The Feasibility of Processing Wool and Mohair in Texas
CONTENTS

Summary .. 3
Acknowledgments ... 4
Introduction ... 5
Early Studies and Reports 6
History and Present Status of Mills in Texas 6
Fiber Consumption .. 8
 World Trends ... 8
 Trends in the United States 9
 Inter-fiber Competition 10
Wool Textile Industry 11
 Early History and Development 11
 Steps in Manufacture 12
 Marketing ... 12
 Sorting and Blending 12
 Scouring .. 14
 Carbonizing .. 14
 Woolen Carding 14
 Woolen Spinning 14
 Worsted Carding 14
 Worsted Combing 14
 Top Finishing 14
 Worsted Drawing and Spinning 14
 Weaving Woolens and Worsted 14
 Finishing .. 14
Leading Wool-manufacturing Countries 15
Trends and Problems of the Domestic Industry 15
 Machinery in Place, Location and Hours Operated 15
 New Machinery, Techniques, Buildings and Equipment ... 17
Production, Exports and Potential Capacity 18
Profits and Mergers 19
Tariffs and Imports 20
Labor and the North-to-South Migration 23
Factors Involving the Three Regions 24
 Labor .. 24
 Labor Factors in the North and South 24
 Texas Labor 26
Raw Materials ... 28
 Volumes and Cost 28
 Texas Raw Materials 28
 Wool .. 28
 Mohair .. 29
 Uses of Texas Wool and Mohair 29
 Other Domestic Wools 30
 Other Domestic Raw Materials 30
Foreign Wools ... 30
Marketing Wool-textile Products 31
 Volumes .. 31
 Marketing Costs 31
 Marketing from Texas Plants 31
Transportation ... 32
 Facilities .. 32
 Costs on Raw Materials 32
 Costs to Market 32
Water .. 33
Power and Fuel .. 33
 Costs in the North and South 33
 Costs in Texas 33
Taxes ... 34
 In New England and the South 34
 In Texas .. 34
Capital ... 35
 Management .. 35
 Waste Disposal 35
 Chemicals and Supplies 35
Climate .. 36
Cost of Living .. 37
Sites .. 38
Machinery Repair, Parts and Maintenance 38
Attitudes and Special Inducements 38
Technical Services 38
Recreation .. 39
Texas Business .. 39
Recommended Products and Decreased Overhead 40
Bibliography ... 40
SUMMARY

The possibility of processing wool in the western wool-growing area has been a controversial subject between western producers and New England wool manufacturers for many years. Surveys have been made in several states, and a number of reports and articles have been written on the subject. None of these studies discloses an economic condition or combination of conditions that would prohibit some wool processing in the West.

Since about 1883, Texas wool growers organizations, leading wool producers, chambers of commerce and other enterprising Texans have made efforts to establish wool-processing plants in Texas. Several small mills have been located in the State for short periods. At present, the industry in Texas is small, although notable progress was made in scouring facilities in 1954 and 1955. Scouring capacity has been doubled, and there are now six scouring trains capable of scouring about 30 million pounds of grease wool annually.

World fiber consumption is increasing, and per capita consumption of fibers is increasing in the United States. Despite comparatively bad years, the volume of business for the domestic wool textile industry during 1950-55 is far above the average during the period between the two world wars.

The domestic wool textile industry reached its present capacity about 1900 and is heavily concentrated in the New England States. Although simple in the beginning, it has become a highly complex industry that requires considerable management and manufacturing skills and huge investments in machinery, buildings, equipment, inventories and operating expenses.

The U. S. wool industry probably has the greatest productive capacity in the world, even though the United Kingdom has more of some machines. Other leading wool-manufacturing countries include France, Italy, Germany and Japan. The U. S. industry produces almost exclusively for domestic consumption, while the other countries are leading exporters of processed wool goods. While most of these countries had losses in capacity during World War II, their industries have largely been restored and are now more modern. Some probably have greater capacity than before 1939.

The domestic industry went into World War II in poor condition. Much of the machinery used wore out or became obsolete. The industry's profits during the war and postwar years were good, and some modernization was done.

The industry has made little money since 1950, and the number of plants has been reduced sharply. The loss of capacity, however, has been largely offset by multiple shift operation, by improvement of machinery and methods and through construction of some completely new, highly efficient plants. The reduction in the number of plants has been accompanied by an even greater reduction in the number of companies in the business through mergers of two or more companies.

Lowering the U. S. tariffs of 1930 on wool processed goods, especially the reductions in 1948, greatly increased the problems of the domestic industry. Although total imports still are relatively small, imports of higher quality wool fabrics increased tremendously during the period of bad business for the domestic industry. Exporting countries need U. S. dollars, our prices are much higher than in other countries and our tariffs are the lowest they have been in 100 years. U. S. leaders are sparing no efforts to increase world trade.

Since the close of World War II, the size of the wool-processing industry has decreased in the New England States and increased in the Southeast. The industry has overcome the inertia toward changing its historic location.

Labor is the chief cause of the southern movement. Labor accounts for about 50 to 60 percent of the value added in manufacture. Hourly wage rates plus fringe benefits are 30 to 40 percent lower in the Southeast and southern workers operate more machines. The supply, trainability, attitude and efficiency of southern labor are highly satisfactory.

Labor cost in Texas cotton textile plants was about 15 percent lower than the average in the Southeast in November 1954. Labor for wool textiles could be 5 to 10 percent lower in Texas than in the Southeast, despite the present $1 minimum hourly wage. Texas has a greater supply of labor than any southern textile state, and other labor factors appear to be as good or better.

Texas is expected to produce about 70 million pounds of grease wool annually. The bulk of the clip is fine grade and combing length. Most of it is best suited for worsted goods, but large volumes of woolen wools also are produced. The characteristics and high price of these woolen wools make them best suited for high-quality fabrics. Texas also produced 97 percent of the nation's mohair in 1955. Other domestic wools suitable for blending can be shipped to Texas at less cost than to the Southeast. Foreign wools can be shipped to Texas plants for the same price as to other states. Shipping costs for pulled wool, byproducts, raw materials and synthetic fibers would be slightly higher for Texas plants than for those
in the Southeast. On Texas wool and mohair, Texas plants could save 2 to 6 cents per clean pound transportation costs over the rates to Southeastern mills.

A Texas mill probably could market large volumes of its products in the West at a saving in transportation costs, but would have a higher transportation cost to the main market at New York. Other marketing costs would be the same, regardless of location.

Some locations in Texas have adequate water supplies; others do not. The water in many areas would have to be softened.

Texas has the cheapest fuel of all the states. Some locations in Texas have cheaper power than locations in Southeastern States, but power cost may be higher at other locations.

Texas has lower per capita taxes and a smaller per capita state debt than any southeastern textile state except Virginia. The State tax climate is favorable for industry and local taxes are reasonable.

Cost of capital should be no higher than in the Southeast. The bulk would have to come from other areas, but an established, reputable firm might expect some investments from local interests.

The top-level management might have to come from other areas. Some technical and management personnel could be obtained from graduates of the State's textile engineering school.

Despite strong and rigidly enforced waste disposal laws in Texas, plant wastes can be handled in many locations with no greater cost or problems than in other areas. Other locations might require sump disposal, an almost negligible burden in comparison with total processing expenses.

The cost of expendable supplies, such as soaps and chemicals, in Texas is comparable with other areas.

Texas climate is excellent for industry. There would be little or no absenteeism or plant tieups because of bad weather. Air-conditioning costs might be a little higher generally than in the Southeast, but this could be offset partially by cheaper fuel and in some areas by the use of evaporative-type coolers which is cheaper to operate.

The cost of living for plant workers and management should be comparable with such costs in the Southeast.

Sites should be as cheap or cheaper in Texas in or near similar towns.

Plants in Texas probably would need to stock larger supplies of spare parts, but parts not on hand could be flown in with little delay. Texas has adequate machinery repair facilities.

State and community attitudes toward industry in Texas are excellent. Although the State has special inducements, tax waivers, state planning board or advertising program, legislation and its enforcement and the favorable tax structure speak for themselves. Cities are prohibited by law from voting bond issues to construct buildings for industry, but industrial foundations to help industry are growing rapidly. The State can offer assistance comparable with that of cities in the Southeast.

The State has adequate facilities for repairing electronic devices and automation equipment.

Texas' recreation facilities probably are better balanced and superior to any southern textile state.

The marked progress in industrialization enjoyed by Texas since the end of World War II indicates that other industries have found advantages in this State.

Wool-processing plants in Texas could expect to make large savings compared with New England mills, and they probably could produce and market woolen and worsted fabrics cheaper than Southeastern mills. Trends toward decentralization of the garment-making industry and style centers, which are accompanied by improving markets in the Western States, should enhance the advantages of Texas as a location for integrated mills. The only disadvantage for a plant producing intermediate stages appears to be the distance to other mills.

ACKNOWLEDGMENTS

Sincere thanks are extended to the numerous individuals who helped with this study and to the firms and associations they represent. Their advice, information and encouragement were most valuable.

Appreciation also is expressed to the members of the special advisory committee in the Texas Agricultural Experiment Station who guided the study and to the others who reviewed the report.
The Feasibility of Processing Wool and Mohair in Texas

JACK B. TAYLOR

This study was conducted to determine the economic conditions which favor locating wool and mohair textile-processing plants in Texas and which conditions are unfavorable.

About 70 percent of the domestic wool clip is produced in the Western States, but the manufacture of wool textiles has been confined largely to the New England States. Since raw wool contains 50 to 70 percent extraneous matter that is lost in scouring and the finished goods must be back-hauled to consumers in the West, processing wool near production centers would save transportation costs. The possibility of processing wool in the West has been a subject of controversy for many years.

Many authorities, wool producers, public officials and other people interested in the industrial development of the Western States contend that domestic wools can be processed more economically in the West. Eastern wool interests maintain that western facilities are inadequate in comparison with the economic advantages of New England. Some people believe that decentralization of the textile industry to the West would help improve the growers' production and marketing efficiency. They also believe that since the textile industry ranks high in the number of people employed, its location in underdeveloped areas would contribute to the social and economic progress of these areas.

Some enterprising Texans have long considered that this State offers excellent possibilities for processing plants because Texas produces such large volumes of wool and mohair. This State produced 19.4 percent of the nation's average wool clip and 87 percent of its mohair from 1929 through 1953. The wool producers' association of Texas at its annual meeting in 1883 passed a resolution advocating the establishment of scouring and woolen mills in the State. Interest in the subject has continued since that time.

A number of trends indicate that circumstances favoring dominance of the New England area in wool textiles may have changed while opportunities in Texas may have improved. Some of these trends are:

1. Plant closures in the New England area and growth of the wool textile industry in the Southeast.
2. Decentralization of industry since World War II and the rapid growth of manufacturing in underdeveloped areas.
3. The rapid growth of manufacturing in Texas, especially of the apparel industry.
4. Improved markets in the Western States as a result of rapid population growth and increased per capita income.
5. Increasing labor force in Texas as a result of rapid population growth and increasing urban population with corresponding decreases in rural population.
6. Growth of important style centers in the West.

Texas is a large state with widely varying conditions. Some locations may offer excellent opportunities while others probably would have severe handicaps. The State as a whole was considered in the present study, and no attempt was made to point out particular locations that seem to offer the best combination of favorable conditions.

Any interests which consider locating a plant in Texas probably will want representatives of the firm or industrial consultants to make detailed surveys of prospective locations. Such surveys would furnish more exacting cost data and determine the technical problems involved for a particular plant.

Data for the present study were collected from a number of sources. The earlier outlines and files on the study were examined, and reports on other surveys and magazine and newspaper articles on the subject were reviewed. Relevant literature was collected and reviewed throughout the study. All plants in the State known to be processing any wool or mohair were visited and their management personnel interviewed. The problem also was discussed with selected cotton textile manufacturers, garment makers, hat makers, industrial consultants, garment and fabric retailers, wool warehousemen, wool and mohair growers and specialists with knowledge of some phase of the subject. A rough draft

*Formerly, research assistant, Department of Animal Husbandry, Texas Agricultural Experiment Station, now in private business at San Angelo, Texas.
of the report was prepared, and the findings were discussed with selected authorities representing various segments of the wool textile industry in the New England and Southeastern States. The report then was reviewed by a special advisory committee in the Texas Agricultural Experiment Station, and its suggestions were incorporated in this report.

EARLY STUDIES AND REPORTS

A number of studies and reports have been published on the possibilities of processing wool in states outside the traditional wool-manufacturing center. Many of these reports deal with scouring wool near the source of supply to save transportation costs on the extraneous matter removed from grease wool during manufacture.

The writers generally agreed that it might be feasible for small plants to scour some short clothing wools, tags, clippings, off-sorts and very heavy shrinking, combing wools near wool concentration points in the West. These wools would have to be marketed to the woolen trade. A certain amount of business might be obtained in commission scouring, but the plants would have to purchase some wools to stay busy. Small savings could be made on freight and processing costs in some locations. The big problems are the ability to market the plants' own scoured wool to advantage and the ability to get business in commission scouring. The volume of wools suitable for scouring and resale is small in any given area.

The studies showed generally that it is not feasible for a privately owned scouring plant without mill or dealer connections to purchase and scour combing or worsted wools in the West. There is little possibility for such a plant to get business in commission scouring. The volume of wools suitable for scouring and resale is small in any given area.

The main limiting factors are: worsted manufacturers want to do their own sorting and blending in the grease since blends are mill secrets; they prefer to do their own scouring; and when worsted wools are scoured, they become so thoroughly mixed it is difficult to determine what percentage of short fibers will be taken out in the combining process. It is argued that if very much could be saved, the mills would have been scouring wool in the West long ago. Most of the foreign wools are shipped in the grease to U. S. mills, but a branch plant of an established firm or a plant with established business still might scour worsted wools profitably in producing areas. The wools can be blended later in the gilling process.

Some studies indicate that the manufacture of wool tops offers good possibilities in the West. Such a plant would have to plan on purchasing the raw wool needed; however, it might be able to obtain some commission combing business from top makers who do not own combing machinery. Costs of manufacture and the ability to market the product profitably are the major problems involved.

Other studies show that integrated mills produce woolen fabrics are economically feasible in the West. Although such plants would have access to good supplies of domestic raw wools in many areas of the West, they generally would have a disadvantage in obtaining pulled wool, rags, wastes and other by-products raw material produced in the East. Production costs and profitable marketing would determine success.

Only one report mentions worsted fabric as a likely product for a plant in the West. The conclusion was based on favorable product costs and marketing the fabrics to sportswear clothing manufacturers located in the West.

The manufacture of yarns in the West for sale or on commission either was not considered or not recommended by the researchers.

None of the reports reviewed discloses factors that would prohibit some wool processing in the West.

HISTORY AND PRESENT STATUS OF MILLS IN TEXAS

Many attempts have been made by wool growers, chambers of commerce and promoters to establish wool-processing plants in Texas. Some of them hardly went past the recommendation stage. Some ended with surveys, and a few went as far as selection of company officials, charters from the State or attempts to sell stock to investors.

One of the earliest known efforts was a resolution passed by the State wool growers organization in 1883 advocating the establishment of woolen and scouring mills in Texas.3

Probably the first processing plant of any kind to operate in Texas was the San Angelo Scouring Mill Company.4 On June 21, 1891, the company leased a multi-story building that had been planned for a flour mill. It started with $5,000 cash capital and purchased secondhand machinery for $20,000 worth of stock in the company. After trying unsuccessfully to grade, sort and scour wool on a commission basis, the company attempted to purchase wool for scouring and resale; this ended when the stockholders rejected. Some wool buyers for a large eastern wool merchant leased the plant and operated at a profit until the machinery were sold out.

Interest in establishing processing plants in the West was keen during the early 1920's and 30's, although such attempts were not successful. After the depression many of the reports reviewed disclose factors that would prohibit some wool processing in the West.

5San Angelo Standard Times, June 10, 1934.
In 1935, a Dallas promoter and a mill manager obtained a permit to sell stock for a woolen mill in a West Texas town. Their second step was to be a mill at Del Rio to make tropical and semitropical suitings. Third was to be a knitting mill at Fort Worth. Fourth was a San Angelo mill to make uniform cloth.

In 1935 and 1936, two groups attempted to sell stock to build scouring plants in San Angelo, one a $75,000 corporation and the other a $250,000.11

The Texas Planning Board hired an engineering firm in 1937 to survey the possibilities of scouring the State's wool at home. Their report indicated that a small plant at Houston to scour some 6 million pounds of short wools, tags, clippings and heavy shrinking wools might be successful, but that large-scale scouring in Texas was not feasible.

So far as is known, no efforts were made to attract branch plants from established firms or to interest out-of-state capital.

Capital seems to have been the major obstacle because producers and businessmen were uncertain about the promoters and some of their propositions. About 1920 and 1921, promoters of the United States Wool Company attempted to raise $10 million dollars in the West to build a number of western plants. They planned to revolutionize the wool industry by dry-cleaning wool with gypsum in western plants. However, J. A. Hill, wool specialist of the University of Wyoming, in investigating the process, demonstrated that it was unsatisfactory. He pointed out that a small pilot plant to check the method adequately could be built for a fraction of the amount the promoters were trying to raise. "Scouring staple wool in the West would have the same effect as cutting the fibers in two," he reported.

In general, mill interests mentioned the following objections to scouring plants in Texas:

1. Only a small percentage of Texas wools goes to commercial scouring plants. Most of the 8 and 12-month wools are used by the worsted industry, which prefers to do its own scouring.

2. There would be no material saving on freight because the rates are higher on scourcd wool.

3. Texas is too far away for mills to sample clips, and few goods are made 100 percent from Texas wools.

1 Correspondence file of J. M. Jones, Texas Agri. Expt. Sta., College Station, Tex.
6 She psychological factors in the wool industry.
7 She psychological factors in the wool industry.
8 She psychological factors in the wool industry.
9 She psychological factors in the wool industry.
10 She psychological factors in the wool industry.
11 She psychological factors in the wool industry.
4. A good-size scouring plant in the State would not have enough business to operate throughout the year.

Local interests felt that the State's attributes outweighed its handicaps. Their strong feelings in the controversy are reflected in a quotation from L. J. Wardlaw, Fort Worth, then chairman of the Livestock Sanitary Commission and prominent Val Verde and Edwards counties ranchman.14 In a letter to H. A. Wagenfuer, who planned to build a scouring plant at New Braunfels in 1937, Judge Wardlaw offered to buy some stock in the project and said he believed it would benefit the growers. He then stated:

"It will be an utter impossibility to procure wool or mohair for scouring purposes on a cost basis per pound. There are allegiances and business relationships between the purchasers of wool and the scouring and manufacturing interests which have existed for many years. The major portion of wool and mohair of this country is fabricated in the North and East. Your venture will meet with stiff opposition. The power of money used by purchasers, the money invested in scouring mills, the influence of railroads and steamship lines and the strangle hold of Boston wool buyers and warehouses, the ingenuity of their agencies will be used to wreck your enterprise."

From the best information available, it seems the first commercial wool-scouring plant in Texas was established at Marble Falls about 1938. It operated until 1940. A second plant was built at San Marcos in late 1939 or 1940, and a little later, one was set up in New Braunfels.

A woolen mill operated from about 1950 to 1952 at Marble Falls in the building formerly occupied by the scouring plant, and a blanket followed the scouring plant at San Marcos.

A wool-top-manufacturing plant was built at New Braunfels during 1940-41, and the first products were shipped on October 8, 1941. Spinning equipment to process the wool top into yarn was added about 1948. Weaving equipment would not have enough business to operate the plant's failure. So far as can be determined, no wool-top plant in Texas has succeeded.

It is difficult to determine why the plant closed or to get factual information about the operations. Personal interviews with citizens of the towns, former employees and others, indicate that the reasons include poor management, inferior products, the use of wornout or obsolete machinery and lack of capital. Overexpansion at the start of the 1951-53 depression in the wool textile industry may have contributed to the plant's failure. So far as can be determined, most of the failures can be attributed directly to the 1941-45 war and to the postwar locations in Texas.

Texas had a very small wool textile industry in 1955. Houston has a plant equipped with hand-operated looms to make specialty products. A one-card blanket mill has been operating at Big Bend since 1940. The commercial scouring plant with three scouring trains at San Marcos is a branch plant of an eastern firm. Another scouring plant with two scouring trains is located in Brady. A small top-making plant is in New Braunfels. The State's only wool knitting firm, a branch plant of an eastern concern, is in San Antonio. There is a small woolen piece-goods plant at Brownwood.

A number of warehouses in the State do some wool and mohair grading and sorting, the first step in wool manufacturing. Only mohair is actually detail sorted. The wool preparation usually consists of removing tags, off-sorts and defects, then putting the wool into lots of standard combing and clothing wool according to grade.

Texas has a great volume of cotton-textile manufacturing. With the modern equipment that mills already have and will install in modernization programs, they may be able to process some wool and mohair and blends of other fibers.

FIBER CONSUMPTION

World Trends

The world trend in fiber consumption is upward although there are areas of chronic deficiencies. Consumption varies between high and low-income countries, much the same as it varies between high and low-income groups within a country.

The people of countries with high living standards consume 9 to 10 times as much fiber...
capita as people in poor countries. A 1939 study of a number of countries shows that amounts spent on clothing ranged from 6.6 to 17.3 percent of total expenditures in the budgets of manual wage earners, and 9.9 to 16.7 percent of expenditures in budgets of nonmanual workers.

Most people subsist on low levels of apparel fiber use. Only about 18.5 percent of the world's population has a per capita fiber-consumption level as much as half the U. S. average. A billion people in the world use only 6 to 12 yards of cloth per year, but people in the United States use over 75 yards per person.

Fiber consumption is related closely to real income, Figures 1-A and 1-B. Total fibers consumed and the wool portion consumed vary with climates and customs in the different countries.

The United States leads all countries of the world in per capita fiber consumption and uses almost twice as much cotton per capita as the next leading country. The United States led the nations of the world in total volume of wool consumed during 1946-53, although it ranks low in per capita wool consumption.

World wool production has set record highs for the past several years, but domestic wool production has declined. Although about two-thirds of the wool used in the United States is imported, a wool shortage for mills is unlikely unless a world crisis cuts off foreign supplies. The high real income of this country should enable it to compete successfully in the world markets for the available wool supply.

Trends in the United States

Since practically all the products of the domestic wool textile industry are consumed within the United States, domestic consumption is important to U. S. mills. It also is important in determining the possibility of some expansion or relocation of this industry to Texas.

Per capita total fiber consumption is increasing in the United States, Figure 2. The simple average of total fibers consumed per capita during 1921-39 was 29.39 pounds; the average during 1950-53 was 42.99 pounds, an increase of more than 45 percent. Flax and silk consumption declined, cotton increased 18 percent and total clean wool consumption increased only about 17 percent. Synthetic fibers contributed the bulk of the increase. Per capita consumption of rayon and acetate grew from 1.2 pounds during 1921-39 to 8.03 pounds during 1950-53. Other man-made fibers, not even reported before 1940, averaged 1.42 pounds per capita during 1950-53.

Apparel wool consumption is more significant for wool textile mills than total fibers consumed. During 1921-39, apparel wool averaged 2.11 pounds per capita. Consumption was heavy during World War II, the postwar years and during 1950. Although 1951-53 are considered bad financial years for the wool textile industry, per capita apparel wool consumption averaged 2.26 pounds, clean basis. Total per capita wool consumption, including carpet wools, has averaged nearly 4 pounds annually since World War II. However, wool consumption is not increasing as much as the use of other fibers; therefore, it is not maintaining its earlier proportion of fibers consumed.

The volume of products that the wool textile industry can produce and market profitably each year depends on per capita wool consumption, population, population increases and the volume of competing imports. During 1920-39, the United States consumed 340.66 million clean pounds of wool (apparel and carpet) per year, but during the wool textile depression of 1951-53, annual consumption averaged 478.7 million pounds, a 40 percent increase.

Although total fibers consumed per capita and total mill consumption are increasing, consumer expenditures for clothing and accessories have not maintained their proportion of total personal expenditures. Competition is intense from other consumer goods such as new homes, television sets, cars, labor-saving devices and many others. Also, trends toward casual living and dress lower the amounts spent on clothing.

Another trend that has reduced wool consumption is the use of lighter weight clothing. Woolen goods weighing less than 13 ounces per yard averaged 38 percent of production in 1948 and 52 percent of it in the first half of 1954. Worsted goods weighing less than 13 ounces per yard averaged 45 percent in 1948 and 67 percent the first half of 1954.19

Most of the wool consumed in the United States is apparel wool. Although the amounts vary from year to year, apparel wools furnished 68 percent and carpet wools 32 percent of U. S. mill consumption in 1949. Figure 3 shows the proportions of wool processed into different types of consumer goods during 1949.

The Federal Government is a leading consumer of wool textile mill products. Production for the government was heavy in 1941-45. Military purchases in 1951 were about two-fifths of total mill production. Purchases then declined rapidly, amounting to less than 1 percent of production in 1954.20 The reductions in military buy-

Table 1. Selected Competitive Uses of Wool, Cotton and Synthetic Fibers, 1953

<table>
<thead>
<tr>
<th>Item</th>
<th>Wool (Million pounds)</th>
<th>Cotton (Million pounds)</th>
<th>Synthetic (Million pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men & boys apparel</td>
<td>201.8</td>
<td>975.6</td>
<td>162.3</td>
</tr>
<tr>
<td>Outerwear</td>
<td>172.9</td>
<td>366.2</td>
<td>92.1</td>
</tr>
<tr>
<td>Suits</td>
<td>60.7</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>Winter weight</td>
<td>56.2</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Summer weight</td>
<td>45.5</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Separate coats</td>
<td>6.0</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Separate trousers</td>
<td>28.4</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>Overcoats & topcoats</td>
<td>22.6</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>Outdoor jackets</td>
<td>30.6</td>
<td>29.1</td>
<td></td>
</tr>
<tr>
<td>Sweaters</td>
<td>12.9</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Robes & smoking jackets</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Work clothing</td>
<td>5.4</td>
<td>300.2</td>
<td></td>
</tr>
<tr>
<td>Skirts</td>
<td>12.0</td>
<td>284.2</td>
<td></td>
</tr>
<tr>
<td>Underwear & nightwear</td>
<td>1.1</td>
<td>137.5</td>
<td></td>
</tr>
<tr>
<td>Hosiery</td>
<td>7.6</td>
<td>83.1</td>
<td></td>
</tr>
<tr>
<td>Furnishings</td>
<td>8.2</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>Women & misses apparel</td>
<td>143.8</td>
<td>389.5</td>
<td>329.8</td>
</tr>
<tr>
<td>Outerwear</td>
<td>123.3</td>
<td>209.9</td>
<td>175.5</td>
</tr>
<tr>
<td>Suits</td>
<td>14.5</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>Jackets, shirts</td>
<td>19.2</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td>Street, formal dresses</td>
<td>8.2</td>
<td>44.3</td>
<td></td>
</tr>
<tr>
<td>Housesdresses</td>
<td>1.2</td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td>Coats</td>
<td>62.8</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Sweaters</td>
<td>18.9</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Bathrobes, housecoats</td>
<td>3.5</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>Blouses, shirts</td>
<td>6.8</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>Intimate wear</td>
<td>0.5</td>
<td>102.6</td>
<td></td>
</tr>
<tr>
<td>Hosiery</td>
<td>0.3</td>
<td>26.4</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>7.9</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>Children & infants apparel</td>
<td>37.1</td>
<td>256.4</td>
<td>327.1</td>
</tr>
<tr>
<td>Outerwear</td>
<td>35.0</td>
<td>110.5</td>
<td>223.2</td>
</tr>
<tr>
<td>Blouses, shirts</td>
<td>1.2</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>Underwear, other</td>
<td>0.9</td>
<td>130.1</td>
<td></td>
</tr>
<tr>
<td>Household uses</td>
<td>191.3</td>
<td>1,247.4</td>
<td>1,674.0</td>
</tr>
<tr>
<td>Bedding, blankets</td>
<td>31.6</td>
<td>204.3</td>
<td>41.6</td>
</tr>
<tr>
<td>Linens</td>
<td>507.5</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>Other items</td>
<td>159.7</td>
<td>535.6</td>
<td>142.1</td>
</tr>
<tr>
<td>Carpets, rugs</td>
<td>150.5</td>
<td>117.8</td>
<td>26.3</td>
</tr>
<tr>
<td>Upholstery, drapery</td>
<td>3.2</td>
<td>288.0</td>
<td>86.8</td>
</tr>
<tr>
<td>Other consumer-type products</td>
<td>65.4</td>
<td>361.6</td>
<td>152.1</td>
</tr>
<tr>
<td>Linings, piece goods</td>
<td>55.7</td>
<td>205.1</td>
<td>115.1</td>
</tr>
<tr>
<td>Apparel linings</td>
<td>27.8</td>
<td>76.6</td>
<td>48.4</td>
</tr>
<tr>
<td>Apparel piece goods</td>
<td>23.9</td>
<td>69.5</td>
<td>47.9</td>
</tr>
<tr>
<td>Other products</td>
<td>1.8</td>
<td>107.9</td>
<td>173.6</td>
</tr>
<tr>
<td>Industrial uses</td>
<td>38.8</td>
<td>779.5</td>
<td>595.5</td>
</tr>
<tr>
<td>Automotive</td>
<td>23.3</td>
<td>58.3</td>
<td>64.7</td>
</tr>
<tr>
<td>Carpets</td>
<td>4.1</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Upholstery</td>
<td>19.2</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td>Rubber industry</td>
<td>175.2</td>
<td>468.6</td>
<td></td>
</tr>
<tr>
<td>Tire cord & fabric</td>
<td>15.5</td>
<td>437.4</td>
<td></td>
</tr>
<tr>
<td>Hose, etc.</td>
<td>92.5</td>
<td>321.6</td>
<td></td>
</tr>
<tr>
<td>Other industrial products</td>
<td>15.5</td>
<td>547.0</td>
<td>612.0</td>
</tr>
<tr>
<td>Felts</td>
<td>10.6</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td>4.0</td>
<td>12.3</td>
<td></td>
</tr>
</tbody>
</table>

19Textile Organon, Nov. 1954.

Wool includes all processed wool and mohair.
in consumption of synthetic fibers and the inroads some synthetic fibers have made into many of wool's traditional markets. These conditions have led to much speculation on the future of wool in competition with synthetic fibers.

Competition among fibers is not new. Wool has been competing with cotton, silk and flax since they were developed. Synthetic fibers are not new either. A synthetic fiber was produced successfully by a Frenchman in 1891, a long time ago in terms of technological progress.

Wool interests were not unduly concerned about the earlier synthetic fibers, such as rayon, because they competed more with cotton and silk than with wool. However, many of the synthetic fibers developed since World War II have been designed more specifically for the same end uses as wool.

Per capita consumption of rayon acetate and other man-made fibers has increased rapidly. Most of these fibers have made marked gains in the percentage of all fibers consumed for most end uses. Table 1 shows a comparison of the volumes consumed in 1953 for selected end uses.

Industrial uses consume the largest portion of man-made fibers. Much of this consumption is at the expense of cotton. Rayon accounted for 47 percent of tire-cord production in 1946, but rayon and nylon accounted for 97 percent in 1953.

The next largest user is the women and misses apparel group. Consumption of man-made fibers far exceeds wool and even surpassed cotton in 1949-51. Man-made fibers also have made important inroads into men and boys apparel and household uses. Rayon made up only 1.1 percent of the fibers used in carpets in 1949, but the proportion was 20.9 percent in 1951.

The volumes of cotton, wool and synthetic fibers used in different garments and other items during 1953 are shown in Table 2.

The price of wool is its worst enemy in competing with synthetic fibers. It is higher than all the man-made fibers, except the new ones being brought into commercial production, and the lack of price stability is a serious handicap. Some predict that a synthetic fiber can be developed to duplicate all of wool's good qualities. Although synthetic fibers may affect some old-line wool firms adversely, these fibers should extend the business of wool textile mills in general because they can be processed on wool textile machinery.

TABLE 2. CONSUMPTION OF COTTON, WOOL AND MAN-MADE FIBERS BY END USE, 1953

<table>
<thead>
<tr>
<th>End use</th>
<th>Cotton</th>
<th>Wool</th>
<th>Man-made fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Million pounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men & boys apparel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women & misses apparel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children & infants apparel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household uses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other consumer-type products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial uses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rayon used mainly in automotive uses, carpets, upholstery and felts (10.6 million pounds in 1953) and filters (4.0 million pounds in 1953.)

SYNTHETIC FIBERS AND TEXTILES

Wool processing was one of the first arts man discovered, although no one knows exactly when it was first used. Wool fabrics have been found in the ruins of stone age inhabitants, which indicates that the use of wool was developed along with or soon after the art of making stone weapons. By 4.000 B.C., the Babyloniens were wearing beautiful wool fabrics.

WOOL TEXTILE INDUSTRY

Early History and Development

Wool has been competing with cotton, silk and flax since they were developed. Synthetic fibers are not new either. A synthetic fiber was produced successfully by a Frenchman in 1891, a long time ago in terms of technological progress.

Wool interests were not unduly concerned about the earlier synthetic fibers, such as rayon, because they competed more with cotton and silk than with wool. However, many of the synthetic fibers developed since World War II have been designed more specifically for the same end uses as wool.

Per capita consumption of rayon acetate and other man-made fibers has increased rapidly. Most of these fibers have made marked gains in the percentage of all fibers consumed for most end uses. Table 1 shows a comparison of the volumes consumed in 1953 for selected end uses.

Industrial uses consume the largest portion of man-made fibers. Much of this consumption is at the expense of cotton. Rayon accounted for 47 percent of tire-cord production in 1946, but rayon and nylon accounted for 97 percent in 1953.

The next largest user is the women and misses apparel group. Consumption of man-made fibers far exceeds wool and even surpassed cotton in 1949-51. Man-made fibers also have made important inroads into men and boys apparel and household uses. Rayon made up only 1.1 percent of the fibers used in carpets in 1949, but the proportion was 20.9 percent in 1951.

The volumes of cotton, wool and synthetic fibers used in different garments and other items during 1953 are shown in Table 2.

The price of wool is its worst enemy in competing with synthetic fibers. It is higher than all the man-made fibers, except the new ones being brought into commercial production, and the lack of price stability is a serious handicap. Some predict that a synthetic fiber can be developed to duplicate all of wool's good qualities. Although synthetic fibers may affect some old-line wool firms adversely, these fibers should extend the business of wool textile mills in general because they can be processed on wool textile machinery.

Wool processing was one of the first arts man discovered, although no one knows exactly when it was first used. Wool fabrics have been found in the ruins of stone age inhabitants, which indicates that the use of wool was developed along with or soon after the art of making stone weapons. By 4.000 B.C., the Babylonians were wearing beautiful wool fabrics.

27Ibid.

Intensive efforts were made to establish a self-sufficient wool-manufacturing industry in this country at the end of the Revolutionary War in 1783. The first attempt was made in 1778 when the Hartford Woolen Company was formed at Hartford, Connecticut. The new country's leaders gave it all possible encouragement. Other mills were established at Stockbridge, Watertown and Ipswich, Massachusetts, but all of them failed because of the lack of skilled labor, poor equipment and the inferior quality of the wool used.

The factory system of wool manufacturing was full grown by 1870. Mills became completely integrated independent units, which could process raw wool into finished fabric. Machinery improvements, mass production techniques and electric power greatly increased flexibility and output. By about 1900, the industry generally had reached its present status and was supplying all domestic wool textile requirements.25

Among the most important conditions responsible for the location of the wool textile industry in the Northeast were:

1. The people, and therefore the markets, were concentrated mainly in this area.
2. It was the center of sheep and wool production during the early period of development of the textile industry; and the raw material was available locally.
3. The area had excellent harbors where imported wools could be landed close to the mills.
4. The skilled labor was here.
5. The area's large supplies of soft water were ideally suited for wool manufacturing.
6. Good locations were available for water-driven power machinery, and later for hydroelectric power.
7. Good inland waterways provided transportation.
8. The climate, especially the humidity, was favorable.
9. The raw wool market and marketing facilities developed here.
10. Other manufacturing industries, which supplied the needs of the mills, also were developed here.
11. The capital was raised here, and the area's lending agencies developed a knowledge and understanding of the industry's problems.

Steps in Manufacture

Processing raw wool into finished fabric is an old art. Although simple in the beginning, it has developed into a complex industry with a large number of operations, all vitally affect the final product. Many expensive, complex machines are required for the complete processing of wool and a large mill has millions of dollars invested in buildings, machinery and equipment. Huge additional sums must be invested in raw wool stocks in processing stages and storage, and finished goods on hand or on account to buyers. Marketing, manufacturing and distribution of wool processing in a large, integrated mill, the consumer about six times as much as the farm production phase. The processing stage about 86 percent of the total cost; the remaining 14 percent represents the cost of raw wool.26

All mills do not process raw wool through the finished fabric ready for the garment makers. Some complete certain phases, then sell the product to other mills, which may finish the remaining stages or complete another stage and resell to other mills. The industry has developed distinct stages at which the partially processed fiber becomes a standard marketable product that the industries can trade freely. Since these products, as well as finished fabrics, should be considered as possibilities for manufacture in Texas, the stages of the manufacturing wool and mohair products are presented. The flow of raw wool through the different processes is shown in Figure 5.

Marketing

Moving raw wool from the farms and ranches to the manufacturer involves such marketing services as assembling, transporting, grading, storing and merchandizing. Brokers may range for the purchase or sale and take no part in preparing, handling or financing. Commission agents, warehouses or cooperatives may receive the wool on consignment, assume responsibility for its care, sell it, collect from the buyers, and make settlement with the growers. Dealers may take possession of the wool, ship it to consuming centers, prepare it for processing, store it and sell it for their own account. Or the mill may purchase it from the grower through his marketing agency. The combined costs of raw wool marketing services average about 9 percent of the cost of goods to the consumers.

Sorting and Blending

Raw wool is sorted after it reaches the mill, that is, fibers with similar characteristics are placed in one group. No matter how careful the grower prepares the wool, there will be variances in the grade of the wool, and even the same grade of wool will change as it passes through the mill.
WOOL GROWER

WOOL DEALER

MANUFACTURER

Manufacturing Processes

Sorting and Blending

Scouring

Worsted Process

Carding

Backwashing

Gilling and Punching

Combing

Combed Sliver (Top)

Nools

Finisher Gilling

Top Dyeing (If Required)

Drawing

Spinning

Twisting, Doubling

Carding

Carding and Condensing

Spinning

Yarn Dyeing (If Required)

Carbonizing (If Necessary)

Wool Dyeing (If Required)

Batching and Blending

Carding

Hardening

Milling or Fulling

Washing, Dyeing, Tentering

Finishing, Cropping, Pressing

Floor Felts and Industrial Felts

Hat and Cap Felts

Weaving

Warping, Sizing

Weaving

Burling and Mending

Scouring

Milling and Drying

Piece Dyeing (If Required)

Finishing, Raising, Cropping, Pressing

Knitting

Knitting, Shaping, Finishing

pressed felt making

CLOTHING MANUFACTURER OR WHOLESALER

RETAILER

CONSUMER

Figure 5. Flow of raw wool through the different marketing stages. Source: USDA.
tions in fineness, length, soundness, color and other characteristics which may influence the quality of the finished product. The highest quality goods require the most careful sorting, which is done by skilled workers. Since labor is expensive, there is a trend toward trap or bench sorting instead of detailed sorting.

Blending is mixing various lots of wool, or mixing wool with other fibers, to obtain the best possible stock for the price. It usually precedes scouring in the manufacture of worsted goods, but may be done after scouring, especially in making woolens. Worsted goods also can be blended in the gilling process after carding.

Scouring

Washing the dirt, grease and other impurities out of the wool is called scouring. The raw wool is raked gently through a series of vats called a scouring train. These vats usually contain warm water, soap and soda ash and rinse water. Water requirements average 1 to 3 gallons per pound of grease wool, depending on the method of operation.

Carbonizing

Wool that contains vegetable matter is carbonized if enough vegetable matter is present to damage the value of the goods. The scoured wool stock is treated with an acid to reduce the vegetable matter to carbon, which can be removed mechanically by rolling and shaking. Unless the wool has been blended with fibers that would be damaged by the acid, it can be carbonized in the later stages of processing.

Woolen Carding

The next stage in processing is carding. Carding breaks up locks, untangles and straightens the fibers, mixes the stocks, removes some vegetable matter and delivers the stocks in a convenient form for further processing.

Woolen Spinning

In woolen spinning, the card roving (ribbon of carded fibers) is drawn out to the desired diameter or weight, and the strand is twisted and wound onto packages suitable for weaving or shipment.

Worsted Carding

Worsted carding is similar to woolen carding except that greater efforts are made to arrange the fibers parallel to each other.

Worsted Combing

The functions of worsted combing are to remove the short fibers intermingled in the stock, to straighten and make the longer fibers retained lie parallel, and to remove more impurities. Combing may be preceded by several gilling operations, backwashing or oiling. The short fibers that are combed out (noils) are a valuable raw material for woolen goods. The longer fibers, with further processing, become worsted top.

Top Finishing

The sliver delivered from the combing machines is uneven in diameter, and must be pressed further to yield a commercial top of standard weight, length and condition. Several strands of the slivers are run through gilling machinery which further straighten, parallel and blend the fibers, giving the top the uniformity required. Moisture or conditioning materials may be added in this process.

Worsted Drawing and Spinning

More processes are required to convert worsted top into yarn than to spin woolen yarn. The top must be drawn out, redoubled to reduce variation and drawn out again until the desired diameter is obtained. Then it is twisted and wound into packages. Some 7 to 11 steps usually are required to complete the process.

Weaving Woolens and Worsted

Weaving is the production of cloth by interlacing at right angles the yarns running lengthwise (warp yarns) with those running crosswise (the filling or weft). A number of preparatory processes, such as rewinding, beam warping, sizing, reeding, twisting in and drawing, precede the actual weaving or operation of the loom.

Finishing

The finishing of wool fabrics involves a number of operations. They vary according to the material and finish desired—but may include washing, fulling, carbonizing, dyeing, perching, singeing, shearing, burling, mending, pressing, inspecting, labeling and packaging for shipment.

Woolen and worsted yarns also are processed into knit goods, but processing is the same through the yarn stage. The bulk of the fabric produced goes to fabricators, who fashion the fabrics into clothing and household goods, but the bulk of the knitted goods goes to retailers.

Woven felts are processed much like woolen fabrics, but the fibers in pressed felts are bound together by interlocking the individual fibers with heat, friction, pressure and bonding agents.

The distinct stages in processing at which the products are marketable are scouring, wool tops, woolen and worsted yarn, fabrics, knit goods and felts.28

Leading Wool-manufacturing Countries

The leading wool textile-manufacturing countries of the world include the United Kingdom, United States, France, Germany, Italy and Japan. With the exception of the United States, which imports more than it exports, these countries also are the leading exporters of wool textile goods. Many other countries manufacture some wool, but mainly for their own consumption.

The export trade of all the leading countries except the United Kingdom was cut off during World War II, and Great Britain's exports were greatly reduced. Europe and Asia were cut off from Southern Hemisphere supplies of raw wool. Bombing destroyed many of the wool textile plants in Germany, and Japan diverted many of its own plants to produce more essential war goods.

During the postwar years, the industry has been largely restored in these war-torn countries, some now exceeding prewar capacity, Figures 6-A, 6-B and 6-C. They have a larger number of various kinds of machinery, which is more modern and has a higher production capacity than before the war.

Reduction in numbers of some machinery may reflect a change to automatic types rather than a reduced capacity. Longer hours of operation per week also can influence production greatly.

Although production records may not be a reliable measure of capacity, Japan's production of tops, yarns and fabrics during 1948-53 ranged from 400 to 800 percent above prewar production.29

Many smaller countries recently have made great strides in enlarging their wool textile industries. The most notable examples are the five major wool surplus-producing countries, whose combined mill consumption has increased over 250 percent above prewar levels.30 Some of these countries may be eying foreign markets as well as producing their own needs.

Trends and Problems of the Domestic Industry

Machinery in Place, Location and Hours Operated

The U. S. textile industry is important in this country's economy by any standard of measurement. Income tax returns in 1952 show that the textile mill products industry ranked seventh among the nation's manufacturing industries. In 1952, it employed 1,134,680 people, compared with 15,944,379 employed in all manufacturing industries.31 In addition to the industry's contribution to our peacetime economy and comfort, military leaders rank its contribution to victory during World War II third behind only munitions and food.

Wool textile manufacture is an important part of the textile industry. Woolen and worsted fabric production, which is only one segment of the wool textile industry, ranked 19th in number of people employed and 25th in value added by manufacture among the 468 industries surveyed in the 1947 Census of Manufacturers.

Although it is a large industry, basically it is made up of a number of small businesses. There were 808 plants in 1947. Of this number, 90 percent employed less than 500 people each, and about 75 percent employed fewer than 250 each. The industry paid about 469 million dollars for wages and salaries in manufacture in 1950.

Machinery in place is one of the most accurate measures of the industry's size. Table 3 shows the trends in number of wool textile machines. Woolen and worsted spindles show sharp downward trends. The total number of broad looms is sharply downward also, but the reductions have been in nonautomatic types. Although the number of Bradford combs has decreased, French combs have increased correspondingly to maintain the total number of combs. The combing capacity, however, has been reduced because of the lower combing rate of the French combing process.

The reduction in number of spinning machines does not necessarily mean that there has been a similar reduction in spinning capacity. The newer, continuous system has a higher rate of production so that fewer machines of this type are needed to produce as much spun yarn as did more machines of the older, or intermittent type.

Replacement of old looms with automatic types has reduced the number of looms. Here again, total production capacity of looms has been reduced because of the higher rate of production of the newer, automatic types as compared with the older, nonautomatic looms.

Besides the changed types of machinery, multiple-shift operations also have helped to avoid any loss of capacity caused by reduced numbers of machines. There is a marked trend toward in multiple-shift operation, both on two and three shifts. A plant operating on two shifts produces about twice the production of single-shift operation.

The bulk of the wool textile-processing equipment is located in the New England States. Figure 7 shows the percentage distribution by region as of December 1949. No doubt, the proportion has been reduced in New England and increased in the Southeast since that time. New England's proportion of automatic looms was reduced 11 percent during 1939-49, but a greater change has taken place in the past 6 or 7 years with a regional shift southeastward.

TABLE 3. WOOL TEXTILE MACHINERY IN PLACE IN THE UNITED STATES BY YEARS 1

<table>
<thead>
<tr>
<th>As of December</th>
<th>Total worsted combs</th>
<th>Total worsted spinning spindles, thousands</th>
<th>Total woollen spinning spindles, thousands</th>
<th>Total woolen and worsted looms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1919</td>
<td>2,382</td>
<td>2,356</td>
<td>2,401</td>
<td>63.9</td>
</tr>
<tr>
<td>1925</td>
<td>2,787</td>
<td>2,757</td>
<td>2,460</td>
<td>86.6</td>
</tr>
<tr>
<td>1930</td>
<td>2,712</td>
<td>2,510</td>
<td>2,265</td>
<td>84.8</td>
</tr>
<tr>
<td>1935</td>
<td>2,631</td>
<td>2,265</td>
<td>1,916</td>
<td>84.1</td>
</tr>
<tr>
<td>1940</td>
<td>2,490</td>
<td>2,036</td>
<td>1,684</td>
<td>84.4</td>
</tr>
<tr>
<td>1945</td>
<td>2,598</td>
<td>1,930</td>
<td>1,605</td>
<td>78.2</td>
</tr>
<tr>
<td>1946</td>
<td>2,601</td>
<td>1,917</td>
<td>1,600</td>
<td>78.8</td>
</tr>
<tr>
<td>1947</td>
<td>2,656</td>
<td>1,921</td>
<td>1,561</td>
<td>78.5</td>
</tr>
<tr>
<td>1948</td>
<td>2,679</td>
<td>1,863</td>
<td>1,535</td>
<td>78.4</td>
</tr>
<tr>
<td>1949</td>
<td>2,727</td>
<td>1,844</td>
<td>1,443</td>
<td>77.7</td>
</tr>
<tr>
<td>1950</td>
<td>2,750</td>
<td>1,813</td>
<td>1,329</td>
<td>77.2</td>
</tr>
<tr>
<td>1951</td>
<td>2,807</td>
<td>1,792</td>
<td>1,236</td>
<td>76.9</td>
</tr>
<tr>
<td>1952</td>
<td>2,721</td>
<td>1,692</td>
<td>1,124</td>
<td>76.2</td>
</tr>
<tr>
<td>1955</td>
<td>2,660</td>
<td>950</td>
<td>818</td>
<td>20.4</td>
</tr>
</tbody>
</table>

2Not specified whether in place or otherwise.

Included 141,000 combs for recombing but not classified to type of comb.
New Machinery, Techniques, Buildings and Equipment

The wool textile industry went through some trying times between the two world wars. Much of the machinery was idle. In 1939, one of the better years, the woolen and worsted manufacturers spent only $9,307,000 for new plants and equipment. As a result, the industry went into World War II with machinery and equipment in relatively poor condition. Almost no new additions to plants and equipment were made during the war. Heavy war and postwar demands were met by putting the idle machinery back to work and by increasing the hours of operation through multiple shifts.

Stepped-up activity wore out much of the machinery; and since machinery manufacturing was limited to the most essential production, shortages in machinery developed. Newly designed, more productive machines made obsolete much of the machinery that had not been worn out. The industry has been and still is faced with a big machinery replacement problem.

The industry has been able to modernize somewhat because of good profits during the war and postwar years. In 1947, the total value added by manufacture was under 800 million dollars, and the industry invested over 52 million back into the business. New machinery took most of the expenditures.

Textile machinery has been improved greatly during recent years. The president of the American Textile Machinery Association said that the advance in textile machinery during the past 25 years was the greatest in American history. The number of mills and spindles has declined, but production has gone up. Since World War II, the textile industry has spent over 3 billion dollars on new plants and equipment, yet the industry is still about 70 percent nonmodernized. Machinery is costly. One die for a certain shuttle, only one part of a loom, costs over $12,000, and there are more than 3,000 varieties of shuttles.

The editor of Textile World reported on a study comparing 1954 spinning frames with 1940 frames. It showed that the 1940 frames were, in comparison, a waste of workers' time. Many mills still are running band-driven spinning frames, yet none of these has been manufactured since 1915. It has been estimated that a fourth to a third of all U. S. spindles are of this type (December 1954). The same situation probably exists with other machinery in use by the industry.

A loom census in 1942 by the Crompton and Knowles Machine Company showed that only 38 percent of their looms in use were less than 20 years old.

A brief review of a few improvements in machinery and operations may illustrate why a mill with outdated equipment has difficulty competing with a modern mill.

Scouring equipment has changed little in recent years, so this machinery has not been out-dated. Scouring, however, is one of the less costly operations and is seldom a bottleneck to most mills. Even with scouring, automatic controls have improved the operation and reduced labor requirements.

The modern cards are metallic and self-stripping, which has reduced labor cost; they are also wider and offer greater carding surface. An 84-inch card costs only 11 percent more than a 72-inch card, 23 percent more than a 60-inch card and 35 percent more than a 48-inch card; yet, the 84-inch card offers 16 percent more carding surface than a 72-inch card, 40 percent more than a 60-inch card and 75 percent more carding surface than a 48-inch card. A mill needs fewer cards, fewer man-hours, less space and less upkeep to reach the same production.

Spinning probably has advanced further than any other phase of the woolen and worsted industry. Only a few years ago worsted yarn manufacturers used 9 and sometimes as many as 12 steps to convert wool tops into worsted yarns. Today, some of the manufacturers have reduced the drawing out, redoubling and twisting operations to as few as 5 on the same machinery and are even running some of the machines twice as fast as before. This was made possible by quality control techniques and laboratory testing to insure the quality of the product.

In general, the new spinning machines are bigger, run faster, have larger packages, are simpler to operate and maintain and require fewer steps to convert the top into yarn. One of the most outstanding new machines is the pindrafter developed by the Uxbridge and Warner-Swazey Companies.

A far-reaching development has been the adoption of the Long Draft System, commonly called the American System, to worsted spinning. It was developed primarily by the Whitin Machine Works for processing long staple rayon. Although the principles may be similar, it is improper to term it the cotton system since it can-

\[300\text{Woolens and Worsted,} \text{War Changes in Industry, Series No. 29, U. S. Tariff Commission, 1949, page 59.}\]

\[302\text{Howe, Frederick W., Jr.,} \text{Textile Equipment Advance Greatest in Past 25 years, The Commercial Bulletin, Feb. 12, 1955.}\]

\[304\text{Morris, James A.,} \text{Woolen and Worsted Manufacturing in the Southern Piedmont,} \text{1952, page 58.}\]

\[305\text{Textile Industries, Vol. 118, No. 1, Jan. 1954, page 150.}\]

17
not process fibers shorter than 1½ inches. The Long Draft System was designed to process fibers up to 4 inches long, in 56’s to 64’s quality top containing 2 to 3 percent of oil.38 Von Bergen lists the advantages of this system as: a labor saving of up to $10 per spindle for a 4,000 spindle mill on two shifts, better fiber control and a smaller investment outlay. The disadvantages include: the requirement of highly uniform tops, difficulty of blending because of the smaller number of doublings and a lack of flexibility because of the narrow range of tops (fiber lengths and grades) it can handle.39 Some mills claim savings of up to 30 cents per pound of yarn over the older system.40 Although only 24 companies had 151-848 of these spindles in 1952,41 their number has increased rapidly.

In the weaving phase, probably the most important advance has been the development of shuttle magazines which replace an empty shuttle automatically without stopping the loom. This has increased production greatly and reduced labor requirements. Other improvements have made the loom more efficient and more automatic, and increased its operation speeds.

Many improvements also have been made in winding devices, yarn-conditioning equipment, material-handling devices, washing equipment, dyeing, laboratory equipment and techniques, quality control devices and others. For example, one recent development in dyeing makes it possible to do a job in a few minutes that formerly required 4 to 5 hours. Such a development makes the earlier system obsolete immediately.

Machinery is not the only production factor that has been improved. The buildings which house the machinery are a radical departure from the old-style mills. New buildings have been designed around well-engineered machinery layouts for more efficient flow of materials. Rarely are they more than one story high. The efficient flow of processes reduces labor; and better lighting, better temperature and humidity control and other improvements have increased overall efficiency. Many of the changes are not well adapted to old-style, multiple-story establishments, but their advantages have prompted the building of new plants equipped with the latest machinery.

These improvements also have resulted in greater labor efficiency as measured by the value added per production worker. The value of production per worker was $1,898 in 1939, but it increased to $4,813 by 1947. This is a 47 percent increase in efficiency based on the same dollar value. The increase would have been somewhat greater if management had been free to set scientifically designed workloads on the machinery.

Production, Exports and Potential Capacity

Production records and the productive capacity of the industry should be considered studying the size of the domestic industry. Production is not a reliable guide to capacity because it is influenced to such a high degree by demand. A possible exception occurred in the early postwar years when demand was high and production was not controlled. Even then, production might have been increased through longer hours of operation.

The longtime production trend in tops, yarn and fabrics is up, but sharp declines in the 1950s resulted from decreased consumption and substitution of other fabrics for woolens and worsteds in consumer goods.

Practically all the production of the U. S. industry is for consumption in the United States. Exports normally account for less than 1/4 of percent of domestic production. An exception was the lend-lease and United Nations relief during 1944-46 when the United States supplied a considerable volume of woven goods for export. Large amounts of rags and clips are exported, but these are considered raw material for cheap woolen fabrics and are not finished products. Italy is our major customer for rags and clips.

Top, yarn and fabric exports have been small with no increase expected in the foreseeable future.

The National Association of Wool Manufacturers is concerned about the potential capacity of the industry. The association recently requested that the Federal Government make a survey to determine whether the industry’s capacity is great enough to meet any emergency. Representatives of the association report that some 20% out of 800 wool textile mills have closed down since 1947. Some of these plants probably have reopened; machinery has been moved to other plants and put into operation, and a number of new plants and additions to existing plants have been built. The net loss, therefore, is not new as large as mill closure figures indicate. Many of the closed mills probably would be put back into operation if demands and profits were favorable.

39 Ibid., page 613.
Machinery in place is decreasing in the United States, but this trend has been accompanied by an increase in hours operated—multiple-shift operation. Machinery has been improved, and new plants are much more efficient; still the industry is largely nonmodernized by today’s standards. Production of goods also is increasing, although it has been curtailed sharply in the past 3 or 4 years.

Most authorities have blamed overcapacity as a major cause of the industry’s ills in the past. Production levels were high during heavy postwar demands; a study of the conditions tending to reduce and increase capacity indicates that the industry could produce considerably more than its present volume.

Future productive capacity is more difficult to predict. Probably no shortages will occur unless a critical world situation should develop which would greatly increase the need for apparel fabrics.

Profits and Mergers

Most industries have experienced good and bad business cycles and this is certainly true with the domestic wool-textile industry. The bulk of the wool-textile market is for apparel products. When people feel an economic pinch, it is easier to cut down on clothing expenditures than on expenditures for most other consumer goods.

The wool industry went through one serious business depression before World War II. In the 11 years, 1928-38, the industry showed profits after taxes only in 1933, 1935 and 1936. The total net combined losses after taxes during this period amounted to almost 100 million dollars.

A small number of large woolen and worsted manufacturers showed the following percentage returns on stockholders’ investments after taxes during 1940-48:

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>5.8</td>
</tr>
<tr>
<td>1941</td>
<td>11.8</td>
</tr>
<tr>
<td>1942</td>
<td>9.5</td>
</tr>
<tr>
<td>1943</td>
<td>9.1</td>
</tr>
<tr>
<td>1944</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Comparable data for succeeding years are not available; however, figures for woolen and worsted and broad woven fabric mills show that profits declined sharply. Profits were given a boost in 1950-51, with the outbreak of the Korean War, after they had declined from the high 1946-48 period.

The textile business has been declining since 1951. It may not have reached the prewar depression stage, but it is serious. The textile mill products industry showed a profit of 6.5 cents per dollar of sales in the first quarter of 1941 and 9.5 cents the first quarter of 1947. Profits were 5.1 cents per dollar of sales the first quarter of 1951 but dropped to 1.6 cents during the third quarter. Since the third quarter of 1951, no quarter has been higher than 2.7 cents per dollar of sales to May 1954. The wool industry has been the hardest hit of any of the textile mill products group. During 1947-55, the wool industry suffered a 29.9 percent decline in business.

Production and profits have decreased yearly since 1951, although 1955 appears to have reversed the downward trend. However, plants continue to close and business failures are high. Dunn and Bradstreet reported 250 business failures among manufacturers of textile mill products and apparel for the first half of 1955, compared with 297 failures the first half of 1954. Wall Street Journal reporters say these figures show textile mill products and apparel accounted for 22 percent of all 1955 industrial failures to October 24.

The current situation in the wool-textile industry may not be a depression by the prewar standard, but it is a depression compared with other U. S. economy. Many circumstances have been responsible. Reduced buying of the industry’s products is a most obvious factor. Products from other textile industries have replaced some of wool’s markets. Excess capacity in the industry, aggravated by reduced consumption, has increased competition to almost a “cutthroat” business. Mills have sold at a loss to keep their workers and stay in business. Marginal mills that were able to stay in business during the war and postwar booms were slow in going out of business.

This depression can be attributed partially to the high cost of labor and the demands of labor unions. In some cases, union regulations would not permit a mill to increase the number of machines per worker so as to take advantage of the improvements in new machinery.

A number of new, well-laid-out plants, equipped with the most modern machinery, scientifically determined workloads and lower per-hour wages, established price levels impossible for many mills to meet. A wide disparity of production efficiency was established in the industry.

Woven fabric imports have increased severalfold, although imports still constitute only a small fraction of U. S. production. The bulk is now high-quality goods, and imports have hurt...
the U. S. mills producing these goods. Other imports have been small except for the volume of wool tops in 1952. Possibly the threat of reduced tariffs and increased imports has influenced business more than the actual imports.

Other conditions include high taxes in some areas, outdated depreciation schedules and poor management. Management may be criticized for paying high dividends during lush years and saving inadequate reserves for modernization. Union policy in regulating labor made it difficult for management to utilize its labor efficiently.

The rapid tax amortization granted to synthetic fiber manufacturers has helped the competitors of the wool textile industry. As of September 30, 1954, the Office of Defense Mobilization had issued 32 certificates of necessity for the manufacture of synthetic fibers. The cost of these 32 projects was $257,854,000. Only one project had not been started by the date on the certificates of necessity, while 22, or 68.8 percent, had been completed.

Some other financial conditions have helped the wool-textile industry. Substantial depreciation allowances help the industry to purchase capital equipment. Also, new machinery purchase plans help plants with low reserves to modernize. The Commercial Investment Trust, the world’s largest industrial financing firm, has a “pay-as-you-depreciate” 10-year installment plan. New financial arrangements also have been offered by machinery makers.

Although the wool-textile industry is basically one of small businesses, there is a recent trend toward increased size of firms. There have been a few large concerns, such as the American Woolen Company, but no one firm controlled a very large share of the market. Recent mergers have tended to increase the size pattern in the industry.

The Federal Trade Commission reported that during 1948-54, 74 textile and apparel concerns acquired 117 other concerns. Of these, 55 acquired only 1 company, 10 acquired 2, 5 acquired 3, 2 acquired 4, 1 acquired 6 to 10 and 1 acquired 11 to 20 companies. These figures show that the majority bought only one company, but a small number expanded greatly. The textile and apparel group ranked third among all industry groups in number of firms taking part in mergers and sixth in number of firms acquired.

The extent of present concentration is a matter of sharp dispute. A labor union claims that mergers have resulted in substantially reduced competition. On the contrary, a representative of the largest textile organization claims that single company controls more than 3 to 4 percent of the total textile volume. Two unbiased authorities see the merger movement as natural and inevitable and no cause for alarm.

Some advantages of increasing the size of the textile-industry enterprises through mergers are:

1. Diversification of products so that business is bad in one field and good in another, the business still can show a profit.
2. More efficient use of research, purchasing, selling and top-management skills.
3. Improvement of facilities.
4. Decentralization of production to avoid complete shutdowns from strikes or mill damage.
5. More effective use of name brands.
6. Obtaining tax savings through loss carried over.
7. Achieving a stronger financial structure.

The increased number of textile companies, with plants in several locations probably has strengthened the possibility of branch plants in Texas.

Tariffs and Imports

Like the producers of raw wool, the manufacturers of wool-textile goods have had tariff protection since 1816. Today this country has the world’s highest level of living and offers a more attractive market to other countries. However, the U. S. textile industries are handicapped competing with other countries because of much higher production costs. Tariffs, therefore, are a vital subject in any analysis of the domestic textile industry or discussion of its future. This especially is true in light of this country’s leadership in attempts to promote free world trade. The “trade-not-aid” philosophy has taken much of the political spotlight during the past 3 or 4 years.

In tariff acts passed by the U. S. Congress the longtime trend in duties on wool manufactures is upward. Recent rates negotiated through treaties and agreements by the executive branch of the federal government are sharply downward.

The Trade Agreement Act of 1934 and numerous extensions have given the President...
authority to reduce tariffs, and it is through trade agreements that our duties have been lowered materially. The first important reductions under this act were in an agreement with the United Kingdom which became effective January 1, 1939. A slight reduction had been given to Belgium on billiard cloth in 1935. In the British agreement, ad valorem rates on wool fabrics were reduced to 45, 40 and 35 percent. An unusual twist to the agreement was that the lowest rate would apply to highest priced goods, which reversed all previous tariff act policies. The rate on the highest priced imports was thus reduced from 60 to 55 percent.

The next duty-lowering trade agreement was negotiated at Geneva, and the concessions granted became effective January 1, 1948. In this agreement, raw wool duties were lowered 35 percent, from 34 to 25 1/2 cents. Specific duties on woolen and worsted fabrics were lowered from 50 cents per pound to 37 1/2 cents, or 25 percent. The ad valorem rate was lowered to 25 percent, which applies to all goods regardless of value.

TABLE 4. IMPORTS OF DUTYABLE WOOL, CLEAN CONTENT, INTO THE UNITED STATES, FROM LEADING COUNTRIES, 1935-541

<table>
<thead>
<tr>
<th>Year</th>
<th>Argentina</th>
<th>Australia</th>
<th>New Zealand</th>
<th>Union of South Africa</th>
<th>Uruguay</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1935</td>
<td>7,441</td>
<td>5,524</td>
<td>2,376</td>
<td>230</td>
<td>3,218</td>
<td>29,746</td>
</tr>
<tr>
<td>1936</td>
<td>16,654</td>
<td>18,296</td>
<td>6,088</td>
<td>1,846</td>
<td>14,067</td>
<td>75,559</td>
</tr>
<tr>
<td>1937</td>
<td>17,638</td>
<td>40,305</td>
<td>11,024</td>
<td>2,257</td>
<td>13,554</td>
<td>94,263</td>
</tr>
<tr>
<td>1938</td>
<td>6,779</td>
<td>3,934</td>
<td>4,002</td>
<td>293</td>
<td>1,867</td>
<td>20,993</td>
</tr>
<tr>
<td>1939</td>
<td>14,022</td>
<td>16,871</td>
<td>7,287</td>
<td>3,817</td>
<td>10,093</td>
<td>59,567</td>
</tr>
<tr>
<td>1940</td>
<td>44,065</td>
<td>20,989</td>
<td>2,965</td>
<td>14,821</td>
<td>25,543</td>
<td>119,302</td>
</tr>
<tr>
<td>1941</td>
<td>105,832</td>
<td>125,394</td>
<td>3,365</td>
<td>19,638</td>
<td>61,812</td>
<td>329,084</td>
</tr>
<tr>
<td>1942</td>
<td>89,014</td>
<td>284,908</td>
<td>15,992</td>
<td>35,934</td>
<td>20,758</td>
<td>457,116</td>
</tr>
<tr>
<td>1943</td>
<td>104,276</td>
<td>168,275</td>
<td>16,749</td>
<td>22,386</td>
<td>63,872</td>
<td>397,427</td>
</tr>
<tr>
<td>1944</td>
<td>108,815</td>
<td>122,714</td>
<td>14,226</td>
<td>12,171</td>
<td>64,733</td>
<td>344,906</td>
</tr>
<tr>
<td>1945</td>
<td>82,191</td>
<td>167,582</td>
<td>33,359</td>
<td>18,402</td>
<td>93,115</td>
<td>417,979</td>
</tr>
<tr>
<td>1946</td>
<td>108,410</td>
<td>196,034</td>
<td>38,014</td>
<td>56,629</td>
<td>57,990</td>
<td>470,040</td>
</tr>
<tr>
<td>1947</td>
<td>49,503</td>
<td>124,125</td>
<td>21,701</td>
<td>20,307</td>
<td>36,691</td>
<td>259,266</td>
</tr>
<tr>
<td>1948</td>
<td>59,847</td>
<td>84,515</td>
<td>13,211</td>
<td>16,646</td>
<td>59,506</td>
<td>246,228</td>
</tr>
<tr>
<td>1949</td>
<td>24,045</td>
<td>56,747</td>
<td>8,974</td>
<td>13,960</td>
<td>41,193</td>
<td>154,931</td>
</tr>
<tr>
<td>1950</td>
<td>44,248</td>
<td>86,199</td>
<td>20,929</td>
<td>12,326</td>
<td>73,848</td>
<td>250,112</td>
</tr>
<tr>
<td>1951</td>
<td>27,934</td>
<td>121,262</td>
<td>25,049</td>
<td>23,563</td>
<td>57,825</td>
<td>272,017</td>
</tr>
<tr>
<td>1952</td>
<td>29,787</td>
<td>93,522</td>
<td>54,892</td>
<td>24,286</td>
<td>32,069</td>
<td>248,450</td>
</tr>
<tr>
<td>1953</td>
<td>49,173</td>
<td>46,301</td>
<td>22,788</td>
<td>11,130</td>
<td>28,736</td>
<td>158,128</td>
</tr>
<tr>
<td>1954</td>
<td>14,521</td>
<td>42,613</td>
<td>16,199</td>
<td>14,123</td>
<td>11,805</td>
<td>99,261</td>
</tr>
</tbody>
</table>

Figure 8. Total annual imports of woven wool apparel fabrics, 1946-53. Source: USDA.

Lower raw wool tariffs after 1948 have helped lower the income of domestic wool growers and reduce sheep numbers in the United States.

The bulk of our duty-bearing wools is imported from the five major wool surplus producing countries in the Southern Hemisphere, Table 4. Argentina is our leading supplier of the duty-free wools. Other major suppliers are New Zealand, China, United Kingdom, Syria, Iraq, India and Pakistan; but a number of other countries supply small amounts.

The ratio of imports of high-priced goods to cheap goods has increased tremendously. In 1939, fabrics weighing over 4 ounces per yard and valued at over $2 per pound accounted for only 14 percent of imports. In 1947, they were 74 percent and in 1948, 90 percent. The volume was more
than 4½ times greater in 1948 than in 1939. Since the conversion cost has increased more than raw wool prices, the 25 percent ad valorem rate is less protective now than it would have been before the war, according to the Tariff Commission.

One important reservation in the Geneva agreement may play an influential role in the future of the wool textile industry: “Note—The United States reserves the right to increase the ad valorem part of the rate applicable to any of the fabrics provided for in item 1108 or 1109 (a) of this part to 45 per centum ad valorem on any such fabrics which are entered in any one calendar year in excess of an aggregate quantity by weight of 5 per centum of the average annual production of similar fabrics in the United States during the three immediately preceding calendar years.” This note refers to woolen and worsted fabrics.

There are three main problems connected with applying this clause. First, many production records are listed in yards instead of pounds. Second, there are differences of opinion as to what characterizes similar fabrics. Third, it is up to the President, with his advisors, to increase the rate; and the industry’s leaders have had difficulties in obtaining relief in the past. The escape clause in the 1934 Trade Agreement Act also allows protection for domestic industries, but it was applied only four times before May 1955. The ratio of wool-textile imports to domestic production has been increasing since 1947.

There are many indications that wool-textile imports will continue to increase. Tariffs are lower than at any time in almost a century, and they have been changed so that expensive goods pay the same rate as cheap goods. The world’s production potential is probably greater than it was before the war, and it is definitely greater in some countries that need to trade with the United States to get dollars. World production is increasing. World top production in 1953 was 30 percent above 1952 and exceeded the previous record of 1950 by 4 percent. Greater quantities of raw wool are being produced than ever before. Some of the prewar markets are closed, or partially closed, because of the “cold war”; and a number of smaller countries that previously imported many of their needs are trying to produce for themselves.

The domestic textile industry is concerned that imports will be greater. Japan’s production, largely consumed by China prior to World War II, exceeds prewar levels. To help Japan find new markets, the United States has lowered tariffs to encourage other countries to make such concessions. In 1948, the Japanese showed samples of worsteds that undercut comparable British goods by as much as $1.50 per yard. In 1954, Japan landed wool cloth in the United States at $1.50 to $2 per yard less than American-made goods after the duty was paid.

The wide difference in labor costs is the major condition that enables foreign countries to pay our tariffs and still undersell us. Labor costs in the U. S. wool-textile industry averaged 84¢ per hour in 1954. Numerous sources estimate labor costs in Japan at 14 cents per hour. Wage rates in other countries may be estimated from hourly wages paid in cotton textiles. These are United States $1.30, United Kingdom 40 cents, France 38 cents, Germany 31.7 cents, Italy estimated 30 cents, Japan 13.6 cents and India 14 cents. Although production per worker in the United States is higher than in other countries it does not compensate for wage differences. In addition to higher hourly rates, we have higher fringe benefits for workers, which are chargeable to labor. Other costs of production also are higher in this country, but labor cost is the major difference. Wages and salaries account for 50 to 60 percent of the value added in manufacture in the United States.

The problem of tariffs and world trade presents a real dilemma. The tariff itself is simply compared with manipulations such as manipulations such as manipulation of currencies, currency devaluation, compensatory spending, unbalanced budgets, discriminatory currency exchanges, discriminatory import and export taxes, import and export quotas, government fixation of minimum prices, state financing, export subsidies and a host of others. According to the American consul tal, England, “The export price advantage as a result of devaluation (British) presented a special opportunity for the sale of wool textiles to the United States.

All the requests for lower U. S. tariffs do not come from foreign countries. Many come from within this country. Cotton, wheat and other interests are strong proponents of lower tariffs that other countries can get U. S. dollars to buy their products. Cotton, wheat and wheat flour are protected by a duty as well as by an allowable import quota imposed under section 22 of the Agricultural Adjustment Act. Only 800,000 bushels of wheat (less than 1/10 of 1 percent of output) can come into this country per year. Wheat flour is limited to not over 4 million pounds (about 1/50 of 1 percent of our production) as the cotton quota is less than 1 percent of our production.

66Ibid., page 112.
Contrary to claims by some foreign and domestic interests, the United States no longer can be considered a high tariff country. The President's Commission on Foreign Economic Policy (the Randall Commission) said, "It seems clear by any test that can be devised that the United States is no longer among the high tariff countries of the World." The American Tariff League, in a 1951 world trade study, found that 35 to 43 leading trading countries had higher tariffs than the United States. Of five leading countries (United Kingdom, France, Canada, Germany and the United States), the U. S. had the lowest average tariffs. The league found that the average U. S. tariff was only 5.1 percent of the value of imported goods. The Randall Commission found that duties dropped from 24.4 percent when the United States started cutting duties to 12.2 percent in 1953. About 58 percent of U. S. imports are duty free.

Political developments or economic conditions may change the outlook, but it appears that imports are likely to continue the higher trends. The extra 20 percent of ad valorem duty, if the Geneva reservation is applied, may not limit imports. It is possible to obtain increased protection, however, if the situation becomes critical, as shown by the success of watchmakers and bicycle manufacturers in 1955. The bicycle increase is especially significant in that the manufacturers' arguments hinged solely on damage to a domestic industry.

Labor and the North-to-South Migration

Labor is the big problem of the domestic industry. It is the largest single cost item in converting raw wool into finished fabrics, and wage rates in this country exceed those of the next highest major country three to one. Average hourly earnings of wool-textile workers increased every year during 1939-52. Other problems are fringe benefits, work loads, efficiency and productivity of workers, attitudes of the workers and their unions and wage differentials between rural and urban centers, regions and industries. Labor is one of the main reasons that mills are closing in the North and the industry is growing in the South.

The wage rate differences between regions in the United States are much smaller than between this country and wool-textile exporting countries; however, they are important in this highly competitive industry. Figure 9 shows some differences in the 1952 wage rate between New England and the Southeast.

The industry is highly concentrated in the New England States, where wool-textile wages are higher than the U. S. average. Only about 1 percent of the textile workers, those located in the Pacific Northwest, have higher wage rates than New England, which is followed by the Middle Atlantic, Great Lakes and Southeastern areas in that order. Only about 13.5 percent of the production workers were in the Southeast in 1952. These workers, on the average, received 26 cents per hour less than the U. S. average and 31 cents per hour less than those in the New England States. Thus, the average wage costs in the Southeast were more than 20 percent lower than in New England, according to the Bureau of Labor Statistics. In 1953, the woolen and worsted industry paid its production and related workers $284,124,000. If 20 percent could have been saved on this labor bill, it would amount to $56,-824,800, or more than the whole industry's profits for many years.

Fringe benefits are labor costs that are not included in weekly wages and hourly rates. They include pensions, social security, paid rests and vacations, hospitalization and other benefits. According to a U. S. Chamber of Commerce study in 1953, the textile mill products and apparel industry has the lowest fringe benefits of all major industry groups except the pulp, paper, lumber and furniture groups. Fringe payments in 1953 for textile mill products and apparel accounted for 14.5 percent of the payroll. The total fringe payments amounted to 22 cents per hour, or $451 per year for each employee.

There are regional differences in benefits the same as in hourly wage rates. Although the U. S. average in this industry is 14.5 percent of the payroll, the Northeast paid 16.5 percent, the Eastern North-Central paid 15.5 percent and the Southeast 10.5 percent. Applying these percentages to New England's $1.50 per hour production worker rate and the Southeast's $1.19, gives a

101 Ibid., page 11.
fringe-benefit cost advantage of 12 cents per hour to the Southeast. Adding this to the 31 cent hourly wage advantage makes a total of 43 cents advantage of the Southeast over New England. The four U. S. Chamber of Commerce studies (1947, 1949, 1951 and 1953) show that fringe payments have grown steadily.

The part that labor unions have played in the liquidation of mills has been discussed considerably in trade periodicals. Although many mills had suffered losses for several years, they were not granted any wage reductions until 1954. The unions have made decisions on management problems such as workloads, wage rates, operating schedules and fringe benefits. A letter written by a Massachusetts firm to its 1,000 employees illustrates the wage problem. It said, “The mill’s average straight time hourly wage rate of $1.605, plus vacation, holiday and insurance benefits, created a gap of 56 cents per hour in favor of competing southern mills. Simple computation proves an annual competitive disadvantage to this Massachusetts mill of $1,065,000 in wage costs alone.”

Faced with competition from a growing and more efficient industry in the Southeast, the older mills in the Northeast had to decide whether to modernize or close up. The advantages of new modern machines are not completely utilized unless more of these machines are assigned to a worker; because of union policy, in some instances workload assignments could not be increased even though the workers would be doing no more actual work. About 90 percent of the woolen industry operated 4 looms per weaver; yet, in some mills a weaver operated as many as 16. If one mill increased workload assignments for weavers, then the 250 other mills would request the same.

In late 1954, the CIO agreed to allow a mill in New Hampshire to assign 12 looms to a weaver, instead of the customary 4, for a 6-weeks’ trial period. New contracts in 1955 allowed companies to change workload assignments without referring the matter to arbitration if the union objected. This workload assignment flexibility is one of the strong labor advantages in the South.

The labor unions are strongly opposed to states’ right-to-work laws. These laws, allowing the states to ban union security agreements, are authorized by Section 14 (B) of the Taft-Hartley Act. They outlaw the closed shop in that a worker cannot be forced against his will to join a union as a condition of employment.

Eighteen states now have such laws. They include Arizona, Arkansas, Alabama, Florida, Georgia, Iowa, Louisiana, Mississippi, Nebraska, Tennessee, Texas, Virginia, North Carolina, South Carolina, North Dakota, South Dakota and Utah. Eleven of these states are in the South.

The closing of mills in the North and the growth of the industry in the South have caused a great deal of concern in the New England States. A number of towns which depended primarily on textile employment faced a serious problem when the mills closed. Although much progress has been made in attracting new industries, the problem was so acute that the governors of the New England States appointed a committee in 1952 to study the problem thoroughly. A number of other studies also have been made. One, the Blanchard study, lists the following causes of New England’s textile troubles: higher labor costs, attitude of state authorities, unsatisfactory labor relations, trends to higher taxes, no decisions on third-shift women, labor shortages in some areas, high power and fuel costs and cost of unemployment insurance, workmen’s compensation and fringe benefits.

The textile industry has been moving South since the 1920’s, and it has been shrinking in the North at the same time both in number of people employed and number of plants. The northern areas are losing textile workers and plants faster than the South. During 1946-54, total liquidation was 640 plants with 167,945 employees. New England lost 236 plants with 91,835 employees, the Middle Atlantic States 287 with 51,245 people and the South 117 plants with only 24,875 employees. The South had 17.6 million spindles in 1925 and 18.4 million in 1950. New England declined from 18.3 to 4.3 million during the same period. By 1950, 80 percent of cotton textile capacity was in the South.

In April and May 1952, about 70 percent of the employees in worsted mills were in New England, and this area had over half of the woolen mill employees. In woolen and worsted manufacture, New England had 63,000 employees, the Middle Atlantic States 18,000, the Southeast 5,000 and the Great Lakes and Pacific Coast regions 54,000 employees.

FACTORS INVOLVING THE THREE REGIONS

Labor

Labor Factors in the North and South

The wool textile industry is a labor-oriented industry. Labor constitutes the largest single wage cost advantage of the Southeast over New England. Adding this to the 31 cent hourly wage advantage makes a total of 43 cents of the Southeast over New England. The four U. S. Chamber of Commerce studies (1947, 1949, 1951 and 1953) show that fringe payments have grown steadily.

The part that labor unions have played in the liquidation of mills has been discussed considerably in trade periodicals. Although many mills had suffered losses for several years, they were not granted any wage reductions until 1954. The unions have made decisions on management problems such as workloads, wage rates, operating schedules and fringe benefits. A letter written by a Massachusetts firm to its 1,000 employees illustrates the wage problem. It said, “The mill’s average straight time hourly wage rate of $1.605, plus vacation, holiday and insurance benefits, created a gap of 56 cents per hour in favor of competing southern mills. Simple computation proves an annual competitive disadvantage to this Massachusetts mill of $1,065,000 in wage costs alone.”

Faced with competition from a growing and more efficient industry in the Southeast, the older mills in the Northeast had to decide whether to modernize or close up. The advantages of new modern machines are not completely utilized unless more of these machines are assigned to a worker; because of union policy, in some instances workload assignments could not be increased even though the workers would be doing no more actual work. About 90 percent of the woolen industry operated 4 looms per weaver; yet, in some mills a weaver operated as many as 16. If one mill increased workload assignments for weavers, then the 250 other mills would request the same.

In late 1954, the CIO agreed to allow a mill in New Hampshire to assign 12 looms to a weaver, instead of the customary 4, for a 6-weeks’ trial period. New contracts in 1955 allowed companies to change workload assignments without referring the matter to arbitration if the union objected. This workload assignment flexibility is one of the strong labor advantages in the South.

The labor unions are strongly opposed to states’ right-to-work laws. These laws, allowing the states to ban union security agreements, are authorized by Section 14 (B) of the Taft-Hartley Act. They outlaw the closed shop in that a worker cannot be forced against his will to join a union as a condition of employment.

21Ibid., page 9.
A general trend in rapidly increasing labor cost has occurred since 1939. Labor cost increased about 30 percent during 1947-54. The National Association of Wool Manufacturers estimated labor accounted for 60 percent of the value added in manufacturing in 1954. Value added is the value of the products less cost of materials, supplies, fuel, electricity and contract work.

The cost of labor to make and sell woolen covert and worsted twill in 1950 accounted for 55 and 62 percent, respectively, of all costs less materials.

Lower hourly wage rates and fringe benefits gave the Southeast 43 cents per hour labor advantage over the New England States in 1952. One survey showed that in 1951 a differential of 30 cents per hour accounted for 8.1 to 12.1 percent of the price of eight different fabrics.83

Another item in the cost of labor is productivity. It may be influenced by workload assignments, skill and attitudes of workers and the efficiency of the machinery and equipment.

Labor productivity is greatest in the Southeast. Most of the plants in the Southeast are newer and are equipped with more modern machinery than those in the New England States. The buildings are constructed for the new equipment and are planned carefully to allow the most efficient flow of material through the processing stages. Management in the Southeast has had more freedom to use scientifically determined workloads to fit the new machinery so that workers in this area operate more machines. New job arrangements with special workers to do such jobs as oiling and maintenance have increased overall mill efficiency.

The editor of Textile World said that the present advantage of the South over Massachusetts is largely a matter of people and attitudes. A plant manager with mills in both the Southeast and the North said that the people in the Southeast liked their jobs and worked industriously, which was not always true of workers in the North.

Worker efficiency is difficult to compare in the Southeast and the North because standard conditions do not exist. Investigations on relative worker efficiency by 12 consulting firms are conflicting. A broad study, based on company data and interviews with top executives of more than 50 firms in all major types of industry, leads "to the almost unanimous conclusion that the South has extremely favorable and highly unexpected labor values for industry."

The average skill of woolen and worsted textile workers is probably higher in the Northeast than in the Southeast because the industry is so much older in the North. This advantage very likely is offset by the wider choice of workers because of the plentiful supply in the Southeast. The 1951 average annual wage for factory workers in the Southeast was 60 percent higher than the average farm income per worker. This may explain the smaller turnover of workers, the lower absenteeism and the lack of interest in unions attributed to southern workers.

Most of the new wool plants going into the Southeast have preferred to train their own workers from the rural labor force rather than bring them from the North or attract them from other industries, such as cotton textiles. Locations in cotton textile areas where labor rates are low have seemed to attract some mills. Some have used trained northern workers who migrated from the South earlier and were anxious to return home.

The trainability of southern workers is excellent. Training new labor for new machines seemed preferable to converting workers experienced on older types. The new workers have no preconceived ideas as to what constitutes a reasonable workload and none of the unfavorable habits often attributed to workers in older areas.

The labor advantage of the Southeast over the New England area likely will continue; however, it probably will be narrowed. Northern workers are being assigned more machines, or higher workloads, which will reduce labor costs in the North. The $1 minimum wage in effect March 1, 1956, will increase hourly rates in the Southeast. Although only 4.9 percent of all wool and worsted production workers in the Southeast received less than $1 per hour in April and May 1952, increasing their wages to $1 probably will cause adjustments upward in other wage brackets. Only ½ to 1 percent of the woolen and worsted production workers in New England received less than $1.

Despite the resistance to the union movement in Southern States, unionization probably will make headway in the South and tend to narrow area differences.

One very important question will be answered when the Supreme Court rules on states' right-to-work laws. Forcing repeal of these laws may hasten unionization in southern "right-to-work states."

Texas Labor

Essential labor requirements for processing wool and mohair would be the same whether the plants were located in Texas or any other area. Primary labor considerations are cost, supply availability and quality.

Average earnings of factory workers in the West-South-Central area of the United States (Texas, Arkansas, Oklahoma and Louisiana) have been among the lowest in the Nation. During 1950, hourly earnings averaged $1.29, compared with $1.47 in the Nation. Hourly earnings rose 28 percent during 1950-54, or more than double the national increase; but the $1.65 average for this area in 1954 was still below the Nation's $1.81 average per hour.

Texas workers in all manufacturing earned more per hour than the West-South-Central area as a whole. Although Texas wage rates were less than the national average, they were higher than in the New England States, except Connecticut, and considerably above the important southern textile states. This higher wage rate for manufacturing in Texas results from the big volume of high-paying industries, such as petroleum refining, chemicals, rubber, transportation equipment, and aircraft. Despite these high-wage industries, there are many food, apparel, lumber and other low-paying industries. The State is comparatively unindustrialized; large numbers of unskilled workers are available for the comparatively small number of factory jobs since the State represents a considerable improvement in income as compared with farm wages.

Because the Texas wool-textile industry is small at present, current wages probably would not be representative; however, the State's much

87 Ibid., page 81.
88 Ibid., page 83.
90 Ibid., page 15.
Texas has more commercial-type farms and more part-time and residential-type farms than any leading southeastern textile state. Also, according to the 1954 Census of Agriculture (preliminary), Texas had nearly as many farm operators working off their farms in 1954 as two of the largest southern textile states combined. About 143,000 Texas farm operators worked off their farms in 1954.

Texas’ farm population is declining more rapidly and its population growth rate increasing faster than the U. S. average. It has a larger total population and a greater number of farm operators working off the farm than other Southern States, while a smaller percentage of Texas’ population is employed in manufacturing than in the leading southern textile states. These conditions should put Texas in an advantageous position from the standpoint of labor supply. Not only is there an excellent supply, but wages are low compared with other textile states. The rapid increase in apparel industries, which also pay low wages, points out the availability of labor in the State.

TABLE 7. TEXAS LABOR FORCE, 1950

<table>
<thead>
<tr>
<th>Item</th>
<th>Total</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>7,711,194</td>
<td>3,863,142</td>
<td>3,848,052</td>
</tr>
<tr>
<td>14 years & older</td>
<td>5,583,178</td>
<td>2,781,613</td>
<td>2,801,565</td>
</tr>
<tr>
<td>Labor force</td>
<td>2,972,434</td>
<td>2,222,050</td>
<td>750,384</td>
</tr>
<tr>
<td>Civilian</td>
<td>2,870,605</td>
<td>2,122,499</td>
<td>748,106</td>
</tr>
<tr>
<td>Employed</td>
<td>2,758,433</td>
<td>2,037,758</td>
<td>720,675</td>
</tr>
<tr>
<td>Unemployed</td>
<td>152,162</td>
<td>84,741</td>
<td>77,421</td>
</tr>
<tr>
<td>Experienced</td>
<td>110,834</td>
<td>84,077</td>
<td>26,757</td>
</tr>
<tr>
<td>New workers</td>
<td>1,228</td>
<td>664</td>
<td>564</td>
</tr>
<tr>
<td>Not in labor force</td>
<td>2,610,744</td>
<td>559,563</td>
<td>2,051,181</td>
</tr>
<tr>
<td>Keeping house</td>
<td>1,653,702</td>
<td>13,866</td>
<td>1,639,836</td>
</tr>
<tr>
<td>Unable to work</td>
<td>221,299</td>
<td>135,014</td>
<td>86,285</td>
</tr>
<tr>
<td>Inmates of institutions</td>
<td>686,698</td>
<td>32,313</td>
<td>654,385</td>
</tr>
<tr>
<td>Others & not reported</td>
<td>405,450</td>
<td>200,075</td>
<td>205,375</td>
</tr>
<tr>
<td>14-19 years old</td>
<td>210,743</td>
<td>128,073</td>
<td>82,670</td>
</tr>
<tr>
<td>65 years & older</td>
<td>70,505</td>
<td>50,222</td>
<td>20,283</td>
</tr>
</tbody>
</table>

Education level is a factor that indicates labor trainability. The average educational level in Texas was about equal the U. S. average in 1950, which was 9.3 school years completed by persons 25 years and over. Of this group, 31 percent completed at least high school, while 16 percent completed less than the fifth grade. In 1950, 94.5 percent of the 7 to 13 age group was enrolled in school, as was 89.1 percent of the 14 and 15, 66.4 percent of the 16 and 17, 27.5 percent of the 18 and 19 and 11.0 percent of the 20 to 24-year-old group. More stringent state laws and rigid enforcement probably have increased attendance in the younger groups since 1950.\(^9\) Rapid consolidation of school districts and the increase in school bus transportation have improved educational opportunities for Texas rural youth.

According to a survey by a leading authority,\(^8\) Texas ranks above all the Southern States and above Maine, Vermont and Pennsylvania in education as measured by financial support, teacher status and results obtained.

Opportunities for higher education are excellent in the State. During the 1954-55 school year, 153,118 students were enrolled in accredited senior and junior colleges. There are 51 tax-supported and 83 private institutions in Texas, and 33 of the institutions are widely scattered junior colleges.\(^6\) The rapid increase in junior colleges in recent years and their location in all areas have helped bring advanced training within reach of more students in the State.

Texas has the only textile engineering school west of the Mississippi River—Texas Technological College at Lubbock. This school has been turning out graduates since 1929. Some are employed in the State, but many are in other textile states. These men would be qualified for a number of engineering and management jobs and no doubt would be favorable to employment in their home state.

No survey data are available on the productivity, efficiency and attitude of Texas labor; however, interviews with cotton textile mill executives, hatmakers, garment makers and the State's wool mill managers indicate that the quality of labor is excellent. They mentioned good attitude, low rate of absenteeism, initiative and lack of interest in unions as special qualities of their workers. Most of those interviewed said that the quality of Texas labor was as good or better than labor in other areas. The favorable attitude of Texas labor is indicated further by the fact that only two textile mills in the State were labor organized in 1954.

It seems certain that Texas has an advantage in labor over other textile areas at the present time. The advantage in labor supply probably will continue for some time. Some of the differential in labor cost will likely be removed by the new $1 minimum wage. In November 1954, 41 percent of the cotton textile workers in the Southwest received less than $1 per hour compared with 14.9 percent in the Southeast. The Texas Employment Commission reported that cotton textile mill wages were raised 6 cents per hour after March 1956. Although Texas labor may receive greater increases, the total labor bill of the mills probably will continue to be lower in Texas than in the Southeast.

Labor cost patterns are higher in wool textiles than in cotton textiles, and the minimum wage should have a smaller effect on wool mill wage levels. Since Texas labor has no perceived ideas as to job pay differentials, it seems that labor for wool textiles in the State would be 5 to 10 percent lower than in the Southeast. The number of high-wage industries in the State causes a wide range in wages. These industries tend to raise the overall wage level and those who can remove any wage advantage Texas may have now for wool textiles.

The status of unionization and the attitude of the State Government and the general public toward unions and toward laws governing organized labor are very important to most industries considering locating in Texas. The Texas attitude toward labor may be stated generally as equal rights for all, although the laws regulating labor are more restrictive than in many other states.

Important labor laws are summarized as follows:\(^8\)

"The use of violence or coercion, or the threat of violence or coercion, in a labor dispute is a felony."

"The closed shop, the union shop and maintenance of membership provisions in labor contracts are illegal."

"Labor organizations are responsible for damages resulting from strike or picketing in breach of contract."

"Strikes, picketing, obstructing service by public utilities providing electrical energy, gas, water are illegal; sabotage or conspiracy to sabotage such services are felonies."

"Mass picketing is illegal."

"The check-off is illegal; the employer may make no deduction for labor union dues or assessments without the written authorization of the employee."

\(^6\)Texas Almanac, 1956-57, Dallas Morning News, Dallas, Tex., page 487.

\(^8\)The Texas Charter of Equal Rights," (Leaflet), Dallas Chamber of Commerce, Dallas, Tex., Oct. 1962.
"Labor unions are made liable to Texas' anti-trust laws, both civil and criminal.

"No public official and no unit of Texas Government—municipal, county, or state—can recognize a labor organization as the bargaining agent for any group of public employees; nor can any public official or unit of government enter into a collective bargaining contract with a union for any group of public employees.

"Secondary boycotts, secondary strikes and secondary picketing are illegal.

"Every man has a right to earn an honest living at work of his own choice; no man has the right to coerce or intimidate his neighbor to keep him from working at the job of his choice.

"Labor organizations must hold annual elections, file reports with the secretary of state and are subject to other regulatory provisions."

Additional laws regulating labor were passed in 1955. One, the Parkhouse Bill, prohibits strikes for union recognition unless the union represents a majority of employees. Another denies unemployment compensation to workers idled at a subsidiary plant by labor disputes at a parent plant.

Estimates indicate that total Texas union membership is around 420,000 of a total 2,754,400 nonagricultural labor force. The nonagricultural labor force rose by 474,800 during 1948-55, with the unions organizing about 10 percent of this increase. Texas unions have about 20 percent of the industrial labor force. Their gains have been the result of new industries such as chemicals, aviation and automobile plants coming into the State. Also, many high-wage industries, where labor forms a minor part of total costs, have not resisted unionization.

AFL and CIO representatives say that it is difficult to organize in Texas and believe that the new antipicketing law will make it impossible to organize firms with less than 250 employees. They agree that the laws could either ruin the unions or unions can live under them, depending on how the courts rule.

Unions lost 42.4 percent of the elections held in Texas by the National Labor Relations Board from January 1, 1954 to March 1, 1955; and they lost 44.4 percent of the next 25 elections held.

Unions do operate and have some strength, but union members in Texas represent less than 25 percent of total U. S. union membership. Pickets are extremely rare in some areas of the State.

"Ibid.

Raw Materials

Volumes and Cost

The volume of apparel wool consumed in the United States is well below the peak war and postwar years, but consumption is still above pre-war years. A smaller portion of domestic requirements is supplied now by domestic production than before the war, Figure 10. The increase in man-made fiber use is shown in Figure 2.

The domestic industry uses virtually all of the domestic wool clip and most of the domestic mohair. In addition to big volumes of apparel and carpet wools, this country imports small volumes of mohair, camel's hair, cashmere, alpaca, vicuna and other wool-like fibers. The bulk of the apparel wools used are the finer grades, 60's and up; but good volumes of 50's to 60's also are used. As compared with the average volume of fibers used during 1950-55, an increase in volume during the succeeding period may be expected.

Raw materials and supplies, which include parts and containers, cost woolen and worsted manufacturers in all plants 58.8 percent of the value of their products in 1939. The proportion was reduced to 53.1 in 1947, and varied from 17.3 percent for finishing mills to 61.6 percent for scouring and combing plants. Yarn mills paid 59.0 percent, and woolen and worsted fabric mills 51.1 percent. During 1939-47, the proportion of material cost to value of products was reduced by 5.7 percent, showing that other costs increased more rapidly than raw materials. Probably the proportionate cost in 1955 was lower than in 1947 because the price of domestic raw wool was roughly the same, but other costs were higher.

Cost of material to make wool covert and worsted twill in 1950 was $0.9521 for covert selling at $2.0513 per yard, and $2.5915 for twill selling at $4.8652 per yard. The proportionate costs for the material were 46 and 53 percent, respec-

freight than northern mills on wools shipped from
the bulk of the wool it uses. As long as Boston
cents on some domestic wools shipped direct, but
as as a location for wool and mohair-textile plants
Boston. Foreign wools are landed at Charleston,
Southeast will have no raw material handicap on
continues to be the main raw wool market, the
added freight cost on small volumes of some wools
pyramided through all manufacturing stages, raw
material price is an even greater consideration
tively. These figures show the importance to the
industry of raw material price. Since costs are
pyramided through all manufacturing stages, raw
material price is an even greater consideration
than these figures indicate.

Although there are high and low cycles, the
longtime trend of raw wool price is upward, Figure
11. This trend is likely to continue; but in
comparing locations of wool-textile plants at the
present time, the price makes little difference
since all wools are priced delivered at Boston.
Southeastern plants may be able to save 1 or 2
cents on some domestic wools shipped direct, but
they must pay about 2 cents per clean pound more
freight than northern mills on wools shipped from
Boston. Foreign wools are landed at Charleston,
South Carolina, at the same price as at Boston.
As scouring and combing plants increase, the
Southeast will have no raw material handicap on
the bulk of the wool it uses. As long as Boston
continues to be the main raw wool market, the
Southeast probably will continue to pay a little
added freight cost on small volumes of some wools
and specialty fibers landed at Boston.

Texas Raw Materials

Wool. One of the main advantages for Texas as a location for wool and mohair-textile plants
is nearness to raw material supplies. The Tex-
wool clip has amounted to 19.4 percent of the
average domestic clip for 25 years, 1929-53. Ac-
tually the only savings in raw materials are
transporting wool to the mills. There may be
additional advantages or disadvantages in trans-
porting the fabric to market. A mill located in
Texas could save on transportation of raw ma-
terials produced in the State.

The number of sheep in Texas has declined
sharply since the high of 1943 and is now on
about half that year's record number, Figure 11. Most of the conditions that caused a decline in
the nation's sheep population also contributed to
the decline in Texas, but the biggest factor in
this State has been the long period of below-av-
age rainfall.

Although production of shorn wool since 1946
averages less than 50 million pounds per year,
U. S. Department of Agriculture committees es-
imate that Texas sheep numbers could be increas-
ed to about 9 million head. The goal set by
Congress under the 1954 wool act (300 million
pounds of shorn greasy wool) also indicates about
9 million head for Texas, or about 70 million
pounds of wool per year. This is approximately
the same as in 1946 when the Commodity Credit
Corporation purchased virtually the entire domes-
tic clip and made it possible for the U. S. De-
partment of Agriculture to provide the only com-
plete analysis of the domestic wool clip. Grades of
the Texas clip should not change markedly, but im-
provement can be expected in pounds of clean
wool produced per ewe, staple length, quality and
packaging for market.

Most Texas wools are marketed in original
bags (not graded). In 1946, 60,523,215 pounds
were sold as original bag; 7,394,379 pounds were
graded; and 809,800 pounds (clean) were sold as
scoured wool. The clip graded 93.1 percent fine
4.2 percent half blood, 1.2 percent three-eighths
blood and 1.5 percent off-wools. The average es-	imated shrink for all wools was 57.3 percent.
The relatively high shrink may be explained par-
tially by the large portion of fine wool, which nor-
mally shrinks more than the coarser grades. Vari-
ations in rainfall and range conditions have a
marked effect on the shrinkage of Texas wool

Even though the appraisers classified only
3,513,240 pounds of the Texas clip as wool-
length, the woolen trade undoubtedly uses a much
greater volume since about 7½ million pounds
were fall shorn. Some of the 8 months' and even
some of the 12 months' wools are too short to
comb efficiently. It is significant, however, that

Figure 11. Average price per pound for selected wools, 1935-55. Source: "Wool Statistics and Related Data," AMS, USDA Statistical Bulletin No. 142.

Figure 12. Stock sheep and lambs on farms, January 1, selected years. Source: AMS, USDA.
TABLE 8. BASIC QUALITIES OF THE TEXAS WOOL CLIP, 1946\(^1\)

<table>
<thead>
<tr>
<th>Description</th>
<th>Fine</th>
<th>1/2 blood</th>
<th>3/8 blood</th>
<th>1/4 blood</th>
<th>Low blood</th>
<th>Common staple & braid</th>
<th>Off-wools(^2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strictly staple, pound</td>
<td>136,169</td>
<td>193,565</td>
<td>86,613</td>
<td>12,700</td>
<td>2,085</td>
<td>1,286</td>
<td>432,418</td>
<td></td>
</tr>
<tr>
<td>Staple & good French, pound</td>
<td>19,190,306</td>
<td>572,302</td>
<td>263,413</td>
<td>17,750</td>
<td>51.2</td>
<td>51.2</td>
<td>20,026,021</td>
<td></td>
</tr>
<tr>
<td>French combing, pound</td>
<td>42,343,846</td>
<td>411,860</td>
<td>117,635</td>
<td>1,201</td>
<td>400</td>
<td>1,000</td>
<td>42,891,191</td>
<td></td>
</tr>
<tr>
<td>Woolen pound</td>
<td>3,097,476</td>
<td>89,226</td>
<td>355,337</td>
<td>1.201</td>
<td></td>
<td></td>
<td>3,513,240</td>
<td></td>
</tr>
<tr>
<td>Shrinkage, (%)</td>
<td>57.5</td>
<td>53.3</td>
<td>48.1</td>
<td>45.1</td>
<td>51.2</td>
<td>51.2</td>
<td>57.3(^3)</td>
<td></td>
</tr>
<tr>
<td>Grease equivalent</td>
<td>87,562</td>
<td>1,657,604</td>
<td>1,139</td>
<td>1,847</td>
<td>400</td>
<td>1,000</td>
<td>1,748,552</td>
<td></td>
</tr>
<tr>
<td>Scoured wool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total grease basis | 64,855,359 | 2,924,657 | 794,498 | 33,498 | 2,485 | 1,286 | 1,054,724 | 69,666,146 |

Percent of total

93.1 4.2 1.2 0 0 0 1.5 100

Source: "The Domestic Wool Clip." Livestock Branch, Production and Marketing Administration, USDA, June 1951.

Off-wools do not necessarily represent inferior wools. They were very small lots made up of mixtures, and it was not practical for the CCC to grade them.

All shorn wool (original bag and graded.)

Average percent shrinkage.

265,600 pounds were purchased as scoured wool.

Less than .55 percent.

About 17 million pounds of the 1946 Texas wool clip was discounted an average of .8 cent per grease pound for defects such as burr, with nearly 14 million pounds of this amount drawing a .7 cent discount. Over 50 million pounds of the Texas wool received no discount.

Mohair. Texas produces about 90 to 95 percent of the domestic mohair clip, which is almost half the world clip. The State produced 97 percent of the U.S. clip in 1955. Since very little mohair is imported, the domestic textile industry virtually depends on Texas production. There are no U.S. Department of Agriculture benchmarks for mohair, but the long-term yearly average in Texas is about 3-million head of Angora goats which produce about 16 million grease pounds of mohair per year.

The fiber diameter of mohair, the most important element affecting its price, is much more variable than wool. Wethers produce coarser hair than does; barren does produce coarser hair than does raising kids; older goats produce coarser hair than young goats and goats grazing on good pasture produce coarser hair than goats on poor forage. A complete analysis of the domestic mohair clip, such as the one on wool, is not available.

The finer grades of mohair are the most valuable because of their use in expensive fabrics and their limited volume. Mohair shrinkage from the records of a leading Boston firm, averages about 22 percent for 36's and 32's and about 22 percent for 22's and 18's.\(^{107}\) This explains why mohair in the grease usually outsells wool in the grease, but $1 per grease pound for mohair, shrinking 20 percent is the same price as 50 cents for grease wool shrinking 60 percent.

The average price of No. 2 grown mohair was shown in Figure 11. Kid mohair prices are considerably higher.

Mohair is a specialty fiber with a widely fluctuating demand. Fashion requirements change, and mohair cannot be substituted for other fibers to the same extent that other fibers can be substituted for all or part of the mohair content of fabrics. Mohair, especially the coarser grades, must compete with duty-free imported wools for some end uses. Since these circumstances cause prices to fluctuate more freely than the prices for wool, mohair production is thought of as a "boom and bust" industry.

Another aspect of price should be pointed out. Pounds of mohair clipped per goat in Texas

has increased consistently since 1930. Some of this increase is the result of improved breeding, but some is the result of selecting for heavier shearing goats. There is a strong tendency for buyers to pay the same price per pound for kid mohair and adult hair in a season regardless of quality. Producers with the heaviest shearing goats receive the most money. These heavier shearing goats usually produce coarser hair.108

The good prices for mohair during the past years may be partially the effect of mohair exports. Exports of mohair averaged less than 100,000 pounds per year until 1953. Over 2 million pounds were exported in 1954, and during the first 7 months of 1955, exports were 3.3 million pounds, clean basis.109

Texas started the warehouse system of marketing wool and still leads the Nation in this method. About 95 percent of the State's clip is sold through some 90 to 100 warehouses located in the producing areas, Figure 13.110 The warehouses, which are located mainly in the mohair-producing area, Figure 14, also handle the State's mohair. A small amount is sold direct by the ranchmen, either through cooperatives or individually; however, considerable volumes are contracted prior to shearing in some years. This is especially true with mohair.

Warehouses offer a number of services to the growers. They receive, handle, store, insulate and ship the wool. They act as the producer's agent in bargaining with buyers, but generally have the owner's prior approval before a sale is made. Although charges vary, the average fee for these services is about 2 cents per pound. In addition to these usual services, some warehouse offer advances or credit on wool, help grade cull sheep, sell ranch supplies, help sell surplus livestock and may even buy wool.

The main advantage of the warehouse system is that it concentrates the wool for the buyers. It would require time and expense to buy small lots direct from the producers on the many ranches. Warehouse officials also are better informed on wool qualities, values and market than the average grower.

Domestic producers often have been criticized for doing poor packaging of their wool for market. Much research and teaching have been done on the subject. Many leading growers have gone to extra trouble and expense to do a better job. When their wools did not bring sufficient premium to make it pay, some continued to work at packaging and others stopped. In the past few years, a great deal more interest has been shown in packaging, and progress is being made. The wool marketing study111 by Davis and Gabbard in cooperation with the Sonora Wool and Mohair Company showed that fleece-grading wool at the shearing pen and marketing these wools on a quality basis give good returns to producers. Texas producers are probably more interested in

\footnotesize{\bibliographystyle{plain}
\bibliography{references}
}

108Ibid., page 2.

109Textile Organon, Vol. XXVI, No. 12, Dec. 1955, page 220.

110Campbell, Fred R., L. P. Gabbard, and Stanley P. Davis,Marketing Wool Through Texas Warehouses, Bulletin 740, Texas Agricultural Experiment Station, Oct. 1951, page 5.

111Davis, Stanley P. and L. P. Gabbard, "Quality Prizes and Relationships of Graded and Ungraded Wool," Progress Report 1572, Texas Agricultural Experiment Station 1952.
The general practice in the worsted industry is to blend wools from different sources. The woolen industry also blends shorn wools, pulled wools, noils and other raw materials. For these reasons, it is necessary to consider bringing other raw materials to Texas mills.

Many of the Western States produce good volumes of half-blood, three-eighths blood and one-quarter blood apparel wools that are suitable for blending with Texas wools. Even in the other Western States, the bulk of the clip (about 60 percent or 67 million pounds) grades fine; but some 46 million pounds of the coarser grades are produced. These coarser wools shrink less on the average than Texas wool. The states producing the greatest quantities of half and three-eighths blood wools, which would be most needed by Texas mills, include Montana, California, Colorado, Wyoming, Idaho and Utah. Idaho also is the largest producer of quarter-blood wool.

Some plants in Texas might want to use fleece-type wools. They are produced mainly in the farm-flock states.

Other Domestic Raw Materials

Other raw materials that may be needed by mills in this State include noils, pulled wool, synthetic fibers and cotton.

Noils are the short fibers combed out of worsted wools. They are necessary raw material for woolen manufacture. Since noils are produced in the Northeast and Southeast, they would have to be shipped to Texas mills from those areas unless a Texas worsted industry produced them in sufficient quantities.

Pulled wool is the wool obtained from the pelts of slaughtered sheep. It accounts for approximately one-fifth of the total volume of domestic wool. Like noils, pulled wool is a required raw material for woolen manufacture. In addition, a number of the best lengths are used to lower fiber costs in some worsteds. A small wool pullery (the Melton Provision Company) is located at San Antonio, Texas; and some wool is pulled at Denver, Colorado; however, most of it is pulled at Chicago and other eastern cities and would have to be shipped into Texas. If lamb markets developed in Texas, wool pulling in this State might increase.

Cotton might be required as a raw material, but it would be no problem since this State produces about one-third of the Nation's supply and a great variety of types and strains. Also, cotton is produced over virtually all the State.

Synthetic fibers may play an increasing roll in woolen and worsted goods, and the availability of these fibers should be considered. Texas produces considerable volumes of the basic salts from which some of the synthetic fibers are manufactured. Since the State has no synthetic fiber plants, however, these fibers would have to be shipped from the Southeast and Northeast.
Foreign Wools

Availability of foreign wools is another important consideration for Texas as a location for wool textile plants.

Australia is the leading wool-producing and exporting nation in the world and the leading supplier of U. S. imports. About 70 to 75 percent of the Australian clip is Merino type, and the bulk of U. S. imports are of the 60's and 64/70's grades. These grades accounted for 77.9 percent of U. S. imports in 1953-54.112

Argentina is our second major supplier of raw wool. Only about 20 percent of her clip is fine grade. The bulk of U. S. imports from this country are coarser, crossbred wools for use in carpets.

Uruguay is the country of next importance in volume of wool sold to the United States. The bulk of the clip is crossbred; only about 15 percent is Merino. Super-fine crossbreds, 58/60's, make up about 45 percent of her clip.

New Zealand generally ranks fourth in supplying imports to the United States. About 97 to 98 percent of her clip is the crossbred type.

South Africa is another country which has supplied us with good volumes of wool. The bulk of her clip is Merino, and 64's and 64/70's are the predominant grades.

The shrinkage of wool sold by the major exporting countries is much less than domestic wools with the exception of Argentina. These countries do a better job of packaging their wool and their Merinos are selected almost entirely for wool production.

Special trade and barter agreements greatly affect the volumes of wool going to the different countries each year. British Dominion wools are sold at auction, but credit deals or trades influence purchases. The governments of Argentina and Uruguay exercise considerable control over sales of their wool.

Although some 13 deepwater ports on the Gulf Coast could be used as ports of entry for foreign wools, the bulk probably would be handled through the ports of Houston or Galveston. Houston is the second-ranking port in the Nation in tons of cargo handled. According to the Bureau of Customs office,113 foreign wools have entered these ports and can enter without special considerations. The customs service there is sufficiently staffed and equipped to handle wool imports; although samples must be sent to Boston for determination of clean content, no costs above those at any other port would accrue to importers. The customs service also reported there were bonded warehouses in the area suitable for wool storage.

Marketing Wool-textile Products

Volumes

Products marketed by the woolen and worsted textile industry include scoured wool, tops, yarns and fabrics.

Wool that is scoured and sold represents a very small fraction of the total business. Shipments and interplant transfers during 1947 amounted to only 35,708,000 pounds.114

Domestic top production in 1947 was 868,000 pounds, of which 159,970,000 pounds were for the plants' own use. The rest was manufactured for sale. In recent years, top production for sale averaged about 50 percent of the total.115

A much smaller percentage of the total yarn manufactured is sold as yarn. In 1947, total volume of yarn produced was 591,937,000 pounds and 447,062,000 pounds were for the makers' own use. Of the 166,466,000 pounds sold, 20,724,000 pounds were yarns spun on the woolen system, 115,014,000 pounds were worsted yarns spun on the Bradford system and the other 30,728,000 pounds were worsted yarns spun on the French system.116

Most yarns are produced for weaving fabrics, but about 15 percent is for knitting yarns. The total volume of knitting yarn produced in 1947 was 87,340,000 pounds. A little over 11 million pounds of the total knitting yarn sold went to the hand-knitting trade. The knitting industry generally prefers to buy yarn rather than make its own.

Some woolen and worsted fabrics are sold to mills that do only finishing, but this is a very small portion of the total business. In 1947, finishing plants paid less than 5 million dollars for materials, containers and supplies, compared with almost 700 million dollars paid by wool and worsted fabric manufacturers.118

The big business for woolen and worsted manufacture is the production and sale of finished fabrics. In 1947, the industry produced 469,503,000 pounds of broadwoven fabrics. This was 814,753,000 square yards and 515,843,000 linear yards. Apparel fabrics made up 372,263,000 pounds, nonapparel fabrics 92,240,000 pounds and woven (papermakers) felts 7,061,000 pounds. The proportion of woolen and worsted apparel fabrics varies with style trends.

113Personal correspondence with the Galveston Office.

114"Ibid., pages 2-114.

115"Ibid.

Scoured wools are sold to other plants through wool dealers or direct. Wool tops may be sold direct to other mills or through dealers, but the bulk of the tops offered for sale are handled by topmakers. Most of these companies have no combing machinery; instead they buy raw wool, hire it combed, then market tops to worsted mills and dealers. There are no data on marketing costs for these concerns.

Yarns also may be sold direct to knit or fabric plants through trade journal advertisements. Sales may be made indirectly through agents. Although there are no marketing cost data on yarns, the cost of marketing through selling agents compared with value is probably similar to fabrics.

As a general rule, woolen and worsted fabrics are sold and then made since styling begins with the selection of fibers and continues through the yarn, weaving and finishing stages. Cotton, on the other hand, is styled mainly in the finishing stage, which means that cotton fabrics generally are made and then sold.

As a result of selling woolen and worsted fabrics before making them, cancellation of orders has long been a severe marketing problem in the industry. Hand-to-mouth buying and deferred ordering place additional burdens on the manufacturers. The 1954 weekly average by 75 firms of ordering place additional burdens on the manufacturers. This means that of the volume ordered an average of 7 percent was canceled each week in 1954.120

Some woolen and worsted fabrics are sold by wholesalers or jobbers, but the bulk is handled by selling agents for a commission. The selling agents may operate independently, or the mill may own them, or they may own the mill. They occasionally sell goods produced by several different firms, but do not handle similar fabrics from more than one firm.

Marketing Costs

Selling expense varies according to type and value of the fabric. The average expense for certain fabrics in 1946 was: $0.024 for men's wear worsted shirting and suiting costing $2.514 per yard; $0.084 for men's wear woolen coating costing $1.98; $0.117 for women's worsted dress goods and suiting costing $1.914; and $0.070 for women's woolen dress goods and suiting costing $1.405 per yard.121 The average selling expense, then, varied from about 1 to 6 percent for these goods in 1946. Selling expense in 1950 was about 7 percent for woolen covert and 6 percent for worsted twill.

The actual cost of selling fabrics from a mill in the Southeast and a mill in the New England States should be the same because selling agents handle goods produced in both areas, but the cost of transporting the goods to market at New York may differ.

The main market for fabrics is not the individual but the fabricator. In the case of apparel goods, it is the garment maker. This market is highly concentrated in the Middle Atlantic States since garment makers in other areas use mostly cotton fabrics.

New York is the garment-making center, and the bulk of the goods must be delivered there. Thus, southeastern mills have a competitive disadvantage in transportation charges. Shipping by truck costs 90 cents per 100 pounds less from Boston to New York than from Charlotte, North Carolina, to New York.122 This is not a very big handicap. It amounts to only 1/10 of 1 percent of the product's value for fabrics weighing 1/2 pound per yard and valued at $4.51 per yard. The handicap becomes greater as a fabric decreases in value or increases in weight.

The market for knitting yarns also is highly concentrated. In 1947, there were 1,201 knit outerwear establishments in the Nation. Of these, 982 were in the Middle Atlantic States with 786 in New York alone.

Marketing from Texas Plants

Transportation to the main markets in the East would be costlier for woolen and worsted mills in Texas than for mills in Southeastern or Middle Atlantic States, but other marketing costs would be the same. Established selling agents could handle Texas mill products and serve as all-important stylists in advising on fabrics to make. A Texas mill producing competitively styled and priced goods could sell at any market. Styling in fabrics is important. The fabric manufacturers and garment designers are working constantly to create new styles, but volume sales are reported in only 15 to 25 percent of new designs in women's goods.123

Knitting firms and fabric-using firms, like many other U. S. industries, are undergoing some decentralization. The movement has been more rapid in recent years and probably results from a number of conditions. The rising cost of labor in the traditional garment-making areas and the increase in style centers, marketing shows, pop-

120 Ibid, pages 2-144.
ulation and incomes in other areas are among the conditions causing decentralization.

The garment-making industry is growing rapidly in Texas. Apparel products employed 22,008 workers in 1947, but the number in 1953 was 29,439. Beginning as a work-clothing industry, it has expanded into a large style-goods industry that produces women’s dresses, suits and coats, sportswear and other styled goods.124

Texas garment makers produced 10 percent of the Nation’s dress and sportswears in 1953. The Haggar Slack Company, with plants in Dallas and in four towns in other areas, is considered the largest mens dress-sack firm in the business. Large volumes of mens goods are cut in Mississippi, Tennessee, Missouri and on the Pacific Coast.

The womens goods fabricators are decentralizing too. The president of the Wool Bureau said in 1951 that the Pacific Coast was the second largest producer of womens suits and coats.125 The Los Angeles, San Francisco and Hollywood areas are becoming important style centers, and Texas’ famous Neiman-Marcus takes a back seat for none. Decentralization is likely to continue.

Another trend that deserves consideration is the increased home-sewing market. Prior to World War II, most piece goods were sold through department stores, but business is sufficient now to support fabric shops even in small towns. A number of conditions that probably have influenced this trend include scarcity of clothing during the war; improved sewing machines, equipment, techniques and patterns; school and club training for women and girls; new consumer goods, such as new homes, cars and television sets, which reduce the clothing budget; and labor-saving devices that give the housewife more time to sew.

Some 38 million women who sew spent 468 million dollars for 704 million yards of piece goods in 1953. The number of sewing machines sold in 1953 was estimated at 1.5 to 1.8 million.126 The home-sewing business is likely to grow.

Transportation

Facilities

Other conditions probably equalize any difference in transportation facilities between the New England States and the Southeast. New England may have more facilities, but the Southeast has fewer interruptions by bad weather. Services are adequate in both areas.

Texas is the highest ranking state in miles of railroad; but because of the State’s size this mileage does not give rail coverage as complete as that in other regions. A number of small Texas towns have no rail facilities. The most important railroad centers include Houston, San Antonio, Waco, Fort Worth, Dallas, Paris, Swater, Lubbock, Amarillo and El Paso.

Highway systems and trucking facilities are probably of greater importance to mills in Texas than railroads. This State has one of the finest highway systems in the Nation, and since 1953 has led the Nation in new construction each year. Practically every town is served with excellent paved roads. Some 2,761 motor trucking companies operate in the State.

Texas has 13 deepwater ports. Houston, the leading port city, is served by 6 railway systems and some 17 or 18 divergent lines owned by the 6 companies. About 50 freight trains operate in and out of this city daily. Also, about 34 common carrier truck lines serve Houston. Delivery of imported wools to any part of the State would not be a problem.

If mills in Texas were branch concerns, firms in the Northeast or Southeast, airline service might be a consideration. In air transportation, too, the State excels. Eleven major airlines operate in Texas with service to most of the larger towns. There are very few days during the year when weather prevents airline operation.127

Cost on Raw Materials

The amount that a plant in Texas could save on transportation costs of Texas wools would depend on its location. San Angelo is the large concentration point for Texas wools and is the center of production. The all-rail, carload rates from San Angelo to Boston for wool, in grease, in bags are $2.74 per 100 pounds (24,000 pounds), $2.52 (30,000 pounds) and $2.39 (40,000 pounds). The rate to Charleston, South Carolina is $2.31 per hundredweight for 24,000-pound minimum carloads.128

Scoured wool in bales from San Angelo to Boston is $3.92 per hundredweight (24,000 pounds) and to Charleston, South Carolina, $3.45 per hundredweight (24,000 pounds).

Based on these costs, a plant located in Texas could save 7 to 9 cents per pound on Texas wool and mohair compared with a mill in the Northeast or Southeast that transports these materials by rail. This would amount to 7 to 9 cents per clean pound. Some Texas wool is scoured in Texas and shipped by truck to Boston.

128 Letter from Traffic Department, Panhandle and South Fe Railway Co., Amarillo, Tex., July 18, 1955.
for 3 cents and to Charleston for 2 cents per pound. Compared with a southeastern mill that transports scoured Texas wool by truck, a Texas mill would save about 2 cents per clean pound.

A Texas mill also could save on transportation for domestic raw wools from some other states. The normally economical routes to Boston for wools in the Western States, according to the breaking points on freight rates, are: Texas, New Mexico and most Arizona wool through the Gulf ports of Houston and Galveston, Texas; Utah, Colorado and Wyoming wool through Chicago, Illinois, and Milwaukee, Wisconsin; the bulk of Montana wool through Duluth, Minnesota; Washington, Oregon and some Montana and Idaho wool through Portland, Oregon; Nevada and some Idaho and California wool through San Francisco, California; and some California and Arizona wool through Los Angeles, California. Some selected freight costs are shown in Table 10. These figures indicate that plants in Texas could save in transporting wool from some of the other states, but they would have a slight disadvantage in obtaining wool from the northeastern part of the wool-producing area.

The State would be at a disadvantage in obtaining fleece-type wools from some areas, but would have a slight advantage in obtaining these wools from other areas, especially if they were hauled by truck.

Freight costs on domestic noils would be higher for Texas plants. The all-rail carload rate to San Angelo from Boston for wool noils and scoured wool in bales is $3.92 (24,000 pounds) per 100 pounds. From Boston to Charleston, the rate is $2.38 (24,000 pounds). Thus, a plant at San Angelo would have to pay $1.54 more per 100 pounds to get noils from Boston than would a plant at Charleston.

Plants in the State would have a small freight advantage on Denver pulled wools, but would have slightly higher costs on pulled wools from Chicago.

Transportation costs on cotton would be about equal for woolen mills in Texas and the Southeast since both areas produce good quantities.

Most of the synthetic fibers are manufactured in the Southeast. Some of these fibers are priced delivered anywhere east of the Mississippi River. Texas plants would have a competitive disadvantage equal to the freight charge from the Mississippi River crossing to the mill. Other fibers are priced at the plant, and the customer pays the freight. For example, the truckload rate for nylon from Du Pont's Seaford, Delaware, plant (equalized at Enka, North Carolina) is $1.71 to Houston, $1.02 to Boston and 80 cents to Charleston. For orlon from Lugoff, South Carolina, the costs are $1.78 to Houston, $1.57 to Boston and 60 cents to Charleston. For dacron from Graingers, North Carolina, the costs are $1.93 to Houston, $1.33 to Boston and 86 cents to Charleston.

Cost of landing imported wools at Texas ports is important. About 93 separate steamship lines operate in and out of Houston. Imported wools can be landed at Houston at exactly the same cost as at Boston and Charleston, although there may be a few minor exceptions. Freight costs from major foreign ports are:

1. From Buenos Aires, Argentina, and Montevideo, Uruguay, to Atlantic and Gulf ports: (a) wool in the grease, in bales (measuring not more than 50 cubic feet per ton) contract rate—2½ cents per pound; (b) scoured wool in bales (measuring not more than 120 cubic feet per 2,240 pounds) contract rate—3 cents per pound; (c) wool noils—$66 per 2,240 pounds; (d) wool tops—$81.51 per 2,240 pounds.

2. From Cape Town, South Africa, to Gulf ports the raw wool rate is $73.25 per 2,240 pounds.

103"Letters from leading synthetic fiber manufacturers.
This rate was quoted by a firm that does not serve Boston and Charleston. A firm that serves Atlantic ports, but has no service to Houston, quotes shipping rates to Boston and Charleston of $66.50 per 2,240 pounds on grease wools; $89.00 per 2,240 pounds on scoured wools; and $111.50 per 2,240 pounds on tops.

3. The rate from Australia to Boston, Charleston or Houston is $4.651 per 100 pounds on baled grease wool. A firm that serves only the West Coast quoted $4.651 per 100 pounds on grease wool in bales in any quantity from Australia to San Angelo, Texas; and $4.89 per 100 pounds on New Zealand wools in less than carload lots, or $3.79 per 100 pounds in carload lots (minimum weight 40,000 pounds). The minimum bill of lading charge is $11.50. The costs include trans-shipment by rail to San Angelo and probably would be the same for any point in Texas.

Some of these rates on imported wools include free transportation on the lowest carload basis from the port of discharge to inland points. The free transportation probably extends only to the Mississippi River; so costs on free inland shipments in Texas could not exceed the cost of shipping wool from other ports of discharge to the Mississippi. This would appear to offer no competitive disadvantage to Texas.

In general, obtaining foreign wools involves neither an advantage nor disadvantage for Texas as a location for wool-processing plants. Transporting foreign wool to domestic mills is cheaper than transporting domestic wool from many of the Western States.

Mills in Texas might want to obtain imported wool or specialty fiber from Boston whenever they need small, unforeseen quantities quickly. The rate on grease wool in bales from Boston to San Angelo is $3.08 per 100 pounds (24,000 minimum carload pounds) and to Charleston the rate is $1.87 (24,000 pounds). The rate on scoured wool in bales is $3.92 per 100 pounds (24,000 pounds) from Boston to San Angelo and $2.38 (24,000 pounds) to Charleston. Texas would have 1 to 1½ cents per pound disadvantage on wool shipped in the grease from Boston and about 1½ cents per clean pound disadvantage on scoured wool.

Since U. S. mills use chiefly domestic wools, transportation costs on U. S. wools are the most significant. These costs indicate that mills in Texas can save on transportation for most domestic wools. The savings would be 4 to 6 cents per clean pound on Texas wool shipped in the grease and about 2 cents per grease pound on mohair. Other domestic wools needed for blending can be shipped from most states either at a small saving or at costs equal to those for mills in the Northeast and Southeast. To take advantage of the savings, however, Texas mills would have to buy the wool in the West. Since the bulk of the clip is sold by growers and most to Boston during some years, a Texas mill would have to purchase virtually its whole year's supply during the few months that wool is available in the producing area. This would require large operating capital. If the wool moved to Boston and had to be shipped back, it would cost about 3 cents per grease pound to cost these wools for a Texas plant, compared with New England, or about 1½ cents compared with the Southeast.

Costs to Market

Transportation costs are a small part of the total cost of wool textiles. Past differentials in freight rates have largely been equalized. The New England area, because of its location, has slight advantage in freight costs to market at the present time.

The cost of shipping finished fabrics from mill in New England, the Southeast and Texas to selected markets is shown in Table 11. New York is the largest market for finished wool and worsted fabrics. To New York, Texas plants would have to pay 2 to 3 cents per pound of product added freight on fabric compared with New England mills and 1 to 2 cents compared with the Southeast. This is not a significant differential because of the high value of the product.

The fabricators of textile mill products are decentralizing and the industry is growing in the South and West. Mills in Texas have a freight advantage to most areas west of the Mississippi River compared with the Southeast. To Los Angeles, the advantage is roughly 2 cents per pound. Almost a third of the U. S. population lives in Texas' primary market area, and population incomes in the area are increasing faster than the U. S. average. Texas' geographical location should become increasingly advantageous as the trends continue.

TABLE 11. SELECTED FREIGHT RATES ON FINISHED CLOTHING IN ROLLS IN LESS THAN CARLOAD LOTS, DOLLARS PER 100 POUNDS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago, Ill.</td>
<td>$2.05 Truck</td>
<td>$1.78 Rail</td>
<td>$1.81 Fall</td>
<td>$1.78 S. C.</td>
</tr>
<tr>
<td>Minneapolis, Minn.</td>
<td>2.44</td>
<td>2.61</td>
<td>2.92</td>
<td>2.65</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>2.05</td>
<td>1.87</td>
<td>1.75</td>
<td>1.64</td>
</tr>
<tr>
<td>Louisville, Ky.</td>
<td>2.05</td>
<td>1.89</td>
<td>1.86</td>
<td>1.64</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td>1.55</td>
<td>1.54</td>
<td>1.76</td>
<td>1.72</td>
</tr>
<tr>
<td>New Orleans, La.</td>
<td>1.61</td>
<td>1.58</td>
<td>2.38</td>
<td>1.71</td>
</tr>
<tr>
<td>Des Moines, Iowa</td>
<td>2.13</td>
<td>2.28</td>
<td>2.83</td>
<td>1.92</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>1.73</td>
<td>1.52</td>
<td>2.06</td>
<td>1.43</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>3.46</td>
<td>3.21</td>
<td>0.98</td>
<td>1.22</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>3.38</td>
<td>3.12</td>
<td>1.14</td>
<td>1.75</td>
</tr>
<tr>
<td>Los Angeles, Calif.</td>
<td>2.96</td>
<td>2.96</td>
<td>5.72</td>
<td>4.85</td>
</tr>
<tr>
<td>Seattle, Wash.</td>
<td>4.46</td>
<td>4.29</td>
<td>5.72</td>
<td>5.61</td>
</tr>
</tbody>
</table>
Texas mills producing woolen and worsted fabrics should be able to market half their products in the Texas primary market area. This would largely offset the disadvantage in marketing the other half in the New York area.

Water

The wool textile industry needs huge quantities of water. It is used in scouring the grease wool, backwashing during processing and in dyeing and finishing. The volume of water required varies with the mill and its products, but average figures are 1 to 3 gallons of water per grease pound of wool for scouring and 50 to 70 gallons of water per pound of clean wool in the other operations.133

The quality of the water must be good. Excess foreign matter, silt and minerals must be removed before the water is suitable for any stage of processing. Foreign matter and silt may discolor the fibers; and minerals, such as calcium and magnesium carbonates and bicarbonates, form insoluble compounds with soap that cause difficulties all through processing, but are most objectional in dyeing. Water that contains more than 75 parts per million total hardness must be softened before it is used.134 Zero hardness is best and is preferred for use with chrome dyes.

Iron in the water is especially harmful to many wool colors. The iron must be removed from water containing more than 1 part per million of iron.135 Once the foreign matter is removed, water can be treated satisfactorily with soda lime and ion exchangers, such as zeolites.136

Water is not a major cost item. Even if it cost 30 cents per 1,000 gallons, the cost would be only $18 to $20 per 1,000 pounds of product manufactured, which is about 2 cents per pound, or less than 1 cent per yard for fabrics weighing 8 ounces to the yard.

Adequate supplies of water of comparable quality seem to be available both in the New England and Southeastern States, but local shortages have existed in both areas. The advantage, if any, probably rests with New England.

Water is fast becoming the number one problem of the Nation.137 With rising populations, rising living levels, increased industrialization and more irrigation, water usage also is rising rapidly.

A closely related problem is water for waste disposal. The supply for this purpose is seriously low in some of the highly populated and industrialized areas.

Water may be a possible limitation to large-scale wool and mohair processing in Texas. The water supplies of some towns and areas are inadequate for current needs, but Texas is a big state with widely varying rainfall, water supplies and potentials. State and community governments and people over the State recognize the problem. The 1955 Texas Legislature passed 69 bills relating to water.

In the early part of 1955, about 511 lakes and reservoirs in Texas had a capacity of over 100 acre-feet. Total capacity of these lakes was 35,841,065 acre-feet. The State Board of Water Engineers estimates that the State receives 362 million acre-feet per year in rainfall of which about 53 million acre-feet run off into other states or into the Gulf of Mexico.

Although Texas has huge underground supplies, they are being depleted by greatly increased use, especially irrigation, during the current long period of less-than-average rainfall in much of the State. The total consumption of water in the State in 1953 for other than irrigation was 4,322,896 acre-feet; another 4½ to 6 million acre-feet were used for irrigation.138 About 85 percent of Texas runoff water reaches the Gulf.

Space is reserved in certain Texas lakes for flood control, fish and recreation, while other space is prorated for municipal and domestic, industrial and irrigation uses.

By Legislative enactment, the order of water priority in Texas is: domestic and municipal use, industrial uses, irrigation, mining, hydroelectric power, navigation and recreation and pleasure. Legislative rulings may not control the water supply fully, however, because of riparian rights, prior appropriation rights and the ability to pay.139

New dams are being built and planned each year. Many are federally financed in part, and towns and cities are interested in doing a greater part themselves.

Some cities and towns have plant capacities and water far exceeding their needs; industries are coming into the State with higher water requirements than wool textiles. Projects already approved by Congress will add 12 million more feet of storage. One lake slated to begin in 1957 (McGee Bend) will hold over 4 million acre-feet of water—something like 1¼ trillion gallons. No data are available on water costs in other areas of the United States, but even a wide dif-

and manufactured gas are used. Plants in the Piedmont area of the Southeast use coal almost exclusively, while more fuel oil than coal is used in the New England States. Each plant uses the cheapest fuel possible, and the price is determined largely by transportation. Natural gas, which is cheaper, will be used more extensively when new trunk lines make it available.

Fuel costs are lower in the Southeast than in the New England States mainly because the price is lower and partially because less fuel is required.

One wool-plant official whose firm has plants in both regions believed that a 100-loom plant in the Piedmont area would save $50,000 a year by using coal. The new, one-story buildings are easier to heat than older, multi-story buildings, and less heat is required in the South because of a milder climate.

A Boston Federal Reserve Bank survey showed that fuel disadvantage alone explained about two-thirds of the difference in power costs between New England and the South. The purchase of power to textiles in New England in 1947 was 48 percent above the U. S. average, but many individual cases the difference was as high as 100 percent. Labor caused part of the difference in costs. According to the Federal Power Commission, 31 employees are required to generate 100 million kilowatt-hours in New England, while the national average is only 22 employees. Part is explained by the cost difference in steam generated power and water power. In South Carolina, 80 percent of the power is hydroelectric, which costs about 13 cents per kilowatt-hour to generate. Only 25 percent is hydroelectric in New England, where it costs 68 cents per kilowatt-hour to generate with steam.

In 1947, woolen and worsted plants in Massachusetts paid $1.41 per kilowatt-hour, Rhode Island $1.66, North Carolina 93 cents, South Carolina 82 cents and Georgia 77 cents. Where power costs are high and a plant uses considerable amounts of steam in processing, the plant generates its own electricity. In 1947, Massachusetts mills generated 50.4 percent of their power needs, Virginia 20.5 percent and North Carolina 37.6 percent, but South Carolina and Georgia mills generated none.

Costs in Texas

Although costs of power and fuel vary among states, comparisons can be misleading since the

141Personal interview.
are likely to be high and low-cost cities in every state. Even so, Texas seems to have an advantage in power and fuel costs over New England; and some cities in Texas may have an advantage over some cities in the Southeast.

An adequate and dependable supply of electricity serves all counties in Texas. Most of this power is generated by steam, but several hydro-electric plants also operate in the State.

Electricity is more expensive in some Texas cities than in some southeastern cities, but it is cheaper in others. Houston, Galveston, San Antonio and Dallas, for example, have lower industrial rates than any of the southeastern cities listed in the Federal Power Commission Report except for those in Tennessee, and most of the new wool plants have gone into states other than Tennessee, Table 12.

Texas is the source of much of the natural gas shipped to other states. On December 31, 1953, Texas had over half of the recoverable known reserves of the Nation's natural gas and over half of the estimated recoverable reserves of crude oil. The average wellhead price of natural gas in Texas in 1953 was 6.2 cents per million cubic feet. Crude oil and natural gas give Texas a cheaper fuel than any other state.

A plant in Texas might save 50 percent of fuel costs over the Nation's average. Texas natural gas varies from 1,000 to 1,100 British thermal units average heat value per cubic foot. Coal ranges from 12,000 to 15,000 B.T.U.'s per pound. Therefore, about 13 cubic feet of natural gas would be required to supply the same heat as a pound of coal. According to the rates of a leading gas company, a plant using 10 million cubic feet per month for 10 months and 15 million for 2 months would have a $23,190 fuel bill, Table 13. The plant using coal would have a $50,000 heating bill if its coal cost $10 per ton. Little or no labor is involved in burning natural gas; coal burning requires some labor.

If a plant found all the requirements it needed at a Texas location except cheap power, it might be feasible for the plant to generate its own power. For fuel, gas could be purchased at 15 to 16 cents per thousand cubic foot (1 million B.T.U.'s). This would be especially true if the plant had heavy requirements for both fuel and power.

A greater part of the textile and apparel industry is using gas as it becomes available or as the plants can be changed to gas. In 1950, these industries used 31.2 million therms of gas, 54.9 million therms in 1951, 106.4 million therms in 1952 and 129.8 million therms in 1953.

Normally there should be no shortages of natural gas or petroleum. According to the Bureau of Mines, petroleum reserves and productive capacity are adequate to meet demands for many years to come.

Texas also has coal. On January 1, 1953, the State had 30.9 billion short tons of estimated reserves of coal and lignite.

Taxes

In New England and the South

Taxes are an important cost to the woolen and worsted industry, although they probably re-

TABLE 12. TYPICAL NET MONTHLY ELECTRIC BILLS FOR INDUSTRIAL SERVICE IN CITIES OF 50,000 OR MORE POPULATION, JANUARY 1, 1953

<table>
<thead>
<tr>
<th>Selected states and cities</th>
<th>$00 kw.-hr. demand</th>
<th>$100,000</th>
<th>$200,000</th>
<th>$300,000</th>
<th>$400,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100,000 kw.-hr.</td>
<td>200,000 kw.-hr.</td>
<td>300,000 kw.-hr.</td>
<td>400,000 kw.-hr.</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>$2,103</td>
<td>$3,066</td>
<td>$3,841</td>
<td>$5,769</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>$1,765</td>
<td>$3,397</td>
<td>$4,530</td>
<td>$5,801</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>$1,340</td>
<td>$1,942</td>
<td>$3,023</td>
<td>$3,977</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charleston</td>
<td>$1,340</td>
<td>$2,060</td>
<td>$2,864</td>
<td>$4,144</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>$1,584</td>
<td>$2,241</td>
<td>$2,824</td>
<td>$4,139</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>$1,524</td>
<td>$2,294</td>
<td>$2,823</td>
<td>$4,023</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amarillo</td>
<td>$1,679</td>
<td>$2,519</td>
<td>$3,358</td>
<td>$5,038</td>
<td></td>
</tr>
<tr>
<td>Austin</td>
<td>$1,558</td>
<td>$2,338</td>
<td>$3,055</td>
<td>$4,615</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>$1,524</td>
<td>$1,975</td>
<td>$2,679</td>
<td>$3,581</td>
<td></td>
</tr>
<tr>
<td>Houston</td>
<td>$1,251</td>
<td>$1,939</td>
<td>$2,502</td>
<td>$3,462</td>
<td></td>
</tr>
<tr>
<td>San Antonio</td>
<td>$1,200</td>
<td>$1,783</td>
<td>$2,283</td>
<td>$3,449</td>
<td></td>
</tr>
<tr>
<td>Galveston</td>
<td>$1,359</td>
<td>$1,939</td>
<td>$2,502</td>
<td>$3,462</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 13. SCHEDULE OF INDUSTRIAL RATES—4-C FOR LONE STAR GAS COMPANY

<table>
<thead>
<tr>
<th>Item</th>
<th>Rate per 1,000 cubic feet per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>1,000 MCF or less per mo.—</td>
</tr>
<tr>
<td>Next</td>
<td>4,000 MCF per mo.—</td>
</tr>
<tr>
<td>Next</td>
<td>5,000 MCF per mo.—</td>
</tr>
<tr>
<td>Next</td>
<td>10,000 MCF per mo.—</td>
</tr>
<tr>
<td>Next</td>
<td>15,000 MCF per mo.—</td>
</tr>
<tr>
<td>Next</td>
<td>15,000 MCF per mo.—</td>
</tr>
<tr>
<td>All over 50,000 MCF per mo.—</td>
<td>16.67¢ gross.</td>
</tr>
</tbody>
</table>

*Based on delivery of 1,000 B.t.u.'s, per cubic foot. Cost adjusted up or down by percent. The average heating value varies from 1,000 B.t.u.'s, per cubic foot.

Notes:

1Ibid., page 166.
receive greater emphasis than their portion of total costs justifies. Taxes, profits, rent, insurance, interest and depreciation in 1947 accounted for 18.8 percent of the total value of products shipped by all plants.155

One survey indicates that taxes accounted for 3.2 percent of production costs.156 A Federal Trade Commission study of 22 woolen and worsted companies in 1939 shows that all taxes, except income and social security payments, were .97 percent of all costs and about 2 percent of manufacturing costs.157 Another Federal Trade Commission study of 44 woolen and worsted plants indicates that all taxes and social security costs represented 2 percent of sales in 1939 and 1.6 percent in 1940.

In 1948, an average of 75 percent of the taxes collected were federal, 13 percent state and 12 percent local.158 The proportions would differ from these averages in some states and localities, but federal taxes form the bulk of tax costs and are the same in all locations. State and local taxes account for the tax differential among states, areas and cities. A number of the local taxes are property taxes. They are assessed regardless of whether the firm shows a profit; and in case of loss, they increase in relative importance.

The proportion of state and local taxes to per capita income 1 year was 7.3 percent in Massachusetts, 6.8 percent for four New England industrial states and 6.1 percent for 10 leading industrial states. The ratio for three major southern textile states was 6.7 percent.159 About 33 states have corporate income taxes, and only Oregon has higher rates than Massachusetts.160 The rates for some selected states in 1949 were: Massachusetts 6.215 percent, Rhode Island 4.0 percent, Virginia 5.0 percent, North Carolina 6.0 percent, South Carolina 4.5 percent and Georgia 5.5 percent.161 Different tax practices may result in widely different actual tax costs.

Local taxes are even more difficult to compare on a state or regional basis because rates and assessment values vary so greatly. A city with a high rate may have low valuation schedules, while in another the reverse would be true.

The size of cities also affects tax costs. Some cities generally provide fewer services, and many cases the services supplied are cheaper. Most of the plants built in the Southeast has been located in or near the smaller towns. Some areas depend heavily on general property taxes. Property taxes in 1939 accounted for 59.1 to 61 percent of all state and local revenues in New England, but only 52.5 percent average for the Nation.162

All states in the Piedmont area except North Carolina provide temporary tax exemption in new manufacturing plants and equipment. Many New England States now have similar practices to attract new industries.164

Taxes on woolen and worsted manufacturing plants in the Southeast are lower than in the New England States. The savings, however, are not a large item and alone would not cause region shifts. They may be large enough to influence location in a particular state or town when several are otherwise equal. If taxes represent 32 percent of total production costs and there is a tax differential of 30 percent,165 then a plant could save almost 1 cent for every dollar of production cost in the Southeast as compared with New England.

As the Southeast develops its economy as tax-exempt plants start paying their share, tax rates seem certain to increase faster than those in the older areas. This will narrow the tax differential.

\textbf{In Texas}

Taxes in Texas are comparatively low considering the State's progress and development.

Probably the three most important questions concerning the State's taxes are the amount of taxes collected per capita, the amount of per capita net long-term debt and how these figures compare with leading southern textile states. Figure 15 shows that Texans pay less taxes and owe less per capita than people in any other state except Virginia. The average state tax collected per capita was $70.42 compared with $56.68 in Texas, and the average net long-term debt was $50 compared with $12.94 in Texas.

Texas has no state individual income tax, general sales or gross receipts tax and no corporation net income taxes. Most of the Southern States where wool textiles are locating have the taxes.166 Texas has no manufacturers' use or payroll taxes, but it does have an ad valorem tax on real and personal property. During the

\begin{thebibliography}{99}
\bibitem{ibid1955} Ibid., page 239.
\bibitem{ibid1952} Ibid., page 241.
\bibitem{ibid1951} Ibid., page 125.
\bibitem{ibid1952b} Ibid., page 125.
\bibitem{ibid1954} Ibid., page 67.
\end{thebibliography}
fiscal year 1952, the ad valorem tax collected on this property was only 5.5 percent of total revenue of the State Government. A homestead law exempts homes up to $3,000 valuation.\(^{167}\)

Corporations chartered or doing business in the State pay a franchise tax. The State has a gasoline tax and motor vehicle license tax.

When Texas joined the Union, it reserved its public lands and revenue from these lands to reduce the State’s taxes. Some of the lands are rich in oil, and the State income from these sources is large.

The State Constitution as amended prohibits issuing bonds unless the people approve in a state-wide vote.\(^{168}\)

The low per capita tax rate and small indebtedness are favorable to industries located in Texas. A new industry is not faced with paying off heavy State debts created by others. The laws regulating union activity in the State may indicate a favorable attitude toward industry on the state level.

The only way local taxes in Texas cities and towns can be compared accurately with those in another state is on a town-by-town basis. Since many states and towns in the Southeast have granted tax exemptions to industry and Texas has not, local tax costs are favorable to new industries in the Southeast. However, some companies have not sought or accepted tax considerations in that area because they did not think it fair to tax older industries more heavily to make concessions possible. They also feared that local industries might feel it their right to help manage the new industry and that their tax load might be heavy when the exemption ran out.

There is no program in Texas for waiving taxes or other inducements. No community is permitted, by law, to use either tax or revenue bonds for constructing buildings to rent to industry.\(^{169}\)

Texans, generally, realize the value of new industry to their cities and local communities. They are anxious to help any prospective new industry. Many towns have industrial foundations, commissions and chamber of commerce committees to help. In some cases, they are prepared to assist in all phases of location problems. These citizens will be fair about local tax rates and valuations. There are no reasons to believe that local taxes in Texas would not be comparable with local taxes in similar-size towns in the other Southern States.

\(^{168}\)Ibid., page 132.

Capital

Capital requirements of the wool textile industry are high because the buildings and modern machinery run into millions of dollars for a good-size plant. Large amounts of money also are required for operating capital to buy raw wool stocks and goods in the processing stages, storage or transit.

It is important that the owners of capital be familiar with the problems of the wool-textile industry, such as the long delays between purchase of foreign raw wool and its delivery, the time required from start of processing to sale of finished fabrics, the risks involved and the possibilities for profit.

Capital was developed along with industry in the Northeastern States. Capital management there is thoroughly familiar with the problems of the wool-textile industry.

Before the war, depreciation and obsolescence accounted for 2.29 percent of total costs for 22 woolen and worsted firms. In 1940, 44 woolen and worsted firms allotted 1.55 percent of production costs and expenses to depreciation and obsolescence and 2.16 percent for maintenance and repairs. A textile workers’ union survey shows that in 1949 depreciation was 1.5 percent of sales and 29.1 percent of profits, but in 1950 it was 1.4 percent of sales and 13.9 percent of profits for 121 companies studied.\(^{170}\)

Depreciation allowance averages about 2 percent of all costs. This amount is set aside before figuring profits, taxes and dividends, but is not necessarily spent. In the past, depreciation allowances in a woolen industry were based on a long, useful life. The recent, faster depreciation

schedules have encouraged capital investments in the industry. Cash outlays for plants and equipment can be regained in fewer years, and taxes on profits are reduced proportionately.

Plants in the Southeast are newer than those in the Northeast. They cost more than the old plants in the Northeast, and more can be set aside for depreciation than on the older mills. Because southeastern plants are newer, less must be spent on repairs and maintenance.

The southern textile industry generally is more profitable than comparable industries in the Northeast. Therefore, it is likely that capital for building southern mills should be obtained more easily than for northern plants.

The bulk of the capital for plants in both areas comes from the North. Most of the southern plants are either branch plants of companies in the North, or were established by northern companies; therefore, the northern capital followed the southern movement. The greater profit opportunities in the Southeast also encouraged northern textile capital to move south.

Some of the wool textile plants were financed with southern capital, and southern cities furnished some of the new plants moving into the Southeast with a site and building.

Capital for Texas plants is a much more difficult problem. Lack of capital is probably the main reason that plants have not yet been established in the State. Many individuals and towns have shown a great deal of interest in having plants in the State; but, with a few exceptions, none has been interested enough to invest money in such a venture. This may be explained partially by the fact that some plants appeared to be only money-making schemes, economically unsound or to lack skilled management. However, the main reason that local capital is difficult to obtain is that people do not know enough about the wool-textile industry. Some owners of capital may fear investing money in a firm that could be crippled, almost overnight, by labor troubles. They prefer to invest their money in real estate, land, livestock or other businesses with which they are more familiar.

For these reasons, it appears that major development of a wool-textile industry, or even one good-size mill, must depend on outside capital. It will be necessary for a big company with adequate financing to establish a branch plant in the State, or for a well-financed firm to move into the State.

Local interests might invest money in stock if a well-known firm sought to establish a modern branch plant in the State. Some of the industrial foundations or chamber of commerce committees might help finance a building for an established company.

Although there are adequate lending agencies in the State, their management is not familiar with the wool-textile industry; and might be more difficult to obtain high-risk operating capital in this State than in the Northeast. At the same time, some of the lending agencies undoubtedly have had experience with cotton textile plants and apparel manufacturers in a State. Banks along the Gulf Coast are experienced in foreign trade.

Management

Progressive management is probably the key to a company's success in the woolen and worsted textile industry. It is partially responsible for some mills making money during periods when most are operating at a loss. There are no data to show how much management costs a person or what salary a good mill manager receives, but some idea of the cost of management is contained in Bureau of the Census data.

In 1947, salaries, as distinguished from wages, cost the U. S. woolen and worsted mills $44,966,000 to produce $1,369,239,000 worth of products. Management, then, cost 3.3 percent of the value of the products. Gross margins, which include all costs plus profits in the costs of materials and supplies, amounted to $669,692,000.171 The average cost, then, of a salaried employee of woolen and worsted mills was a little over 6.7 percent of manufacturers' gross margins. Salaried employees include company officials, plant managers, production managers, engineers, research workers, bookkeepers, typists and others.

Management has been charged with doing a poor job in both the North and South. Sometimes tariffs have protected inefficient management in the whole industry. Others think that northern management should have modernized more and have avoided the influence of labor management. Some say that southern management has not had to be very progressive because of the area's economic advantages, especially lower cost, supply and lack of unionization of southern labor.

A study on mergers in the textile industry points out that details of management, such as more efficient production and marketing research, better selling and better financing, were some of the reasons for mergers.

Although much of the management personnel in southeastern plants came originally from the Northeast, southern management seems to be doing a good job in worker relations, morale and recreation and in community development and leadership.172

The cost of management in the Northeast and Southeast seems to be about equal. Since the southeastern mills are branch plants of northern firms, a number of the higher paid company officials serve as executives for both locations. Plant managers and other key production personnel in the branch plants may receive higher salaries than their counterparts in the Northeast as an incentive for moving. Some salaried employees, such as bookkeepers, typists and key employees, who already lived in the Southeast probably are working for lower salaries than those in the Northeast.

Texas mills would be in a similar position to those in the Southeast in respect to management. If the mills were branch plants, their higher paid company officials also would be officers of the parent company. Some key personnel would require higher salaries to encourage them to move, but the mills might be able to employ at no extra cost former Texans now working in mills in other states. Some other key salaried employees also would cost no more than in other states.

Waste Disposal

Waste disposal and stream pollution have become serious problems in recent years, especially in heavily populated and industrialized areas. It will become an even bigger problem with increased industrialization and the growing population in this country.

By January 1954, 41 states had some kind of stream pollution laws in effect. They differ a great deal, not only in the laws themselves, but also in the way they are enforced. During the 1955 session of Congress, the House Ways and Means Committee approved a bill (H.R. 3547) that permits rapid tax writeoffs (in 5 years) on waste treatment plants built by textile mills and chemical producers to reduce stream pollution.

Waste from wool-textile plants is one of the most harmful effluents released into a stream and one of the most difficult to treat. In the Yorkshire area of England, dumping tremendous volumes of wool scouring wastes into the river created so much hydrogen sulfide gas that it was possible for the air above the water to burn. The waste is toxic to stream life, depletes the oxygen supply and impairs the stream's physical characteristics and properties.

Wastes from wool scouring plants are especially offensive. Some plants in the East make no attempt to recover any byproducts, and others recover only a small percentage of the wool grease in the effluent. Some of them have no waste treatment plants of their own, but discharge the waste into streams or run it through the local city sewage system. Only three plants in this country used the acid-cracking process to recover wool grease and make a more acceptable effluent.

The percentage of grease taken out of the scouring wastes affects the cost of waste treatment, and the volume of grease recovered depends heavily on the price it will bring. The office of Price Stabilization ceiling price from June 1952 to March 1953 was 20 cents per pound for crude centrifugal, not refined, moisture maximum 2½ percent and 18 cents for wet (over 5 percent moisture). Special anhydrous cosmetic grade was 40.5 cents per pound. About 80 percent of the wool grease recovered in the United States is done by the centrifugal method, which has a recovery rate of only 30 to 40 percent of the grease present. The acid-cracking process recovers 60 to 70 percent, but the grease is of low quality and unsuitable for some high-quality uses.

The rate of grease recovery in the industry averages about 2.2 percent of the grease weight of the wool. A mill that scours 8 to 10 million pounds of average grease wool annually can expect to get about 200,000 pounds of wool grease which, at 18 cents per pound, would be worth around $35,000. Fine wool produces more grease than average wool, and the recovery rate is near 5 percent of the grease weight of wool. The normal output of two scouring trains scouring fine wool is about 100 pounds of grease per hour. Centrifugal equipment to handle this volume requires an investment of about $45,000. Using this equipment and scouring 10 million pounds of fine wool, a mill could gross around $90,000, with one man operating the equipment.

Wool scourers can abate stream pollution by cracking the emulsion, settling it and filtering the sludge. This decreases the solid material and biological oxygen demand to acceptable limits for disposal in streams. One mill in New England that scours 100,000 pounds of fine wool a week has a waste treatment plant costing $35,500 to treat the plant's 100,000 gallons of waste water weekly. All cost of treatment plus depreciation is $195 a week. The grease recovered by centrifugal equipment pays this cost and a substantial part of the scouring cost.

Some Boston engineering firms estimate that an acid-cracking, grease recovery plant which

175New York, July 18, 1955.
177Ibid., page 63.
178Ibid., page 142.
179Ibid., page 58.
180Ibid., page 60.
181Ibid., page 52.
182Ibid., pages 54 and 55.
could treat 100,000 gallons of effluent daily and produce an acceptable effluent would cost $250,000 to $300,000. It would require four or five men per shift to operate. Such a plant is beyond the resources of most mills.\footnote{Ibid., page 68.}

Some mills have found an adequate answer to the problem by extracting some of the grease, then acid-cracking the effluent in a plant costing $50,000 to $55,000 and operated by one man. The effluent can be discharged into streams satisfactorily under the present state public health laws. Changes in the laws or their administration might change the picture.

There appear to be no significant differences in the cost of grease recovery and waste treatment in the Northeast as compared with the Southeast. The Southeast probably has a slight advantage as a result of lower labor costs and cheaper land for sumps and lagoons. On the other hand, some of the mills in the Northeast have no particular problem because the city sewage system is adequate to handle their waste. If more rigid administration of the stream pollution laws forces mills to treat effluent more thoroughly, it may affect the Northeast first because of the higher concentration of industry in that area.

Texas has strong anti-stream pollution statutes, and Texas courts have interpreted them to mean, "that any waste discharged into a water-course shall be of such nature as to not materially affect the quality of the receiving water."\footnote{Personal letter from the Office of the State Department of Public Health.} Waste disposal is a serious problem in Texas because much of the State's water supply is impounded in lakes on streams that do not flow all the time, and the number of rivers that flow year-round is small.

The wool scouring plants located in Texas do not treat their effluent, but they have centrifugal grease recovery units. The mills own land where sumps have been constructed, and the waste effluent is hauled to these sumps in tank trucks.

Some areas in the State have porous soils that absorb much of the liquids, and the evaporation rate in much of the State is high. At Austin and Big Spring, 51 and 59 inches of water, respectively, normally evaporate from April through September. These rates are considerably above those of the Southeast and New England.\footnote{Hembree, Joel F., "Cotton Textiles: An Opportunity in Texas," Cotton Economic Research, University of Texas, Austin, Tex., 1954, page 130.} Texas has plenty of land, and land suitable for waste disposal is comparatively cheap around the smaller towns and cities.

Some firms in the State are considering seriously the possibility of waste water disposal through wells drilled to underground strata. This may result in cheaper waste disposal in some areas of Texas.

Mills in some sections of Texas probably have an advantage in the cost of waste disposal compared with some locations in the New England States, but New England mill locations that use city sewage systems and those that do not use any treatment have an advantage over some mills in Texas. Some locations in the South have advantages over Texas.\footnote{"Wool Grease—The Economics of Recovery and Utilization in the United States," Marketing Research Report No. 89, Agricultural Marketing Service, U.S. Department of Agriculture, June 1956, page 38.} If more rigid enforcement of stream pollution legislation forces mills in other areas to use expensive treatment and mills in Texas can continue to use evaporation and seepage, then the advantage may be reversed in favor of this State.

The disadvantage Texas now suffers from the present method of disposing of scouring waste would not be an important cost item. Deposition on a tank truck, interest on land investments and labor and truck expense would likely be less than $10,000 per year for a plant scouring 10 million pounds of wool per year.

Some city sewage systems in Texas can handle waste from wool plants satisfactorily. Even some of the smaller towns might handle larger volumes of wool mill wastes if the effluent were made constant in character and the feeding rate into the sewer system is controlled to a fairly constant ratio of waste to sewage. This would require building a waste storage tank. One large plant scouring and dyeing 300,000 pounds of wool per week used this system in a city of 800 people.\footnote{Wool Grease—The Economics of Recovery and Utilization in the United States, Marketing Research Report No. 89, Agricultural Marketing Service, U.S. Department of Agriculture, June 1956, page 38.} The scouring and dyeing waste in storage tank partially neutralize each other.

Chemicals and Supplies

No industry-wide data are available on the cost of chemicals, dyes and other expendable supplies for wool-textile mills. Since volumes and types vary according to the mill, method of processing, raw material and finished product, any figure, even if available, would be of little value in estimating the costs of expendable supplies for a mill. In scouring, for example, the material used range from synthetic detergents or through various proportions of synthetic detergents, soap and soda ash to soda ash only. Even in the soap and soda ash combinations, the proportion of soap varied from 1 pound of soap for each 1.33 pounds of soda ash to 1 pound of soap for each 13.5 pounds of soda ash among 23 mills studied.\footnote{An Industrial Waste Guide to the Wool Processing Industry, Public Health Service, Publication, No. 6, U.S. Department of Health, Education, and Welfare, 1955, page 9.}

The method of plant operation can result in considerable savings in soap and soda ash. (Continued.)
tensive operation with the use of grease-recovery units and recirculation of scouring liquors saves water and chemicals. The cost of the scouring materials for the industry averaged $0.154 for 100 pounds of grease wool scoured.188 The total cost of scouring per 100 pounds of grease wool for integrated mills handling 1, 5, 10 and 20 million pounds was $2.564, $1.541, $1.441 and $1.309, respectively.189 Thus, the cost of chemicals was 8.7 percent of total cost in scouring 5 million pounds of wool, but the chemicals cost less than 1½ mills per pound of wool scoured.

Although the acids, dyes, sizing, oils, soaps and such used in further processing cost more per pound of wool processed than the chemicals used in wool scouring, they probably account for a smaller percentage of the total processing cost.

Regardless of the actual or percentage costs of these expended supplies, the cost seems to be equal for the New England and Southeastern States. Most chemicals are priced delivered anywhere in the United States. There are a few exceptions, but even wide price differences would show small cost differentials between the two areas.

The same would be true with costs of chemicals in Texas. The State’s dynamic chemical industry produces most of the chemicals needed by wool textile plants. Since the other chemicals can be shipped at no higher cost than to other areas, there would be no advantage or disadvantage from this standpoint to locating plants in Texas.

Climate

Climate in itself is not a cost item to the wool textile industry, but it affects other costs.

The Southeast seems to have a slight advantage over the New England States because of its milder climate.190 The new, one-story buildings in the Southeast are easier and cheaper to construct. Roofs may be built flatter and do not require the strength of those in the North where snow loads are heavy. Sites and labor are cheaper and construction time is not prolonged in winter by bad weather. Less heat is required to warm the buildings.

Most of the new textile mills in the Southeast have installed air conditioning. The initial cost of this equipment is an added burden to the Southeast compared with the Northeast, although some northern mills also have installed this equipment. The cost of operation for air conditioning is higher in the Southeast during the warmer months, but the controlled temperature and humidity have greatly increased worker efficiency and improved fiber behavior. In some southeastern mills, big supplies of cold water have reduced air-conditioning costs.

Other advantages in the South as a result of the milder climate are less likelihood of plant shutdowns and absenteeism and less chance of transportation tieups because of bad winter storms.

Although Texas has an excellent climate for industry, there apparently would not be much advantage or disadvantage for wool processing in the State as a result of climatic factors compared with the Southeastern States. Some areas in the State have milder weather than some states in the Southeast. Fuel demands are lower and the fuel is cheaper. The longer, hotter summers probably would require higher expenditure for air conditioning if refrigeration types were used. It might be possible to save on air conditioning in Texas, depending on the plant location. The average rainfall in the State varies from around 50 inches in East Texas to about 10 inches in far West Texas, and the humidity varies generally along the same lines. It might be possible to lower temperatures to satisfactory levels in some parts of the State with evaporative-type coolers, which are much cheaper to install and operate than refrigeration units.

Excellent roads and mild weather would be favorable to uninterrupted transportation and steady work attendance. Most locations in Texas have more open flying days than the other areas.

Cost of Living

The lower cost of living is both a cause and an effect of the lower labor cost in the Southeast.

Cost of living is difficult to distinguish from level of living. Better food, clothing, housing, conveniences, luxuries and more time for recreation and entertainment are associated with higher levels of living. The Southeast generally has been considered an area where the level of living is comparatively lower than in other areas. It is assumed generally that rural areas have lower levels than cities. However, much wider differences exist within all areas than between them.

Cost of living depends somewhat on consumption patterns. Consumption patterns probably account for more of the lower cost of living in the Southeast than do variations in the cost of individual items.191

Other more positive factors help account for the lower cost of living in the South. Lower labor costs are reflected in the price of many items. Taxes are lower. Heating costs are lower and fuel is cheaper. Heavy, warm clothing is not required in the Southeast, and school children can wear cotton clothing almost the year round.

188Ibid., page 43.
189Ibid., page 47.
191Ibid., page 154.
Power is cheaper in the Southeast. It costs less to build a house in the Southeast than in the North. Prices of food items are not directly comparable because of different consumption patterns, influences of favorite brands and popularity of different foods; but they are probably lower in the Southeast. Cost of living for mill workers also is probably lower in the Southeast as a direct influence of location in smaller towns and because many of the workers live on farms.

A cost of living survey by the Works Progress Administration in 59 U. S. cities during 1936 showed a range of 20 percent difference from the high to the low. By regions, there was probably offset by the greater use of air conditioning in this State. Cost of living in the Southeast probably were more than 8 percent lower. The highest southern city was lower than Washington, D. C., the highest U. S. city, and it is believed that the costs would be similar. A study of the Bureau of Labor Statistics showed that it cost $3,111 per year to provide a reasonable level of living for a family of four in Washington, D. C., the highest U. S. city, and $2,734 in New Orleans, the lowest.

The cost-of-living spread seems to be wider than this between the cities in the North and South where wool plants have located. A mill manager in the South who formerly lived in New England said in an interview that, considering the cost of living, southern workers in wool-textile mills were better paid than northern workers.

Very few data are available to compare cost of living in Texas with the wool textile states, but it is believed that the costs would be similar. Fuel in Texas is cheaper, but this advantage is probably offset by the greater use of air conditioning in this State. Cost of constructing the standard house in Texas is about the same as in other Southern States. The fact that cotton-textile workers in Texas work for lower wages than the average in other Southern States may indicate slightly lower living costs, but there is surely no large cost-of-living advantage or disadvantage in Texas compared with the other Southeastern States.

Sites

The cost of sites has little influence on the selection of a location or on processing cost of the wool-textile industry. Even if a site cost $100,000, at 4 percent interest on the investment, it would amount to only $4,000 per year. Location of the site with regard to accessibility of water, fuel, power, transportation facilities or waste disposal may be far more important.

A report on the New England textile industry states that sites are much cheaper in the Southeast than in the Northeast. It further states that sites are available in the Southeast indicating that they might not be so readily available in some areas in the New England States. Cost of sites would not be an important influence on migration of industry to the Southeast, even if sites are donated to the firm. Providing good sites at reasonable cost or free of cost does indicate a favorable attitude of towns and people which is important to a firm. Any reduction in cost of sites also may be important for capital financing.

The price of sites in Texas probably is comparable with the price around similar size towns in the Southeast. There would be no advantage or disadvantage to mills locating in Texas for the standpoint of sites.

Machinery Repair, Parts and Maintenance

The cost of depreciation, repair and maintenance was discussed in considering cost of capital to the industry. Another aspect of machinery maintenance deserves mention—the accessibility of machinery replacements, spare parts and facilities for major repairs.

Most of the wool machinery and spare parts manufacturing concerns are located in the Northeast. Although the price of these goods would be the same regardless of who purchased them, the Southeast probably has to pay a small amount extra for transportation. In the past few years machinery companies have established spare parts supply houses in the Southeast, but many wool mills had already been established in the South. This indicates that lack of a quickly available supply of parts was not an important condition. Most mills keep an adequate supply of extra parts on hand. They also have on their payrolls mechanics who can make most repairs necessary. In addition, good machine shops in most of the large towns over the Nation can do any major repair that is needed.

Texas has no supply parts houses for wool textile machinery. There are fine machine shops in Texas' cities and big towns, and many small towns have capable welding shops. The State has a good-size machine-tool industry, and Westinghouse Electric Corporation has a heavy equipment manufacture, maintenance and repair plant in Texas.

Cost of transporting new machines to Texas would be a little higher than for other areas, but a modern mill with its own mechanics and adequate supply of spare parts would suffer little handicap. Parts not stocked could be flown in.

193Ibid., page 155.
194Ibid., page 267.
Attitudes and Special Inducements

State and community attitudes toward new industries are important to mill ownership, management and workers. The attitude toward wool textiles is far better in the Southeast than in the Northeast. With higher birth rates and higher percentages of people leaving the farms, the Southeast needs more jobs for its people.

Southern States seem to be fully aware of what new industrial jobs mean to a community. A United States Chamber of Commerce survey, with most of the data collected in the Southern States, shows that 100 new factory jobs mean $660,000 more retail sales to a community and many other benefits.

State attitude toward industry in the Southern States is indicated by right-to-work and other labor laws and how these laws are enforced, by laws that permit cities to vote bonds to build buildings, by state tax policies and in many other ways. Interest by state officials in plants that locate in their state also indicates a favorable state attitude.

Southern community attitudes are exemplified by courtesy of the community leaders, help in planning, furnishing information, tax policies, building and site arrangements, personal letters and advertisements.

Many southern communities have offered special inducements to industry. These generally take the form of special tax exemptions that extend for some period of time. A number of communities have erected buildings to the mills' specifications by voting bonds and have rented the buildings to the firms with an option to buy later. Some objections to these procedures are that older firms carry the new firm's part of the tax load and that the new building, as municipal property, is tax free. The rent may be set so as to retire the bonds in a specified time. Other cities may only donate a site. During one 4-month's period, southern communities voted 63 million dollars in bonds to build textile plants.

Although no special inducements were received by most of the industries locating in the Southeast, they do show a favorable attitude that may have decided the exact mill location where several areas had equal facilities. The inducements may have been more important to concerns with limited capital.

Some companies have not requested or accepted financial favors. They fear that special favors from a community might bring about interference in mill management and greater tax burdens later. Also, they may not think it just for older concerns to carry the tax load alone.

Although special inducements are more prevalent in the Southeast, some Northern States and communities have similar practices. Maine and New Hampshire are the only New England States with statutes that prohibit tax exemptions.

Special inducements may give some advantage in the Southeast over the New England States in capital outlay for sites and buildings, but all the southern communities do not offer them and most new industries have not accepted them. This indicates that they are not a major reason for plants to move to the Southeast. The Southeast has enough sound economic advantages to attract industry, but the special inducements indicate an all-important favorable attitude toward industry.

Texas also has a favorable attitude toward industry, as shown on the state level by the right-to-work law and other labor legislation insuring equal rights for both labor and industry. Texans believe it is far better to keep taxes as low as possible and have everyone pay his fair share. The State has no program for waiving taxes.

Almost every city and town in the State has an active chamber of commerce willing and anxious to provide information to industry. Many of the larger cities publish literature on their advantages for industry, but a law passed during Civil War reconstruction days prohibits the State from advertising its attributes.

In April 1953, Texas had 14 industrial foundations, but by December 1955 there were at least three times that many and the number is increasing rapidly. These organizations are scattered over most of the State, but are concentrated more heavily in the eastern half. Most of the foundations are incorporated. They may sell stock or borrow from members or financial institutions. They may purchase and develop sites, build buildings for lease or conduct similar activities to attract industry. Possibly the most valuable service of chamber of commerce groups, industrial committees and industrial foundations in Texas is encouraging their own local businesses to expand.

In 1942, 42 states had state planning boards, but Texas is one of the states without such serv-

201Ibid., page 269.
202Ibid., page 18.
203Ibid., page 18.
204Tippit, John W., “Recent Developments in Industrial Foundation Activity in Texas,” Supplement No. 1 (Dec. 1955) to Research Report No. 43, Texas Engineering Experiment Station, College Station, Tex.
ice. However, the industrial departments of numerous commercial concerns are trained and equipped to provide valuable services for an industry that seeks a location in the State.

Technical Services

Availability of technical services is important to the wool-textile industry. Research findings of public institutions are available to mill management. Independent fiber laboratories equipped to handle wool are located mainly in the Northeast and are more accessible to eastern mills, which may give them a slight advantage. The larger firms have their own research facilities, and findings in northern laboratories would be available to their southern branch plants.

A Texas branch plant of a good company would be at no disadvantage compared with the Southeast. Both the U. S. Testing Company and American Conditioning House offer core testing services at San Angelo. Extensive research facilities are available at the major colleges in the State. The Southwest Research Institute, a private research organization at San Antonio, has facilities for research on problems of the textile industry. The U. S. Testing Company has a complete cotton fiber laboratory in Dallas.

The increasing interest in automation brings up instrument service facilities, another technical service worthy of consideration. A number of the firms that repair and maintain highly complicated electronic and automatic continuous flow equipment have branch plants in Texas. These companies include Foxboro, Brown, Taylor, Leeds and Northrup and the Instrument Society of America. Texas cities where these facilities are located include Dallas, Fort Worth, Houston, Corpus Christi, El Paso, Odessa, Lubbock and Amarillo.

Recreation

Many articles in trade journals indicate that southern mill management is doing a good job in worker relations and that recreation for workers contributes to their happiness and efficiency. The geographical location of the Southeast probably gives it slightly better access to the Nation's recreation facilities, but a bigger advantage is in the South's milder climate.

Texas seems well located for recreation since it is near the geographical center of the country. The State has 4 National forests, 5 State forests, 47 State parks and 1 National park. The Gulf Coast offers boating and deep sea fishing; there are numerous lakes and streams for fresh water fishing. Dude ranches are plentiful. Almost every town has one or more golf courses and swimming pools. Golfing is a year-round sport in this mild climate. The many high schools, colleges and universities have athletic teams. Many areas have deer and wild turkey for hunting. Excellent highways make weekend travel to points of interest much faster than the distance would indicate.

Texas Business

Anyone considering Texas as a location for wool-processing plants would be vitally interested in the economics of the State, the primary market area and what other industries think of Texas as a location for manufacturing plants.

Texas leads the Nation in the production of petroleum, natural gas, sulphur, helium and number of agricultural products. It is seen in aluminum production and one of the largest in chemical production. It has a dynamic petrochemical and plastics industry, important production of transportation equipment, aircraft, machine tools, building materials and other industries. The State has the Nation's largest lignite deposits and in 1953 had a steel-producing capacity of 1,269,720 tons annually.

During 1939-53, the value added in manufacture in Texas increased 700 percent, from 453 million dollars to over 4 billion. During 1947-53 manufacturing grew 84 percent. During 1939-52, per capita income rose from $401 to $1,457. The national total of employees in nonagricultural establishments rose 75 percent during 1939-54, but in Texas the number more than doubled. One out of 3 Texans lived on a farm in 1940, but in 1950 only 1 out of 6.204 Texas led the Nation in the trend toward urbanization. According to a report in Business Week, based on a McGraw Hill survey, the Southwest is the second fastest growing region in terms of factory jobs. It is surpassed only by the Pacific Coast; but the Great Lakes, Middle Atlantic, South Atlantic and New England States lead, in that order, in total factory jobs.206 This report also said, "One thing is clear: industrial migration is going to continue relentlessly to change the industrial map of the United States."

For the first 10 months of 1954, Texas spent 1,997 million dollars on construction. Productions of leading southern textile states were North Carolina 560 million dollars, South Carolina 477, Tennessee 631, Georgia 551 and Alabama 376.207 A private development agency report208 shows that Texas got about 40 percent of the 1.9 billion dollars spent in the 13 Southern States on manufacturing buildings between July 1945 and June 1948. The 13 Southern States...
Also during the first 10 months of 1954, Texas spent $7,801 million dollars on retail trade. The area west of the Mississippi River, where Texas mills would have a marketing transportation advantage, spent 45,481 million dollars on retail trade, almost a third of the U. S. total.210

A survey of Texas manufacturers conducted by the Bureau of Business Research to determine why industry comes to Texas211 gives the following main reasons: the State's industrial potential, natural resources, raw materials, rapidly increasing population with resultant larger labor force, rising per capita income, central location in a large geographical market, oil and gas supplies in virtually all sections of the State, mild climate, above-average highway system and favorable labor atmosphere. Most of the firms surveyed either had offices in other states or had moved from another state.

The primary market area for Texas textiles, population, growth, total and per capita income, number of production workers per 1,000 population and value of private construction are developing faster than the U. S. average.212 Texas wholesalers and retailers purchased some $551,324,000 worth of apparel and related products in 1952.213 The main items which might include wool goods are:

- Women and misses coats...$14,808,000
- Women and misses jackets...2,042,000
- Women and misses sport and casual dresses...62,967,000
- Women and misses suits...12,352,000
- Women and misses skirts...4,471,000
- Women and misses sweaters...2,279,000
- Men and boys separate trousers...4,685,000
- Men and boys dress suits...34,390,000
- Men and boys sport trousers...1,626,000
- Men and boys dress trousers...9,955,000
- Men and boys sweaters...1,688,000
- Drapery and upholstery...7,146,000
- Blankets...4,507,000
- Wool carpets...2,680,000
- It was found in this study that it is feasible to scour woolen wools, tags, clippings, off-sorts and some very heavy-shrink combing wools on commission and to purchase worsted wools for scouring and resale to the worsted industry.

Since World War II, Texas has experienced relatively more growth in apparel manufacturing and has made relatively more progress in apparel marketing than any other state.214 The Texas apparel industry has been confined largely to work clothing, childrens wear and womens cotton goods; but recently sportswear and high-styled womens cotton goods have increased in importance. It appears that the Texas industry, which grew from 10,000 employees in 1939 to about 35,000 in 1954, will continue to grow into fields embracing wool goods.

Decentralization is taking place in the garment industry. Especially notable is the exit from New York City to surrounding areas. Garment making is an easy-entry industry with low capital requirements in which labor accounts for about 50 percent of operating costs. Women contribute the bulk of the work force. Labor costs are lower in the West, and transportation savings are possible if fabrics are purchased in the West for garments to be made and sold there. With these savings, and the increasing style centers west of the Mississippi, both textile and garment industries probably will increase in that area.

Past experience shows that a heavy concentration of textiles in a town, a state or an area is unhealthy for the people as well as the industry. Cotton textiles migrated from New England to the Southeast, and wool-textiles are in the process of doing so. In 1959, 50 percent of the factory jobs in seven Southeastern States were in textiles.215 The Southwest and Pacific Coast are the next logical stops for textile industry; and Texas, with its big and growing labor force and much lower labor costs, is the better area.

RECOMMENDED PRODUCTS AND DECREASED OVERHEAD

It was found in this study that it is feasible for an established wool-textile firm to process wool in Texas through any of the standard processing stages. A locally owned company without the connections needed to obtain commission business would have some serious problems and probably would have difficulty marketing products that the mill owns in some of the processing stages.

Scouring worsted wools on commission is practicable only for a well-known firm with business already established. Purchase of grease wool for scouring and resale to the worsted industry is not feasible.

It is feasible to scour woolen wools, tags, clippings, off-sorts and some very heavy-shrink combing wools on commission and to secure...
chase these wools for scouring and resale to the woolen industry. Marketing the wools to advantage is the main problem. The volume of these wools produced in Texas is not large, and the State already has six scouring trains capable of scouring some 30 million grease pounds per year.

Top-making in Texas also is economically sound, but a locally owned firm might find it difficult to get commission combing business or to market any tops owned by the mill.

Production of both woolen and worsted yarn for the fabric and knitting trades also is practicable. Commission business would hinge on favorable relations with users in the industry. Yarns made for sale probably would have fewer marketing difficulties than scoured wool or wool tops made for sale.

The wool-textile industry's recent growth in the South began mainly with spinning and weaving plants. Partially processed goods were shipped to the Southeast for spinning and weaving, and the finished goods were shipped back for marketing. Because of the greater distances from other mills to Texas, the availability of raw material in the State and the lower labor costs, earlier processing stages also would probably be done in Texas.

Completely integrated mills that process raw wool into finished woolen and worsted fabrics would produce the greatest savings for plants in Texas. More labor is required than in the earlier stages, and savings on labor would be greater. There is a large market for these goods in Texas and other states where Texas has a transportation advantage. Also, the full benefit of transportation savings on the raw wool could be realized. The goods should sell in the higher price brackets because of the high-price wools, and these goods are suffering the greatest competition from imported fabrics.

In addition to fabrics, the mills might be able to obtain commission yarn-making or combing business, or to make some of these products for sale.

Knitting is another operation that is economically practicable. Since the market for knit goods is mainly wholesalers and retailers, the bulk of the plant's produce possibly could be marketed in Texas' primary market area. Some Texas wools are well suited for certain knit goods; however, the greater portion is better suited for woven fabrics.

Pressed felts probably would be a sound venture in Texas for an established firm, but because of the small size of this industry, it was not given as much consideration as other processes.

Texas has a greater volume of worsted wools than woolen wools. The worsted industry requires much greater capital and more skilled labor than the woolen industry. The State produces very little pulled wool, noils or other product raw materials often used for wool goods. The demand for woolen or worsted goods varies in short cycles according to styles. For these reasons, a completely integrated, combination woolen and worsted plant of medium size probably would have the best chance for success in Texas.

The savings for such a plant located in Texas, compared with the Southeast, can be estimated. Assume that the plant would produce about 5 million pounds of products, consisting of 5 million yards of woolen fabric and 5 million yards of worsted fabric that average 8 ounces per yard. About 7.5 million pounds of worsted grease wool averaging 55 percent shrink would be required to produce the worsted fabric, about 5 million pounds of woolen grease wool having shrinking 55 percent, plus the noils from the worsted wools by truck to the Southeast, would be about $150,000 and the cost of shipping woolen wools after scouring in Texas would be about $45,000. Minimum transportation savings = $195,000.

The labor to produce this volume of wool and worsted goods in the Southeast cost about $10 million dollars. Texas labor for the woolen and worsted industry should be 5 to 10 percent lower. Minimum labor savings = $500,000.

The fuel bill for a southeastern plant would be about $42,200 to produce these goods. It would require about 5,000 tons of 13,000 B.T.U. coal at $8.44 per ton, plus some labor costs. Texas mill would use about 130 million cubic feet of natural gas costing about $23,200. Minimum fuel savings = $19,000.

Water and waste disposal might cost more for the Texas plant, although in some locations Texas might have an advantage. Actual waste cost probably would be comparable, but it might have to be softened in some locations. Softening cost would not be greater than 5 cents per 1,000 gallons, or $15,000 to soften 300 million gallons. Labor and depreciation on equipment would exceed $4,000 per year. Net water disadvantage = $19,000.

The Texas mill in some locations would have no higher waste disposal costs than the Southeast, but in others the mill might have to purchase land for seepage and evaporation disposal. Interest on the land investment, tank truck depreciation, labor for a driver and truck expense probably would not exceed $8,000 per year. Net waste disposal disadvantage = $8,000.

Possibly half of the mill's products could be marketed west of the Mississippi River at a saving of about 1 cent per pound, or $25,000. The other half probably would have to be sold in New York, with about 2 cents per pound more transportation costs than southeastern mills, or $25,000. Net marketing disadvantage = $25,000.
The many other cost elements account for only a small percent of total costs. Some locations in the Southeast may have slight advantages over Texas locations, but Texas would be favored over others. Accurate figures on the other cost elements would require a city-by-city comparison; therefore, they are considered about equal.

Thus, a Texas mill that used all Texas wool to make the products feasible for the State and marketed half of these products in the West might expect to save approximately 600 to 650 thousand dollars as compared with a mill in the Southeast. This would amount to about 6 cents per pound or some 3 to 4 percent of the value of the plant's products.

On the other hand, the mill might market all its products in New York with a 2 cent per pound disadvantage. It might use large volumes of foreign wools landed at Texas ports on which there would be no savings. It might have to buy small volumes of raw wools and specialty fibers at Boston and synthetic fibers from the East with higher transportation costs than the Southeast.

Under these conditions, a plant in Texas probably would save only on labor costs as compared with the Southeast.

BIBLIOGRAPHY

Studies

Assenderp, Andre' Van, "Inquiry into the Feasibility of Establishing a Wool Processing Plant in New Orleans." Division of Economic and Business Research, College of Commerce and Business Administration, Tulane University, Publication No. 4, 1949.

Jones, J. M., Comments on (1) the development and expansion of the wool industry in the United States and (2) the feasibility of establishment of wool processing mills in Texas, and general suggestions pertaining to the postwar textile industry. Unpublished paper prepared Sept. 1944.

Books

"Bulletin of the Wool Manufacturers," Published by the National Assn. of Wool Manufacturers, 386 Fourth Ave., New York City, (yearly editions).

............., "Climate and Man." The Yearbook of Agriculture 1941, USDA.

U. S. Government Publications

“Agricultural Prices.” (Releases) Agricultural Marketing Ser., USDA.

Bureau of Labor Statistics, (Monthly Reports) USDL.

“Domestic Wool Requirements and Sources of Supply.” Prepared by the Livestock Branch, Production and Marketing Administration and Bureau of Agri. Econ., USDA, June, 1950.

“Facts for Industry.” (Releases) Bureau of Census, USDC.

“Livestock and Meat Situation.” (Releases) Agri. Marketing Ser., USDA.

“Market News.” (Weekly) Livestock Division, Agri. Marketing Ser., USDA.

State Publications

“Annual Reports—Board of Water Engineers for the State of Texas.” Austin, Tex.

Cella, Francis R., “Factors Affecting Industrial Location in the Southwest,” College of Business Administration, University of Oklahoma, Norman, Okla., 1954.

Miscellaneous Publications

“Shipping Digest.” The National Shipping Weekly of Export Transportation, Shipping Digest, Inc., 8-10 Bridge St., New York 4, N. Y.

“The Houston Port Book.” (Semiannually) Harris County Houston Ship Channel Navigation Dist., P. O. Box 2562, Houston, Tex., Spring 1955.

The Wool Bureau Inc. (Releases) 16 West 46th St., New York 36, N. Y.

Newspapers and Periodicals

“Readers Digest.” (Monthly) Readers Digest Assn., Pleasantville, N. Y.

“Textile Organon.” (Monthly) Textile Eco. Bureau, 10 East 40th St., N. Y. 16, N. Y.

Foreign Publications

