Adding OAI-ORE Support to Repository Platforms

Alexey Maslov, Adam Mikeal, Scott Phillips, John Leggett, Mark McFarland

Texas Digital Library OR'09

Overview

- Texas Digital Library
 Use Case for OAI-ORE
- Mapping ORE model to DSpace architecture
- Implementation
- Results and Implications

Texas Digital Library

- State-wide initiative
- Eighteen members
 - Public/Private
 - Small/Medium/Large

Electronic Theses and Dissertations

- Federated Collection
- Built on top of DSpace/Manakin

Current Federation Method

- Performed via scripted ingest process
- New batch every semester
- Manual corrections to existing content

Replacement Requirements

- Perform maintenance automatically
- Detect changes in existing content
- Support interchange of metadata and content

Harvesting Solution

- Use the Open Archives Initiative Protocol for Metadata Harvesting
- Member institutions as data providers
- TDL Federated Repository as a service provider

OAI-PMH, advantages

- Ubiquitous
- Supports selective harvesting
- Tracks changes
- Can be automated

OAI-PMH, obstacles

- No existing harvesting solution for DSpace
- Supports harvesting of metadata specifically

Disseminating content

- How do you disseminate content through a metadata harvesting protocol?
 - Wrap it in a packaging format
 - Include the metadata
 - Encode the references to the files
 - Harvest the package

METS, advantages

- Metadata Encoding and Transmission Standard
- Maintained by the Library of Congress
- Mature standard
- Widely adopted

Packaging, disadvantages

- Complete packaging format
- Open to interpretation
- Ambiguities at the OAI-PMH layer

OAI-ORE

"Open Archives Initiative Object Reuse and Exchange defines standards for the description and exchange of aggregations of Web resources."

- Specialized
- Simple

Mapping DSpace to OAI-ORE

- ORE Abstract Data Model
- DSpace architecture
- The Mapping

ORE Data Model

- Aggregations
- Aggregated Resources
- Resource Maps

Aggregation (A)

- Describes a set of resources
- Conceptual construct

Aggregated Resource (AR)

- Object of interest
- Part of an aggregation
- Can itself be an aggregation

Aggregated Resource (AR)

- Object of interest
- Part of an aggregation
- Can itself be an aggregation

Resource Map (ReM)

- Describes an aggregation
- Enumerates its aggregated resources
- Can be serialized in RDF or Atom XML

DSpace Model v1.x

- Communities
- Collections
- Items
- Bundles
- Bitstreams

ORE

DSpace

Mapping

Mapping

Mapping

Bundles?

Bundles, Potential Options

- Bundles as Aggregations of Bitstreams
- Bundles as filters for Aggregated Resources
- Bundles as DSpace-specific metadata

Bundles, Observations

- By default, specialized for internal tasks
- Extendible for any use
- Obscured from the end user

DSpace Bundles

Serialization in Atom

Implementation

- ORE Dissemination
- ORE Harvesting
- Automation

Interfacing with DSpace

- Web UI
- LNI and SWORD
- Ingest and export scripts
- Crosswalks
 - Ingestion
 - Dissemination

ORE Dissemination Crosswalk

- Requires:
 - A DSpace Item
- Produces:
 - Atom-serialized ORE ReM

ORE Dissemination via OAI-PMH

- Dissemination crosswalk produces ORE ReMs from DSpace Items
- OAI-PMH data provider disseminates them

ORE Harvesting

- Item-level ORE ReM interpreter
- Collection-level OAI-PMH harvester
- Repository level harvest scheduler

ORE Ingestion Crosswalk

- Requires:
 - A DSpace Item
 - Atom-serialized ORE ReM
- Produces:
 - A DSpace Item with Bitstreams created from AR's

OAI-PMH Harvester

- Queries remote OAI-PMH providers
- Processes responses as individual records
- Implemented at Collection level

Collection Settings

- Source of collection's content
- OAI-PMH provider information
- Harvesting Level

Collection Source

OAI-PMH Settings

Harvest Level

Harvesting a Collection

Local collection (OAI-PMH harvester)

Harvest Metadata

Metadata Replicated

Local collection (OAI-PMH harvester)

Case 1: Metadata Only

Local collection (OAI-PMH harvester)

Harvest ORE ReMs

Case 2: Metadata + Content Ref's

Local collection (OAI-PMH harvester)

Case 2: Metadata + Content Ref's

Case 3: Metadata + Content

Case 3: Metadata + Content

Local collection (OAI-PMH harvester)

Harvest Scheduling System

- Monitors harvested collections
- Starts harvests at regular intervals
- Alerts administrators of errors

Results

- The Primary Use Case
- TDL in General
- The Greater Web
 Community

Harvesting using PMH+ORE

- Federated ETD collection currently in pre-production at TDL
- Addresses primary requirements
 - Performs maintenance automatically
 - Detects changes in existing content
 - Supports interchange of metadata and content

Other Possibilities

- Specialized DSpace instances
- Flexible repository architecture
- Interoperability with other repository systems

Current Priorities

- Live deployment at TDL
- Release to the open source community
- Integration into DSpace 1.6

National Leadership Grant #LG-05-07-0095-07

Questions?