first component is random measurement error and
is associated with the precision of sensors and metering
equipment. The magnitude of the possible random
measurement error is usually specified by the manufacturer of
a sensor, often as a percentage of the sensor reading. The
second component is random model error, which is the
deviation of individual observations from the value predicted
by a model. This magnitude of this type of error is a measure
of how well a model "fits" the data. Both components of
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random error can be quantified using the procedure that
follows.

The energy savings and associated uncertainty on any day
(d) in the post-retrofit period can be wrilten as:

(Sg+ &sd) = (Pg+€pq) - (Mg *€mg) (18)

where S is the energy saved, P is the energy use predicted
by the pre-retrofit model, My is the energy use measured
during the post-retrofit period, and € is the random error
associated with each parameter.

Figure 3 gives a graphical example of Equation 18 for the
case of a two-parameter model of chilled watcr energy use.
The daily chilled water energy use predicted by the pre-
retrofit model for a given ambient temperature is shown as the
point P4. The uncertainty associated with predicting Pq is
shown as a set of prediction uncertainty bands of width Epd-
A model that fits the data well will have narrow prediction
uncertainty bands. Measured energy use from the post-retrofit
period, Mg, and the uncertainty of the measurement, €y, are
also shown. The energy saved is represented by the vertical
distance between Pq and My. The uncertainty associated with
the energy saved is found by combining the prediction and
measurement uncertainties.

. s
Chilled
Water a
Energy 4 with
Use prediction
Sq uncertainty
bands (+e l>d)
\IL Md with
~  measurement
uncertainty
bands (e )

Outdoor Temperalurs

Figure 3. Example of predicted energy use (P ), measured
energy use (M g), and energy saved (S ) with ussociated
uncertainty bands (+€pq and +&y,j). The uncertainty of the
energy saved is the root sum of squares of the prediction and
measurement uncertainty.

The savings uncertainty, g4, is found using the standard
method of combining errors (Holman, 1978, pg. 45) as:

)

esd = [(€pa)? + (Em)?] (19)
The measurement uncertainty, €q,, is determined from the
specifications of precision that usually accompany
measurement sensors and is given by:

(% measurement uncertainty)
e 100 *

Mg . Qo)
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The prediction uncertainty, £y, is the uncertainty associated
with predicting energy use using the pre-retrofit model. The
prediction uncertainty includes the uncertainty associated with
measuring pre-retrofit energy use (Neter et al. 1989, pg. 170-
171).7 The prediction uncertainty, €pd» for a one-parameter
mean model of energy use (E) is (White, 1980) :

S (E,-E)’

gpd = W(1-002, 1)| < @1

nn-1)

The prediction uncertainly, £y, for a two-parameter
regression model of energy use (E) with temperature (T) as
the independent variable (Neter et al. 1989) is:

epd = W(1-0/2, n-2) [MSE ]!

where:

Z(Ed - EAf
MSE = Mean Square Error = =
(n=2)

(23)

In Equations 21 and 22, t(1-0/2, n-p) is the t-statistic and is
tabulated in any standard statistics text. The t-statistic is a
function of the significance level (o), the number of days in
the pre-retrofit period (n), and the number of parameters in the
model (p). The significance level (o) indicates the fraction of
predictions that are likely to fall outside of the prediction
uncertainty bands (Figure 3).

The uncertainty associated with the total savings over a
period of m days is the root sum of squares of the uncertainty
associated with each daily value of savings (Holman, 197§,
pe. 45).

(24)

For a one-parameter mean model, the uncertainty associated
with the total savings over a period of m days can be
calculated from Equations 19, 20, 21 and 24 to be:

7 Suatistical methods to account for uncertainty in an independent
variable, such as temperature, exist but are far too complex for most
applications. Hence, most text books overlook this type of uncertainty.
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(25)

For a two-parameter model of energy use as a function of
outdoor temperature, the uncertainty associated with the total
savings over a period of m days can be calculated from
Equations 19, 20, 22, 23 and 24 to be:

. Y1 -T) Ylew)
e = L(1./2,0-2)[ MSE | | m+ 4 4= e
3 t
" Y (n-T)

d=1

(26)

For a four-parameter model, the uncertainty associated
with the total savings can be estimated by applying Equation
26 to each of the two linear regions scparately.® The total
uncertainty is then found by combining the low-temperaturc
region uncertainty (€g];) and the high-temperature region
uncertainty (ggp) as prescribed by Holman, 1978:

e = [(Es1)? + (Esh0?]" - @7

Equation 27 can also be used to calculate the uncertainty
associated with the total savings from the uncertainty
associated with weekday and weekend savings by substituting
the uncertainty associated with weekday savings for £¢j and
the uncertainty assoctated with weekend savings for ggyy;.

Est = [Ewd)? + (Bwe)?]* . (28)
The relative uncertainty of total savings is the uncertainty
associated with the total savings divided by the total savings.

. . . . €
Relative Uncertainty of Total Savings = —S—’ (29)

i

These tormulations of the uncertainty associated with
savings for the two and four-parameter models assume that the
model residuals are uncorrelated. Because of the time-series
nature of the energy use data used in the regression
procedures, this assumption may not always be met. If model
residuals are highly correlated, then the Mean Square Error
(Equation 23) may under-estimate the true variance of the data
about the model. In these cases, the data should be
transformed to remove the auto correlation belore being
regressed against temperature (Neter et al. 1989) or this effect

8 The true uncertainty associated with savings calculated from a four-
parameter model should include the uncertainty associated with
determining the change-point temperature.
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should be explicilly accounted for in the statistical equalions
of uncertainty. A future work will address this issue.

CASE STUDY EXAMPLE

In this example, air handler electricity and stcam savings
will be calculated for a building participating in the Texas
LoanSTAR program. The example building is a 103,000
square foot universily building containing classrooms, lecture
halls, offices, and an auditorium. The primary retrofit to the
building was the conversion of constant-volume air handling
units to variable-air-volume air handling units.

Data Preparation and Period Identification

Primary data preparation included summing hourly energy
consumption data to daily data and collecting average daily
temperature data from the National Weather Service. Next,
the pre-retrofil and post-retrofit periods were identificd. Since
the retrofit construction schedule was unavailable, the pre-
retrofit and post-retrofit periods were identified by inspecting
a time-scries plot of daily air handler electricity use for
discontinuities thal suggest when the conversion from
constant-volume to variable-air volume air handlers occurred.
In Figure 4, the pre-retrofit period was identiticd by the
regular pattern of electricity use that extends to May 5, 1991,
The pre-retrolit period is followed by a period of irregular and
decreasing electricity use that extends until the end of May.
The encrgy use during this period is characteristic ol encrgy
use during the construction and commissioning of the retrofit.
We included this "construction period” in the post-retrofit
period so that energy savings (or losses) incurred during
construction and commissioning are included in the total of
energy savings. The pre-retrofit period was then determined
Lo be October 16, 1990 10 May S, 1991 and the post-retrolil
period was determined 1o be May 6, 1991 1o December 31,
1991,

A R (=
= i
1600

LA

600
awf-
20

]

Post medol pend

WV W E R

AHU
kwn/day

1

o Nov Dec 1991 Feb Mar Apr May hm Jul  Aug Sep Ot Nov Dec

Figure 4. Time series plot of daily air-handler electriciry use
produced by duata browsing software. The transition from pre-
retrofit constant-volume air bandler electricity use 1o post-
retrofit variable-air-volume clectricity use is clearly evident.

Also apparent in Figure 4 is the unusual air handler
electricity use that occurred during the Thanksgiving,
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Christmas, and New Years Day holidays. Because Lhe pre-
retrofit period is less than a full year, these periods of unusual
energy use would disproportionally influence the models of
pre-retrofit energy use and so were excluded from the data
used to develop the pre-retrofit models.

Model Development and Selection

The mean valucs of all-day, weekday, and weckend pre-
retrofit air handler clectricity use are collated in Table 1. The
combined CV-SD of the weekday and weckend model is the
weighted average of the weekday and weekend CV-SD and is
calculated as:

_ngy (CV),, +n, (CV),,

VEY ) it = (30)
n,,+n,.
n AHU SD CV-SD | Combined
(kWh/day) (kWh/day) () CV-SD (70)
All-day 177 2160 157 12 7.2
Weekday | 127 2250 62.7 2.8 3.0
Weckend | SO | 1933 66.1 34

Tuble 1. Decision table for air handler electricity use.

A -test was administered o determine if separate weekday
and weekend models were appropriate. From the values in
Table I and Equations 4, 5, and 6:

sd =513
t, =37.0
df =175

From a t-table (Neter et al. 1989, pg. 630), the probability ol t
being greater than ¢, was much less than 0.05, indicating that
scparale weekend and weekday models are appropriate.
Because the combined CV-SD of the weekday and weckend
models is less than the CV-SD of the all-day model, the
weekday and weekend models were selected as the best
models of pre-retrofit air handler electricity use.

Four possible models of steam use are collated in Table 2.
The lirst two models are all-day models and the Tast two are
weekday/weekend models of steam use. Models #1 and #3
are two-parameler (simple hincar) models and Models #2 and
#4 arc four-parameter (change-point) models,

Model | 0 [ ay [ op | a3 | « q RMSE | CV- | Com-
Type RMSI: | bined
CVv-
RMSH
AD-1 [ 179 | 67.6 | -.820 264 | 148 14.8
AD-2 [ 179 [ 106 | -997 | -300 | 66.7 | 212 | 119 11,9
WD-3 | 130 | 69.8 | -.849 251 | 139 143
WD-3 | 49 | 60.5 | -71S 262 | 154
WD-4 [ 130 [ 110 ] -101 [ -379 | 665 2101 | 11.7 1.5
WD-4 | 49 | 667 | -877 | 244 | 717 185 | 108

Tuble 2. Model coefficients and inferential statistics for four
possible pre-retrofit steam use models.
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Model #4 is rejected because the high-temperature slope of
the weekend model (a3) is positive, which is inconsistent with
our understanding of how steam use should vary with
témperature. In this case, the particular sample of data
available included a small number of data points that
increased with temperature at the upper end of the temperature
scale. In a larger sample, it is likely that o3 would be
negative.

An F-test was then administered to determine if the separate
weekday and weekend models of Model #3 were appropriate.
Table 3 shows the input parameters necessary for Equation 13
and the results of the F-test. The probability that Ho is true is
found using a table of the F-distribution from Neter et al.
1989, pgs. 634-637. Since the probability of the null
hypothesis (that the weekday and weekend models are
identical) being true is less than 0.05, the null hypothesis is
rejected. We conclude that separate models of weekday and
weekend steam use are approprialte.

o 179 |
::SE(R) 1348
SE(F) 1240
F, 7.62
Pr(Ho is true) Pr(Ho is true)<.001

Table 3. F-test of steam use Model #3 to determine the
appropriateness of using separate weekday and weekend
models.

The weekday and weekend CV-RMSEs of Model #3 were
combined using Equation 30 to produce a weighted average
CV-RMSE of 14.3 %. The CV-RMSEs of Models #1, #2, and
#3 were then compared (o select the best pre-retrofit model.
Model #2 (Figure 5) was selected since it has the lowest CV-
RMSE.

Steam (MMBtu/day)

m © "w

30 @

0 Py
Average Doily Temperature (F)

Figure 5. Four parameter pre-retrofit model of steam energy
use and uncertainty bands shown with pre-retrofit steain
energy use. R2=.95and CV-RMSE = 11.9 %.
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Determining Savings

Air handler electricity use savings were determined using
the mean weekday and weekend models in Table 1 and
Equations 16 and 17. No data were missing from the post-
retrofit period and so a post-retrofit model is unnecessary.
Table 4 shows a total savings of 274,384 kWh resulting from
the VAV retrofit for the period from May 5, 1991 to
December 31, 1991.

Weekday Weekend Total
Predicted Use (kWh) 382,440 131,423 513,863
Measured Use (kWh) 171,298 68,190 239,488
Savings (kWh) 211,142 63,242 274,384

Table 4. Air handler electricity savings from May 5,1991 to
December 31, 1991.

Model #2 from Table 2 is used to predict steam energy use
(Figure 5). Since no post-retrofit data were missing, a post-
retrofit model was unnecessary. The total savings are tabulated
in Table 5 and are represented graphically in Figure 6.

| Predicted Use (MMBtu) | 2412
Measurcd Use (MMBLu) 1,777
Savings (MMB) 635

Table 5. Steam savings for the period from May 5, 1991 to
December 31, 1991.

Steam (MMBlu /day)

=3 “ w 0 ) 7 w© W
Average Daily Temperature (F)

Figure 6. Pre-retrofit model of steam use and uncertainty
bands shown with post-retrofit steam energy use. The vertical
distance between the pre-retrofit model and a post-retrofit
data point represents the amount of steam energy saved on a
particular day.
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Calculating the Uncertainty of Savings

Equation 25 was used to calculate the total error associated
with weekday and weekend air handler electricity savings.
Equation 28 was used to combine the weekday and weekend
uncertainties to find the total uncertainty associated with the
savings. Equation 29 was used (o find the relative uncertainty
of savings. The input parameters for Equation 25 and
resulting uncertainty of the electricity savings are listed in

Table 6.
Input Parameters and Weekday Weekend Total
Results
n 127 50 177
m 170 68 238
o | 005 0.05
1(1-0/2,n-1) 1.979 2011
i — 494.898 214,291
> (8, ~EY
d=1
m N 19,794 7572
Y (e )
=
Uncertainty of Savings 201 178 268
Total Savings 211,142 63,242 274,384
Relative Uncertainty 0.000952 | 00281 0.000978

Table 6. Inpur parameters for Equations 25, 28, and 29 and
the resulting uncertainty of the air handler electriciry savings.

Input Parameters and W Lowﬁ High Total
Results Temperature | Temperature
Region Region
n 128 63 191 |
m 57 172 229
o 0.05 0.05
(1-0/2.n-2) 1.979 2.0 |
MSE 6.36 2,78
n _ 9.977 10,894
(T,-TY {
d=1
m _ T 3.482 78,172
z (T./ = )1
d=|
Ll , 42.54 46.31
e,
=1
Uncertainty of Savings 388 45.5 59.8
Total Savings [l 460 175 635 |
Relative Uncertainty | 0.0845 0.260 0.0942

Table 7. Input parameters for Equations 23, 26, 27 and 28
and the resulting uncertainry of the steam savings.

Equations 23 and 26 were used to calculate the uncertainty
of steam savings in each of the low-temperature and high-
temperature regions ol the four-parameter steam use model.
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The input values necessary for Equation 26 and the resulting
uncertainty of the savings are listed in Table 7. Equation 27
was used to combine the uncertainties from the low-
temperature and high-temperature regions to find the total
uncertainty associated with steam savings. Equation 29 was
used to find the relative uncertainty of savings.

As was noted carlier, this statistical determination of
uncertainty does not account for the possible presence of
systemalic error. Bocecker et al. 1992 have identified a
systematic bias in the readings of some tlow meters used by
the Texas LoanSTAR program. Because similar flow meters
were used to determine the steam use in this example, a
systematic bias may be present in the steam use data. Thus,
this determination of the uncertainty associated with steam
savings probably under-estimates the true uncertainty of the
Savings.

SUMMARY

This paper describes a statistical methodology to select
pre-retrolit models of energy use, determine savings, and
assign a measure ol uncertainty to those savings. The use of
one, two, and four-parameter models of encrgy use is
described. The use of a t-test and a F-test to reject
unnecessary weekday and weekend models and a decision
criteria for selecting the best pre-retrofit model is described,
The assignment of uncertainty to savings calculated using onc,
two, and four-parameter models is described. The procedure
was demonstrated by developing and selecting pre-retrotit
models of electricity and stcam usc, calculating savings, and
assigning an uncertainty to those savings lor a building
participating in the Texas LoanSTAR program.

Future work will focus on refining the process of
determining pre-retrolit and post-retrolit models. The effects
of auto-correlated model residuals on model cocelticients and
uncertainty statistics will be specitically addressed. The
physical interpretation of the functional forms of models is
also under study. At present, several separale data processing
and statistical tools arc used to prepare the data and develop
the pre-retrofit models. An integrated computer program
which would automatically select the "hest” pre-retrofit model
is currently being developed. This integrated model
development tool promises o reduce the time now required o
develop encrgy use models.

The current procedures used o determine savings al
LoanSTAR sites will also undergo revision. At present, a
separate computer program is used to calculate savings at cach
site. In the future, a single program will be used to determine
the savings at all LoanSTAR sites. The use of this "master”
savings calculation program will reduce the time required for
program maintenance and should improve the reliability of the
results.
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