Bulletin 871

LIBRARY AUG 28 COD www.iHomico.Cullings.et.Algerica wood Wreckmain Autos Antibiotics and Arsenicals in **Poultry Nutrition**

August 1957

TEXAS AGRICULTURAL EXPERIMENT STATION

R. D. LEWIS, DIRECTOR, COLLEGE STATION, TEXAS

CONTENTS

Summary	2
Introduction	3
Broiler Studies	3
Turkey Studies	7
Laying Hen Studies	8
References	11

SUMMARY

Experimental work conducted by the Texas Agricultural Experiment Station with poultry showed that the addition of antibiotics to the diet of all ages of chickens and turkeys stimulated the growth rate and improved the feed efficiency.

The use of high levels of antibiotics during periods of stress or disease outbreak, at this Station and elsewhere, reduced mortality and morbidity losses. Early mortality in turkey poults was reduced markedly through the use of pre-starter rations containing high levels of antibiotics and other nutrients.

Egg production should increase 3 to 10 percent through the use of antibiotics in the laying ration.

Antibiotics and Arsenicals in Poultry Nutrition

B. L. Reid, B. G. Creech, A. A. Camp, J. H. Quisenberry and J. R. Couch*

HE RECENT DISCOVERY of the growth-promoting action of antibiotics in poultry diets opened up a new field of reearch. Vitamin B_{12} was isolated in 1948 and rude preparations of the vitamin appeared soon in use in feeds. Striking differences which exsted between some of these products (fermenttion residues) led workers at the Lederle Labmatories to investigate the possibility of residual multipotic activity. Significant amounts of auremycin were found in certain of the fermentation products.

Workers in poultry nutrition at the Texas Igricultural Experiment Station were among the inst to obtain results indicative of accessory rowth promoting effects of fermentation resiines (E. L. R. Stokstad, 1953). Investigations ad been concerned for some time with the disinctive properties of animal proteins and the IPF (animal protein factor) concentrates, which are now known to contain vitamin B_{12} , antiinities in some cases and other growth factors at to be identified. Some of the work conincted on the effect of such products and antiinities in poultry rations are reported in this illetin.

BROILER STUDIES

The original study of Couch and Reed was sported in *Poultry Science* in 1950, using the first shown in Table 1. Diet R-1 was deficient in vitamin B_{12} , while diet R-2 contained both sh meal and fish solubles which are good curces of the vitamin. Two APF concentrates rere fed in these studies. One was designated a 199-B (Lederle's APF concentrate) and the

Respectively, assistant professor and formerly research assistant, Department of Poultry Science; superintendent, Substation No. 21; head, Department of Poultry Science; and professor, Departments of Poultry Science and Biochemistry md Nutrition.

		COMPOSITION	~	DIDA	
TABLE	1.	COMPOSITION	OF	DIETS	

ngredients	R-1	R-2
	- Per	cent —
hound yellow corn	30.0	30.0
wund sorghum grain	28.5	30.0
hybean oil meal (41%)	35.0	24.5
adine meal		6.0
andensed fish solubles		3.0
India leaf meal	3.0	3.0
amed bone meal	2.0	2.0
mestone flour	1.5	1.5
Supplements added,	gm. per 100 1	b.
anganese sulphate	5	5
" activated animal sterol	18	18
Y 21 (riboflavin supplement)	30	30

other as No. 3 (Merck's APF concentrate). The 199-B concentrate contained 3.6 to 4.00 mg. of aureomycin per gm. in addition to vitamin B_{12} , while concentrate No. 3 contained only vitamin B_{12} .

When supplemented with the 199-B concentrate, the basal diet (R-1) produced more rapid growth than the basal control. There also were marked improvements in feed efficiency and mortality. The growth of the birds fed the diet adequate in vitamin B_{12} (R-2), although better than for the birds fed the R-1 diet, was not as good as the birds fed APF 199-B. These data were additional proof that the feeding of aureomycin would stimulate the growth of chicks and improve feed efficiency.

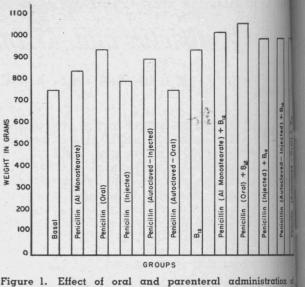
The results obtained with APF concentrate No. 3 also demonstrated the difference betweenthe two supplements, and indicated no antibiotic effect when this supplement was fed (Table 3).

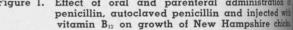
In an effort to determine the mode of action of antibiotics in stimulating the growth of chicks, Elam, Gee and Couch reported in 1951 on the function and metabolic significance of penicillin and bacitracin. The experimental design of this study is shown in Table 4.

Penicillin was injected at levels calculated to be equivalent to the amounts supplied in the feed. Autoclaved penicillin, which failed to show any antibacterial activity against test organisms, also was supplied orally and by injection. The injection of penicillin in a sesame oil suspension to delay diffusion through the body and thus maintain a constant blood level of the antibiotic also was included in the study. Bacitracin was supplied in the feed and through intramuscular injection.

The administration of oral or injected penicillin increased the growth rate of the chicks (Figure 1).

TABLE 2. EFFECT OF DIFFERENT LEVELS OF APP (CENTRATE 199-B ON THE AVERAGE WEI FEED EFFICIENCY AND MORTALITY OF HAMPSHIRE CHICKS AT 10 WEEKS OF						
Av. weight, gm.	Gm. of feed required per gm. live weight	% mortality				
689.9	4.3	36.0				
973.7	3.3	1.5				
1,065.2	2.9	2.5				
1,055.8	2.9	2.5				
1,137.4	2.9	5.0				
961.6	3.3	2.5				
	ATE 199-B (FFICIENCY HIRE CHIC) Av. weight, gm. 689.9 973.7 1.065.2 1.055.8 1.137.4	ATE 199-B ON THE AVERAGE FFICIENCY AND MORTALITY HIRE CHICKS AT 10 WEEKS Av. Gm. of feed weight, required per gm. gm. live weight 689.9 4.3 973.7 3.3 1,065.2 2.9 1,055.8 2.9 1,137.4 2.9				


16% fish meal and 3% fish solubles.


TABLE 3.	EFFECTS OF DIFFERENT LEVELS OF APF CON- CENTRATE NO. 3 ON THE AVERAGE WEIGHT,
	FEED EFFICIENCY AND MORTALITY OF NEW HAMPSHIRE CHICKS AT 10 WEEKS OF AGE

Supplementation to diet R-1	Āv. weight, gm.	Gm. of Feed required per gm. live weight	% mortality
0	849.83	3.29	7.32
0.018% APF No .3	783.28	3.52	9.64
0.036% APF No. 3	815.95	3.40	9.29
0.054% APF No. 3	819.72	3.34	6.79
0.072% APF No. 3	795.42	3.42	12.14
Diet R-2 ¹	963.24	3.47	6.07

¹6% fish meal and 3% fish solubles.

A somewhat greater growth increase was apparent on the injection of either autoclaved penicillin or the sesame oil suspension. The fact that the feeding of autoclaved penicillin failed to stimulate the growth of the birds, while injection was effective, was highly significant. These data led to the postulation that a fragment of the penicillin molecule might serve as a metabolite in the bird or that the chick was capable of resynthesis of the antibiotic. The results were not altered in the presence of vitamin B_{12} (Figure 1). Bacitracin administered orally or by injection produced an increase in growth over that of the birds fed the basal The birds fed the unsupplemented basal diet. diet weighed 765 gm. at 10 weeks, while the oral and injected bacitracin groups weighed 930 and 900 gm., respectively. In the presence of vitamin B₁₂, these same supplements produced growth increases of 100 and 50 gm., respectively. A study of the effect of the treatments used in this study on the fecal microflora showed that the oral administration of penicillin produced an increase in the number of penicillin-resistant organisms present in the feces as well an an increase in the number of aureomycin-resistant organisms and yeasts (Table 5).

There was no significant change in the total number of organisms found, or in the enterococci, lactics or coliforms when penicillin was fed in the diet. The injection of penicillin in water solution failed to produce a significant change in the fecal microflora. The injection of penicillin in sesame oil, containing aluminum monostearate, produced an increase in both penicillin-resistant organisms and yeasts in the These data indicated that the slower feces. assimilation of the sesame oil suspension allowed the maintenance of a higher level of penicillin in the animal over a prolonged period.

The autoclaved penicillin, when injected, did not alter the microfloral counts to an appreciable extent, but did stimulate the growth of the These data led to the postulation of a birds. metabolic function of a portion of the penicillin molecule.

1. Services	Constraint and		Penicillin			Baci	tracin	
Group	Oral, mg.	Injected, mg.	Autoclaved injected, mg.	Autoclaved oral, mg.	Injected in sesame oil, units	Oral, mg,	Injected, mg.	Vitamin B _m mcg.
1 2	0							11
3 4	33ª	1. 2 ³	-					
5			1.24	33				
7 8	33				15,0005			1
9 10		1.2	1.2	20				1
11 12				33	15,000	33		1
13 14 15						33	1.2	1
15 16							1.2	1

TABLE 4. SUPPLEMENTATION TO BASAL DIET

¹ Injected per bird per week.

³ Per kg. of diet.

³ Injected per bird per week.

Autoclayed 15 min. at 15 lb.

^o Injected per bird on alternate days.

IMBLE 5. SUMMARY OF STATISTICAL ANALYSIS OF ENUMERATIVE DATA FROM FECAL DROPPINGS OF CHICKENS 2 TO 10 WEEKS OF AGE

			1. A 3 3 4 5	Penicillin				
Ingredients	Basal	Oral	Injected	Autoclaved Injected	Autoclaved Oral	Aluminum Monostearate	F Value ¹	LSD ²
Penicillin ⁸	4.914	6.66	5.75	6.09	6.26	6.67	3.885	1.22
Aureomycin ⁶	2.33	4.06	2.62	3.21	2.72	3.03	3.655	.85
Polato-dextrose (yeast)	2.08	3.24	2.24	2.31	2.04	2.36	5.57 ⁵	.59
				Penicillin + E	B ₁₂			
Penicillin ³	6.03	7.60	5.64	6.18	5.75	7.61	3.885	1.22
Aureomycin ^e	2.43	3.84	3.31	3.21	3.03	3.25	3.655	.85
Potato-dextrose (yeast)	2.27	3.42	2.32	2.32	2.44 -	2.98	5.57 ⁵	.59

Fvalue calculated for all 12 groups.

Least significant difference—calculated for all 12 groups. Penicillin resistant.

Bacitracin administration did not affect the mterococci, lactics, yeasts, coliforms, penicillinmesistant or bacitracin-resistant organisms; howwer, the growth rate of the birds was increased. This provided further evidence that the antimotion to be a serve as metabolites in the fird, and thus exert a beneficial growth effect in this manner. Later studies will show that though there is no significant alteration in the erobic organisms, the anaerobic (*Clostridia*) ount is altered in antibiotic feeding and may e another explanation of the growth responses tained.

Later work of Elam *et al.* (1953) further monstrated the growth effects of oral and inacted penicillin as well as the effect of the inactivated antibiotic (Table 6).

The oral or injected penicillin, injected inctivated penicillin or combinations of penicillin and aureomycin or bacitracin produced highly significant decreases in the fecal *Clostridia* counts. The oral feeding of inactivated penicellin failed to stimulate the growth of the birds, although it did produce a slight decrease in the *Clostridia* count per gm. of feces.

In vitro studies with Clostridia isolates towed that 1 mcg. of either penicillin, aureomcin or bacitracin would inhibit growth commetely, while 1,000 mcg. of the inactivated peniillin did not inhibit the growth of such isolates. The data obtained with the Clostridia counts were in agreement with the work of Sieburth tal. (1951), where the inhibition of Clostridium erfringens was given as an explanation for the powth-promoting effects of penicillin and terramycin. Kiser et al. (1952) also reported that number of Clostridia were destroyed by the ddition of aureomycin, penicillin or terramycin the medium.

In a second experiment in the same report, lam et al. (1953), showed that, although the rowth rate of the birds was retarded by the Average number of microorganisms in logarithms.

Significant at the 1% level.

⁶ Aureomycin resistant.

onset of summer, the feeding of penicillin, aureomycin, bacitracin, terramycin, arsanilic acid or sodium arsanilate produced an increase in growth rate. Inactivated penicillin, when injected, produced a growth response. The injection of penicillin decomposition products failed to exert a stimulating effect on growth (Table 7).

As in the previous study, the feeding of antibiotics again produced a significant reduction

TABLE 6. EFFECT OF FEEDING ANTIBIOTICS WITH AND
WITHOUT 3% DRIED WHEY (50% LACTOSE) ON
THE WEIGHTS AND THE ANAEROBIC MICRO-
FLORA (CLOSTRIDIUM) OF NEW HAMPSHIRE
CHICKS¹

	Wit	h whey	Withd	out whey
Group	Average weight, gm.	Total number of Clostridium isolates per gm. of feces	Average weight, gm.	Total number of Clostridium isolates per gm. of feces
Control	1252	12,450	1153	45,580
Penicillin (Oral)	1392	138	1295	275
Penicillin (Injected)	1338	850	1242	300
Inactivated penicillin (oral)	1256	1,250	1179	1,100
Inactivated penicillin (injected)	1242	563	1257	100
Aureomycin	1270	100	1278	125
Bacitracin	1284	2,812	1286	100
Penicillin + aureomycin	1371	100	1335	100
Bacitracin + penicillin	1391	100	1263	150

¹ Amount of antibiotic administered: penicillin, 2 mg. per lb.; aureomycin, 5 mg. per lb.; bacitracin, 5 mg. per lb.; inactivated penicillin, 2 mg. per lb. The injected antibiotics were administered at a level of 1.2 mg. per bird per week.

 TABLE 7. EFFECT OF ANTIBIOTICS, COMBINATIONS OF ANTIBIOTICS, DERIVATIVES OF PENICILLIN, ARSENICALS AND COMBINATIONS OF ARSEN-ICALS AND PENICILLIN ON THE WEIGHTS AND ANAEROBIC MICROFLORA (CLOSTRIDIUM) OF NEW HAMPSHIRE CHICKS AT 10 WEEKS OF AGE

Group	Average weight, gm.	Total number of Clostridium isolates per gm. of feces
Control	907	11,930
Penicillin (2 mg. per lb.)	1056	233
Aureomycin (5 mg. per lb.)	1064	392
Bacitracin (5 mg. per lb.)	1011	423
Terramycin (5 mg. per lb.)	1143	83 -
Arsanilic acid (45 mg. per lb.)	1097	72
Sodium arsanilate	1029	1,402
(45 mg. per lb.) Arsanilic acid	1025	1,402
(22.5 mg. per lb.) +		
penicillin (1 mg. per lb.)	1064	146
Sodium arsanilate		
(22.5 mg. per lb.) +		
penicillin (1 mg. per lb.)	1044	366
Inactivated penicillin		
(1.2 mg.) ¹	1007	164
Sodium potassium		
benzylpenilloate (1.5 mg.) ¹	902	5,750
Sodium benzylpenicilloate		
	o mortality)	7,004
Beta-diethylaminoethanol		
	% mortality)	
Penicillin (1 mg. per lb.)		
+ aureomycin	1000	000
(2.5 mg. per lb.)	1032	360
Penicillin (1 mg. per lb.)		
+ bacitracin	1026	102
(2.5 mg. per lb.)	1020	102
Penicillin (1 mg. per lb.) + terramycin		
(2.5 mg. per lb.)	1081	153
Aureomycin (2.5 mg. per lb.)		
+ bacitracin		
(2.5 mg. per lb.)	1051	277
Aureomycin (2.5 mg. per lb.)		
+ terramycin		
(2.5 mg. per lb.)	1054	95
Bacitracin (2.5 mg. per lb.)		
+ terramycin	1000	000
(2.5 mg. per lb.)	1066	288
Penicillin (0.67 mg. per lb.)		
+ aureomycin		
(1.67 mg. per lb.)		
+ bacitracin	1077	391
(1.67 mg. per lb.) Penicillin (0.67 mg. per lb.)	10//	001
+ aureomycin		
(1.67 mg. per lb.)		
+ terramycin		
(1.67 mg. per lb.)	1071	21
Penicillin (0.67 mg. per lb.)		
+ bacitracin		
(1.67 mg. per lb.)		AND SECTION TO A
+ terramycin		
(1.67 mg. per lb.)	1114	138
Aureomycin (1.67 mg. per lb.)		
+ bacitracin		
(1.67 mg. per lb.)		
+ terramycin	1100	
(1.67 mg. per lb.)	1109	84
Penicillin (0.5 mg. per lb.)		
+ bacitracin		
(1.25 mg. per lb.)		
+ aureomycin (125 mg per lb) and		
(1.25 mg. per lb.) and terramycin (1.25 mg. per lb.)	1084	55
torrand out (1.40 mg, per 10.)		

¹ Injected intramuscularly into each bird weekly.

in the number of *Clostridia* in the feces. The number of *Clostridia* per gm. of feces was de creased in all instances in which antibiotics wen fed singly or in combination (Table 7). The feeding of the arsenicals (arsanilic acid and sodium arsanilate) likewise produced a significant decrease in the total number of fecal *Clostridia*. The injection of inactivated pencillin also produced a significant reduction in *Clostridia*, which seems to indicate that there was an excretion of active pencillin into the gut in this group.

Another facet of antibiotic feeding is the old versus clean environment studies which have been conducted. These studies may explain the variable results which have been reported with antibiotic feeding.

Coates et al. (1951, 1952), working in England, reported that chicks reared from 1 day to 3 weeks of age in quarters not previously used for poultry failed to show a growth response to antibiotic feeding, whereas such response of curred in old quarters. The chicks fed no antibiotics in the new quarters grew more rapidly than those fed the antibiotic diet in the old environment. These authors concluded that the reason for the antibiotic response in the old quarters was the presence of an 'infection" that made the birds sensitive to the antibiotic. Lillie et al. (1953) reported that the weight of chicks fed no antibiotic in new quarters was greater than that of chicks given 10 mg. aureomycin per kg. of diet in old quarters. Hill et al. (1953) reported that growth responses to penicillin were greater in old quarters than in new ones. These

TABLE 8. EFFECT OF FEEDING PENICILLIN AND FECAL CLOSTRIDIA ON WEIGHTS AND NUMBER OF CLOSTRIDIA IN OLD AND CLEAN QUARTERS

Supplements to basal diet	Average weight at 10 weeks, gm.	Total number of Clostridium isolates per gm. of feces
	FIRST EXPERIMEN	IT
Old Quarters		
None	969	15,570
Penicillin	1085 ¹	265 ¹
Clean Quarters		
None	1167	1,215
Penicillin	1210	615
Fecal Clostridia	1042 ¹	10,260 ¹
Fecal Clostridia +	•	
penicillin	1180	450
Heat inactivated		
fecal Clostridia	1150	1,110
	SECOND EXPERIME	ENT
Old Quarters		
None	1134	12,450
Penicillin	1262 ¹	640 ¹
Fecal Clostridia	1170	16,710
Fecal Clostridia +		
penicillin	1310 ¹	740 ¹
Clean Quarters		
None	1324	940
Penicillin	1343	650
Fecal Clostridia	1210 ¹	9,440 ¹
Fecal Clostridia +		
penicillin	1339	625

¹Significant at the 1% level.

workers reported further that bacteriological examination of cecal microflora of representative birds revealed striking differences between the two animal houses.

Similar studies by Elam *et al.* (1954) at the Texas Agricultural Experiment Station demonstrated that the feeding of penicillin to birds in clean quarters failed to produce a significant decrease in fecal *Clostridia* or an increase in growth, while the same diets fed to birds in old quarters resulted in a significant decrease in *Clostridia* and a significant improvement in the growth of the birds (Table 8).

There also was a significant difference between the two control groups. The birds reared in the clean environment weighed more at the end of the 10-week experimental period than those fed the basal diet in the old quarters.

The addition of fecal *Clostridia* isolated from the birds fed the basal diet in the old quarters to birds in the clean environment resulted in a significant decrease in the growth of these birds. The combined feeding of the *Clostridia* with penicillin returned the growth to that of the control group (Table 8). Heat inactivated *Clostridia* were without effect on the growth of the birds or on the microflora counts.

In a second experiment of this report, the addition of penicillin increased growth and decreased the total Clostridia count in the old guarters, but failed to affect the growth rate in the The total Clostridia count clean environment. was low in both studies conducted with birds reared under the clean conditions. Fecal Clostridia, when fed under the "old" conditions, did not affect the growth rate of the birds; but, in the clean environment it produced significant reductions in the growth rate with a concurrent increase in fecal Clostridia. Penicillin, when fed with the *Clostridia* culture in the clean environment, reversed the detrimental effects of the Clostridia (Table 8).

Further evidence of the effect of antibiotics in old and clean environments was obtained with the opening of the new poultry facilities at the Texas A. and M. College in 1951. Results of the first experiment conducted at the new quarters are shown in Table 9. At the end of 9 weeks, the birds in this study weighed around 2.75 pounds, regardless of the supplement fed. There were no marked differences in feed efficiency which culd be attributed to the supplements tested and no difference in mortality. The weights of all birds were good at that time.

The next study conducted in the same house howed different results (Table 10). The basal goup weighed only 966 gm. at 10 weeks, while he previous basal group weighed 1,238 gm. at weeks. Antibiotic supplementation produced powth responses of 10 and 18 percent, respecively, for bacitracin and penicillin fed singly. Combinations of bacitracin and penicillin pro-

TABLE 9.	EFFECT OF SUPPLEMENTING AN ALL-VEGE-
	TABLE PROTEIN RATION WITH DRIED WHEY,
	FISH MEAL AND ANTIBIOTICS ON THE
	GROWTH, FEED EFFICIENCY AND MORTALITY
	OF NEW HAMPSHIRE CHICKS AT 9 WEEKS OF
	AGE KEPT UNDER A "LOW-DISEASE LEVEL"

Supplement to basal diet	Average weight, 9 weeks, (males & females), gm.	Increase due to supplement, %	Feed efficiency, gm. of feed per gm. gain	% mortal- ity
None 3% dried whey	1238	-	2.81	3.4
product	1267	2.34	2.84	3.4
3% fish meal Aureomycin	1246	0.65	2.87	0.0
(5 mg. per lb.) Bacitracin	1263	2.01	2.95	6.7
(5 mg. per lb.) Penicillin	1257	1.53	2.63	3.4
(2 mg. per lb.)	1284	3.72	2.70	0.0

duced 24 to 26 percent more growth to 10 weeks of age. The weights of the birds, however, failed to approach that obtained under the "low-disease level conditions" observed in the previous study (Table 9). If higher levels of the antibiotics had been used, growth comparable with that of the previous study may have been obtained.

TURKEY STUDIES

Concurrent investigations with turkeys also were made to determine the effect of antibiotics on the growth and feed efficiency of the turkey poult. Atkinson and Couch reported in 1951 that the feeding of either aureomycin or streptomycin would stimulate the growth of turkey poults (Tables 11, 12, 13).

The results of the first experiment (Table 11) indicated that the feeding of streptomycin

TABLE 10.	EFFECT OF SUPPLEMENTING AN ALL VEGE- TABLE PROTEIN RATION WITH ANTIBIOTICS
	AND FISH SOLUBLES ON THE GROWTH, FEED
	EFFICIENCY AND MORTALITY OF NEW HAMP-
	SHIRE CHICKS AT 10 WEEKS OF AGE UNDER
	A "HIGH-DISEASE LEVEL"

Supplement to basal diet	Average weight at 10 weeks, males & females, gm.	Increase due to supple- ment, %	Feed efficiency, gm. of feed per gm. gain	% mortal- ity
None Bacitracin	966	-	3.35	24.1
(5 mg. per lb. Penicillin) 1064	10.14	3.30	10.2
(2 mg. per lb.) 1142	18.22	2.90	3.5
Fish solubles (3%) Bactracin (5 mg. per lb. + penicillin	1048)	8.49	3.50	27.6
+ penicilin (1 mg. per lb. Bacitracin (5 mg. per lb. + penicillin		24.43	3.02	6.9
(2 mg. per lb.) 1220	26.29	2.80	0.0

TABLE 11. EFFECT OF FEEDING STREPTOMYCIN, APF 4,
FISH MEAL AND FISH SOLUBLES, AND LIVER
"L" AND INJECTING VITAMIN B12 ON THE
WEIGHTS OF BROAD BREASTED BRONZE
POULTS AT 8 WEEKS OF AGE WHEN KEPT
ON LITTER

Group	Supplement to basal ration	Average weight, gm.	Feed efficiency, gm. of feed per gm gain	% mortal- ity
1	None	1139	2.6	2
2	Vitamın B ₁₂ injected (2 mcg. per bird per			
	week)	1177	2.5	2
3	MK-23 (66 mg. streptomycin + 13 mcg. vitamin			
	B ₁₂ per kg.)	1547	2.2	10
4 .	2% APF 4 (12 mcg. B ₁₂ per kg.)	1534	2.3	5
5	Fish meal (6%) + fish solubles			
	(3%) ¹	1255	2.7	16
6	Liver "L" (4%) (49.4 mcg. B ₁₂			
	per kg.)	1392	2.3	2

¹ Supplied 25.8 mcg. B₁₂ per kg. of diet.

produced a marked improvement in growth and feed efficiency. The APF 4 used in this study also supplied significant quantities of aureomycin and produced improvements in both feed efficiency and growth over the group receiving the vitamin B_{12} supplementation or the group fed the fish meal and fish solubles diet.

TABLE 12.EFFECT OF FEEDING STREPTOMYCIN, AUREO-
MYCIN, APF 4, LIVER "L." FISH MEAL AND
FISH SOLUBLES, AND INJECTING VITAMIN B12
ON THE WEIGHTS OF BROAD BREASTED
BRONZE TURKEY POULTS AT 8 WEEKS OF
AGE

Group	A A	Average weight, gm.	Feed efficiency, gm. of feed per gm. gain	% mortal- ity
1	None	1391	2.6	8
2	MK-23 (66 mg.			
	streptomycin +			
	13 mcg. B ₁₂ per			
1.2.1	kg. of diet)	1498	2.6	7
3	Vitamin B ₁₂ injec- ted (2 mcg. per			
	bird per week)	1313	2.4	5
4	Aureomycin (100			
1.25.	mg. per kg.)	1585	2.2	2
5	Aureomycin (44 mg. per lb.) +			
	vitamin B ₁₂ injec-			
	ted (2 mcg. per bird per week)	1740	2.0	6
6	Fish meal (6%)	1/10	2.0	0
0	+ fish solubles			
	(3%) ¹	1652	2.3	3
7	2% APF 4 (12 mcg			
	B ₁₂ per kg.)	1644	2.0	9
8	Liver "L" (4%)			
	(49.6 mcg. B ₁₂			
	per kg.)	1539	2.3	5

¹Supplied 25.8 mcg. B₁₂ per kg. of diet.

Group	Supplement to basal ration	Average weight, lb.	Feed efficiency, lbs. of feed per lb. of gdin	% mortal ity
3	None	7.0	3.3	8
5	Aureomycin (44 mg. per lb.)	8.8	2.8	6
8	Liver "L" (4%) (49.6 mcg. B ₁₂ per kg.)	8.1	3.0	5

The use of crystalline aureomycin in the next study made it possible to evaluate more clearly the benefits of feeding the antibiotic (Table 12). The addition of aureomycin to the diet resulted in an increase in growth of approximately 400 gm. over the group fed vitamin B_{12}

In a third experiment (Table 13), aureomycin produced an increase in weight of 1.8 pounds over the control group at 14 weeks of age. Feed efficiency likewise was improved (Table 13).

LAYING HEN STUDIES

Nutrition studies with mature hens also were conducted during this period. The studies had determined that vitamin B_{12} was an essential nutrient for both egg production and hatchability. However, after 9 to 11 weeks, the effect of vitamin B_{12} was no longer apparent and presumably the birds were being depleted of a second hatchability factor which could be supplied by liver or fish solubles.

A continuation of these studies involved the determination of the effects of antibiotics in the diet of mature hens. Halick and Couch reported in 1951 the results of studies using a purified diet composed of 63 percent sucrose, 5 percent dried whey, 22 percent soybean protein, 3 percent soybean oil, 2 percent fortified fish oil (3,000 A-400 D) and 5 percent Salts IV. The diet was supplemented adequately with vitamins and with methionine and glycine.

The data of this study pointed out that the injection of vitamin B_{12} increased hatchability slightly, but there existed another factor required for hatchability, which could be supplied by liver fraction "L." The feeding of crystalline aureomycin and penicillin apparently assisted in the depletion of the birds of both vitamin B_{12} and the second factor required for hatchability (Table 14). Antibiotics produced no apparent increase in hatchability. The study was of too short duration to allow a significant evaluation of the effect of antibiotics on egg production. Concurrently with the previous study, the effect of penicillin on the growth and fecal microflora of the chick also was investigated. Elam, Gee and Couch (1951) obtained an increase in the growth of chicks by feeding vitamin B_{12} and penicillin either alone or in combination in an all-vegetable protein diet (Table 15).

The pullet chicks were reared to maturity in the same diets and the effect of penicillin on egg production and hatchability was determined (Table 15). An improvement in egg production was obtained by the injection of crystalline titamin B_{12} . Penicillin alone failed to affect the rate of egg production. However, the combination of both vitamin B_{12} and penicillin stimulated egg production 12 percent over the group injected with vitamin B_{12} . Thus, an antibiotic, penicillin, was found to exert an effect on egg production as well as on the growth in the chicken. A slight stimulation in hatchability also was observed, but it was not considered significant.

Bacteriological examinations of the fecal droppings showed that the feeding of penicillin caused an alteration in the intestinal microflora. The feeding of penicillin increased the

TABLE 14. EFFECT OF VITAMIN B12, LIVER EXTRACT, AN-TIBIOTICS, LEDERLE APF AND LIVER "L" ON HATCHABILITY AND VITAMIN B12 CONTENT OF EGG YOLKS

Group		Average hatcha		Average vitamin B ₁₂ content of egg yolks, mcg. per gm.		
		2-4 wk.	5-8 wk.	2-4 wk.	5-8 wk.	
1	None	25	0	1.4	0.9	
2	2 mcg. B ₁₂ injected ¹	38.4	14.2	7.5	5.2	
3	0.5 ml. liver ex- tract injected ¹	50	33.3	7.2	4.1	
4	Aureomycin HCl (66 mg. per kg.					
5	of diet) Aureomycin HC1 (66 mg. per kg. of diet) + 2	0	0	2.6	1.1	
	mcg. B_{12}	26.6	10	5.8	5.7	
6 7	Streptomycin dihydrochloride (66 mg. per kg. of diet) Streptomycin dihydrochloride	52.9	4.3	3.0	1.4	
	(66 mg. per kg. of diet + 2					
8	mcg. vitamin B ₁₂ Procaine penicil- lin (G) (33 mg.	50	6.6	7.8	4.0	
	per kg. of diet)	5	0	2.3	1.3	
9	Procaine penicil- lin (G) (33 mg. per kg. of diet)					
10	+ 2 mcg. B ₁₂ 2% APF 4 (24	62.9	10	3.6	4.5	
11	mcg. B ₁₂) 4% liver "L" (49.6	71.4	26.6	7.1	6.1	
	mcg. B ₁₂)	95.4	78.3	7.8	6.8	
12	Practical	96.2	90.4	2.7	1.2	

Per hen per week.

TABLE 15.EFFECTOFPARENTERALADMINISTRATIONOFVITAMINB12ANDPENICILLINONTHEGROWTHOFCHICKSTO10WEEKSOFAGEANDSUBSEQUENTEGGPRODUCTIONANDHATCHABILITY

Supplement to basal diet	Average weight of males and females at 10 wks., gm.	Egg produc- tion, %	Hatcha- bility, %
None	565	29	0
l mcg. B ₁₂ injected per bird per week	800	38	72
Penicillin (33 mg. per kg. of diet)	725	22	39
Penicillin (33 mg. per kg. of diet) + 1 mcg. B ₁₂ per			
bird per week	1030	50	80

total number of organisms present, increased the enterococci and also increased the number of penicillin-resistant organisms present. It was concluded that the beneficial effect of penicillin was due to a change in the microflora of the intestinal tract. The basal group in this study had received penicillin intravenously after the fourteenth week of the test. There was a stimulation in growth of the birds injected with penicillin and a shift in the microflora of the gastrointestinal tract. These data on the "shift" in microfloral population in the bird are in agreement with the work of Kratzer *et al.* (1951) and Williams *et al.* (1951).

Results of several studies with laying hens in cages and on the floor have shown an increase in egg production from the use of aureomycin, penicillin, bacitracin, terramycin, streptomycin, 3-nitro-4-hydroxphenylarsonic acid and arsanilic

TABLE 16. EFFECT OF AUREOMYCIN ON EGG PRODUC-TION AND FEED EFFICIENCY

Supple	Pre-en mer		%	Aver- age		
ment	0-4 wk.	5-8 wk.	0-4 wk.	4-8 wk.	8-12 wk.	for period
None Aureomycin (5 mg. per	65.2	40.4	22.93	24.09	14.28	17.23
(5 mg. per lb.)	71.8	43.9	28.37	22.69	16.37	22.64
Aureomycin (25 mg. per lb.	63.0	45.1	38.47	26.65	24.49	30.12
Aureomycin (50 mg. per lb.)	70.8	50.6	40.53	44.86	45.86	43.48
	Feed	efficier	ncy, lb.	of feed	per dozen	eggs
None	3.93	5.47	9.66	12.66	15.25	11.65
Aureomycin (5 mg per lb.)	3.56	4.91	6.80	8.79	12.06	8.68
Aureomycin (25 mg. per lb.)	3.86	5.38	5.17	8.05	8.57	6.90
Aureomycin (50 mg. per lb.)	3.66	5.07	5.78	5.76	5.99	5.83

TABLE 17A. EFFECT OF PENICILLIN AND STREPTOMYCIN ON EGG PRODUCTION, CAGE STUDY

Crown	Distance transfer and	% egg production by period					Āver-	
Group Dietary treatm	Dietary treatment	. 1	2	3	4	5	6	age
P-1	Basal	74.56	70.18	58.11	50.07	45.68	41.12	56.78
P-2	1.25 mg. penicillin + 3.75 mg streptomycin per lb.	73.22	70.01	61.83	55.87	51.73	44.64	59.73
P-3	6.25 mg. penicillin + 18.75 mg. streptomycin per lb.	69.11	65.92	62.79	59.59	50.78	42.06	58.50
P-4	12.5 mg. penicillin + 37.5 mg. streptomycin per lb.	77.28	69.27	58.99	54.66	53.80	40.18	59.58

TABLE 17B. EFFECT OF PENICILLIN AND STREPTOMYCIN ON FEED EFFICIENCY, CAGE STUDY

Group Dietary treatment	Distance to other and	Feed efficiency by period, lb. of feed per dozen eggs						Aver-
	1	2	3	4	5	6	αge	
P-1	Basal	4.88	5.10	5.94	6.41	6.68	6.32	5.75
P-2	1.25 mg. penicillin + 3.75 mg. streptomycin per lb.	5.02	5.15	5.38	5.73	6.02	6.01	5.48
P-3	6.25 mg. penicillin + 18.75 mg. streptomycin per lb.	5.38	5.59	5.54	5.46	6.23	6.29	5.69
P-4	12.5 mg. penicillin + 37.5 mg. streptomycin per lb.	4.70	5.10	5.56	5.55	5.54	5.83	5.29

acid. Egg production may be increased 3 to 10 percent through the use of antibiotics in laying The use of high levels of antibiotics rations. (100 to 400 gm. per ton) during periods of stress, such as a respiratory disease outbreak, also helped maintain the level of egg production. A study conducted in 1955 illustrates the beneficial effect of antibiotics at higher levels (Table 16). A group of New Hampshire hens housed on litter had egg production rates as shown in the experimental columns of Table 16. After the initial high production, there was a rapid drop for the next month of the pre-experimental period; at this time the birds were fed levels of 0, 5, 25 and 50 mg. of aureomycin HCl per pound of diet. Production in the unsupplemented group continued to drop until after 12 weeks on the study it was only 14.3 percent, with an average for the 3-month experimental period of 17.23 percent. The 5 mg. per pound level of aureomycin produced a slight stimulation in egg production, while the two higher levels used (25 and 50 mg. per pound) allowed the hens to maintain egg production rates of 30.12 and 43.48 percent, respectively for the 3-month period. Feed efficiency also was improved highly under these conditions with the antibiotic feeding (Table 16).

TABLE 18. EFFECT OF ANTIBIOTICS ON EGG PRODUC-
TION AND FEED EFFICIENCY TO 5 MONTHS,
FLOOR STUDY

Supplement to basal diet	Average egg pro- duction	% average feed effi- ciency, lb. of feed per doz. eggs
None	45.7	5.39
25 mg. penicillin per lb.	53.2	4.63
50 mg. streptomycin per lb. 12.5 mg. penicillin + 25	54.7	4.82
mg. streptomycin per lb.	57.7	4.67

The use of a combination of penicillin and streptomycin in cage-housed birds also was beneficial (Table 17A), especially during the latter portion of the experimental period, which in this study corresponded to the onset of hot weather. The overall differences in egg production for the 6-months study were not too wide, but there were improvements in feed required to produce a dozen eggs (Table 17B). When these antibiotics were fed at higher levels to birds housed on litter, average egg production was increased with the addition of either penicillin or streptomycin or a combination of these two antibiotics. Improvements in feed utilization amounting to almost 1 pound per dozen eggs also were found (Table 18).

Two arsenicals, 3-nitro-4-hydroxyphenylarsonic acid and arsanilic acid, had a beneficial effect when supplemented to the rations of laying hens. Studies using these compounds have been carried out on different strains of New Hampshire pullets maintained on litter. The effect of 3-nitro-4-hydroxyphenylarsonic acid supplementation is shown in Table 19. Increased

 TABLE 19.
 EFFECT OF AN ARSONIC ACID ON EGG PRO-DUCTION, FLOOR STUDY

Strain	Basal	+ 22.5 mg. 3-Nitro-4- hydroxyphenylarsonic acid, per lb. of feed
	Percent produ	ction
1	29.9	35.5
2	29.5	33.4
. 3	35.7	42.2
	Feed efficiency, lb. of fee	d per dozen eggs
1	8.44	7.78
2	9.57	8.04
3	7.55	6.30

T

S

e u

a s t

s p

IABLE 20. EFFECT OF ARSANILIC ACID ON EGG PRO-DUCTION AND FEED EFFICIENCY TO 5 MONTHS, FLOOR STUDY

Strain	Basal diet	45 mg. arsanilic acid per lb.
	Average production, %	
12	37.2 35.7	44.5 44.3
	Feed efficiency	
1 2	6.75 7.58	5.83 7.66

gg production and marked improvements in feed milization were noted when this arsenical was dded to the control ration, regardless of the train of birds used. Similar results were obained with arsanilic acid in the same type of tudy (Table 20). An overall increase in egg moduction in both strains was noted. Feed efbiency was improved greatly in one strain but at in the other.

REFERENCES

Kinson, R. L. and J. R. Couch, 1951. Vitamin B_{12} , on APF concentrate, aureomycin, streptomycin, liver "L" and fish meal and fish solubles in the nutrition of the poult. J. Nutrition 44:249.


kates, M. E., C. D. Dickinson, G. F. Harrison, S. K. Kon, S. H. Cummins and W. F. J. Cuthbertson, 1951. Mode of action of antibiotics in stimulating growth of chicks. Nature 168:332.

kates, M. E., C. D. Dickinson, G. F. Harrison, S. K. Kon, J. W. G. Porter, S. H. Cummins. and W. F. Cuthbertson, 1952. A mode of action of antibiotics in chick nutrition. J. Sc. Food Agric. 3:43.

m, J. F., R. L. Jacobs, W. L. Tidwell, L. L. Gee md J. R. Couch, 1953. Possible mechanism involved in the growth-promoting responses obtained from antibiotics. J. Nutrition 49:307.

1. 50

- Elam, J. F., R. L. Jacobs, Jean Fowler and J. R. Couch, 1954. Effect of dietary Clostridia upon growth-promoting responses of penicillin. Proc. Soc. Exp. Biol. Med. 85:645.
- Elam, J. F., L. L. Gee and J. R. Couch, 1951. Effect of feeding penicillin on the life cycle of the chick. Proc. Soc. Exp. Biol. Med. 77:209.
- Elam, J. F., L. L. Gee and J. R. Couch, 1951. Function and metabolic significance of penicillin and bacitracin in the chick. Proc. Soc. Exp. Biol. Med. 78:832.
- Hill, D. C., H. D. Branion, S. J. Slinger and G. W. Anderson, 1953. Influence of environment on the growth response of chicks to penicillin. Poultry Sci. 32:462.
- Kiser, J. S., G. C. de Mello, D. H. Reichard and J. H. Williams, 1952, Chemotherapy of experimental clostridial infections. J. Infect. Dis. 90:76.
- Kratzer, F. H., C. R. Grau, M. P. Starr and D. M. Reynolds, 1951. Growth-promoting activities of antibiotics and yeast cultures for chicks and turkey poults. Fed. Proc. 10:386.
- Lillie, R. J., J. R. Sizemore and H. R. Bird, 1953. Environment and stimulation of growth of chicks by antibiotics. Poultry Sci. 32:466.
- Reed, J. R. and J. R. Couch, 1950. The efficacy of different APF concentrates for chicks. Poultry Sci. 29:897.
- Sieburth, J. M., J. Gutierrez, J. McGinnis, J. R. Stern and B. H. Schneider, 1951. Effect of antibiotics on intestinal microflora and on growth of turkeys and pigs. Proc. Soc. Exp. Biol. Med. 76:15.
- Stokstad, E. L. R., 1953. Antibiotics in animal nutrition. Antibiotics and Chemotherapy 3:434.
- Williams, W. L., R. R. Taylor, E. L. R. Stocktad and J. H. Jukes, 1951. Mechanism of the growth-promoting effect of aureomycin in chicks. Fed. Proc. 10:270.

Location of field research units of the Texas Agricultural Experiment Station and cooperating agencies

ORGANIZATION

OPERATION

State-wide Research

The Texas Agricultural Experiment Station is the public agricultural research agency of the State of Texas, and is one of ten parts of the Texas A&M College System

IN THE MAIN STATION, with headquarters at College Station, are 16 subject matter departments, 2 service departments, 3 regulatory services and the administrative staff. Located out in the major agricultural areas of Texas are 21 substations and 9 field laboratories. In addition, there are 14 cooperating stations owned by other agencies. Cooperating agencies include the Texas Forest Service, Game and Fish Commission of Texas, Texas Prison System, U. S. Department of Agriculture, University of Texas, Texas Technological College, Texas College of Arts and Industries and the King Ranch. Some experiments are conducted on farms and ranches and in rural homes.

THE TEXAS STATION is conducting about 400 active research projects, grouped in 25 programs, which include all phases of agriculture in Texas. Among these are:

Conservation and improvement of soil Conservation and use of water Grasses and legumes Grain crops Cotton and other fiber crops Vegetable crops Citrus and other subtropical fruits Fruits and nuts Oil seed crops Ornamental plants Brush and weeds Insects

Beef cattle Dairy cattle Sheep and goats Swine Chickens and turkeys Animal diseases and parasites Fish and game Farm and ranch engineering Farm and ranch business Marketing agricultural products Rural home economics Rural agricultural economics

Plant diseases

Two additional programs are maintenance and upkeep, and central services.

Research results are carried to Texas farmers, ranchmen and homemakers by county agents and specialists of the Texas Agricultural Extension Service

AGRICULTURAL RESEARCH seeks the WHATS, the WHYS, the WHENS, the WHERES and the HOWS of hundreds of problems which confront operators of farms and ranches, and the many industries depending on or serving agriculture. Workers of the Main Station and the field units of the Texas Agricultural Experiment Station seek diligently to find solutions to these problems.

Joday's Research Is Jomorrow's Progress