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ABSTRACT 
 

Data Aggregation for Capacity Management. (May 2003) 

Yong Woo Lee, B.E., Inha University 

Chair of Advisory Committee: Dr. V. Jorge Leon 

 

This thesis presents a methodology for data aggregation for capacity management. It 

is assumed that there are a very large number of products manufactured in a company 

and that every product is stored in the database with its standard unit per hour and 

attributes that uniquely specify each product. The methodology aggregates products into 

families based on the standard units-per-hour and finds a subset of attributes that 

unambiguously identifies each family. Data reduction and classification are achieved 

using well-known multivariate statistical techniques such as cluster analysis, variable 

selection and discriminant analysis. The experimental results suggest that the efficacy of 

the proposed methodology is good in terms of data reduction. 
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1. INTRODUCTION 
 

For the past decades, the enterprise environment has changed rapidly such that 

business emphasis moved from seller-centered to customer-centered enterprises. 

Accordingly in some customer-oriented industries the products have been more 

diversified, the lot size has shrunk, the production processes have been more 

complicated, the demand has been more uncertain, and the life cycle has shortened to 

meet the customers’ dynamic need. Under these circumstances the amount of production 

information produced has exploded exponentially as well. 

Consider a company that manufactures a very large number of products through 

complex production processes, and suppose they frequently introduce new products and 

drop1 obsolete ones or modify old ones. In such a situation, challenges arise such as 

capacity planning and manufacturing data management.  The decisions in the latter 

revolve around the following two questions: “Is there enough capacity to satisfy 

customer’s demand?” and “How properly should the vast amount of data be managed?” 

This thesis focuses on the development of a data aggregation methodology to cope with 

the problems since a data aggregation methodology provides a good data management 

scheme for manufacturer to deal efficiently with capacity planning problems through 

suppressing irrelevant information.  

 In the proposed approach the products are put together into families and the many 

attributes associated with the products are cut down to a minimal subset of the attributes 

that unambiguously specifies each family. The methodology is devised based on well 

known multivariate data analysis techniques, such as clustering analysis, variable 

selection for data aggregation and reduction of the given product data and discriminant 

analysis for classification of newly introduced or revised product items. These techniques 

have been widely applied in the social, medical, and agricultural sciences as well as in 

                                                 

  
  

This thesis follows the style and format of Computer and Industrial Engineering. 
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economics, since many researchers need to explain phenomena in ways, where factors 

are dependent, which allowed them to sort data into some groups according to a variety 

of criteria. However, to the knowledge of the author, this thesis suggests a new and 

unique methodology for a production capacity data management. 

  
  

This thesis is organized as follows: Section 2 describes a modeling framework for 

the problem. Section 3, presents a mathematical formulation of the problem. Section 4 

reviews the relevant literature on related topics. Section 5 presents the proposed 

methodology. The experimental results are shown in section 6, and the conclusions 

follow in section 7. 
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2. MODELING FRAMEWORK 
 

 Consider a huge number of products, n, each associated with its corresponding 

production rate or unit per hour (UPH), ui, where i = 1, 2 …, n and the products are 

uniquely identifies by p attributes (e.g., p = 3, {thickness, color, material}). Under this 

assumption the maximum number of products uniquely coded with these attributes 

is , where attribute j is represented by tj
p
j t1=∏ j values or levels. For instance, a 

semiconductor packaging operation may require about 20 attributes and 3 levels of each 

attribute; hence for this example, tj = 3 for all j’s and the possible product variety is 320 ≈ 

3.5 billion products. If the value of an attribute is continuous quantity, then the 

maximum number is infinite. To manage such a large volume of product data possible 

coded, first, data reduction or aggregation must be achieved in such a way that n 

products are aggregated into, fewer, g product families, In order for the grouping to be 

adequate for capacity management, products in a family must have similar u. The 

production rate of family k is, then, defined as ku  that is mean value of u of the products 

in a particular family.  A good scheme for capacity management will minimize the error 

incurred during the data aggregation process.  Specifically, the inclusion of product i 

into family k induces an error equal to the difference between ui and fu when calculating 

capacity requirements associated with product i. The proposed model assumes that the 

aggregation error in this is less than a given value, eo, for all products assigned to a 

family. Therefore, given family k, denoted as Gk, and the set of products in the family, 

the proposed model assumes: 

 

koki Gieuu ∈∀≤− ,||      (1) 

 

  
  

 A related problem is that of coding the resulting families. Coding refers to the 

unambiguous specification of the resulting families such as a one-to-one mapping 

between the original product specification and a family.  For instance, each product is 
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specified using p attributes, the n products are grouped into g families where g is less 

than n. Considering the characteristics of the families some attributes could be redundant 

for the coding, subsequently there exists the p’, the fewer number of attribute 

combination able to identify the families, so that the smaller, p’ attributes are required to 

store u’s. The problem is to find the minimum number of attributes, p’, less than p, 

specifying the families, which must be consistent with the data aggregation strategy.  

 Another problem is that of classification. When a new product is introduced or an 

old product is revised, it is asked to assign the product to one of the pre-defined families, 

which has the closest similarity to the introduced product. The problem is finding a way 

to separate the distinct families, measure the similarities between the introduced product 

and the families, and assign the product to a proper family. For example, the most 

significant attribute to identify the families is thickness of the products. If the thickness 

of a new product is 3mm, then the product will be assigned to a family represented by 

thickness closest to 3mm.  

 

A large number 
of products

1

2

n

Product 
families
Product
family 1

Product
family 2

Product
family g

New or Revised 
products

Data 
Aggregation

Classification

Where p’ ≤ p and g ≤ n
Subset of attributes

{ a1’, a2’…ap’ }
Relevant attributes

{a1, a2 …ap }
Subset of attributes

{ a1’, a2’…ap’ }

 
Fig. 1. The proposed data aggregation and classification model 
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Fig. 1 illustrates the proposed product data aggregation and classification model.  In 

the model n products with p attributes are aggregated into g families specified using p’ 

attributes and new or revised product is assigned into a family the closest similar to the 

corresponding product. 
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3. PROBLEM STATEMENT 
  

 This section formalizes the problems to be solved in this thesis. The problem at 

hand consists of two interdependent problems, namely:  Data Reduction Problem (DRP) 

and Product Classification Problem (PCP).  

As assumed, there are n products and each product has u and the corresponding 

values of the p attributes specifying the product. Then, the problem can be described as 

shown in Fig. 2. 

Products UPH Relevant Attributes

Product 1 u1 |a11, a12, …, a1p|

Product 2 u2 |a21, a22, …, a2p|

Product i ui |ai1, ai2, …, aip|

Product n un |an1, an2, …, anp|

...

...

 

Fig. 2. The problem data structure 

 

Consider the following notation: 

 |•|: be the size of a set, 

 ui: the standard unit-per-hour for product i for i = 1, 2, … n, 

 Gk: a mutually disjoint family for k = 1, 2, … g,  

 P: a subset of p attributes and the size is p’ ≤ p, where |P| = p’,   

 ku : the average of u’s for Gk, 

 aij: the jth attribute of product i for i = 1, 2, …, n and  j = 1, 2, … p, 

 a*kj’: the average of j’th attribute of P for Gk for j’ = 1, 2, … p’, 

  
  

 eo: the given error for forming families where eo ≥ 0,  
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  F: F-statistics 

F*j: a partial F value and defined as 
P)n Group (je of WithiMean Squar

j|P)en Group (e of BetweMean Squar
+

   

, where j ∈ Pc
. 

 

 The problem is, first, to group products with similar u together into the mutually 

disjoint family Gk, where G = |∪ Gk|, |G| ≤ n, and then to find a subset of attributes P, 

where |P| (= p’) ≤ p.  Given eo ≥ 0, DRP is formulated as follows:  

 

Find the set of families, G and the subset of attributes, P to 

  

Minimize |G||P|  

 Subject to                                                                                                           (2) 

 | ui – ku | ≤ eo, i ∈ Gk, ∀ Gk  

and  

 F*j ≤ F0.95, (g-1), (n-p’-g), where j∈Pc 

 

The first constraint forces products with similar u to be put together into the same 

family, and the second constraint, a partial F value of attribute j based on the selected 

subset of attributes is less than the given critical value, enables P well to account for 

almost as much variance of u between families as the original attribute set does, namely, 

P is enough to unambiguously specify each family. 

  
  

 The objective is to minimize |G||P|, or equivalently to minimize the amount of data 

storage required for capacity management calculations. As a result, instead of the 

original data elements required (n products × p relevant attributes + n production rate 

values), the resulting data elements required are just g × p’ + g.  This is illustrated in Fig. 

3.  
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Families
Average 

UPH Subset of Attributes

Family 1 |a*11’, a*12’, …, a*1p’|

Family k

Family g

...
1u

|a*k1’, a*k2’, …, a*kp’|

|a*g1’, a*g2’, …, a*gp’|

ku

gu

...

 

Fig. 3. The goal data structure 

 

 The PCP entails discrimination of the distinct families and classification of new 

products based on the pre-defined families. Conceptually, the discrimination model 

describes the difference between objects from the pre-defined families and serves as a 

classifier for the introduced product into the families. Thus, PCP is finding a way to 

contrast the previously defined families and formulated as follows:  

 

f(P) = Maximize )
variation

variation
(

group-within

group-between                              (3)  

 

and the model will be used as classifier of future products to assign them to families. 

  
  

 



 
 

9

4. LITERATURE SURVEY 
 

This section provides a survey of topics related to this study. A variety of topics are 

broadly surveyed focusing on Data Aggregation problem. Data aggregation (DA) has 

played an important role in many research areas in order to resolve a large size problem 

such that the given massive problem information are simplified without loss of valuable 

characteristics of the original problem and one then solves the problem using the 

solution obtained from the aggregation process. In general DA can be said as any 

process to manipulate primary data into an aggregate to express data in summary form 

for further analyses or problem solving.   

DA has been considered a major problem in a variety of areas such as Economics, 

Computer Science, Medical Science, Statistics, and Industrial Engineering as well. For 

example, consider a transaction database maintained by a special consumer goods 

retailer. There is a large volume of customers’ information identified by many attributes 

of customers such as sex, residential region, age, education level, occupation, and so on. 

The huge amount of customers’ information is aggregated by customer group defined by 

a special purpose, some important characteristics of customer group are found and the 

aggregated information is used to build a marketing strategy or advertisement plan.  

  
  

DA is an important part of Knowledge Discovering in Database (KDD). KDD is 

to process large quantities of raw data, identify the most significant and meaningful 

patterns, and present this knowledge which is appropriate for achieving user’s goals. 

Typically KDD encompasses more than data mining. Elmasri and Navathe (2000) and 

Piatetsky-Shapiro et al. (1996) described general KDD process for extracting useful 

knowledge form large volume data. Elmasri and Navathe (2000) described that the 

general process of KDD consists of 6 phases, data selection, data cleaning, data 

enrichment, data transformation, data mining, and the reporting the discovered data. 

The first four steps from data selection to data transformation extract essential or 

relevant data set from a massive raw data stored in data base such that data selection 
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selects subset of relevant data for KDD processing, data cleaning eliminates or correct 

erroneous data, data enrichment enhances the data additional source of information, 

and then data transformation reduces the amount data using aggregation or other 

methods. The result from the first four steps is used next steps, data mining, to search 

for some patterns or rules in the data and, finally, the mined data are interpreted and 

reported. Hu and Cercone (1994) developed an attribute-oriented rough set approach 

for discovery of decision rule in relation database. The proposed model identifies 

minimal relevant attributes from all attributes in the data base and automatically 

generates very concise and more accurate discover decision rules.  The methodology is 

composed of two main steps, data generalization step generalize data base to the 

desirable level, which is called the general relationship and secondary, in data 

reduction step, Rough set theory, introduced by Pawlak (1982) is applied to the 

generalized relation such that the relationships are analyzed and the non-relevant or 

essential attribute to discovery task are eliminated without losing information about the 

original database system.     

The termed Data Clustering (DC) is considered as a kind of DA techniques. Jain et 

al. (1999) defined that DC is the organization of a collection of patterns (observations, 

data items, or feature vectors) into clusters based on similarity. Clearly, patterns within 

a valid cluster are more similar to each other than they are to a pattern belong to a 

different cluster. The variety of clustering techniques focus on representing data, 

computing similarity between data elements, and grouping data element and producing 

information about clusters. Clustering techniques have been applied to a variety of 

fields such as data mining, document retrieval and pattern classification.   

  
  

DA has been also played a major role in Database Management System. As the 

volume of data has grown, many DA techniques have been employed to represent 

information in a simple format, mange large volume data and efficiently store the data. 

Semantic Data Models (SDM) were introduced to represent knowledge of data 

efficiently in database system and Data Abstraction such as classification, aggregation 
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and association is used to represent more meaning of data in SDM. The Data Abstraction 

involves aggregating data and identifying common important properties of the 

aggregates while suppressing irrelevant information and creates a meaningful higher 

level object. Meanwhile Data Compression was developed to minimize the amount of 

data to be store or transmitted. It has been studied a long time and very important issue 

in data base management since 1940’s by Debra and Daniel (1987). Data Compression 

is that data (e.g. string of characters, a set of attributes) is transformed into simple code 

that contains same information but the physical storage size is as small as possible. DC 

enables one to reduce the amount of data to be transmitted and communication cost. 

Graefe (1993) mentioned benefits from DC in database query. First, data abstraction/ or 

materializing output records is faster because records are shorter. Second, memory can 

be saved and DC enables one to implement querying activity within given memory 

space.    

 Aggregate production planning has been a big concern in production planning model 

because batch type production of a large number of items and a complex production 

process lead to very large scale problem hard to be solved. Axäster(1981), Axäster and 

Jönsson(1984) developed a method to aggregate product data in hierarchical production 

planning, which was able to transform a complicated MRP system to an efficient 

aggregated model more relevant to capacity constraints and achieve cost reduction. 

Bitran Hass and Hax(1981) introduced a aggregate production planning approach using 

a linear programming model in which the aggregated variables were used instead of a 

large number of individual variables. Krzysztof et al. (1993) devised a methodology to 

solve a lot size scheduling problem also in which the decision variables were aggregated 

based on the assumption of similar products using a mixed integer optimization problem.  

  
  

 Some multivariate statistics techniques are frequently employed for data aggregation 

problem, such as Principal Component Analysis (PCP), Factor Analysis (FA), Variable 

Selection Method (VSM) and Clustering Analysis (CA). Those are well known 

multivariate statistical techniques for data reduction. Nickerson and Sloan (1998) used 
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PCP and FA for analysis of benchmarking data. They studied the methodologies for 

reduction of performance information and decision variables and analyzed the 

relationship between the bench marking data using those multivariate statistical 

techniques.    

The followings are, based on the proposed methodology, describing some statistical 

techniques that were applied to this study. Cluster analysis for product aggregation, 

variable selection for extraction of relevant product attributes and discriminant analysis 

for classification of product families and assignment of new products.   

Cluster analysis is processed on the basis of similarities. The inputs are required to 

be similarity measures from which similarities can be computed. Once the measures are 

determined, a similarity matrix representing between pairs of objects across the 

measurements is computed. The proper clustering algorithm is then adopted to assign the 

objects into subgroups on the basis of these criteria. The objective of clustering is to find 

well contrasted clusters in order to maximize the between-group variation relative to the 

within-group variation.  The uncovered clusters can be differentiated in terms of their 

mean values on these measure or other characteristics. 

  
  

 Once the groups have been clustered, there might be a between-group spread with 

attributes of primitive data which is associated with the product.  The interest here is 

finding a way simply and unambiguously to identify the groups. Variable selection 

enables one to find out how much each attribute or a subset of the attributes contributes 

to the overall variation between groups. Obviously, it is thought of as a statistical 

technique to find select significant variables that specify the groups. Several variable 

selection methods are available, such as the forward method, backward method, 

stepwise method, and others. Of these, the stepwise method is recommended in this 

research because it has the advantages of both the forward and backward methods and is 

simple. The stepwise procedure is processed on MANOVA (Multivariate Analysis of 

Variance), which is a method to test the equality of means of predictor variables for 

groups. The conditional F value is adopted as a criterion to determine the important 
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variable for the stepwise method in this study. The conditional F values are concerning 

interrelationships among the variables and are confounded by variables that contribute 

redundantly to the overall discrimination of the groups. Utilizing the conditional F 

value, one determines the important variables such that places them into the subset of 

variables and removes the non-significant variables away from the subset of variables by 

turns. The procedure stops when there are no more significant variables to enter into the 

subset.  Then, conclusively, the subset of relevant variables to characterize a group 

spread can be obtained via variable selection method. 

Through this research classification of new or revised product is one of important 

part, which is separating distinct sets of objects and allocating new object into 

previously defined groups. The two aspects are reciprocal because discriminating may 

serve as allocator and classifying rule may suggest a discriminatory procedure. 

Discriminant analysis is a statistical technique for classifying individuals into mutually 

exclusive groups on the basis of a set of independent variables. In this study Fisher’s 

discriminant function (Fisher, 1938) was introduced to derive a classification model that 

is linear combinations of independent variables that will discriminate groups in a way 

that maximizes the between-groups variance relative to the within-group variance, 

subject to the constraint that each uncovered linear combination must be uncorrelated 

with  previous extracted combinations. Figure 4 illustrates how the discriminant function 

(linear combinations of primitive variables), Y, allows better to discriminate between 

groups A and B when compared to discrimination based on the original dimensions a1 

and a2. 

As shown in Figure 4 an applying discriminant function is a kind of data reduction. 

Only with one dimensioned axis, Y, can the two groups be represented. The variables of 

groups are projected onto discriminant functions and the centroids of groups on it, Ay  

and By , are obtained, as in Fig. 4.  
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Fig. 4. Basic depiction of discriminant analysis 

 

 Next describes how to classify using Fisher’s discriminate function. Obtained are the 

centroids of groups on the new dimension defined by the discriminant functions. If a 

new observation is added we should determine which previously defined group it 

belongs to. The measure to determine the allocation or similarities is the Euclidian 

distance between the group centroids and the scored value of the new observation 

transformed by the discriminant functions. The group with the shortest distance will be 

the predicted group for the new observation. Fig. 5 shows how the classification works. 

 Fig. 5 is a graphical display on the discriminant function Y1 versus Y2 plane. The 

graph displays the inter-group boundaries as well as the centroids, BA y,y  and Cy , 

associated with each region, and ynew represents scored data of the new observation. The 

centroid of group A has the shortest distance from the new observation. The new object 

is assigned to group B. 
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Fig. 5. Classification of new observation 
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5. SOLUTION APPROACH 
 

This section shows the solution approach for the proposed methodology. The 

solution approach consists of two problems, DRP and PCP. Those are interdependent 

and consequential. The general solution approach is presented first and followed by a 

detailed description of each step of the methodology.  

 

5.1. General Solution Approach 

 

The DRP is divided into two sub-problems: minimizing the number of families 

(DRP 1) and the subset of attributes specifying the families subject to the constraints 

(DRP 2), the products assigned to a family must have similar u and the attribute subset 

can represent variation of u between groups and PCP is also divided into two parts: 

developing a function to discriminate the pre-defined families (PCP 1) and classifying a 

future product into a correct family (PCP 2). 

According to the problem formulation (2), the objective is minimizing |G| and |P|. 

The problem can be divided into two sequential sub-problems, minimizing |G| and 

minimizing |P|. Then, DRP 1 and DRP 2 are defined as follows. 

 

DRP1: DRP1 minimizes |G | by solving 

 

  Minimize |G| 

Subject to                                                                                 (4) 

   |ui - ku | ≤ eo  

   for k = 1, 2, …, g , 

  i = 1,2 … nk and i ∈ Gk 

  nk is number of products belonging to Gk  
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From (4) we can obtain unique solution G satisfying the constraint. The procedure 

will be just sorting the data, dynamic computing the current average of u and comparing 

the difference between the error and the given criterion, eo.  

 

DRP 2: DRP 2 minimizes |P | by solving  

 

  Minimize |P| 

Subject to                                                                                 (5) 

   F*j ≤ F0.95, (g-1), (n-p’-g)   j∈Pc  

 

The DRP 2 must be solved consecutively since P is obtained based on G attained 

from (4). Obviously, different G can cause different P. DRP 2 finds the minimal subset 

of attributes that explains most of the u variability between families.  Once the families 

have been formed, through DRP 2 we identify the families with the minimum subset of 

attributes, excluding irrelevant attributes. The obtained subset is enough to refer to a 

variation between families.  

 Next concerned problem is discrimination of obtained families for classification (or 

assignment) of newly introduced product. Namely, the problems are how to separate the 

distinct families and how to assign a future product, new or revised product, into a 

previously defined family. First, the discrimination problem is defined as followings. 

 

PCP 1:  PCP1 finds a function of P to discriminate G.  

 

 f(P) = Maximize )
variation

variation
(

group-within

group-between                                   (3) 

 

  
  

 The function f will be made of P, discriminate G, and be served as an allocator of the 

future product. Clearly, the function will generate similarity measures to determine 
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which family is the closest to a future product. After finding the function f the 

classification problem, PCP 2 is defined as follows: 

 

PCP2:  PCP 2 finds a family k that is the most similar to the future product 

 

k = arg                   (6) product} revisedor  new a is |{min isik
Gk∈

 

Fig. 6 summarizes the general solution approach; the methodology begins by 

grouping products into families and searches for a significant attribute subset to u 

variation, using the subset and aggregated families builds a discriminant model to 

contrast the families, and assigns future product into the most similar family based on 

the discriminant model obtained in PCP 1. 

 

Product data

Future data

Clustering(DRP1)
Group products to 

families

Variable 
selection(DRP2)

Search for the relevant 
attributes specify the 

families

Discriminating(PCP1)
Build classification 

model using the 
predefined families and 

relevant attributes

Classification(PCP2)
Assign future product to 

the proper family

 

Fig. 6. General solution approach 
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5.2. Solving DRP 1: Clustering Analysis 

 

The assignment of products into product families is the first step in the methodology 

since P is a subset of significant attribute to variance of G. The problem data structure 

described in Fig. 2 can be expressed again in matrix form as follows. 

 

   [ui]n×1 = function of [aij] n×p  

 where i = 1, 2, …, n and j = 1, 2, …, p  

ui : the standard unit per hour for product i            (7)  

[ui]: u matrix (n×1) 

 [aij]: attributes matrix (n×p)  

 

 The constraint in (4) means that the error of product i which is assigned to a family 

must be less than eo. The clustering procedure begins by sorting products by u in 

increasing order, investigates every u one after another.  At the every investigation check 

the error between either the current product or the first product of the current family, and 

the average u of the current family. If either of those two errors is greater than e0, then a 

family is formed and the investigation is repeated until all products are assigned to g 

families. The procedure is illustrated in Fig. 7. 

 After clustering, n products are mapped into g families and the initial problem shown 

in (8) is separated into set of matrix by family as follows: 

 

[ui] n1×1 = function of [aij] n1×p for i ∈ G1                             

… 

 [ui] nk×1 = function of [aij] nk×p for i ∈ Gk                                 (8)  

                                                               … 

[ui] ng×1 = function of [aij] ng×p for i ∈ Gg 
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UPH

2e0

Product 1  |a11, a12, …, a1p| u1

ku

Product 2 |a21, a22, …, a2p| u2

…
Product i |ai1, ai2, …, aip| ui

Product n |an1, an2, …, anp| un

…

 

Fig. 7. The clustering procedure 

 

In this step each family is identified by the corresponding ku  that is the average of u 

of the kth family and the mean vector of corresponding attributes, }21 kpkk a, ... , a, a{ . 

 

5.3. Solving DRP 2: Variable Selection (Stepwise Method) 

 

There could be significant attributes of all the relevant attributes relative to variation 

of u between families since the clustering is formed based on u. So, the next step is to 

find the least number of attributes specifying the previously defined families subject to a 

constraint that the subset, P is enough to unambiguously specify each family in order to 

remove the irrelevant attributes. The subset of attributes to be obtained can have good 

characteristics to differentiate the families. For finding the subset variable selection 

method is applied. By the variable selection we can obtain a relatively small subset that 

would contain as much information as the original information composed of all the 

attributes. The main idea of variable selection method is searching for a set of variables 

to maximize between-group variation respective to within-group variation.  

  
  

There are several methods for variable selection, such as forward method, backward 

method, all possible subsets method, and so on. Of these, the stepwise method is 
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employed because it is simple and has the advantages of both the forward and backward 

methods. 

The approach starts by computing the sum of squares of within-groups for each 

family, Wi, and the total sum of squares, T. The matrix of the sum of squares for ith 

family, Wi, is defined as (9). The following formulas (9)~(10) are well known for the 

test statistic in a MANOVA and those are brought from the reference (Dillon and 

Goldstein, 1984) 

  

  

in

ij
i

i

n

j

T
i

family in  products ofnumber   the: 

famiyofvectorattributeth:
familyofvectorattributesaverage the:

))((
1

ij

i

iijiiji

a
a

aaaaW ∑
=

−−=

                          (9) 

 

The matrix of the total mean corrected sum of squares for the attributes matrix, 

which is formulated as 

 

vectorattributeaveragetotal:

)()(
1 1

a

aaaaT ijij
T

g

i

n

j

i

−−= ∑∑
= =                                 (10) 

 

  
  

 The total within-group sum of squares for the whole system, W, can be computed to 

add up all Wi, g21 WWWW +++= ... . The between-group sum of squares then is 

attained by B = T -W. Utilizing the conditional F value, one determines the important 

variables such that places them into the subset of variables  and removes the non-

significant variables away from the subset of variables by turns. The conditional F 

values are concerning interrelationships among the variables and are confounded by 

variables that contribute redundantly to the overall discrimination of the groups. The 
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criteria for a variable to enter into subset and to remove from subset are given. The 

criteria for entering is the minimum F value to determine if the variable can be entered 

into the subset, and the criteria for removing is the maximum limit to remove a non-

proper variable from the subset. To select the first entering variable, the univariate F 

value for every variable, then, is computed as follows:  

 

ii

ii
i w

b
F =                                          (11) 

   bii: ith diagonal element of B 

   wii: ith diagonal element of W  

    

The univariate F ratios are proportional to the ratio of the between-group sum of 

squares and the within-group sum of squares on uncorrelated term. The attribute with the 

largest F value is chosen to be first entered into the subset of attributes, P. In successive 

steps, attributes are added and removed on the basis of their conditional F value. Of the 

entering candidate attributes, choose the largest one which is greater than the criteria to 

enter. Remove the lowest one less than maximum F value from the selected subset and 

put it in the entering candidate attributes. To compute the conditional F value for a 

variable to be entered and be removed, the concept of sweep operator is introduced to 

facilitate the calculation for the procedure (Dempster, 1969).  The following formulas, 

(12)~(15), are from the reference. Suppose q attributes are included in P. The within-

group sum of squares matrix, W, can be partitioned as follows: 

 










2221

1211

WW
WW

                                                    (12) 

 

Where W11 is q×q. then the matrix W* is formulated as 
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
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
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



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
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−

−
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*W*W
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WWWWWW

WWW
W*

2221

1211

12
1

112122
1

1121

12
1

11
1

11                      (13) 

 

At this stage, W11
* is the inverse covariance matrix for selected attributes, which will 

be used to compute the F value to be removed, and W22
* is an adjusted within-group 

covariance matrix used for the F value to be entered.  The F to be entered and the F to 

be removed are computed as follows. 

 

  F to be removed 
)1(*

)1)(**(
−

+−−−
=

gt
gqntw

F
ii

iiii
i                   (14) 

     F to be entered 
)1(*

))(**(
−

−−−
=

gw
gqnwt

F
ii

iiii
i                        (15) 

 

The procedure is repeated until there are no more attributes to be entered. Finally, we 

can obtain the subset of significant attributes specifying families with the stepwise 

method. 

           

5.4. Solving PCP 1: Discriminant Analysis 

 

 The next task in demonstrating the methodology is how to build a model that 

identifies the families using the attained attribute subset and families in order to classify 

new or revised products into the most proper family in the later.  

  
  

 Although through the variable selection the significant attribute subset has been 

obtained but the chosen attributes might have different contributions to the variation 

between groups. So, there exists a better way to represent the variation, such as linear 

combination of the attribute subset, which is more reasonable, balanced, and reducible. 

As a result, through this step measures will be generated to compute similarity between 

the future product and the previously defined families.  
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 Fisher’s discriminant function (Fisher, 1938) is employed to build the model which 

consists of linear combinations to characterize the previously defined families. The g 

formed families are treated as individual populations and the p’ selected attributes of 

product are used as independent random variables in this step.  

 The idea of the method is to find a way to maximize the ratio of the variation 

between groups to the variation within groups. The method generates functions to 

contrast the pre-defined families. First, compute the total sum of squares and the within-

group sum of squares in the same way of (9) and (10). The procedure to find 

discriminant functions, Y’s, can be presented as: Maximize the between-group variation 

relative to the within-group variation such as maximizing (
bWb
bBb

T

T

ˆˆ
ˆˆˆ =λ

ˆ−− bIλBW 1 )

λ̂

2'1'1
ˆˆ

ii bab +=

). Next, do first-

order derivative with respect to b and let it be zero. Then (  is obtained 

and this is an eigenvalue solving the problem. The obtained  ’s are eigenvalues and 

’s are eigenvectors of the problem. The r discriminant functions are presented as a 

linear combination of the selected p’ attributes such that Y  

where i = 1, 2 …r are obtained in the direction to maximize the ratio. The number of 

discriminant functions must be less than the smallest value either g -1 or p’. 

ˆ 0ˆ =

'2'i a +

b̂

''
ˆ... ppi ab+

 The next task is to determine which discriminant functions to retain; that is, how 

many discriminant functions can contain a variation of the whole problem dominantly. 

The Bartlett’s test (Batlett, 1947) is applied to solve the concern. Bartlett’s test is for 

testing equality of variance. When applying the Bartlett’s test to this problem, its  

approximation can test the significance of the eigen values,  , of the W

2χ

λ̂ -1B matrix 

because the eigen value represent variance of the corresponding discriminant function. 

Then the hypothesis of Bartlett’s test is  

 

  
  

i

r

H
H

λ
λλλ

oneleastatfortruenotabove:

ˆ...ˆˆ:

1

210 ===
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 If the attributes are multivariate normal within each group with equal variance-

covariance matrices, then the significance of the r discriminant functions can be assessed 

by computing a logarithmic function of Wilks’ lambda, Λ, (Wilks 1932) such as (17). 

The modified formulas, (16) ~ (19), for this study are brought from [16,21] 

 

Λ+−−−= ln)}'(
2
1)1{( gpnV                         (16) 

  

 The Λ  is a Wilks’ lambda variable and shown as  

 

∏
=

−−=Λ
r

j
j

1

1)ˆ1( λ               (17) 

 

 Thus, since , the Bartlett’s statistic can be written again as )/1ln(ln aa =

 

∑
=

++−−−=
r

j
jgpnV

1
)ˆ1ln()}'(

2
1)1{( λ                            (18) 

 

 The statistic V is approximately distributed as a  random variable with n + g - 2j 

degree of freedom. Because the discriminant functions are uncorrelated, the additive 

components of V are each approximately variates. Therefore, the significance of the jth 

eigen value, , can be computed individually as 

2χ

jλ̂

 

)ˆ1ln()}'(
2
1)1{( jj gpnV λ++−−−=                         (19) 

 

  
  

Successive tests can be done by cumulatively subtracting the individual test statistic, 
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rVVV ...,, 21  from the total test statistic, V  such that  

 

Subtracting the first discriminant function 

.)2)(1'(1 dfgpwithVV −−−  

Subtracting the first two discriminant functions 

.)3)(2'(21 dfgpwithVVV −−−−  

⋅⋅⋅ 

 

 Bartlett’s test can choose the r’ reduced discriminant functions which have as large a 

variation as the r original functions have.  

 

5.5. Solving PCP 2: Classification 

 

Through discriminant analysis one can obtain new axes to discriminate families, 

which are called discriminant functions. The method also provides a way to classify a 

new product, and map it onto a previously defined family. The main idea of the 

classification is that newly added products can be allocated onto the groups with the 

shortest Euclidian distance between the scored point of the new product and centroids of 

the families in the dimensions defined by the discriminant functions. As mentioned, the 

discriminant function is defined as Y  (e.g., a is the subset attribute vector and b  is 

the eigen vector). Then the center of each family on discriminant function domain can be 

computed such as 

ab̂= ˆ

 

 gkforYk ,,2,1ˆ L=∀= kab                         (20) 

 

and the location of a new product on the discriminant dimension can be computed as 

 

  
  

newab̂ˆ =Y                                                        (21) 
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In comparing the Euclidian distance between the point, Ŷ  and each of the center of 
families, kY , the family that has the smallest Euclidian distance is then selected for 

mapping the new product.  

 

5.6. Algorithm  

 

 This section shows the steps of the proposed data aggregation This section is also 

classified into two parts for DRP and PCP. For clear comprehension some notations are 

first defined as follows. 

 

Notation 

n: the number of products 

nk: the number of products of family k 

p: the number of attributes       

p’:the number of selected attributes 

g: the number of families 

eo: clustering criteria 

Uo: UPH matrix of initial problem (n×1)  

Ao: attribute matrix of initial problem (n×p) 

U: sorted UPH matrix (n×1) 

A: sorted attribute matrix in order of U (n×p) 

ai:  ith row vector of A 

Uk: UPH matrix of family k (nk×1)  

Ak: attribute matrix of family k (nk×p) 

T: total mean corrected sum of square matrix for A (p×p) 

Wk: sum of square matrix for each individual Ak (p×p) 

  
  

W: within-group sum of squares matrix (p×p) 
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B: between-group sum of squares matrix (p×p) 

Note: All matrices marked by ’ are made on basis of the selected attributes 

jλ̂ : eigen value for W-1B 

jb̂ : eigen vector for W-1B.  

Yj: discriminant functions such as  '''2'2'1'1
ˆ...ˆˆ

ppjjjj abababY +++=

V: Bartlett’s statistic 
E: set of attributes to be entered for variable selection 

R: set of attributes to be removed for variable selection 

Fi : ith F ratio  
2χ (x) : criteria for  distribution with x df2χ  

F(x)(y) : criteria for F distribution with x and y df 

 

5.6.1. DRP Algorithm 

 

 In the beginning the problem has n products and p attributes, so the problem is 

formed as matrix type data, u matrix, Uo n×1, and attribute matrix, Ao
 
n×p.  

   

Initialization:  

Set U such as sorting Uo
 in increasing order, and set A such as arranging the rows of Ao 

according to the order of U. 

Set k = 1, i = 1, s = 1, no = 0, and n = the number of total products 

Set e0 

 

Step1. Clustering based on u (DRP 1) 

 Set Uk = {Φ}  

 While i ≤ n 

  Put ui in Uk, Uk = Uk + ui 

  
  

  Compute ku , the average of u in Uk.  
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  If |ui - ku | or |us - ku |  ≥ eo 

   Set nk = i - nk-1 - 1  

   Set k = k +1 and s = i 

   Set Uk = {Φ} 

   Put ui in Uk, Uk = Uk + ui   

   Put ai in Ak, Ak = Ak + ai   

  Else 

   Set i = i + 1 

  End If 

 END While 

 Set g = k 

 

Step2. Select significant attributes (DRP 2) 

 Step 2.1 Generate MANOVA table 

Compute Wk p×p, the sum of square matrix for each individual Ak for all k = 1, 

2 ... g as shown (9)  

Compute T p×p., the total mean corrected sum of square matrix for A as shown 

(10) 

  Compute W p×p, the total within group sum square matrix such that W = W1 +…+  

  Wg  

  Compute B p×p, the between group sum of squares matrix such that B = T – W. 

 Step 2.2 Variable selection (Stepwise method) 

  Set E = {Φ} and R = {1, 2..., p} 

  Set q = 1 

  Compute Fi, the univariate F value as shown (11) for i ∈ R 

  If the largest Fi ≥ F0.95, (g-1), (n-g) 

   Put the attribute into E subtracting from R, E =E + i and R =R - i  

  
  

  Else 
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  Stop Step 2.2 

  While  

Partition W and T  as shown (12), W11 q×q. 

   Compute W* and T* as shown (13) 

   Compute Fi to be entered for i ∈ R as shown (15) 

   If the largest Fi ≥ F0.95, (g-1), (n-q-g)     

    Put i into E subtracting from R, E =E + i and R =R - i 

   Else   

    Stop While 

   END If 

 

   Compute Fj to be removed for j ∈ E as shown (14) 

   If the smallest Fj ≤ F0.90, (g-1), (n-q-g+1) 

    Put j into R subtracting from E, R =R + j and E =E - j 

   END If 

  END While 

 

5.6.2. PCP Algorithm 

 

Initialization:  

Set A’ n×p’ such as taking the selected attribute data columns. 
 

Step1. Build classification model (PCP 1) 

 Step 1.1 Partition A’ into A’k 

  Partition A’ into individual A’k according to Step 1.1 

 Step 1.2 Finding discriminant functions (Fisher’s discriminant function) 

  Compute T’ p’×p’., the total mean corrected sum of square matrix for A’ 

  
  

  Compute W’k p’×p’, the sum of square matrix for each individual A’k for all k =  
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  1, 2.., g 

Compute W’ p’×p’, the total within group sum square matrix such that W’ = W’1 

+…+ W’g  

  Compute B’ p’×p’, the between group sum of squares matrix as B’ = T’ – W’ 

  Compute eigen value, , and eigen vector, b , for W*jλ̂ j
ˆ -1B*. 

Set r discriminant functions such as Y  where j = 1, 

2... r in decreasing order of eigen value 
'''2'2'1'1

ˆ...ˆˆ
ppjjjj ababab +++=

   

 Step 1.3 Screen out significant discriminant functions (Bartlett’s test) 

  Compute V, Bartlett’s statistic, for all discriminant functions as shown in (18) 

Compute Vj, Bartlett’s statistic for individual discriminant function for j = 1, 2..., 

r as shown (19) 

  Set i =1, x = p and y = g 

  While ( i ≤ n ) 

   If  V- Vi  ≤ 2χ 0.01, ( x-1)(y-1) 

    Stop While 

   Else  

    Set x = x -1 and y = y -1 

   END If 

  END While 

  Set the screened discriminant functions as classification model. 

Step 2 Assign a new product to proper family (PCP 2) 

Compute centroid of each family on basis of the classification model 

generated Step 1.3   

Compute score of new product on basis of the classification model 

Compare distance from each family’s centroid and assign the one to a family 

with smallest distance. 
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6.  EXPERIMENTAL STUDY 
 

In this section some experimental results are shown, and the efficiency of the 

proposed methodology is demonstrated. The objective of the experiment for DRP is to 

evaluate a data reduction, how efficient the proposed method can group products into 

families without exceeding a given error and identify the subset of attributes that 

explains the u-based families. In the other an efficiency of classification is assessed for 

PCP, how well the method can assign new or revised products into correct family. 

The experimental scenario is designed such that the problem is randomly generated 

that has 10 attributes and 100 products where attribute values are normally distributed 

and are standardized to convert the values in standard unit in the later analysis. The 

controllable factors are, in the experiments, A: the given number of families, B: the 

percentile of relevant attributes, and C: the type of u generating function made of the 

relevant attributes. The given number of families (A) is related to the constraint in the 

problem formula, | ui – ku | ≤ eo. As described in Figure 7, 2×eo represents a interval of 

a family in u, so the number of families can be approximately expected by eo.  The 

percentile of relevant attributes (B) is used to determine how correct the methodology 

screens out the given relevant attributes into the subset of attributes. To give 

significance to the given attribute, the u generating functions (C) are created only using 

the given attributes and how the different types of the functions influence the 

performance is shown in this section.   

In addition, the coefficient’s (βi) variability, C in the u generating function is given 

such that ~U(1,10) and ~U(1, 1000) to validate if there is any influence incurred by the 

coefficient’s variability in the u generating function. During the experiment 3×3×5×2 = 

90 problem types and 30 replications per problem type are executed, totaling 2700 runs. 

The following Table 1 shows the controllable factors mentioned: 
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Table 1. The experimental factors 
No. Controllable factors Used quantities 
1 Given number of families 5,10 and 20 
2 Percentile of relevant attributes 30%, 50% and 70% 
3 Type of u generating function Type1. Linear: u = β1a1+β2a2+⋅⋅⋅  

Type 2. Exponential: u = β1ea1+β2ea2+⋅⋅⋅ 
Type 3. Quadratic: u = β1a1

2+β2a2
2+⋅⋅⋅ 

Type 4. Hybrid:  1) + 2) + 3) 
Type 5. Random: No relationship  

4 The coefficients in the u generating 
function 

Randomly generated ~U(1,10) and 
~U(1, 1000) 
 

The statistics used for determining efficiency of DRP are:  1) Deviation from given 

number of families = (g – go)/ go (g is the number of families obtained and g0 indicates 

the given number of families determined by eo).  2)  Deviation from a given number of 

significant attributes = (a – ao)/ ao (a is the number of the obtained significant 

attributes and ao indicates the given number of significant attributes) and proportion of 

correct variable selection   

The results in Table 2 and Fig. 8 show the test statistics for the average of (gi – 

go)/ go in the experiment. It is shown that the number of generated families is a little 

different from the given number of families and as the given families (go) increase, the 

number of created families (gi) drops off. In case the number of given families are 5 

and 10, the clustered families are just one less than the given number. In case of 20 

families, the difference is less than 2 families. In view of data reduction as the number 

of families increases the method performs better. It is also known that there is not any 

obvious difference in the coefficient’s (βi) variability, C from the result.  

 

Table 2. Test result for deviation from given number of families 

  
  

Average of    (gi - go) / go Given number of families 
Low variability of C High variability of C 

5 0.1471 0.1471 
10 -0.0236 -0.0200 
20 -0.1639 -0.1693 
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Fig. 8. Deviation from given number of families 

 

  
  

 Table 3 and Fig. 9 below demonstrate that the attribute dimension reduction is 

well carried out. The proportion of correct variable section was tested in Table 4 as well. 

As illustrated in Table 3 and Fig. 9, in case of a non-combined u generating function 

such as 1, 2 and 3 the variable selection is relatively accurate on both the deviation and 

the rate but the others are not. In case 1~3, the obtained ai are at most approximately one 

less than ao, which means ai are mostly close to ao. In case 4, the combined function, 

some terms, particularly like exponential, can contribute much more to make up u, thus a 

large reduction took place. As expected, when the u is generated randomly the variable 

selection doesn’t work in function type 5 because there is no relation between attribute 

and u.  Table 4 shows the variable selection is relatively inaccurate in the case of hybrid 

function type. The reason is the same as the result right before. Some dominant 

attributes like exponential terms are selected as significant attributes.   
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Fig. 9. Deviation from given number of significant attributes 

 

Table 3.  Deviation from given number of significant attributes 
Average of    (ai - a0) / a0 U generating function 

Low variability of C High vaiability of C 

Function type 

1 0.06 0.04 linear 
2 -0.09 -0.11 exponential 
3 0.05 0.01 polynomial 
4 -0.48 -0.49 combined 
5 -0.75 -0.74 no relation 

 

Table 4. The proportion of correct variable selection 
The correct variable selection for low variability of c U generating function 

Proportion of correct 
variable selection 

Standard deviation for the 
rate 

1 0.96 0.054
2 0.91 0.080
3 0.97 0.046
4 0.68 0.079
5 0.51 0.098

  

  
  

The next concern to be considered is the ability to classify future products for PCP: 

namely, when new or revised products come in how well the ones can be classified to 
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their correct families. In addition to the proposed method using discriminant analysis, 

several classification methods are employed for comparison.  

In the proposed model the scored data by discriminant functions are used to compute 

similarity, the distance between the new product and centroids of families, and then the 

families with the smallest distance is the predicted family for the new one. Some of the 

other models can be considered such that non-scored data, significant attribute data 

filtered by variable selection, are used as the basis for calculating distances or similarity. 

In other words, the distances are estimated on an attribute dimension, not on a 

discriminant function dimension. And as mentioned, the eigen values, ’s  have 

information for variation, and eigen vector coefficients, ’s show the contribution of 

the corresponding attribute on the corresponding discriminant function. Also, the F 

value indicates the matching variables’ variation to between-group spread. So, the ratio’s 

individual value to the total sum of the values is multiplied when computing distances. 

Table 5 shows a variety of classification methods concerned in this section, including 

the proposed method.  

λ̂

β̂

A total of eight methods are considered for classification including the proposed 

model. For this experiment test data are generated in the same way as before, but in the 

former experimental result the coefficients’ variability didn’t mean much, so the 

coefficients’ variability in u generating function ~U(1,10) is taken. During the 

experiment 3×3×5 = 45 problem types and 30 replications per problem type are executed, 

totaling 1350 runs. 

  
  

The relevant measures for the performance of classification are the proportion of 

correct classification (i.e. the number of test products correctly classified / the total 

number of test products) and error deviation incurred by classification (i.e.  

0_0 /|)|( euue familyclassifiednew −−  ).   Table 6 and Fig.10 illustrate the test results for the 

correct classification rate. In case the given number of families is 5, the best success 

classification rate is a little more than 40%. Although the rate is greater than 20% that is 

the random assignment for 5 families’ case. The result indicates poor classification. 
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Table 5. The applied classification methods 

  
  

Method Data for distance 
computing Weight Distance with kth family Description 

1    Scored data None ∑
=

−
'r

1j

2
kjjnew )yy(  

Euclidian distance of the scored value between new 
product and centroid of family (The proposed 
model) 

2 Significant 
attribute data None ∑

=

−
'p

1j
kjjnew |aa|  

Absolute difference of attribute value between new 
product and centroid of family  

3    Scored data None ∑
=

−
'p

1j

2
kjjnew )aa(  

Euclidian distance of the attribute value between 
new product and centroid of family 

4 Significant 
attribute data total

j
j F

F
w =  ∑

=

−×
'p

1j

2
kjjnewj ))aa(w(  

Similar to 3 but F value ratio is weighted for using 
the property that each attribute has different 
significance.  

5   Scored data
total

j
j ˆ

ˆ
w

λ

λ
=  ∑

=

−×
'r

1j

2
kjjnewj )yy(w  

Similar to 1 but eigen value ratio is timed because λ 
ratio means variation contribution for the 
corresponding discriminant function. 

6 Significant 
attribute data 

∑∑

∑

= =

== 'p

1i

'r

1l
il

'r

1i
ij

j

b̂

b̂
w  ∑

=

−×
'p

1j

2
kjjnewj ))aa(w(  Similar to 4 but sum of coefficients of eigen vector 

ratio is used as weight. 

7   Scored data

∑∑

∑

= =

=

λ

λ

=
'r

1i

'p

1l
ilil

'p

1i
ijij

j

b̂ˆ

b̂ˆ

w  ∑
=

−×
'r

1j

2
kjjnewj ))yy(w(  Similar to 5 but eigen value×eigen value ratio is 

timed. 

8 

Sort the attributes in decreasing order of univariate F value, compute absolute difference of the first ranked attribute between the new 
product attribute and the centroid of families (i.e. || aa knew −  ) and then take as many families with short distance as the number of the 
selected attributes.  Next ,  compute the distances for next ranked attribute and put the worst one out. Repeat it until only one family 
remains. 
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   Table 6. The proportion of correct classification 
Given 

number 
of 

families 

Method 
1 

Method 
2 

Method 
3 

Method 
4 

Method 
5 

Method 
6 

Method 
7 

Method 
8 

5 0.42 0.40 0.44 0.43 0.35 0.19 0.20 0.32
10 0.25 0.24 0.27 0.27 0.20 0.10 0.10 0.20
20 0.15 0.15 0.17 0.17 0.12 0.05 0.06 0.12

 

 

Fig. 10. The proportion of correct classification 

 

The first 4 methods were demonstrated alike but method 3 and 4 are little better than the 

proposed method. 

  
  

     Another measurement is considering an error caused by classification, which shows 

the deviation between eo and an error incurred by classification. The incurred error is a 

difference between the average of u of the assigned family, familyiclassified _u and 

corresponding unew computed by u generating function. As known, 2×eo indicates u 

interval of a family in Fig. 7, so the measurements means how far the allocation is from 

the real value of u. The result is illustrated in Table 7 and Fig. 11. The value in the table 

is an average of the error deviation, and the below value in blankets is standard deviation 
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of the error deviation. In case the given number of families is 5, the averages are around 

1.5 and the standard deviations are little less than 2. The most wrong classification is 

assigned onto an adjacent family because the error is one and half times as much as uo. 

Clearly, the poor results in classification is cause by the fact that the centroids of some 

families in classification model are so close to each other that wrong allocations happen 

in a neighboring area. If the centroids representing each family are spread the 

classification model would allocate new product more correctly. 

 

 

Fig. 11. The error incurred by classification 

 

  Table 7. The error incurred by classification 
Given 

number 
of 

families 

Method 
1 

Method 
2 

Method 
3 

Method 
4 

Method 
5 

Method 
6 

Method 
7 

Method 
8 

5 -1.59 -1.46 -1.35 -1.38 -1.77 -3.20 -3.16 -1.43
 (2.09) (1.81) (1.73) (1.73) (2.01) (2.44) (2.38) (1.82)

10 -4.80 -4.43 -4.26 -4.25 -5.29 -8.49 -8.79 -5.55
 (4.47) (3.79) (3.66) (3.61) (4.30) (5.29) (5.13) (4.31)

20 -7.61 -6.70 -6.46 -6.36 -9.05 -16.22 -16.22 -8.62
 (7.59) (5.99) (5.78) (5.64) (7.72) (9.18) (8.96) (7.14)
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7. CONCLUSIONS 
 

In this paper we discussed a data aggregation methodology for capacity management. 

The experimental results illustrated the methodology have potential although the 

experimental result of the classification was poor. The data reduction of products (DRP) 

was shown to be efficient and the solutions obtained were close to the given number of 

families. In variable selection the relevant attributes were found accurately as well, but in 

product classification (PCP) the result was poor. For the better classification it is asked to 

develop the other methods. The regression model approach is one of suggested 

approaches, which build a model to predict u using the selected attribute subset and 

classifies the new product according to the predicted value of u obtained by the 

regression model.  It would be better than the proposed model. 

 Future directions for research are the studies of developing more accurate 

classification method, applying the proposed methodology to more realistic design 

environment and the extension of the methodology to other area’s problems, quality 

control, marketing and so on. The applicable situation is; if performance is represented by 

primitive variables, the methodology could be applied to a situation that need to 

categorize performance, select significant variables to variance to performance, and 

expect how a change of the primitive variables influences on the performance. 
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