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ABSTRACT 

 

Crystallization and Mutational Studies of Carbon Monoxide Dehydrogenase from  

Moorella thermoacetica.  (May 2004) 

Eun Jin Kim, B.S.; M. Ed., Korea National University of Education 

Chair of Advisory Committee: Dr. Paul A. Lindahl 

 

          Carbon Monoxide Dehydrogenase (CODH), also known as Acetyl-CoA synthase 

(ACS), is one of seven known Ni containing enzymes. CODH/ACS is a bifunctional 

enzyme which oxidizes CO to CO2 reversibly and synthesizes acetyl-CoA. Recently, X-

ray crystal structures of homodimeric CODH from Rhodospirillum rubrum (CODHRr) 

and CODH from Carboxydothermus hydrogenoformans (CODHCh) have been published. 

These two enzymes catalyze only the reversible oxidation of CO to CO2 and have a 

protein sequence homologous to that of the β subunit of heterotetrameric α2β2 enzyme 

from Moorella thermoacetica (CODHMt), formerly Clostridium thermoaceticum. Neither 

CODHRr nor CODHCh contain an α-subunit as is found in CODHMt. The precise 

structure of the active site for acetyl-CoA synthase, called the A-cluster, is not known. 

Therefore, crystallization of the α subunit is required to solve the remaining structural 

features of CODH/ACS. Obtaining crystals and determining the X-ray crystal structure 

is a high-risk endeavor, and a second project was pursued involving the preparation, 

expression and analysis of various site-directed mutants of CODHMt. Mutational analysis 

of particular histidine residues and various other conserved residues of CODH from 
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Moorella thermoacetica is discussed. Visual inspection of the crystal structure of 

CODHRr and CODHCh, along with sequence alignments, indicates that there may be 

separate pathways for proton and electron transfer during catalysis. Mutants of a 

proposed proton transfer pathway were characterized.  Four semi-conserved histidine 

residues were individually mutated to alanine.  Two (His116Mt and His122Mt) were 

essential to catalysis, while the other two (His113Mt and His119Mt) attenuated catalysis 

but were not essential.  Significant activity was “rescued” by a double mutant where 

His116 was replaced by Ala and His was also introduced at position 115. Activity was 

also rescued in double mutants where His122 was replaced by Ala and His was 

simultaneously introduced at either position 121 or 123. Activity was also “rescued” by 

replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster 

attenuated activity but did not eliminate it. Activity was virtually abolished in a double 

mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved 

Asn284 also attenuated activity. These effects suggest the presence of a network of 

amino acid residues responsible for proton transfer rather than a single linear pathway. 
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  CHAPTER I 

INTRODUCTION 

 
 
 

Among the less common transition metal ions to be found in living systems is 

nickel. Currently just seven Ni-containing enzymes are known, including NiFe 

hydrogenases, ureases, glyoxalase I, cis - trans isomerase, Ni-containing superoxide 

dismutase, methyl -coenzyme M reductase, and Ni-containing carbon monoxide 

dehydrogenases (1-3). There are also a number of Ni-containing transport and assembly 

proteins, including the dedicated nickel uptake system NikA and Ni–specific 

metallochaperones such as HypA, HypB, CooJ, and UreE (4-6). Nickel may also be 

essential for mammals. Chickens and rats raised on nickel-deficient diets have liver 

problems (7, 8). Nickel deficiency affects sperm physiology in rats, and nickel ion is an 

effective inhibitor of the desensitized butyrylcholinesterase from human serum (7, 8). 

The roles of Ni in the catalytic mechanisms of these enzymes are diverse.  In Ni- 
 
containing hydrogenases, the Ni appears to be redox active and involved in substrate  
 
binding. These enzymes catalyze the reversible oxidation of H2 to protons  

 

 

                          H2                 2H+      +    2e-                                                       (1) 
 

                                                           
This thesis follows the format and style in Biochemistry. 
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The active site consists of a heterobimetallic (Scys)2Ni(µ-X)Fe(CO)(CN)2 (X= O or OH)  

cluster (9-15), as shown in Figure 1. The bridging ligand X was proposed to be an oxide, 

or hydroxide in the oxidized state and was missing in the reduced state. Two cyanide and 

one carbonyl ligands ligate the iron center. The enzyme from Desulfovibrio gigas, which 

is the most widely studied, has an αβ heterodimeric structure of 89 kDa with one nickel 

and twelve iron ions.  The metals are divided into one NiFe active site, one Fe3S4 cluster 

and two Fe4S4 clusters. The α subunit is 28 kDa and contains FeS clusters. The β subunit 

is 60 kDa and contains the NiFe active site (16).  The Fe3S4 cluster is located in between 

two Fe4S4. However, the distances between two of these are slightly different; one is 5.7 

Å and the other is 5.2 Å. (10-13).  

          The nickel site has been proposed to be redox active and alternate between Ni(III) 

and Ni(II) during catalysis.  The Fe(II) site apparently remains redox inactive. The NiFe 

active site has four stable redox states including Ni-AB, Ni-SI, Ni-C, and Ni-R. Inactive 

enzyme purified in air can be activated after incubation with Hydrogen.  
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Figure 1: The active site of Hydrogenase. (adapted with permission from (3))   
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                   The Ni ions in ureases appear to be redox inactive and to serve as Lewis 

acids to stabilize certain intermediates during catalysis. Ni-containing ureases have been 

isolated from various bacteria, fungi, and higher plants. (14, 17-20). The enzyme 

catalyzes the hydrolysis of urea to ammonia and carbamate as shown in equation (2) (20, 

21). The carbamate hydrolyzes spontaneously to form carbonic acid and a second 

molecule of ammonia in equation (3). 

 
 

           NH2C(O)NH2    +    H2O              H2NC(O)OH    +    NH3
           (2) 

 
           H2NC(O)OH     +    H2O                    NH3          +     H2CO3        (3) 

 
 

          The active site of the enzyme from K. Aerogenes is shown in Figure 2 (22). The 

dinickel center is bridged with a carbamylated Lys, which is a unique bridging ligand. 

One Ni has a coordination geometry between square pyramidal and trigonal bipyramidal, 

including one H2O, two histidine ligands, one aspartate, and an oxide of the bridging 

carbamylated lysine. The other Ni has a trigonal planar geometry with two histidine and 

a bridging oxide from carbamylated lysine (23).  Urea binds to the tri–coordinate Ni, 

which is followed by nucleophilic attack by hydroxide that is bound to the 

pentacoordinate Ni. In this enzyme, the Ni ions are thought to function in two different 

ways. One Ni serves as the substrate  - binding site while the other is a Lewis Acid that 

lowers the pK of bound water.
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Figure 2:  The active site of Urease from K. Aerogenes. (Adapted with permission from 
(22)) 
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            The Ni in methyl-CoM reductase appears to facilitate radical-based chemistry 

during the catalytic mechanism.  The enzyme catalyzes the final step of methane 

formation, with reduction of methyl coenzyme M to methane and the heterodisulfide of 

CoM (which is 2-mercaptoethane-sulfonate) shown in equation (4). 

 

       CH3-S- CoM       +    H-S-CoB            CoM-S-S-CoB      +     CH4   (4) 

 
 

            The enzyme is found in methanogenic archaea that are grown anaerobically. The 

X-ray crystallographic studies of the enzyme isolated from Methanobacterium 

thermoautotrophicum revealed the active site at 1.45 Å resolution from the inactive 

enzyme (24, 25). Methyl-CoM Reductase from Methanobacterium thermoautotrophicum 

is 300 kDa with an α2β2γ2 hexamer structure containing two molecules of the nickel 

porphinoid (nickel in a tetrapyrrolic structure) called coenzyme F430.  The active site of 

Methyl-CoM Reductase from Methanobacterium thermoautotrophicum is shown in 

Figure 3 (3). Enzyme activation occurs when the Ni(II) oxidation state in the active site 

is reduced to Ni(I) (3, 26). The Ni in the porphinoid ring is a good catalyst for methyl 

group reduction. Also Ni is thought to function by retention of stereoconfiguration (26). 
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Figure 3:  The active site of Methyl-CoM Reductase.  Structure of coenzyme F430. 
(Adapted with permission from (3)) 
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Carbon Monoxide Dehydrogenase 

 

For more than a quarter century, Ni-containing Carbon Monoxide 

Dehydrogenase (CODH) has been studied. Carbon Monoxide Dehydrogenase is found in 

2 classes of Methanogenic Archaea (Class I and II), in Acetogenic Bacteria (Class III), 

and in CO-utilizing Bacteria (Class IV) (27). This enzyme has been named according to 

its functions. The monofunctional CODH enzyme carries out the reversible oxidation of 

CO. It is found in many species, for example phototrophic anaerobes such as 

Rhodospirillum rubrum. The bifunctional CODH/ACS enzyme, found in species such as 

the acetogenic bacterium Moorella thermoacetica, has a subunit homologous to the 

monofuctional enzymes and another subunit that is involved in acetyl Co-A synthesis.  

CODH/ACS enzymes are involved in the Wood/Ljungdahl carbon-fixation pathway (27, 

28).   

CODH enzymes catalyze the reversible oxidation of CO to CO2 and the synthesis 

of acetyl-CoA, as shown in equations (5) and (6) (1). 

  

                   CO           +         H2O                  CO2  +  2H+  +  2 e-                             (5) 
 
     CH3Co3

+FeSP  +  CoAS -  +   CO      ---           CH3COSCoA  +  Co+FeSP            (6)   

 

The enzyme from M. thermoacetica is extremely sensitive to oxygen and contains iron-

sulfur metalloclusters. Iron-sulfur clusters are assumed to be the earliest cofactors 

occurring in nature (28). Structural features of these metalloclusters have been 
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determined by spectroscopic and biochemical studies (1, 29-33). However, it is very 

difficult to answer structural questions without an X-ray diffraction structure.   

          CODHMt has an α2β2 quaternary structure of 310 kDa containing four 

metallocenters, the A, B, C and D clusters.  The α subunit contains the A-cluster while 

the β subunit contains the B, C, and D clusters. Both A and C clusters are novel Ni-Fe-S 

clusters (31- 33). The A-cluster is the active site for the synthesis of acetyl-CoA from 

CO, CoA, and a methyl group donated from a corrinoid-iron-sulfur protein (CoFeSP). 

The C-cluster catalyzes CO to CO2 oxidation reversibly (1, 33). The B and D clusters are 

[Fe4S4]2+/1+ cubes involved in electron transfer reactions (29, 34, 35). Carboxydotrophic 

bacteria, such as Rhodosprillium rubrum (Rr) and Carboxythermus hydrogenoformans 

(Ch), consist of only the β subunit (35, 36). The D cluster bridges the two β subunits. 

           

Research Objective 

           CODH/ACSMt has been studied in our lab for the last fifteen years. To solve the 

structural features and mechanisms of the enzyme, spectroscopic and kinetic studies 

were done. My objective was to investigate the crystallization of CODH/ACSMt and the 

α subunit of CODH/ACSMt. Obtaining crystals and determining the X-ray crystal 

structure is a high-risk endeavor, and so we pursued a second subsidiary project 

involving the preparation, expression and analysis of various site-directed mutants of 

CODHMt. 
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CHAPTER II 

CRYSTALLIZATION STUDIES OF CODH FROM MOORELLA 

THERMOACETICA ∗ 

  

Background 

 

            X-ray crystal structures of the homodimeric CODH from Rhodospirillum rubrum 

(with 2.8 Å resolution) and CODH from Carboxydothermus hydrogenoformans (with 1.6 

Å resolution, shown in figure (1)) have been published (35, 36). These two enzymes 

catalyze only the reversible oxidation of CO to CO2 and have protein sequence 

homologous to that of the β subunit of CODH from Moorella thermoacetica 

(CODH/ACSMt).  Neither enzyme contains an α-subunit like that found in 

CODH/ACSMt. The structure of the A-cluster was proposed to be a mononuclear Ni site 

bridged through an unidentified molecule to a 4Fe-4S cube (31). 

          An X-ray crystal structure of CODH/ACS from Moorella thermoacetica (with 2.2 

Å resolution, shown in figure 4B) has been reported (37). The A-clusters of this structure 

contain a 4Fe-4S cube bridged to a binuclear site which contains one Cu and one Ni. The 

presence of Cu was unexpected. Doukov et al. suggested that the Cu was essential for 

                                                           
∗ Part of this chapter is reprinted with permission from “Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in 
closed and open subunits of acetyl-CoA synthase/carbon monoxide Dehydrogenase” Darnault C., 
Volbeda A., Kim, E. J. , Legrand, P., Vernede, X., Lindahl, P. A. and Fontecilla – Camps, J.  C.  (2003) 
Nature Struct. Biol.  10, 271 – 279. copyright 2003 by Nature publishing group. 
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catalysis. However, the Cu-based structure could not explain the known heterogeneity of 

the cluster because only a single type of Ni is observed. 

           Recently, the genes encoding CODH/ACSMt (ACSMt αβ) have been cloned and 

expressed in E. coli, affording active enzyme that is virtually indistinguishable from that 

synthesized in Moorella thermoacetica (38). After adding Ni, the α subunit of ACSMt 

isolated from E. coli contains an intact A-cluster (39). Populations of α subunits are 

heterogeneous. About 30-50% of theses subunits have Ni-labile ACS and the other have 

nonlabile ACS. Only labile-Ni portion of ACSMt αβ exhibits catalytic activity and the 

NiFeC EPR signal. The A-cluster lacking Ni ions can be reconstituted by incubation 

with NiCl2 (40). After activation with NiCl2, the α -subunit has an EPR spectrum 

identical to that of ACSMt αβ and it exhibits acetyl-CoA synthase activity (38, 39). This 

capability allows site – directed mutants of the α subunit to be prepared.   

 

Objective  

One objective of this project was to obtain crystals and solve the X-ray crystal 

structure of the α subunit and possibly the entire enzyme (CODH/ACS). Another 

objective was to elucidate structural features of the enzyme relevant to the catalyst 

mechanism. 
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A 

B 

 Figure 4:  Published structures of CODHCh and COD

of Carboxydothermus hydrogenoformans. (Adapted w

Structure of CODH/ACS from M. thermoacetica (Ada
                                                                                                       

 

 

H/ACSMt.      A: the CODH II dimer 

ith permission from 35), B: 

pted with permission from37).  
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 Crystallization Methods 

 150 years ago, the first protein hemoglobin was crystallized (41). Since then, the 

structure of about 8000 proteins and nucleic acids, and 1300 macromolecules have been 

determined (42). To analyze a protein structure, we need to obtain a suitable single 

crystal. To get a single crystal, there are some general requirements such as purity of 

enzyme, solubility, pH, temperature, etc. Alexander McPherson, at the University of 

California, Irvine, suggested 10 practical principles, which can be applied, whatever the 

molecule. The 10 principles are homogeneity, solubility, stability, super- saturation, 

association, nucleation, variety, control, impurity, and preservation  (41, 42). However, 

every crystallographer has his or her own opinion and know-how. First of all, the 

enzyme needs to be reasonably pure, generally greater than 95%. Usually, greater purity 

results in better crystals. But sometimes, extreme purity can be a bad thing because it 

hampers nucleation. When the desired purity of the protein is achieved, crystallization 

trials need to be set up using different crystallization methods. The most popular 

crystallization method is the vapor diffusion method. The vapor diffusion method may 

be subdivided into several techniques including, hanging drop, sitting drop, sandwich 

drop, reverse vapor diffusion, and pH gradient vapor diffusion (41-43). In addition, there 

are different methods of crystallization, for example, the batch method, dialysis, 

temperature-induced, free interface diffusion, seeding, and bulk crystallization (43). 

Crystallization of a protein can be affected by variable parameters, such as protein 

concentration, pH, nature and concentration of precipitant, buffer, temperature, and salt 

(41, 42, 44).  To find out the conditions for crystallization of the protein, we need to 



 14

make different conditions of screening solution. In 1991, sparse matrix sampling was 

developed by Jancarik and Kim (44). Solutions based on this screening approach are 

available commercially from Hampton Research and elsewhere. Although crystallization 

is a trial-and-error procedure, the obtained conditions after initial screening can be 

designed by a factorial approach, which involves constructing a table with changing 

variable parameters. This step is called adjusted screening. The final step would be 

optimized screening with condition obtained from the adjusted screening step. This is the 

most popular method for crystallization. Early protein crystallographers tried to measure 

dried crystals, but they did not show X-ray diffraction patterns, so J. D. Bernal and 

Dorothy Crowfoot exposed the crystal with mother liquor in 1934, and observed that 

they could get sharp diffraction patterns (42). However, the mother liquor contains water 

molecules, which make ice-crystals. The Cryocooling method was developed by Garman 

and Schneider in 1997. Cryoprotectants, which contain antifreeze, are used to prevent ice 

formation in and around the crystal. 
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Materials and Methods 

 

               Bacterial growth and harvesting as well as protein purification and 

characterization were performed as described (40, 45-47). The α subunit in different 

forms were prepared and crystallized, including the oxidized, reduced, CoA bound, 

methylated and CO-bound forms.  Mutants of the α subunit were also prepared and 

crystallized.  

 
Hanging Drop Vapor Diffusion Method  

.            The hanging drop vapor diffusion method was used for crystallization studies. 

This is the most popular crystallization method. The difference in concentration between 

the reservoir and the drop drives the closed system to equilibrium by diffusion through 

the vapor phase.  

          The hanging drop method is easy to perform and needs only a small amount of 

protein. Other advantages include an ability to view the drop through a glass cover slip, 

easy access to the drop, and a reduced chance that the crystal will stick on the wall of the 

plastic tray (41, 42, 44).  

              From these trials, any micro-crystals obtained were used as seeds for growing 

larger crystals. The final step, called optimized screening, used conditions obtained from 

the adjusted screening step.  
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Mounting the Crystals  

For mounting the crystals with cryoloops, liquid nitrogen (b.p. –196 °C) was 

brought into the glove box in a cold room to freeze the crystals. The process of mounting 

the crystal for data collection is as follows: 1. Adjust the size of cryoloop to the size of 

the crystal. 2. Flip down the cover slip, mounting the crystal with the cryoloop under a 

microscope. 3. Dip the crystal into the cryoprotectant to wash off water. 4. Immediately 

freeze the mounted crystal in the liquid nitrogen. 5. Store it in a vial with liquid nitrogen. 

Using this protocol, the samples were sent to our collaborator, Professor Juan C. 

Fontecilla-Camps at the Laboratoire de Cristallographie et Cristallogense des 

Proteinès, of institut de biolologie structurale in Grenoble, France.  X-ray diffraction 

data were collected and analyzed at the CEA/CNRS facility in Grenoble, France. 

Appropriate single crystals were analyzed via X-ray diffraction. Synchrotron radiation 

was used to collect higher resolution data. The cryocooling method was used for 

mounting of the crystals and collecting of the data.  



 17

Results and Discussion 

 

          CODH was purified and characterized from Moorella thermoacetica as described 

(40, 45-47). Recombinant α -subunit was expressed in E. coli and purified (38, 39). 

Crystallization of proteins can be affected by various parameters, such as protein 

concentration, pH, the nature and concentration of precipitant, buffer, temperature, and 

salt, and so many of these parameters were varied (41, 42, 44). Using the hanging drop 

method, fast screening was performed initially. A screen kit from Hampton Research 

was then used for an adjusted screening step. 

          Crystals were grown at ~ 4 °C in an anaerobic glove box. In the past two years, 

over 200 trays (24 hanging drops per tray) were prepared and screened. Five different 

forms of crystals were obtained (4 are shown in Figure 5) including a) a cube-type 

crystals, b) a needle-type crystal, c) pentagonal or hexagonal crystals, d) cubic micro-

crystals (not shown), and e) a rectangular crystal superimposed by a fiber or hair-like 

material. Pentagonal or hexagonal shape crystals were obtained with sharp edges after 4 

days, but over time, as evident from the picture, the sharp edges became dull.  
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Figure 5:  Crystals obtained at ~ 4 °C.  Top left - Cube, Top right - Needle, Bottom left - 

Pentagon or hexagon, Bottom right - Rectangular. 
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          Cube-type crystals were obtained from 1.5 M Li2SO4 and pH 7.5 Hepes-Na after 5 

months with a 32 mg/mL sample of the α-subunit. Micro-cube crystals formed within 4 

days with low concentration of Li2SO4 and 30 % of PEG 4000 in pH 8.5 Tris-HCl. 

Needle-type crystals formed in 0.1 M sodium dihydrogen phosphate / 0.1M potassium 

dihydrogen phosphate, pH 6.5 MES, 2 M NaCl with 5mg/mL of enzyme. Pentagonal or 

hexagonal shape crystals were obtained with sharp edges after 4 days using 12 % of PEG 

20000, pH 6.5 MES with ~ 5 mg/mL of α-subunit protein. The rectangular shaped 

crystal was produced in 0.2 M sodium chloride and 0.1 M sodium dihydrogen phosphate 

/ 0.1 M potassium dihydrogen phosphate, pH 6.5 MES. Every trial was performed at 4 

°C in an anaerobic glove box. The greatest difficulty in obtaining crystals results from 

the extreme oxygen sensitivity of the enzyme. All crystals must be prepared in 

atmosphere containing < 2 ppm of O2. Another concern was temperature stability. The 

temperature of our laboratory varied by ± 8 °C over a 24-hour period. To address both 

problems, we built a cold room around a Vacuum/Atmosphere glove box. This allowed 

crystallization experiments to be performed under strict anaerobic conditions at cold and 

relatively stable temperature (8  ± 3 °C). However, these conditions increase the 

difficulty of the experiment.  All plastic ware, pipette tips, and trays must be placed in 

the glove box one week prior to handling them. All buffers are degassed under vacuum. 

This procedure changed their concentrations, requiring that concentrations be 

redetermined using the refraction index of calibrated standard solutions.  It is also 

difficult to mount crystals using a 0.2 - 0.3 mm diameter cryoloop under a microscope 

wearing thick rubber gloves.  
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          Crystals were mounted for data collection using the cryocooling method. To 

prevent ice-crystalline formation, the cryoprotectant paratone-n was chosen for this 

study.  Paratone-n produces a significant background in the X-ray diffraction pattern, but 

it protects the enzyme from oxygen. Cryoloops were used to mount the crystals. Liquid 

nitrogen (b.p. –196 °C) was brought into the glove box to freeze the crystals. Using this 

protocol, 8 samples were sent to Grenoble, France to collect data at the European 

Synchrotron Radiation Facility. The crystals diffracted at ~ 4 Å resolution.  

           Using the seeding method, the cube-shaped crystals were obtained quickly. 

However, over time they grew a little bit bigger, and the crystals obtained were twinned 

in which two crystals are bound in the shape of an “X”. Optimal conditions still need to 

be identified, including a stabilizing solution, the dilution factor, the number of seeds 

and a different technique of adding the seed.  

          A 50 kDa fragment of the α subunit (with a 30 Kda domain deleted) was 

crystallized at 20 °C by our collaborators. The A-cluster is intact in this form, and we 

felt that truncating this domain would facilitate crystallization.   The crystal (Figure 6) 

was 0.25 mm x 0.25 mm x 0.15 mm and diffracted to 4.5 Å resolution.        
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Figure 6:  A crystal of a 50 kDa fragment of the α subunit. 
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          Better crystals of CODH/ACS and CO-treated CODH were obtained by our 

collaborator after adding dimethylethyl ammonium propane sulfonate with my adjust 

condition. A monoclinic space group C2 crystal form with a ≈ 245 Å, b ≈ 82 Å, c ≈ 167 

Å, β ≈ 96 ° was obtained with the hanging drop method at 20 °C. Crystallization solution 

was prepared containing 2 mM sodium dithionite, 10 mM DTT, 1.95-2.10 M ammonium 

sulfate, 100 mM HEPES at pH 7.0-7.3, 3.5 % PEG 400, and 100-200 mM dimethylethyl 

ammonium propane sulfonate (NDSB195). Hanging drops were prepared by 1:1 ratio 

with 10 mg/ml enzyme and crystallization solution. 

          The structure of CODH/ACS and CO-treated ACS were solved to 2.2 Å and 1.9 Å 

resolution, respectively. The structure of Doukov et al. has Cu in closed form, but our 

structure has two different types of A-clusters, named closed form and open form shown 

in figure 7. We believe our structure is active form of CODH /ACS supported by 

Bramlett et al.’s recent study (48).            
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Figure 7:  The A- cluster structure of CODH/ACS from M. thermoacetica. 
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                     The structure of the A-cluster was proposed from EPR and Mössbauer 

spectroscopic investigations. The proposed A-cluster was a Ni atom bridged to a 4Fe-4S 

cube through an unidentified molecule (31). The A-cluster is methylated during 

catalysis, and the enzyme must be reduced for this to happen. However, the site of 

reduction has not been identified. This redox site, named the D-site, appeared to be a n = 

2 redox center, possibly a redox-active cystine located near Ni in the A-cluster (46). This 

hypothesis was discarded by Darnault and coworkers because a pair of cysteine residues 

does not exist near Ni in the A-cluster (49). We suggested the redox site may be Ni(0) 

(49).   
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CHAPTER III 

MUTATIONAL ANALYSIS OF PARTICULAR HISTIDINE RESIDUES AND 

VARIOUS OTHER CONSERVED RESIDUES OF CODHMt 

 

Introduction 

 
 

Ni-containing carbon monoxide dehydrogenases (CODH’s) and acetyl-CoA 

synthases are found in methanogenic archaea, acetogenic bacteria, and CO-utilizing 

bacteria, where they play critical roles in C1-metabolism (50). This family of enzymes 

catalyzes reaction [7]. 

 CO     +     H2O     ⇄     CO2    +     2e-     +     2H+    (7) 

           The enzymes from Rhodospirillium rubrum (CODHRr) and Carboxydothermus 

hydrogenoformans (CODHCh) are β2 homodimeric, while that from Moorella 

thermoacetica (CODHMt) is an α2β2 tetramer in which the β subunits are homologues to 

those of CODHRr and CODHCh.  CODHMt is bifunctional and also catalyzes the 

synthesis of acetyl-CoA. This chapter focuses on reaction [7]) and acetyl-CoA synthase 

aspects will not be discussed.  
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Figure 8:    Mechanism of CO oxidation by CODH.  Emphasizing protons and electrons 
transfer.  Ni and Fe represent the [Ni Fe] subsite of the C-cluster while :B represents a 
base used in catalysis.   
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Four structures have been reported, including one each of CODHCh and CODHRr, 

and two of CODHMt  (35-37, 49).  Structures are grossly equivalent, though there are 

minor structural differences that may be functionally significant. The C-cluster of 

CODHMt as reported by Darnault et al. is structurally heterogeneous (49).   

During the catalytic oxidation of CO to CO2, water probably binds in bridging 

fashion to the Ni and unique Fe in a redox state of the C-cluster called Cred1 (Figure 8) 

(51).  An unidentified base near to the C-cluster abstracts a proton from water and CO 

binds to the Ni. The resulting nucleophilic hydroxyl group attacks the carbon of Ni-CO, 

forming a Ni-bound carboxylate. Either the same or a different base abstracts the proton 

of this carboxylate, leading to the dissociation of CO2 and the two-electron reduction of 

the cluster, thereby forming a state of the C-cluster called Cred2.  Cred1 and Cred2 states 

exhibit characteristic EPR signals with gav = 1.82 and 1.86, respectively (52, 53). An 

[Fe4S4] D-cluster bridges the two β subunits and is surface-exposed while an [Fe4S4] B- 

cluster is located within eachβ subunit roughly along a line between the C- and D-

clusters, with clusters spaced ~ 12 Å apart.  
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            Redox properties of the B- and D-clusters and their position and spacing relative 

to the active-site C-cluster unambiguously identifies them as constituting an electron 

transfer pathway between the C-cluster and redox partners external to the enzyme.  

In contrast, little is known about the base(s) used to abstract protons during 

catalysis or about the pathway used to transfer protons between the C-cluster and the 

protein surface. There are ~ 4 semi-conserved histidine residues in the 18 CODH 

primary sequences reported (54), including His113Mt (124U), His116Mt (127U), His119Mt 

(130U), and His122Mt (133U) (Tables 1 and 2). Due to its proximity to the C-cluster, 

Drennan et al. suggested that His95 of CODHRr (corresponding to His 113 of CODHMt) 

might act as a catalytic base (36). They noted that this residue was positioned at the top 

of a putative cationic tunnel lined by residues His98, His101 and His108 of CODHRr 

(corresponding to His116, His119, and Glu126 of CODHMt). They also suggested that 

Lys568 of CODHRr  (corresponding to Lys587 of CODHMt) could stabilize a metal-

bound carboxylate intermediate during catalysis.  
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   Table 1. Sequence alignment of the containing C-Cluster subunit (50, 54). 

 

  ORGANISM                                                           RESIDUE NUMBER 

 
                           123----------------------137      297-300     724-726 

M.thermoautotrophicum AHAGHARHLV HLIE  IGHN    QKA D
M. jannaschii I  CHAGHSRHLVHHLIE  IGHN    QKA 
A. fulgidus I   AHTGHARHML…HDIE  IGHN    QKA 
M. frisia I   CHAAHGRHLLDHLIE  IGHN    QKA 
M. frisia II    CHAAHGRHLLDHLIE  IGHN    QKA 
M. thermophila   CHAAHGRHLLDHLIE  IGHN    QKA 
M. soehngenii   AHTAHGRHLY…HWCL  YGHN    QKA 
A. fulgidus II  AHTAHARHLVDHLIE  VGHN    HKA 
R. rubrum   AHSEHGRHIALAMQH  NGHN    EKA 
M. thermoacetica  AHCEHGNHIAHALVE  HGHN    GKA 
C. hydrogenoformans GHSGHAKHLAHTLKK  HGHN    EKA 
C. difficile I  AHSDHARDIAHTL…A  HGHE    EKA 

 
C. acetobutylicum I  TYSHHAYEAYRTLKA  NGHQ    QKA 
A. fulgidus III   AYTYHAIEAAKTLKA  NGHE    QKA 
C. acetobutylicum II  CYVHVVETTARNLKA  TGHQ    EQA 
C. difficile II  CYLHVVENTAKNLKN  TGHQ    EQA 
M. jannaschii II   CYVHCAENAARALLS  TGHQ    EQA 
M. kandleri   CYVHCLENAARALKS  TGHQ    EQA 
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Table 2. Comparison of number system. Subscript indicates the species. (Mt: M. 
thermoacetica, Rr: R. rubrum, U: Universal). 
 

M. thermoacetica R. rubrum Universal 
 

His113 Mt 

 

His95Rr 

 

His124U  

His116 Mt His98Rr His127U  

His119 Mt His101Rr His130U  

His122 Mt 

Glu126 Mt 
- 

His108Rr 

His133U 

  

Ala121 Mt - Ala132U 

- Ala134U Ala123 Mt  

Glu115 Mt - Glu126U 

Gly117 Mt - Gly128U 

Lys587 Mt Lys568Rr Lys725U 

Asn284Mt Asn266Rr Asn300U 
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Objective and Approach 

 
 

The objective of this project is to determine whether the four conserved 

histidines function as a proton relay during catalysis. Our approach was to perform site-

directed mutagenesis of the histidine residues and then perform enzyme activity assays, 

and EPR spectroscopy to determine whether they are involved in proton transfer. If these 

residues are part of a proton-relay, the pKa’s of their imidazole side-chains may affect 

the overall activity versus pH profile. If any or all of these residues are changed to 

alanine, activity should be severely attenuated, possibly in proportion to the number of 

histidine mutated. Thus, we would make single, double, triple and quadruple alanine 

mutants. We would attempt to “rescue” activity by adding imidazole, which is the 

ionizable group of histidine, to assay solutions. We would also mutate one or more of 

these histidines (pKa = 6.03) to cysteine (pKa = 8.07) and aspartic acid (pKa = 3.90). If 

proton transfer requires a free base, the pH profile of these mutants might be 

substantially different from wild-type CODHCt. The cysteine mutant might be active 

only at high pH, while the aspartic acid mutant might be active at any pH above 4-5 (but 

might not show reversible catalysis). We would make mutations of neighbor residues to 

recover mutants of essential His residues and mutants of alternative conserved residues 

based on the crystal structures.     
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Materials and Methods  

 

Construction of Mutants  

Oligonucleotides used to construct mutants were synthesized in the Gene 

Technologies Laboratory at Texas A&M University. Mutants were constructed using the 

QuikChange site-directed mutagenesis method from Stratagene, using plasmid pTM02, 

which contains the genes acsA and acsB, as the template (38). Double mutants were 

constructed using one oligonucleotide containing both mutations.  All mutant plasmids 

were produced using an MJ Research Minicycler PCR machine. 

 

Proteins Characterization 

Mutants were transformed, expressed, harvested, and purified as described (38). 

Protein concentrations were determined by the Biuret method (55).   Standard CO 

oxidation activity assays at pH 8 were performed as described (40).  Other assays were 

performed identically except at pH 5 (in sodium acetate buffer), pH 6 (in MES), pH 7 

and 9 (in Tris - HCl). Mutants His113Ala and His116Ala were incubated with 50 mM 

imidazole (final concentration) for 1 hr and then assayed for activity in standard assay 

buffer. EPR measurements were recorded on a Bruker EMX spectrometer as described 

(38). 
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Results 

 

Proton Transfer Mutants 

 The mutant CODHMt proteins listed in Table 3 were constructed and isolated as 

described in Materials and Methods.  In each case, purity was > 80% and the 

recombinant proteins were soluble in standard buffers. Proteins were brown, indicating 

the presence of Fe-S clusters.  Mutant proteins His113Ala:His122Ala, His116Ala, 

Glu115His:His116Ala, His119Ala, His122Ala:Ala123His, Lys587Ala, and Asn284Ala 

exhibited the well-characterized EPR signals from B/D- and C-clusters (Figure 9). The 

high yields, solubility, color, and EPR spectra indicate that these mutant proteins were 

properly folded and had the standard set of metal centers found in the wild-type enzyme. 

CO oxidation activities for each mutant were obtained in solutions buffered at 

various pH values (Figure 10 and Table 3), except for Lys587AlaMt whose activity was 

determined only at pH 8.  Activities generally increased as pH increased, consistent with 

the thermodynamic influence of generating protons as products of reaction [7]. Deleting 

each of the four semi-conserved His residues had different effects on activity.  Activity 

was nearly abolished in the two mutant proteins where Ala replaced His116Mt and 

His122Mt. In contrast, activity was attenuated relative to WT but still significant in 

mutants where Ala replaced His113Mt and His119Mt. This latter behavior suggests that 
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Figure 9:  EPR spectra of mutants used to identify a proton pathway in CODH Mt. A) 
His113AlaMt (His124AlaU) – His122AlaMt (His133AlaU), B) His116AlaMt (His127AlaU), 
C) His119AlaMt (His130AlaU), D) Asn284AlaMt (Asn300AlaU), E) Lys587AlaMt 
(Lys725AlaU). Arrows from left to right indicate the gav = 1.86 signal from the Cred2 
state of the C-cluster.  X-band EPR of CODHMt at 10K was essentially performed as 
described (38).   
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these residues are involved in catalysis, but may serve redundant functions with other 

groups. The relative activity of the double-mutant with both of these residues replaced 

with Ala (i.e. His113AlaMt:His119AlaMt) was  close to the product of the relative 

activities of the individual mutants (44% × 27% = 12%  ≈ 15% as observed). Activities 

of Lys587Ala and Asn284Ala mutants were significant but attenuated relative to WT. 

            Activity was not “rescued” by incubating His116Ala or His113Ala in buffer 

containing imidizole. However, double-mutants Glu115His:His116Ala, 

His122Ala:Ala123His and Ala121His:His122Ala did exhibit significant activity (Table 

3). These endogenous “rescue” experiments suggest that the function(s) of His116 and 

His122 do not depend on their exact location. The substantial recovery of activity with 

double mutant His122Ala:Ala123His is congruent with the fact that some CODH’s have 

a conserved His residue at position 123 instead of 122 (Table 1). Mutant His116Cys also 

exhibited substantial activity, indicating that Cys can partially mimic the function of His. 

Like His, Cys has an ionizable hydrogen in its R group and can serve as a general base. 

Our colleague, Matt Bramlett checked activity of K587AMt mutant, which has 42 % 

activity relative to wild type. 
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Figure 10: CO oxidation activity vs. pH for WT CODHMt and various mutants.  
Activities of mutants were checked as described in experimental procedure. A) wild-
type, B) His122AlaMt:Ala123HisMt, C) His116CysMt, D) His113AlaMt, E) His119AlaMt, 
F) Glu115HisMt:His116AlaMt, G) Ala121HisMt:His122AlaMt, H) 
His113AlaMt:His119AlaMt, I) His116AlaMt, J) His122AlaMt,  K) 
His116AlaMt:Gly117HisMt,  L) His116AspMt, m: His113AlaMt:His116AlaMt:His119AlaMt. 
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Table 3.  CO Oxidation activities of CODHMt mutant proteins. Activities were 
determined as described in Materials and Methods. Three different and independent 
wild-types preparations were used as controls for calculating the percentage activities of 
His,Cys, Asn and Lys Mutants. One unit of activity corresponds to 1 µmoles of CO 
consumed per mg of CODHMt per min. 
 

 pH5.0 pH6.0 pH7.0 pH8.0 pH9.0 Averaged % 
activity 
relative to WT 

Wild-type 
 
 H124AU (H113AMt) 
 H127AU (H116AMt) 
 H130AU (H119AMt) 
 H133AU (H122AMt) 
 
H124A+ imidazole 
H127A+ imidazole 
 
H127CU 
H127DU 
 
H124AU+ H130AU 
H124AU+H127AU+ H130AU 
 
E126HU+ H127AU 
H127AU+ G128HU  
 
H133AU+ A134HU 
A132HU+ H133AU 

 
N300AU 
N300AU+H130AU 
K725AU+H124AU 
K725AU 

16 
 

8.0 
2.2 
5.0 
0.71 

 
- 
- 
 

9.5 
0.1 

 
6.0 
0.0 

 
3.8 
0.28 

 
16 

2.30 
 

6.4 
4.8     
0.1 
- 

43 
 

19 
2.8 
0.1 
0.5 

 
19 
1.0 

 
19 
0.2 

 
8.0 
0.0 

 
10 

0.33 
 

38 
4.7 

 
26 
15 
0.3 
- 

100 
 

50 
3.2 
35 
5.2 

 
52 
3.0 

 
48 
0.4 

 
9.0 
0.0 

 
22 

0.64 
 

62 
10 
 

39 
42 
0.7 
- 

170 
 

70 
5.3 
50 
2.7 

 
65 
5.0 

 
69 
0.6 

 
9.0 
0.0 

 
47 

0.84 
 

93 
18 
 

58 
66 
1.3 
73 

300 
 

110 
6.6 
79 
6 
 
- 
- 
 

120 
1 
 

10 
0.0 

 
75 
1.3 

 
170 
34 

 
    94 
103 
2.5 
- 

100 
 

44 
6 
27 
3 
 

45 
3 
 

46 
0.4 

 
15 
0.0 

 
24 
0.8 

 
72 
11 
 

41 
36 
0.7 
42 
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Discussion 

 

Proton Transfer Pathway in CODH    

Our results suggest that His113, His116, His119, His122, Asn284 and possibly Lys587 

are bases involved in proton transfer processes, supporting the initial proposal of 

Drennan et al. (36). The evidence is as follows. Firstly, these residues contain groups 

that could serve as general bases, they are conserved in most CODH’s and are located 

roughly in a line between the C-cluster and the protein exterior. Their conserved nature 

extends beyond primary sequence, as illustrated in the structural comparisons shown in 

Figure 11. All of this is as would be expected, if these residues functioned as the bases 

used to abstract protons from the C-cluster (during CO oxidation) and to transfer those 

protons to solvent. Secondly, we found that replacing any of these residues with Ala 

diminished or abolished CO oxidation activities, and that effect was not due to protein 

misfolding or to the absence of metal centers in the proteins. Thirdly, activity could be 

rescued by replacing some of these residues with others that also have the capacity to 

serve as bases or by placing His residues in adjacent positions. We will assume such 

roles for the remainder of this discussion.  

We initially assumed that protons would be transferred through a linear pathway 

where each residue of the pathway would be absolutely required (i.e. where replacing 

any member of the pathway with a residue that could not serve as a base would abolish 

activity). Although replacing His116 and His122 with Ala did essentially abolish  
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M.t. 

C.h. 

R.r. 

Figure 11:   Proposed proton network in CODH.  Alignment of proton network residues 
from published crystal structures.  M.t. – Moorella thermoacetica, two structures are 
available (37, 49) and are indistinguishable in this region, shown is from (49).  C.h. – 
Carboxydothermus hydrogenoformans (35).  R.r. – Rhodospirillum rubrum (36).  
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activity, replacing others (His113 and His119) with Ala lowered activity but did not 

abolish it. The observed behavior suggests that protons are transferred through a network 

where some members of that network serve redundant roles and others serve non-

redundant (or required) roles. Redundant bases would accept protons from a common 

donor and donate them to a common acceptor. The requirement for His116 and His122 

suggests that they play non-redundant roles while the partial requirement for His113 and 

His119 suggests that they play redundant roles. These considerations constitute the 

foundation of our proton network model (Figure 12). 

His113 is located nearest to the C-cluster, suggesting that it serves as the base 

used to abstract a proton from: a) water bound to the unique Fe during one step of 

catalysis; and from b) a Ni-bound carboxylate in another step of catalysis. However, the 

partially required nature of this residue suggests that another group might serve the same 

role. Lys587 is located near to the [Ni Fe] subsite of the C-cluster, and has been 

proposed to stabilize the Ni-bound carboxylate intermediate (36). The partial loss of 

activity in the mutant with this residue replaced with Ala is consistent with this proposal 

if the caveat that another group exists which plays a redundant role is included. The 

near-complete abolition of activity when Lys587 AND His113 were replaced with Ala is 

more dramatic than would be expected if both residues served separate functions with 

other redundant groups. In this case, the activity of the double-mutants would be the 

product of the activities of the individual mutants – namely 44 % × 42 % or 21 % of 

relative activity. The observed activity (0.7 %, relative to WT) suggests that His113 and  
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Figure 12:  Proposed network scheme for CODHMt.  
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Lys587 serve the same function – i.e. they are an exclusive redundant pair. This 

suggestion is included in the model of Figure 11. Another possible redundant base to 

consider is water, in that there are two conserved water molecules within this region of 

the WT protein (35, 37, 49) and additional waters might be present in mutant proteins. 

His116 is required for catalysis, and its location suggests that it accepts a proton 

from His113 (and from any redundant donor such as Lys587). According to our model, 

His116 donates a proton to either of three redundant acceptors, including His119, 

Asn284 and an unidentified acceptor, viewed in the model as one of the ordered waters 

present in the WT structure. We include a third redundant pathway to explain the 

substantial activity of the double mutant Asn284Ala:His119Ala. These three redundant 

groups then donate protons to His122, a required residue that appears to be non-

redundant, and then His122 donates protons to solvent or an unidentified exogenous 

base. 
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             Despite ambiguity as to some of the specific residues involved in this pathway, 

the location of those residues considered here indicates that the proton transfer pathway 

is distinct from the electron transfer pathway involving the B- and D-clusters. This 

distinction is illustrated in Figure 13. Similarly distinct proton and electron pathways are 

evident in the Ni hydrogenase from Desulfovibrio gigas (12) and in the iron-only 

hydrogenase from Clostridium pasteurianum (56). The former enzyme contains 4 His (3 

of which are highly conserved) residues and a conserved Glu connecting the active site 

[NiFe] center to the surface; they apparently constitute a proton relay pathway. The 

location of this pathway differs significantly from the two Fe4S4 clusters and one Fe3S4 

cluster used to transfer electrons between active site and surface. In the iron-only 

hydrogenase, electrons are transferred from the [Fe Fe] active site to the surface via 

Fe4S4 and Fe2S2 clusters, while protons are transferred via a free Cys residue, two Glu’s, 

and a Ser (56). These similarities raise the possibility that separate proton and electron 

transfer pathways will be found whenever a series of Fe-S clusters constitute the electron  

transfer pathway. 
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Figure 13:   Stereoview showing distinct proton and electron transfer pathways through 
CODH. 
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CHAPTER IV 

CONCLUSIONS AND POSSIBLE RESEARCH DIRECTIONS 
 
 
 

Crystallization Studies 

 

            Five different forms of crystals of the α-subunit of CODH from Moorella 

thermoacetica were obtained, including a) cube-type crystals, b) a needle-type crystal, c) 

pentagonal or hexagonal crystals, d) cubic micro-crystals (not shown), and e) a 

rectangular crystal superimposed by a fiber or hair-like material. All of these diffracted 

to ~ 4 Å resolution. The quality and size of such crystals can be improved. These results 

indicate that good crystals of the α-subunit of CODH from Moorella thermoacetica can 

be obtained.  A micro-crystal with a good shape can be chosen to obtain a single crystal 

for seeding, and can be added to a fresh drop of mixture of the α subunit and reservoir 

solution. Once optimal conditions have been obtained, crystallization of the α subunit in 

the present of substrates CO, CoA, and methyl group can be performed. Crystallization 

of various site-directed mutants of α subunit can also be performed. Structures of 

substrate-bound adducts of the enzyme and various mutants will aid immeasurably in 

deciphering the mechanism of catalysis (46).  

             The crystal structure of CODH/ACSMt with 1.9 Å resolution suggested two Ni 

containing A- clusters are catalytically active.  The structure of the enzyme by Doukov 

et al. is equivalent to our closed conformation.  Their A-clusters contain the same Nid 

site and [Fe4S4] cube as we observe, but a Cu+ ion replaces the Zn2+ of our Ac – cluster 
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and the Nip of our Ao- cluster. The conformation of one of the α subunits, to be called 

‘closed’ (αc) seems to be very similar to that reported by Doukov et al., while the other, 

to be called ‘open’ (αo) has a larger exposed surface and allows the A-cluster greater 

accessibility to solvent. Based on calculation of the anomalous maps, we ruled out the 

presence of any significant amounts of Cu in our A-clusters.  

            However, we do not know why there are two different types of A-clusters in our 

crystals. Although we have the structure of the entire enzyme (CODH/ACS), there 

would still be an advantage to having a higher-resolution structure of α subunit. If we 

have better resolution of crystal structures of α subunits, we would be able to elucidate 

mechanisms of ACSMt in detail and to confirm our structures. 

          

 

Mutational Studies 

 

 

His 116 Mt and His 122 Mt are essential for the proton pathway as Drennan et al. 

proposed, while His 113 Mt and His 119 Mt are important, but not essential.  Why are 

some conserved histidine residues essential for the proton relay and others are not? Is it 

possible that other residues take the role for some portion of the role of H113Mt and 

H119Mt? To answer these questions, various mutants were made and their activities were 

checked.   
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We proposed a new network for the proton relay. By searching the structure in 

the Protein Data Bank and comparing sequence alignments, the conserved residues 

K587Mt and N284 Mt can assume the roles of the conserved residues H113Mt and H119Mt, 

respectively. His116 Mt and His122Mt are essential for the proton network, but His 113Mt, 

Lys 587 Mt, His 119 Mt, and Asn284 Mt seem to be involved in the proton network, but not 

essential for catalysis. This suggests that protons are transferred through a network 

consisting of at least two linear pathways, all of which include His116 Mt and His122 Mt. 

The proposed network were confirmed by checking the CO oxidation activity for the 

Asn 284 Ala Mt mutant, Lys587Ala Mt : His113 Ala Mt double mutant, and Asn 284 Ala 

Mt: His119 Ala double mutant.  

             We note that CODH sequences that contain the conserved His, Lys and Asn 

residues which are involved in the proton pathway. Moreover, CODH sequences lacking 

the proton pathway residues; a horizontal line separates these two groups in Table 1. 

This implies that the proton pathway is either present or absent for a given protein. We 

propose that proteins lacking these residues (i.e. the sequences below the line in Table 1) 

are not enzymes that catalyze reaction [7] – i.e. they are not CODH’s. Although further 

studies are required to examine this proposal, it is consistent with a report that cell 

extracts of one of the organisms which contain two of these below-the-line “CODH” 

enzymes (Clostridium acetobutylicum) do not exhibit CO oxidation activity (57) 
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