ENERGY CONSUMPTION AND DEMAND AS AFFECTED BY HEAT PUMPS THAT COOL, HEAT AND HEAT DOMESTIC WATER

Richard Cawley Manager, Unitary Technology Systems Trane UPG Tyler, TX

ABSTRACT

Products or systems that heat, cool and heat domestic water, which are also referred to as integrated systems, have been available for several years. The concept is simple and appeals to consumers.

This paper presents methods for evaluating the potential savings by using an integrated system that heats water by desuperheating discharge gas in the refrigeration cycle. The methods may be applied for any specific location, and their accuracy will depend on the accuracy of building loads and water usage estimates.

Power demand can also be affected by electric water heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks.

INTRODUCTION

A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several years. The HVAC community has not been idle in trying to devise test methods and industry standards (1, 2, 3, 4). To date, however, manufacturers having products that integrate space conditioning and water heating are left to their own devices to quantify energy savings for the consumer savings that are intuitively perceived by everyone.

One purpose of this study is to present a method for quantifying energy savings with integrated products for specific locations and applications. The Dallas/Fort Worth area is used as an example for an air-to-air heat pump having a factory-installed water pump and heat exchanger. Heat is extracted from the discharge gas and applied to domestic water (commonly referred to as the desuperheating method). The heat transfer characteristics, fluid flow rates and cooling and heating capacities for the integrated system are measured quantities. Increasing demand on the power generating facilities of some electrical utilities is a well-documented problem that has stimulated activity in thermal storage systems, electronic load management and technologies such as geothermal heat pumps. This study attempts to show how simple integration of space cooling and domestic water heating can favorably impact the demand profile for a residence on an extremely warm day when a summer peaking utility can be strained.

METHOD OF DETERMINING SAVINGS FOR WATER HEATING

Data from the USAF weather data manual (5) may be used for selected regions. This manual is a comprehensive source of temperature data for three portions of a day each month of the year. With this format, more accurate estimates of hourly cooling or heating loads and compressor operating times can be determined than with the more familiar tables showing annual hours in various temperature bins. Another advantage for using tables from the USAF manual is that the months which do not normally require space conditioning (October and April in Dallas/Fort Worth) can be identified. These are months during which the heat pump does not contribute to the hot water requirements.

The following procedure is being used for calculating energy savings in a specific application:

- 1. A typical day is fashioned for each month
 - A. Using temperature bin midpoints, the average outdoor temperature for each of the three eight hour ranges in the month are determined.
 - B. The average temperature for an eight hour range is assumed to be at the mid point of the period. If the average for hours 0 to 8 is 68 F, for example, a time-temperature plot will show 68F at hour 4.
 - C. Maximum temperature is assumed to occur at 3:00 p.m. (hour 15) and minimum at 6:00 a.m. (hour 6).

- D. Having defined average times, average temperatures and maximum and minimum times, which are used as points on two linear time-temperature curves, extreme daily temperatures are found. One curve is assumed to fall with constant slope from hour 15 to hour 6, and the other rises with constant slope from hour 6 to hour 15. Average temperatures occur at hours 4, 12 and 20. The linear time-temperature assumption will result in conservative estimates of water heating contributions from the refrigeration cycle.
- 2. In general, building load equations prescribed in Department of Energy procedures (6) for calculating Seasonal Energy Efficiency Ratio (SEER) and Heating Seasonal Performance Factor (HSPF) may be used in calculating hourly loads for the heat pump. Hourly loads and capacities are used to determine system running times each hour and resulting domestic water heating while running. For a specific application, the actual hourly loads could be used.
- Hot water draw schedules are imposed. Amounts drawn, as well as rates and times of day may be selected to suit the application.
- 4. Tank temperature is not allowed to exceed a preset maximum value. This means that at certain times during the constructed typical day more heat is available from the refrigeration system than the water system can store. When this happens in the calculations, the integrated system is not given credit for its excess capacity.
- 5. Months are chosen, and savings applied, only when it seems likely that the heat pump would be used by the homeowner for comfort. In general, months with mean outdoor temperatures between 55 F and 70 F are regarded as months not requiring heat pump operation.
- 6. A simple 24 hour calculation is performed using energy balances and logic that will not allow the tank to overheat. These calculations determine the maximum, minimum and average daily water temperatures in the tank and the amount of heat added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements.

DESCRIPTION OF EQUIPMENT

The system considered for this study is best described by U.S. Patent No. 4,747,273 (7), which covers an efficient assembly of heat pump, desuperheater, water pump and water heater. Controls that provide integration of space conditioning and water heating are also taught in the patent. The characteristics of therefrigerant to water coaxial heat exchanger are shown in Figures 1 and 2 with a water pumping rate of 1.3 gallons per minute. The heat pump ratings, independent of domestic water capacities or inputs are as follows:

Cooling Capacity @ 95 F:	36,200 BTU/HR
Cooling Capacity @ 82 F:	39,500 BTU/HR
SEER:	10.00 BTU/W-HR
Heating Capacity @ 47 F:	36,000 BTU/HR
Heating Capacity @ 17 F:	20,600 BTU/HR
HSPF:	7.00 BTU/W-HR

14

1753

It should also be noted that the compressor is located in the indoor unit. The primary reason for this is to minimize losses from the discharge gas before transferring heat to the water, but other advantages for having the compressor indoors should be apparent to those interested in compressor reliability and service.

ASSUMPTIONS FOR ENERGY STUDY

The parameters selected for simulating the interaction of the integrated system, building loads and water heating requirements are:

Supply water temperature	58 F
Hot water supply temperature	140 F
Water storage capacity	50 Gallons
Cooling load base @ 95 F	32,900 Btu/Hr
Heating load base @ 47 F	35,000 Btu/Hr
Min. desuperheating ambient	27 F
Max. tank temperature	140 F
Daily hot water use	62.4 Gallons

Schedule:

6:00 a.m.	15 Gallons
7:00 a.m.	15 Gallons
8:00 a.m.	6 Gallons
6:00 p.m.	5.4 Gallons
7:00 p.m.	6 Gallons
8:00 p.m.	15 Gallons
Water heater energy factor	91 %
Daily water heating energy	13.7 KW-Hr

TOTAL SPACE CONDITIONING AND WATER HEATING ENERGY

Table 1 summarizes energy data in Dallas/Fort Worth for a structure using 3 ton heat pumps with capacities shown earlier. Building loads were computed with DOE methods (6). The domestic water loads were determined using the defined parameters.

Savings are shown relative to a system with SEER of 10.00 BTU/W-HR and HSPF of 7.00 BTU/W-HR. For the unit with 15.00 SEER, a HSPF of 8.50 BTU/W-HR was used.

TABLE 1

DALLAS/FORT WORTH HEATING, COOLING, AND WATER HEATING STUDY 3 TON HEAT PUMPS WITH VARIOUS SEER & HSPF VALUES

HEA.	TING	KW	-HR

SYSTEM SEER	SYSTEM HSPF	NOV	DEC	JAN	FEB	MAR	TOTAL
10.00	7.00	426	688	918	644	490	3166
15.00	8 50	360	580	769	543	415	2667
10.00	7.00	489	781	1023	731	561	3585
			C	COOLING P	W-HR		
OVOTEN	OVOTEN						
SYSIEM	SYSIEM	MAV	IL IN	uш	AUG	SEPT	TOTAL
SEEN	norr	NO 1	0014	JOL	nou	02.1	
10.00	7.00	791	1374	1854	1786	1080	6884
15 00	8.50	462	1026	1590	1497	720	5296
	INTEGRATED)					
10.00	7.00	791	1374	1854	1786	1080	6884
			ŀ	HOT WATE	R KW-HR		
			NOV		MAY		
			THROUGH		THROUGH		
			MARCH		SEPT		TOTAL
NON-INTE	GRATED SYS	TEMS	2073		2100		4173

DALLAS/FORT WORTH HEATING, COOLING, AND WATER HEATING STUDY 3 TON HEAT PUMPS WITH VARIOUS SEER & HSPF VALUES

1632

INTEGRATED SYSTEM

121

SYSTEM DESCRIPTION	COOL CYCLE		HEAT CYCLE		TOTAL	SAVINGS
	COOL KW-HR	DHW KW∙HR	HEAT KW-HR	DHW KW∙HR	KW-HR	KW-HR
10 SEER/7 HSPF	6884	2100	3166	2073	14223	0
15 SEER/8.5 HSPF	5296	2100	2667	2073	12136	2087
10 SEER INTEGRATE	6884	121	3585	1632	12222	2001
INTEGRATION SAVIN	0	1979	-420	441	2001	

The energy consumed annually for heating domestic water is seen to be 2420 KW-HR less for the integrated system than for both non-integrated systems (4173-1758). This, of course, is due to the heat extracted from the superheated discharge gas. During the cooling cycle the heat reclaimed for water is normally waste heat dissipated to the ambient, or "free". In the heating cycle the heat is added to the water when the heat pump has excess capacity. It is not quite "free", but it is provided with the COP leverage of a water heating heat pump - with energy consumption at about 38 % of a high efficiency water heater. Annual water heating savings with the integrated system amount to 48.3% in the Dallas/Fort Worth area using the parameters defined for this study.

When incentive programs are offered, considerable emphasis is placed on equipment SEER rating, which affects only cooling cycle energy consumption. Some numbers can be lifted from Table 1 that show an integrated system with SEER of 10.00 BTU/W-HR to be more energy efficient during the cooling cycle, when water heating is included in the analysis, than a 15.00 BTU/W-HR system and high efficiency water heater operating independently. This is illustrated as follows:

SYSTEM	SUMMER COOL KW-HR	SUMMER DHW KW-HR	SUMMER TOTAL KW-HR
SEER=15; WH EFF.=91%	5296	2100	7396
SEER=10; INTEGRATED	6884	121	7005
INTEGRATED S SAVINGS OVE	SYSTEM R		
HIGH EFF.	(1588)	1979	3 91

These numbers are revealing, particularly considering that the consumer's installed cost for a system with SEER of 15 will be from \$900 to \$1750 more than some simple integrated systems. If the calculated savings are even approximately accurate, integration deserves as much attention as SEER.

Tables 2 and 3 illustrate the methods described for determining energy savings by integrating space conditioning with domestic water heating. For January and July, ambient temperatures are estimated hour by hour along with building load, equipment response to the load and available heat for water. Tables 2A and 3A show how the water tank is responding to heat storage, standby losses and draw schedules in Tables 2 and 3.

TABLE 2

WATER STORAGE CALCULATIONS ALLOWING FOR BENEFIT OF INTEGRATION (EACH HOUR CALCULATED WITH 3 TON, 7 BTUW HR SYSTEM USING DOE RULES) 88 BTUW-HIS AVERAGE HEATING PERFORMANCE FAACTOR IN 27 TO 62F RANGE

DALLAS/FORT WORTH, JANUARY

HEATING CAPACITIES HEAT DESIGN TEMP DESIGN HEAT REQUIREMENT MAXIMUM DAILY TEMPERATURE DAILY TEMPERATURE RANGE ENERGY FACTOR			47F 36000 5 F 35000 48 3 F 12 F 91%	35F 26500	17F 20600 H20 ENTERIN LEAVING CHARGE	58 140 50	F F GALLONS	
	AMB TEMP	LOAD	САР	RUN	AVAILABL BOOST KBTU	DHW DRAIN GALLONS	DHW DRAIN KBTU	STANOBY LOSSES KBTU
0	41.1	10.7	25.5	0.421	211	0.0	0.0	0.18
ĩ	40.3	11.1	25.4	0 417	216	0.0	0.0	0.18
2	395	115	25.3	0 453	2 20	0.0	0.0	0.18
3	387	11.8	25.2	0.469	2 25	00	0.0	0 18
4	37.9	122	25.1	0 486	2 30	0.0	0.0	0.18
5	37 1	125	25.0	0 502	2 34	00	00	0 18
6	36.3	129	24.9	0 518	2 38	150	102	0 18
7	376	123	25 0	0 491	231	150	102	0 18
8	39 0	117	25 2	0 464	2 24	60	4 1	0 18
9	40 3	11.1	25 4	0 437	2 16	00	00	0 18
10	416	105	25 5	0411	207	00	00	0 18
11	43 0	99	25 7	0 385	1 99	00	00	0 18
12	44 3	93	25.9	0 359	189	00	00	0 18
13	456	87	314	0 277	149	00	00	0 18
14	470	8 1	318	0 255	140	00	00	0 18
15	48 3	75	32 2	0 233	1 31	00	00	0 18
16	47 5	79	32 0	0 246	1 36	00	00	0 18
17	46 7	82	317	0 259	1 42	00	00	0 18
18	45 9	86	315	0 273	147	54	37	0 18
19	45 1	89	31.2	0 286	153	60	4 1	0 18
20	44 3	93	25 9	0 359	189	150	102	0 18
21	43 5	97	25.8	0 375	1 95	00	00	0 18
22	427	100	25 7	0 390	2 00	00	00	0 18
23	419	10 4	25 6	0 406	2 06	00	00	0 18
				92	46 28	62 4	426	42
				TA	BIE 2A			

WATER STORAGE CALCULATIONS ALLOWING FOR BENEFIT OF INTEGRATION (EACH HOUR CALCULATED WITH 3 TON,7 BTUW HR SYSTEM USING DOE RULES) 8.8 BTUW HR IS AVERAGE HEATING PERFORMANCE FACTOR IN 27F TO 62F RANGE

DALLAS/FORT WORTH, JANUARY

			47F	35F	17F		
HEATH	NG CAPAC	TIES :	36000	26500	20600		
	HEAT DES	IDEMEN	35000				
DESIGN	EATREOU	JINCINCIN	32000		H20		
MAXIMUM	DAILY TEN	PERATU	483 F		ENTERIN	58	F
DAILY TEI	MPLRATU	RE RANG	12 F		LEAVING	140	F
	ENE RGY	FACTOR	91%		CHARGE	50	GALLONS
HPOF	50 CAL T		OES USED				
DAY	INIT	FINAL	KRTU				
0	140.0	140.0	0.18				
1	140.0	140.0	0.18				
2	140.0	140.0	0.18				
3	140.0	140 0	0.18				
4	140.0	140 0	0.18				
5	1400	140 0	0 18				
6	140.0	1207	2.38				
7	120.7	101 2	231				
8	101.2	96.3	2.24				
9	96.3	101 1	2.16				
10	101.1	105.6	2 07				
11	105 6	1100	1 99				
12	110.0	114.1	1.89				
13	1173	120.2	1.49				
14	120.2	120.2	1.40				
15	122.9	125.8	136				
17	1258	128.8	1.42				
18	128 8	123.0	1.47				
19	123.0	116.4	1.53				
20	1164	(+; O	1.89				
21	96.0	100.2	1.95				
22	100.2	104 6	2 00				
23	1046	109 1	2.06				
MINIMUM	96.0	96.0					
MAXIMUM	1400	140.0					
AVENAGE	120.2	1189					
DES DHW			34.0				
USE EFF.			73.4%				
NEED EFF:			72.5%				
DHW SVGS							
KBTU.			34.0				
KWH:			3.9				

TABLE 3.

WATER STORAGE CALCULATIONS ALLOWING FOR BENEFIT OF INTEGRATIO (EACH HOUR CALCULATED WITH 3 TON, 10 BTUW-HR SYSTEM USING DOE RU DHW BY DESUPERHEATING

DALLASV-	OHI WOH	IH, JULY						
			82F	95F				
COOLI	ING CAPA	CITIES :	39500	36200				
OD DES	IGN TEMP	FRATURE	95 6	-	H20			
MAXIMUM	DAILY TE	MPERATU	98.3	-	ENTERIN	58	F	
DAILY TE	MPERATU	RE BANG	22.7		LEAVING	140	F	
	ENERGY	FACTOR	91%		CHARG	50	GALLONS	2
					dinaid	00		,
					AVAILABL	DHW	DHW	STANDBY
HROF	AMB.	LOAD	CAP	RUN	BOOST	DRAIN	DRAIN	LOSSES
DAY	TEMP.	KETUH	KBTUH	HRS	KBTU	GALLONS	KBTU	KBTU
0	84.7	21.6	38.8	0 556	3.34	0.0	0.0	0.18
1	83.2	199	39.2	0 508	3.05	0 0	0.0	0.18
2	81.7	18.3	39.6	0 46 1	2.77	0.0	0.0	0 18
3	80 1	166	40.0	0.415	2.49	0.0	00	0 18
4	78.6	14.9	40.4	0.370	2.22	00	00	0.18
5	77.1	133	40.7	0.326	1.96	0.0	00	0 18
6	756	11.6	411	0.283	1.70	15.0	102	0.18
7	78.1	14.4	40 5	0.356	213	15.0	10.2	0.18
8	806	172	39.8	0.431	2.58	6.0	4.1	0.18
9	83.2	19.9	39.2	0 508	3.05	00	0.0	0.18
10	85.7	22.7	38.6	0.589	3.53	00	0.0	0.18
11	88.2	25.5	37.9	0.671	4.03	0.0	0.0	0.18
12	90.7	28.2	373	0.757	4.54	0.0	0.0	0.18
13	93.3	310	36.6	0.846	5.08	0.0	0.0	0.18
14	95.8	33.8	36.0	0 938	5.63	0.0	00	0 18
15	98.3	36 5	35 4	1.000	6 00	0.0	00	0.18
16	96.8	34.9	35.7	0 975	5.85	0.0	00	0.18
17	95.3	33 2	36.1	0919	5.51	0.0	0.0	0 18
18	93.8	315	36.5	0864	5 18	5.4	37	0.18
19	92.2	29.9	36.9	0810	4 86	60	41	0 18
20	90 /	28.2	37.3	0.757	4 54	15 0	102	0.18
21	89.2	266	3/7	0 705	4.23	0.0	00	0.18
22	87.7	24.9	38,1	0 655	3.93	0.0	0.0	0.18
23	062	232	384	0 005	3 63	0.0	0.0	0.18
				15.3	91.84	62.4	42.6	4.2

TABLE 3A. DHW BY DESUPERHEATING

DALLASFORT WORTH. JULY

COOLING CARAOTTICS			82F	95F			
COOLING CAPACITIES :			39500	36200			
OD DESIGN TEMPERATURE			05 E		LDO		
MAXIMUM	DAILY TEMP	FRATURE	983 5		ENTERING	50	c
DAILY TEN	MPERATURE	RANGE	22.7 F		LEAVING	58	F
	ENERGY	ACTOR	91%		CHARGE	50	GALLONG
			0110		UNANGL.	50	GALLONS
HROF	50 GAL TA	NK	DES USED				
DAY	INIT.	FINAL	KBTU				
0	1400	1400	0.18				
1	140.0	140.0	0.18				
2	140 0	140.0	0.18				
3	140.0	140.0	018				
4	140.0	140.0	0 18				
5	140 0	140.0	018				
6	140.0	1191	1 70				
7	119.1	99.2	213				
8	99.2	95.1	2.58				
9	95 1	102.0	305				
10	102.0	110.1	3 5 3				
11	110.1	119.3	4 03				
12	1193	129.8	4 54				
13	129.8	140.0	4 4 3				
14	140.0	140.0	018				
15	140 0	140 0	018				
16	140.0	140.0	0.18				
17	140 0	1400	0 18				
18	140 0	1400	3.86				
19	140.0	1400	4 27				
20	140.0	125.9	4 5 4				
21	125.9	135.6	4 23				
22	135.6	140.0	2 00				
23	1400	140.0	0 18				
	05.						
	95 1	95 1					
MAXIMUM	140.0	140.0					
AVEHAGE	130.7	130 7					
DES DHW :			46.8				
USE EFF			51.0%				
NEED EFF.			100.0%				
DHWSVGS							
KBIILI							
KIMH			46.8				
NYVIT .			13 7				

INTEGRATION AND DEMAND

Table 4 is included with this study to set the stage for a discussion of the benefits of integration regarding power demand on a very warm day when residential cooling equipment is being used near its maximum capability. Peak temperature is assumed to be 101 F and the daily range is 12 F (minimum temperature 89 F). The hour by hour temperature profile was established with the methods previously described. Table 4 shows that, under these conditions, system running time is much more than is needed to keep the occupants supplied with hot water without electrical heat input to the water heater. Hot water is "free" but, more importantly, the intermittent use of a 4.5 KW electric water heating element is avoided. Note that the need efficiency of heat supplied by desuperheating is 100% and that this amounts to the full daily need of 14.4 KW-HR.

Table 5 (right column) shows the hour by hour demand for a standard non-integrated heat pump used in conjunction with a water heater having efficiency of 87%. The draw schedule in Table 5 is the same heavy morning and evening usage schedule assumed in the energy analysis. Demand peaks occur during the hours of 6 a.m. (6.52 KW-HR/HR), 7 a.m. (6.01 KW-HR/HR), 6 p.m. (6.82 KW-HR/HR) and 8 p.m. (8.29 KW-HR/HR). The peak demand for the integrated system is 3.93 KW-HR/HR during the noon hour.

TABLE 4.

WATER STORAGE CALCULATIONS TO GET MAXIMUM BENEFIT OF INTEGRATION (EACH HOUR CALCULATED WITH 3 TON, 10 BTUWH HR SYSTEM USING DOE RULES) DHW BV DESUPERHEATING

			82F	95F			
COOLIN	GCAPACI	TIES :	39500	36200			
ODDESK	GN TEMPER	RATURE :	95 F		H20		
MAXIMUM	DAILY TEMP	PERATURE	101 F		ENTERING	5	3 F
DAILY TEN	IPERATUR	E RANGE .	12 F		LEAVING:	14	0 F
	ENERGY	FACTOR :	87%		CHARGE:	5	GALLONS
HROF	50 GAL TA	NK	DES USED				
DAY	INIT.	FINAL	KBIU				
0	140.0	140.0	0.27				
1	140.0	140.0	0.27				
2	1400	140 0	0 27				
з	140.0	140.0	0.27				
4	140.0	140.0	0.27				
5	140.0	140.0	0.27				
6	140.0	124 8	4.19				
7	124.8	110.3	4.46				
8	110.3	1112	4.74				
9	1112	122.6	5.02				
10	122.6	134 7	5.31				
11	134.7	140.0	2.47				
12	140.0	140.0	0.27				
13	140 0	140.0	0 27				
14	1400	140.0	0.27				
15	140.0	140.0	0.27				
16	1400	140.0	0 27				
17	1400	140.0	0.27				
18	140.0	140.0	3.95				
19	140.0	140.0	4.36				
20	1400	128.9	5.90				
21	128.9	140.0	4.88				
22	140.0	140.0	0.27				
23	140.0	140.0	0.27				
MINIMUM :	110.3	110.3					
MAXIMUM	140.0	140.0					
AVERAGE	135 5	135 5					
			49.0				
USE EEE			38.2%				
NEEDEE			100.0%				
NELUEFF.			100 0 %				
DHW SVGS							
KBTU.			49.0				
KWH			14.4				

							I ADD I D								
	000	YG AND WA	IRIGAL	NG DE MAR	e long	OF DAY		TE AVY MANENES & E VI NAME (BRANESCHE FARES							
		t Culline I	RAINL	10 /01	BIOWIN	14									
	-		R.d.	N.				WALLED	III Nesix	1940	WALLS				
annico	OINGLA	PACIFIES	39530	16-/00				WHITE C	1991.01	36.15	NUSICI				
w	ATTINPU		3/27	386.0				AL INA	11.80	135					
OF GRADALION COLLECTION			17.50					are subart	Comment	13.10	NUTIT				
PART LOAD WATT PINALTY			1.00												
									1.1	875					
OTOCSIGN TEMPT PATURE			*						STORE A	50	GALLING				
MAXIMUM.	DALYNA	HIMIUR	101						D.W. N	- 54	1				
DALYILI	IN INIT	E HANG	4						IL MP CO	140	1				
								WATER	WANKI			INC.	1.04	11.00.00	
1410	ALLES	10AD	CAP	10.24	UNII	KIST(J	LIXI	DHAW	105515	STAND BY		LIMILI	LAWRER	14	
DAY	IL MP	NULEA	KBILLI	1885	WATIS	LOOING	SHIWA	GALLENS	KILU	LODISE'S	KWIN	NOTE:	Matter	KWIII	
Û	163.8	310	36 5	0 m5	3651	31.0	343	0.0	8.0	6.11	00.00	.88.3h	KLINE	24	
1	943.0	30.7	36 /	0.612	36-15	180 ×	321	0.0	0.0	011	0.04	34.00	3/84	3.1	
2	02.2	29.8	36.9	9.656	36/19	.928	3.70	0.0	0.65	011	11:00	A* 841	Lº 50.	1.2	
э	91.4	29.0	3/1	0 /80	36.0	.90	3 000	10	0.0	\$21	0.00	2114	3.730	3.14	
•	90.6-	101	37.8	0 753	R	261	2.87	1212	6.0	10,17	61.046	1. 10	5/411		
5	89.9	21 /	3/5	0.775	36-11	119	1 16	11.13	0-0	0.77	000	\$2.01	21	1.80	
6	Site		111	Bale O	1611	253	2.14	1940	141-3	8.24	3.78	11.12	34.15	11.52	
1	90.3	218	3/4	0.243	36.5	27.0	2.80	15.0	5.00	19.27	4.088	林竹	34.25	the Set	
8	912	193	31.0	0 /90	36.05	193	-115	10.07	41	9.77	0.00	24.15	Per 18	3.17	
	410	30.7	B. 1	0 10 /	3045	101	10	0.0	00	971	0.00	211 (24	1957	8.8	
10	94.3	11.1	30.4	0.005	3.0.	35.2	3.61	0.0.	0.0	0.22	4100	19.15	19.16	150	
		33.6		11 16.04	2000		1.5	10.00	00		in ay		20.04	1.1	
	teer in			10000	10.00		1 341	aru.	100		49.000	10.00	2012	3.4	
		200.00	30.7	1 1000			1.10	10.0	40	10.00	0.141	19.12	10.00	3.05	
15	100.0	30.1	24.4	1,000	3.05	and a	100	0.0	0.0		0.00		20.00	1.2	
-	100.7	70.6	14.14	1.000					min	10.00	0.00				
17	100.4	311	1.1	1.000	34344		1.000	0.0	6.0	0.24	0.00	1.00	1.00	4.0	
10	100.0	30.0	16.3	1000	inder.	6.7	7.000		14	0.00		41.04	C. ***	3.65	
	N/B	360	35.5	1100	341	8.5	1.94	40	11	6.97	0.00	14.15	19.00	1.00	
.0	810	201	10.1	0.963	3.0	30.1	1.16.5	12.4	10.7	8.00	4.8.	10	48.15		
14	100.0	36.0	10.14	0.05.1	840	H .1	1.001	13.14	100.00	11.27	10.187	44.16	11.000		
32	10.0	33.3	8.1	12324	801	43.1	314	40	4.0	0.12	100	11.000	Sile.	1.00	
1	186 8-	2.14		110015	·***	1.5	310	6110	0.0	10.77	6.0er	3160	Ss in	4.54	
IDIALS				203		1.13	as	62.1	4,95	6.1	14.1			. 18	
100415				20.3		173	a/113	64° 1	4,15	63	18 5				

Table 6 is similar to Table 5. The only difference is the draw schedule. For Table 6, a draw schedule presented in chapter 44 of the ASHRAE GUIDE & DATA BOOK (8) as 'typical residential' was used. This changed both magnitude and times for demand peaks with the standard heat pump and water heater. Peaks occur at 8 a.m. (7.15 KW-HR/HR), 11 a.m. (6.98 KW-HR/HR), 4 p.m. (6.93 KW-HR/HR) and 9 p.m. (7.7 KW-HR/HR). The draw schedule has no effect on the integrated system.

							DATE							
	cour			NLUIMA	()+OR)	VAD IC		TYIN AL		di kura A	LI.			
		I CLIMINE	NI KATING	10 20	HIUWH	н		ASHIGAL LABLED THEFT EXTRACT CALL						
				arr										
14119217	OLING LA	Dentile X	(Minut)	20.000				Walthin	THE POPULA	87.00	WHI 10-			
	BIOTCOOL PATCAPACITES			10.00				INCOME 1	1 Martin	34.15	RUNT			
	WATT NEUT			100				ALLINA.	T DI MAR	115	in and a			
IL GIA IS	ALKNUN	IT CENT	0 10								Marito			
PARTICIC	I IAW GAL	PI NAL IY	101											
									- U.	10.2				
00.01 2	34 34 11 148 1	BATCHE	95						10109462	347	LAULAS			
MAXIM	DALY ICA	AT HATLISE	10)	1					11 145" 84	145				
DAC Y 11	MPT HAILS	HE HWICE	12	• ·					IT ME CAU	100	1			
								-	Links			and one		10.00
INC	AMEL	(LWD)	LAP	10.0N	UNIT	ant in a	((1)	Citer Market	110.04 5	STREET	-	Country of	1.000	1011.00
DAY	11 6.62	KBLIRS	STRILE!	1000	MILTIN	C(1	ETH CHIEF	Thursday.	A BUTT	A COLORADO	And a star			LT MODEL
0	91.0	31.6	365	0.005		110	5.4.5	21	Neste	Tracine is		Pilsite .	Pagito -	NAA INT
1	93.0	30 /	30/	0.007	845	30.1	3.10	0.0	3.5	20.00	0.00	20.00		- 11 C
2	922	21.0		0.004	36.22	61	1.50	0.1	0.2	0//	0.00			
3	91.6	29.0	3/1	0.250	30.13	210	1.00	10.0		in 11	0.00			
	40.00	.08.1	1/ 5	0 -53	3677	1001	1.41		0.1	11.27	10.000	5.0	Tores.	
5	100.00	212	\$2.50	0.725	34.01	26.8	100	11.14	100.00	10.00		A	1.12.12	1.00
6	89.0	26.3	1//	Dates	36.11		1.14	0.3	10.1	0.0	0.000	20.04		1.04
1	IN 3	2/8	\$1.0	6 /45	3.4	27.8	250	1.0	41.1	0.11	1111	10.00		0.00
	917	29.3	37.0	0.790	3.11	01	412			A.14	4.00	14.15	an al.	
9	83.0	30.7	2.1	083/	8-15	10.1	14	4.0	3.1	here.	10.00	10.15		
10	94 3	311	30.1	CI IIIVA	3.66	41.0	351	5.0	4.64	6.11	10.00			1.6.4
**	26.7	310	.0	0.934	34.5	\$3.6	3.57	4.5	53	0.27	1.4		80.15	1.100
12	10/12	35 +	25.7	12140.1	2.75	Br v	110	3.0	14	- 17	11.002	100.074	18 1 104	
1.1	And A	30.0	.15-1	1.000	8.55	2.4	is only	10		10.27	10.000	11.05	dener	
14	1010 2	38.0	35.0	I CICKE	10.00	8.11	4.54	100	2.64	ALC: N	11180	in the second	8. 14	8.44
15	101.11	39.5	3417	1 000	3.0%	35.7	3.11	1.1	16	11.17	42.181	A 15	10.004	1.1
742	100.1	38.6	34 8	1.000	1000	.M 16	3.20	20	1.5	11.11	2.54	10.004	40.11.	1. 10 1
	Ma a	3/ 1	35.1	1100	Dist.	35.4	P 144	10.1	10	48.1	0.181	34.15	1. 15	Laite
18	588.0	36.9	16.5	1100	3401	35.1	A lock		1.0	10.17	O Let	67.91	40.01	deres.
110	10 · 10	36,67	35.5	1 1000	8.61	815	3148	1.1	-15	15.11	12.581	30.40	20.41	5
20	97.0	85 i	15.1	0.981	8,15	30.1	1261	5.00	4.4	10.1	-12(4)	19.15	21.004	\$ 25
-1	10.2	34.1	11.14	111951	10.0.1	н.	6.941	6.12		19.4	1.014	25.00	100.17.	
**	95.4	111	No. 1	10.054	ha.d	53.1	1140				\$100	34.00	10.740	114
2	785.41	1.00	No. 1	11.00.00	440	8.0	1.1	2.4	1.14	11.7	101,82	11.50	m 12	5 141
INTRO-				1.1			#1 AL		1.00		21			

Other variables are introduced in Table 7. The ASHRAE 'typical' draw schedule was used, but the water heater size was changed from 50 gallons to 80 gallons. In addition, the heater element capacity was increased from 4.5 KW to 8.5 KW. The result was a pronounced change in the demand profile for a standard system and water heater. Peaks occurred at 9 a.m. (8.2 KW-HR/HR), 3 p.m. (8.64 KW-HR/HR) and 10 p.m. (8.87 KW-HR/HR).

							INGI									
						(DAY				Huseh,	4					
		I I I DIAN N		10.00 1011090100					Analistic Later There Example 141.0144							
			1.2	1.00					the state of	1000	MALL!					
			8.1	NC.				WALL PILL	CONTRACTOR OF STREET	Colorado -	a best i					
ULPRICK	TX ME, CAN	WCITE 5	39500	10.00				Ar sheet 1	1. 11.1.0.	135						
WALLBUIL			1502	3bm0				ALINAN	Cautor L	17.98	HISTAL					
DEVELOPMENT OF COLLEGENE			0.10													
PARTIN	ALIWATIA	Y NAL IY	1 (26)													
										10 A						
CILDE SILIN IT MAY RELITING			95 1						211446.4		i an Uno					
MAIRAM	LINE Y TE M	ET HATLAN	101 1						IL ME IN	1.1						
DALYIL	WE THAT IS	R HANKS	12.1						II MELLER							
								statute in	No. but			Bartsha	1.046	11.15.44		
		1000	Call		1847	entity		17444	112:54 20	IL LADA BAY	Met-s-	CAMIR.4	CHANK &	LA MAINEL		
10503	AMB	TOND	LAP	10.01	walls.	CITAR	www.	LALL N.	×11117	112.04.5	1.01101	*10104	NILLY	AUV101		
1 MT	11 44	Mailas	Page 1	0.0ks	3655	11.0	1.4.1	11	1.8	6.77	0.16	TAU THE	100 100	5.0.5		
	93.0		2.1	0.607	See.	30.7	32	47.45	0.5	0.0	0.00	48.58	8/167	3.17		
	62.4			0 1908	10.04	24.8	. 1.0	- 113	10.2	61.77	0.04	61.617	87,794	4.81		
		79.0	1/1	0.000	31.11	29.0	3.00	61	0.1	48.71	(0.136)	40.34	41.981	1.00		
	MON	261	37.1	0.64	38.17	78.1		10 t	Q. 1	10 T	(118)	8-10	1001115			
	dife H	711	3/5	0775	201	110	1.8%	1945	-018	41.00	(0.00)	85.53	181 (194	185		
	49.0		311	0 1/28	38.15	12.3	11.14	0.1	11.2	4.1	0.00	45.0	1.87	- 19-		
	101.3	71.8	3/ #	0 /#3	16.65	22.0	2.40	6 G	0.7	0.77	0.00	45-87	44.81	.* 903		
i i	917	283	37.0	0.710	JOJ.	14.8	X 1/7	45	11	0.77	0.00	** **	11.54			
9	93.0	30 /	36/	0.637	2045	10 1	3.12	**		11.1.	1.000	47.58	26.64	10.000		
	94.3	32.2	36.4	0.86%	3665	32.2	3.51	58	+4	- W.*.	12 (34)	54.00	29.75	154		
11	95.7	20.6	35.12	0.904	3to"	150.	3/1	4.	1.	M/C						
10	41.0	75.0	35. 7	0 9853	36.75	85.1	3.975	1.8	i (85	0.74	0.00		44.11			
6.9	587.3	38 A	35.4	+ 000	8:451	\$14	3.8418	10			1110					
14			395.0	1000	MAR.	310	4.70	1.1	7.0	1.12			Color Sector			
15.	101.0	385	34.7	+ 1000	3.196	34.7	1.12		1.0	22		2414	67.67			
10	800.2	38.6	24.9	000	3.91	31.9	3.00	1.50		1.25		1.181	No.	10.00		
11	911	127	3% 1	000	3016.5	- P. 1	3 109	- 23	10		10.000	61.14	and the second	10.0		
18	- 36 h	36.9	35.4	1.000	3.4	22	1.69			6	11.00	100 14-	- 20	110		
10	9/8	38.0	35.5	0.000	kd.	20	3.640			in a	0.00	44.11	411.0	1161		
20	970	151	v. ·	6 mild		8.1	1.00			0.11	Dex.	41.00	an fue	1.004		
21	549 Z	ы.	3.7.20	11 195 1	EDO/1					0.71	5.111	21.10	MAG	10.007		
72	95.8	20.1	3.1	0.0.4	.14.		114			10.11	1100	20.00	5.0.00	1.144		
23	the r	115	1.1	0.000	10.57											
ILIA 1				25.9		11.15	82° KI		4.75		1.10			*2 lag		
10141				25.4		12.13	82° KI		4.17		1.546					

It can be readily seen from studying Tables 5, 6 and 7 that times and magnitude of demand for conventional cooling and domestic water arrangements are very sensitive to water heater configuration and usage schedules. Because of the infinite variety of combinations that can and do exist in residences, peaks of considerable magnitude will always occur and are just as likely to occur at an undesirable time, such as 3 p.m., as a more desirable time, such as 12 a.m. The system that is integrated, which is more effective as cooling load increases, provides hot water evenly without relying on the water heater elements and presents a stable, essentially constant demand profile.

Should an attempt be made to control the demand profile by locking out the heater elements at certain times, the integrated system would still have a significant advantage. If a conventional water heater were locked out from, say, 10 a.m. until 10 p.m., the consumer would be inconvenienced during that time. In addition, a peak would occur at 10 p.m. (when the elements were allowed to energize) and the consumer would have to pay for the energy required to bring the tank back up to temperature after the long idle time.

An integrated system would have been providing hot water to the consumer during the period when electric heat was disallowed. There would be no peak at the end of that period and no energy penalty due to makeup requirements.

CONCLUSIONS

Integrating space cooling, space heating and water heating in heat pumps has been practiced for several years. The desuperheating, factory-assembled system used as an example in this study is but one of the configurations available. There are also several methods for calculating the effects of integration on total energy consumption - from quick rules of thumb to elaborate bin treatments linked to precise test methods. The approach used here is adaptable to specific applications, accounting for actual loads, operating times, water usage and months of operation. An interesting point to make, though not covered in this paper, is that the energy calculations will not differ significantly with any of the methods if the water is heated by simply desuperheating the discharge gas; all will show good energy and operating cost savings. It was demonstrated in this example that integration is more effective than raising the SEER from 10 to 15 BTU/W-HR.

An argument has been presented for using integrated systems to control demand peaks. An infinite variety of combinations of water heater efficiencies, draw schedules, control temperatures and tank volumes are present in the field. Only a few have been demonstrated. Peaks can be lowered as much as 5 KW without inconvenience to the customer with properly controlled integrated systems.

REFERENCES

- Cook, R.E., Davidson, M.J., D'Valentine, M. and Goldschmidt, V.W., "A Simple Method to Determine the Yearly Consumption of a Combined Space and Water - Heating Appliance with a Heat Pump and Desuperheater", ASHRAE Transactions, V. 92, Pt. 2, 1986, pp. 399-414.
- Dougherty, B.P., "A Proposed Methodology for Rating Air - Source Heat Pumps That Heat, Cool,and Provide Domestic Water Heating", U.S. Department of Commerce, National Institute of Standards and Technology, Report number NISTIR 89-4154, August, 1989.
- American Society of Heating, Refrigerating, and Air

 Conditioning Engineers, "Methods of Testing for Efficiency of Space-Conditioning/Water-Heating Appliances That Include a Desuperheater Water Heater", SPC 137P.
- 4. Air-Conditioning and Refrigeration Institute, "ARI Standard 290P for Air-Conditioning and Heat Pump Equipment Incorporating Potable Water Heating Devices".
- 5. Department of the Air Force, United States of America, "Facility Design and Planning Engineering Weather Data", Manual AFM 88-29, 1 July, 1978.
- Department of Energy, "Test Procedures for Central Air Conditioners, Including Heat Pumps", FEDERAL REGISTER, Vol. 44, No. 249, pp. 76700-76723.
- Cook, R.E., Davidson, M.J. and Rice, M.A., "Heating and Cooling System", United States Patent No. 4,747,273, May 31, 1988.
- American Society of Heating, Refrigerating and Air
 Conditioning Engineers, Guide and Data Book, Systems Volume, Chapter 44, 1991.
- 9. Air Conditioning and Refrigeration Institute, "ARI Standard 210/240-89 Standard for Unitary Air-Conditioners and Air-Source Heat Pump Equipment", 1989.