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ABSTRACT 

 

Cryptosporidium parvum: Enhancing Our Understanding of Its Unique Fatty Acid 

Metabolism and the Elucidation of Putative New Inhibitors. (May 2008) 

Jason Michael Fritzler, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Guan Zhu 

 

Cryptosporidium parvum is widely known for outbreaks within the 

immunocompetent population, as well its sometimes excruciating effects as an 

opportunistic agent in AIDS patients. Our understanding of the biology and host-parasite 

interactions of this parasitic protist is increasing at a rapid rate due to recent molecular 

and genetic advances. The topic of our research is in the area of C. parvum fatty acid 

metabolism, which is highly streamlined in this parasite.  

In addition to a type I fatty acid synthase (CpFAS1), C. parvum also possesses an 

enormous type I polyketide synthase (CpPKS1). Because of the size of this 

megasynthase, functional characterization of the complete enzyme is not possible. We 

have isolated and characterized the loading unit of CpPKS1 which contains an acyl-[acyl 

carrier protein (ACP)] ligase (AL) and an ACP. This unit is responsible for the overall 

substrate selection and initiation of polyketide production. Our data show that CpPKS1 

prefers long-chain fatty acids with the highest specificity for arachidic acid (C20). Thus, 

the final polyketide product could contain as many as 34 carbons. 
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Additionally, C. parvum possesses only a single fatty acid elongase. This family 

of enzymes serves a mechanism similar to FAS, and many have been found to be 

involved in de novo fatty acid synthesis in other organisms. After expressing this 

membrane protein in human cells, we have determined that it too prefers long-chain fatty 

acyl-CoAs which undergo only one round of elongation. This is in contrast to members 

of this enzyme family in other organisms that can initiate de novo synthesis from two- or 

four-carbon fatty acids via several rounds of elongation. 

Our lab has previously characterized the unique acyl-CoA binding protein 

(CpACBP1) from C. parvum. Molecular and biochemical data suggested that this 

enzyme may serve as a viable drug target. We have screened a library of known (and 

somewhat common) compounds against CpACBP1, and have isolated several potential 

compounds to be further examined for their ability to inhibit the growth of C. parvum.  
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CHAPTER I 

INTRODUCTION 

 

GENERAL DISCUSSION 

 This past year, 2007, marked the 100-year anniversary (1907-2007) of the first 

description of Cryptosporidium, by E. E. Tyzzer. It was not until 1976 that the first 

human case of cryptosporidiosis was reported described as an acute, self-limiting 

enterocolitis in an otherwise healthy 3-year old child (118). The first report of 

cryptosporidiosis in immunocompromised patients came less than two months later 

(107). It was at this time, roughly 70 years after the first description of Cryptosporidium, 

that physicians began to fully recognize its significance as an opportunistic pathogen 

causing chronic and life-threatening diarrhea in AIDS patients. In 1993, more than 

400,000 people were affected and approximately 100 deaths occurred among the elderly 

and immunocompromised populations due to contamination of the Milwaukee, 

Wisconsin water supply system with this parasite. This massive outbreak quickly 

escalated Cryptosporidium to headline news in the United States and around the world. 

The majority of cryptosporidiosis outbreaks in humans are associated with contaminated 

drinking and/or recreational water. This parasite can also be transmitted through direct 

contact both between and among humans and animals, or by food contamination. 

However, it is the difficulty in controlling Cryptosporidium contamination in water 

 

____________ 
This dissertation follows the style of Eukaryotic Cell. 
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(the oocysts are resistant to chlorine), the potential devastation to communities, and talk 

of bioterrorism agents that have caused this parasite to be listed as one of the water-

borne, category B priority agents in the NIH and CDC biodefense research programs in 

the United States.  

As in humans, newborn or young and sometimes immunocompromised animals 

suffer from cryptosporidiosis. Although all animals are believed to be susceptible to 

infection, Cryptosporidium infection in cattle has received the most attention. This is 

largely due to the high prevalence of infection in this livestock species, especially among 

the dairy cattle population, its economic importance, and the great potential of cattle to 

serve as a reservoir for human infections. Acute diarrhea is the most common clinical 

sign that presents in many animals such as calves, foals, piglets, deer, and goat kids, but 

only a mild or no diarrhea occurs in other hosts such as rodents. The major problem in 

animals suffering from infection with Cryptosporidium is reduced weight gain and 

chronic wasting, sometimes leading to death. For example, the commonly used 

laboratory strain of C. parvum (TAMU strain) originated from a foal that died from 

severe diarrhea. Not only are livestock species at risk for infection with this parasite, but 

companion animals such as dogs and cats also suffer from cryptosporidiosis. Although 

their contribution to the transmission of Cryptosporidium to humans is largely unknown 

at this time, it should never be ruled out.  

Due in part to its importance in public health (both human and animal 

associated), as well as successful propagation in mice and calves, C. parvum is the most 

widely studied species within the Cryptosporidium genus. The closely related and 
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morphologically indistinguishable species C. hominis was previously considered as the 

human genotype of C. parvum (or Type 1, vs. zoonotic Type 2). However, C. hominis 

was renamed as a separate species in 2002 based on molecular divergence from Type 2 

C. parvum as well as it being predominantly a parasite of humans (116). Although the 

change in names from C. parvum Type 1 to C. hominis has greatly promoted the 

awareness of cryptosporidiosis, the validity of C. hominis as a separate and distinct 

species is still highly debated. There has been no evidence that the two species are 

reproductively separate, and some have actually observed recombination between C. 

parvum and C. hominis in both experimental and natural conditions (189). Furthermore, 

complete genome sequencing projects of both C. parvum (2) and C. hominis (192) and 

metabolic comparisons have not identified any significant findings that would support a 

clear species distinction of the two pathogens.  

 

TAXONOMIC POSITION 

Cryptosporidium belongs to the Phylum Apicomplexa, which gets its name due 

to the morphological criteria of an apical complex that is unique to this group of 

protozoans.  The parasite is further described within the Class Conoidasida (also known 

as Coccidia), Order Eucoccidiorida, Suborder Eimeriorina, and family Cryptosporiidiae 

(18, 98, 177). For the last several years, especially since the surge of genomic and 

molecular investigations, the taxonomic status of Cryptosporidium has been the subject 

of great debate. Recent molecular phylogeny consistently places this genus as an early 

branch at the base of the Apicomplexa, and some even suggest as a sister clade to the 



 4

Gregarines (12, 19, 25, 68, 197). Upon completion of the genome sequencing projects 

for both C. parvum and C. hominis it was revealed that the metabolic machinery in this 

genus differs from other apicomplexans (2, 192, 200). The most notable of these features 

are the complete lack of apicoplast and mitochondrial genomes in Cryptosporidium 

which further supports the idea that this parasite is highly divergent from the other 

coccidians.  

The Cryptosporidium type species is C. muris, and was first described by Tyzzer 

when he established the genus Cryptosporidium (175). Roughly five years later a new 

species, C. parvum, was described based on differences in morphological size and 

location of infection as compared to C. muris (175, 176). During this early period of 

species discovery, many apicomplexan organisms were largely assigned to the 

Cryptosporidium genus based on similarities in life cycles. Thus, some apicomplexan 

organisms, such as Sarcocystis, were wrongly assigned to this genus (7, 13, 40, 41, 124, 

174, 191). Cryptosporidium was found to have a unique attachment organelle in the late-

1960s (61, 76, 183), which has since become the defining taxonomic unit of the genus 

and family (95, 97, 181, 191). However, once this structural organelle was confirmed, 

the basis of naming species soon turned to rely upon host specificity. This was quickly 

considered useless once cross-transmission studies showed that most isolates could 

readily transmit across host species. At that time species could not be classified further 

than the general group C. parvum (191). Only three species (C. meleagridis, C. wrairi, 

and C. felis) that were biologically different from C. parvum and C. muris were agreed 

upon as new species. 
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Although controversy in Cryptosporidium taxonomy has been present for 

decades, current issues remain largely due to a difficulty in defining the criteria that 

define a biological species (43, 191). For over a decade, mixtures of methods have been 

employed in order to try to more accurately define species and genotypes. Some of these 

methods rely solely on molecular data, but others have relied upon both molecular and 

biologic methods. The three most common genes used in molecular phylogenetic 

reconstructions are the small subunit ribosomal RNA (SSU rRNA), the 70-kDa heat 

shock protein (HSP70), and Cryptosporidium oocyst wall protein (COWP). Phylogenetic 

reconstructions using these three genes have consistently and clearly demonstrated 

genetic variability within the genus (42, 43). Not only is the correct identification of a 

parasite and a clear understanding of the genetic variation within the parasite group 

important in taxonomic classification, but it is crucial to the understanding and 

development of new vaccines, drugs, and diagnostics (105). It is currently suggested that 

a polyphasic approach be used to characterize the Cryptosporidium species – one that is 

supported by morphologic, biologic, and genetic data (43, 191). Although there is still 

some debate on Cryptosporidium taxonomy, and likely always will be, current molecular 

advances have aided in clearing some of the confusion. Currently, there are 15 named 

valid Cryptosporidium species (Table 1.1).  

 

LIFE CYCLE 

The apicomplexans as a group differ greatly in their life cycles. Some members 

of this genus have a dioxenous (two hosts) life cycle such as Toxoplasma, Babesia and  
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TABLE 1.1. The 15 currently recognized Cryptosporidium species 
along with their respective oocyst dimensions, primary host(s), and 

site(s) of infection.* 
 

Species (Reference) Oocyst 
sizes (µm) 

Primary 
Host 

Primary Site of 
Infection 

C. parvum (176) 4.5 x 5.5 Mammals Small intestine 

C. hominis (116) 4.5 x 5.5 Humans Small intestine 

C. andersoni (99) 5.5 x 7.4 Cattle Abomasum 

C. muris (175) 5.6 x 7.4 Rodents§ Stomach 

C. wrairi (183) 4.4 x 5.3 Guinea pigs Small intestine 

C. felis (74) 4.5 x 5.0 Cats Small intestine 

C. canis (48) 5.0 x 4.7 Dogs Small intestine 

C. suis (153) 5.1 x 4.4 Pigs Small, large intestine 

C. meleagridis (159) 4.3 x 4.9 Turkeys§ Small intestine 

C. baileyi (37) 4.6 x 6.2 Chickens§ Large intestine, bursa, 
respiratory system 

C. galli (154) 8.3 x 6.3 Birds Proventriculus 

C. serpentis (96) 5.3 x 6.1 Snakes Stomach 

C. saurophilum (89) 4.7 x 5.0 Lizards Stomach, small intestine 

C. molnari (4) 4.7 x 4.5 Fish Stomach, small intestine 

C. bovis (47) 4.8 x 4.6 Cattle Abomasum┼ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Data obtained from Xiao et al. 2004 (191), and other listed references. 
(§) indicates species that have also been found in humans, mainly 
immunocompromised individuals. (┼) indicates speculative data. 
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Plasmodium, and have tissue and/or blood stages. Others such as Eimeria, Isospora, 

Cyclospora and Cryptosporidium undergo a monoxenous (single host) life cycle, and all 

stages occur in the intestine. The somewhat complex life cycle, which contains both 

sexual and asexual cycles, as well as six major developmental stages have been detailed 

for C. parvum (Fig 1.1)  (36, 49, 173). Ingestion of the sporulated oocyst, the only 

exogenous stage, is the start of the endogenous life cycle. Ingestion most commonly 

occurs through the fecal-oral route via direct or indirect person-to-person contact, 

animal-to-animal contact, animal-to-human contact, or water- and food-borne ingestion, 

and possibly air-borne transmission (46).  

The Cryptosporidium oocyst wall is similar to other coccidia as it is comprised of 

two distinct layers, but is unique because it contains a suture at one end that dissolves 

during excystation allowing the ejection of sporozoites. Each sporulated oocyst contains 

four free floating haploid sporozoites, which is in contrast to all other coccidia which 

have one or more sporocysts that surround the sporozoites (164). Excystation of the 

ingested oocyst results in the release of these four sporozoites. These are the infective 

stage of the life cycle, and invade and parasitize small intestinal or colon epithelial cells 

(141). Like other apicomplexan sporozoites, those of Cryptosporidium possess 

organelles such as the rhoptries, micronemes, and electron-dense granules. Further, they 

possess apical rings, but lack some features characteristic of most other coccidia such as 

the polar rings, micropores, and the conoid (45). All of these are present at the anterior 

pole of the sporozoite housed in the apical complex. It is this region of the sporozoite 

that invades the host cells, and this process involves the release of several materials that  
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FIG. 1.1. The Cryptosporidium life cycle. The life cycle begins with the ingestion of 
sporulated oocysts. Two cycles of merogony occur, followed by gamogony. After the 
formation of the gametes, fertilization occurs and is the only sexual stage in the life 
cycle. Fertilization results in the formation of zygotes which differentiate into oocysts. 
These oocysts are either excreted from the host in the feces, or excyst to begin another 
round of the life cycle. Reproduced from Zhu G., S. Enomoto, J. M. Fritzler, M. 
Abrahamsen, and T. Templeton. (In Press). Cryptosporidium and Cryptosporidiosis. In 
C. Kole and V. M. Nene (eds.) Genome mapping in animals and microbes, with kind 
permission from Springer Science and Business Media. 
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are suspected to play a pivotal role during the invasion process (172). 

Upon invasion of the host cell, the sporozoites reside within a host cell 

membrane-derived parasitophorous vacuolar membrane (PVM). The parasite at this 

point is considered as being intracellular but extracytoplasmic as it remains in a highly 

polar location adjacent to the surface of the columnar host intestinal epithelial cell (102, 

120, 180). Within this niche, the parasite further develops into a trophozoite. During this 

process, the parasitophorous vacuole (PV) invaginates at the host cell interface and 

forms a “feeder organelle” that is believed to be the region responsible for nutrient 

uptake from the host cell (45, 164, 180).  

The next stage in the life cycle is by asexual multiplication, occurs within the 

host epithelial cells, and is referred to as type I merogony. This process of merogony 

results in nuclear division and forms eight haploid merozoites assembled into a single 

type I meront. Merozoites mature within the type I meronts and are released from the 

PV. At this point the type I merozoites can undergo two different cycles: they can further 

develop through type II merogony, or undergo another round of type I merogony. The 

classical persistent infection observed with Cryptosporidium infection is probably due to 

the “recycling” of type I merozoites back through type I merogony (36). Type II 

merogony results in a type II meront containing four haploid type II merozoites. Similar 

to type I merozoites, the type II merozoites can undergo another cycle of type II 

merogony. However, it is unknown at this time if type II merozoites are able to initiate 

another cycle of type I merogony.  

Although capable of initiating another round of type II merogony, type II 
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merozoites usually develop into the sexual reproductive stages of the parasite known as 

gamonts. Controversial preliminary investigations suggest that extracellular gamont 

stages of the gregarines very closely resemble the extracellular forms of 

Cryptosporidium (67, 68, 147). These gamonts soon differentiate into the male 

microgamonts or female macrogamonts. Macrogamonts contain one large nucleus which 

does not divide, and mature macrogamonts are sometimes referred to as macrogametes. 

On the other hand, microgamonts become multinucleate and each nucleus is 

incorporated into at least 16 microgametes. The sexual stage of development occurs 

upon the mating of the microgamete and the macrogamete.  

Sexual reproduction results in a diploid zygote that develops into sporulated 

oocysts containing four haploid sporozoites. These oocysts can be of two types. 

Approximately 80% of those produced are referred to as “thick-walled” oocysts as they 

are composed of two outer membranes. These oocysts are the environmentally resistant 

form and are passed in the feces. The other 20% are composed of a single outer 

membrane and are referred to as “thin-walled,” and are not passed in the feces. Rather, 

they are suspected of releasing sporozoites and cause an auto-infection. This feature, 

along with recycled meronts, are probably responsible for the persistent infections that 

are not propagated by repeated ingestion of oocysts. This often life-threatening non-

resolving state of cryptosporidiosis is often observed in AIDS patients (36, 45, 102).  

 

TREATMENT 

Treatment is rarely required for immunocompetent individuals to recover from 
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cryptosporidiosis. In the worst cases, antidiarrheal agents along with rehydration therapy 

to replace fluid and electrolyte depletion are usually sufficient. However, severe 

complications due to Cryptosporidium infection can occur in those individuals with an 

underlying immunosuppressed condition. It is unfortunate that there is no effective drug 

to treat cryptosporidiosis, and although halofuginone lactate is approved in some 

European countries for use in sheep and cattle, no drug is approved in the United States 

to treat this infection in animals. The only current approved drug to treat human 

cryptosporidiosis in the United States is nitazoxanide (NTZ) (51, 187). Nitazoxanide is 

approved by the Federal Drug Administration (FDA) under the trade name Alinia 

(Romark Laboratories, www.romark.com) for use in both children and adults. However, 

it is not approved for patients of any age that have AIDS. 

Broad-spectrum parasiticidal activity of NTZ against a wide range of protozoa, 

nematodes, trematodes, cestodes, and some anaerobic bacteria and viruses has been 

reported (64, 125, 146, 151, 179). It was the anti-protozoan properties of NTZ that led to 

clinical trials of this drug for cryptosporidiosis. Although its mechanism of action 

against this parasite is not clear, it may act on the C. parvum encoded bifunctional 

pyruvate:NADP+ oxidoreductase (PNO) as it does in some other organisms (34, 152). 

Although complete efficacy is not achieved, NTZ appears to greatly reduce 

oocyst excretion in immunocompetent individuals which is associated with the 

resolution of diarrhea. One uncontrolled study revealed that this drug reduced oocyst 

excretion by ≥ 95% in 58% of the patients, and was associated with complete resolution 

of diarrhea in 57% of these patients (39). Another prospective randomized, placebo-



 12

controlled, double-blind study reported that a 7-day treatment of NTZ resulted in 

improvement of clinical symptoms in 80% of the patients (compared to 41%, placebo) 

and a 67% rate of oocyst eradication (compared to 22%, placebo) (150). Further, a study 

involving both HIV-seropositive and HIV-seronegative children showed that NTZ 

treatment improved the resolution of diarrhea, resulted in oocyst eradication, and 

decreased mortality in those that were HIV-seronegative, but not in those that were HIV-

seropositive (5). On the contrary, a different study revealed that 59% of AIDS patients 

showed clinical improvement and displayed eradication of oocysts (149). 

An older antibiotic still in use today, FDA approved in tablet form, is 

paromomycin which displays significant activity against a wide array of organisms 

(179). Paromomycin is a protein synthesis inhibitor that was originally thought to act on 

the aminoacyl tRNA site of ribosomes, but more recent data indicates that it may 

actually inhibit the maturation of tRNA itself (171). Although its mechanism of action 

against Cryptosporidium is unknown at this time, paromomycin is widely used as a 

control in in vitro drug studies against this parasite (23). With regards to paromomycin 

treatment of cryptosporidiosis in AIDS patients, it has shown relatively little efficacy. In 

one study only 47% of patients treated with this drug showed signs of clinical 

improvement, whereas 36% of those receiving a placebo control displayed the same 

signs of improvement (66). No benefit in using paromomycin versus placebo in AIDS 

patients was shown during another prospective, double-blind, placebo controlled study 

(66). 

Although paromomycin alone does not appear to be beneficial, this drug in 
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combination with azithromycin (160), or with antiretroviral drugs (69) appears to display 

a greater efficacy than treatment with either drug alone. Paromomycin prescribed in 

combination with the protein synthesis inhibitor azithromycin given to AIDS patients for 

four weeks, followed by paromomycin alone for eight weeks results in improvement of 

clinical symptoms and a decrease in oocyst excretion. AIDS patients treated with 

azithromycin alone did show signs of clinical improvement, however oocyst excretion 

remained significantly positive (78). Increasing CD4 counts to restore immune system 

function in AIDS patients with antiretroviral therapy sometimes leads to partial recovery 

from Cryptosporidium infection, but secondary or concomitant treatment with 

paromomycin is of greater benefit.  

Until a highly effective treatment is discovered and approved for use, the most 

effective means to combat cryptosporidiosis is prevention. Other than a healthy immune 

system, public health measures must be actively pursued to avoid exposure to the 

environmentally resistant oocyst. Preventative measures for immunosuppressed 

individuals (if not everyone) include exhaustive hand washing, avoidance of human or 

animal feces, avoidance of recreational water, and insurance of a safe drinking water 

supply. 

 

STREAMLINED FATTY ACID METABOLISM 

Efficient random sequencing of genomic DNA during preliminary studies in the 

1990s both supported and allowed a feasible complete genome sequencing project for 

Cryptosporidium (100, 166, 167). Three different projects began at the turn of the 
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century: a group at the University of Minnesota completed the C. parvum nucleotide 

sequence (2); a group at Virginia Commonwealth University completed the C. hominis 

sequence (192); and a third project in the United Kingdom at the Medical Research 

Council completed the sequence of C. parvum chromosome 6 (9).   

Until these projects were underway and completed, it was unknown just how 

parasitic Cryptosporidium really was. Predicted proteome annotation revealed that this 

parasite adapted to an extreme parasitic life style by utilizing a very highly streamlined 

metabolism. In addition to determining that the entire apicoplast and associated 

pathways has been discarded, as previously reported (200), the parasite has retained only 

a small fraction of mitochondrial functions. Genome data, and later molecular and 

biochemical investigations, revealed that Cryptosporidium possesses no de novo 

synthetic pathways and relies on the host and/or environmental niche to supply all 

nutrients including amino acids, nucleotides, and fatty acids.  

Because the overall scope of this dissertation revolves around fatty acid 

metabolism, we will not discuss energy, amino acid, or nucleotide metabolism, and will 

only focus on the fatty acid metabolism enzymes. Information on these metabolic 

pathways can easily be located in current literature. With the absence of an apicoplast 

Cryptosporidium lacks the enzyme typically required for de novo fatty acid syntheses, a 

plastid-associated type II fatty acid synthase (type II FAS). However, this parasite does 

harbor a 25-kb type I FAS gene (CpFAS1) for elongating fatty acids (199, 201). 

Additionally, C. parvum  possesses a related 40-kb polyketide synthase gene (CpPKS1) 

encoding a 1,500-kDa protein consisting of 29 enzymatic domains whose overall 
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function is still not understood at this time (198). Plasmodium does not contain type I 

FAS or PKS, however they have been found in Toxoplasma and Eimeria (196). 

Dinoflagellates distantly related to Cryptosporidium do possess PKSs, and may have a 

conserved function in coccidia (92, 142, 162, 163). 

Although CpFAS1 and CpPKS1 are key players in Cryptosporidium fatty acid 

metabolism, they probably require the participation of several other enzymes including a 

long chain fatty acid elongase (LCE) and acyl-CoA binding protein (ACBP). Most 

organisms contain multiple LCEs, however C. parvum possesses only one 38-kDa LCE 

homologue (CpLCE1). Although the overall function of LCEs differs from that of FASs 

and PKSs, it is unknown whether or not CpLCE1 acts in conjunction with CpFAS1 

and/or CpPKS1 in providing them with fatty acyl-CoA precursors. Regardless of the 

enzyme, a fatty acid must be activated to its fatty acyl-CoA counterpart to enter 

subsequent metabolic pathways. In some instances the activation and entry into 

subsequent reactions are coupled together, but in other cases ACBP mediates the 

incorporation of fatty acyl-CoA into various pathways by binding and transporting them 

to various cellular locations (87, 88). A single ACBP gene (CpACBP1) is housed in the 

C. parvum genome, and has previously been characterized (194). 

The research presented here focuses largely on the molecular and biochemical 

characterization of proteins involved in C. parvum lipid metabolism. Chapter II 

concentrates on the characterization of the most important part of CpPKS1 – the loading 

unit. This unit is responsible for substrate specificity for the entire enzyme, thus largely 

responsible for the type and chain length of the final product(s). Characterization of the 
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sole LCE in C. parvum (CpLCE1) is the topic of Chapter III. It is interesting that C. 

parvum contains only one homologue of this gene, and our data supports the inability of 

this parasite to complete de novo fatty acid synthesis. We have previously found that 

CpACBP1 localizes to the PVM during intracellular development. We suspect that this 

enzyme could serve as a potential therapeutic target because of its location in addition to 

its function which is the focus of Chapter IV. Overall, we have furthered our 

understanding of not only these enzymes, but we have greatly deepened our 

understanding of C. parvum biochemistry and lipid metabolism. 
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CHAPTER II 

FUNCTIONAL CHARACTERIZATION OF THE ACYL-[ACYL CARRIER 

PROTEIN] LIGASE IN THE Cryptosporidium parvum GIANT POLYKETIDE 

SYNTHASE* 

 

OVERVIEW 

Polyketides are a large class of structurally diverse natural secondary metabolites 

produced by bacteria, fungi, sponges, insects, and plants. Along with their semi-

synthetic derivatives they now play a vital role as human and veterinary medicine 

therapeutic agents and agricultural agents including antibiotic, anticancer, antiparasitic, 

immunosuppressant, and insecticide compounds (70, 121, 128, 129). Other functions 

include serving as defensive molecules in microbes as well as having a role in organism-

to-organism signaling (132, 139, 165). Polyketide biosynthesis mechanistically 

resembles that of fatty acids. Both fatty acid synthases (FASs) and polyketide synthases 

(PKSs) serve as biochemical assembly lines composed of a series of catalytic domains or 

discrete enzymes involved in the sequential assembly and modification of acyl groups on 

the growing chain (82). They both catalyze repetitive Claisen-type decarboxylative 

condensations between an acyl thioester and a fatty acid, and both use acyl carrier 

protein (ACP) as an attachment site for the growing carbon chain. However, polyketides 

                                                 
* Part of this chapter is reprinted from Fritzler, J. M., and G. Zhu. 2007. Functional characterization of the 
acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase. Int. J. 
Parasitol. 37: 307-316, with permission from Elsevier. 
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are far more diverse in their final product structures than the free fatty acids typically 

produced by FAS. The wide variety of polyketide products is mainly due to PKSs being  

more diverse in the reactions they catalyze as well as in the wide variety of both starter 

and chain extender units they use, carbon chain length, degree of reduction and/or 

dehydration, and folding of the final product (21, 24, 70, 81, 84, 85, 115). The complete 

cycle of ketoacyl reduction, dehydration, and enoyl reduction producing a saturated 

carbon chain that is observed in FAS may be shortened in PKSs so that a saturated or 

poly-unsaturated carbon chain is produced containing many keto and hydroxyl groups 

(71, 108). Post-PKS modifications add to the diversity of polyketides as the extended 

linear carbon chain products are then often glycosylated, acylated, alkylated, oxidated, 

and/or cyclized to form the complex biochemicals that can be used as medical and 

veterinary therapeutics. 

Cryptosporidium parvum is a parasitic protist that infects both humans and 

animals. It belongs to the Phylum Apicomplexa that contains many important parasites 

including Plasmodium, Toxoplasma, Babesia, Eimeria and Cyclospora (197). This 

parasite possesses two unusual genes that encode giant polypeptides: a 25-kb fatty acid 

synthase (CpFAS1) and a 40-kb polyketide synthase (CpPKS1). Both genes have been 

previously sequenced and reported (197-199) (Sequence Information for the CpPKS1 

Gene is available in the GenBank database under accession no. AF405554). CpFAS1 has 

been recently expressed as recombinant individual proteins (as multifunctional units or 

modules). The activities of most CpFAS1 enzymatic domains have been detected using 

recombinant proteins, although the endogenous product of CpFAS1 remains to be 
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elucidated (199). On the other hand, CpPKS1, the first PKS identified from a protist, has 

yet to be expressed and functionally characterized (198). 

CpPKS1 can be conceptually translated into a single 1,516-kDa polypeptide, in 

which the predicted 29 enzymatic domains are organized into an N-terminal loading 

unit, 7 internal elongation modules, and a C-terminal reductase terminating domain 

(198). Because of its large size, heterologous expression of the entire CpPKS1 gene 

would be impractical. To overcome this problem we have decided to use a “divide and 

conquer” strategy, in which the giant CpPKS1 is expressed as individual, but 

multifunctional units or modules for biochemical analysis. Here, we report the 

expression and biochemical analysis of the CpPKS1 N-terminal loading unit that 

contains two enzymatic domains: an acyl-[ACP] ligase (AL) domain for activating and 

loading substrate, and an ACP domain for the attachment of acyl substrates. Although 

there are few PKSs with a loading unit containing the same domain organization, this 

study is the first to fully characterize the AL domain contained in this relatively rare 

loading unit. The detailed substrate preference and catalytic features of the AL domain 

were determined. We have also demonstrated that the ACP domain can be activated by a 

surfactin production element (SFP)-type phosphopantetheinyl transferase in C. parvum 

(CpSFP-PPT), and the AL domain is able to catalyze the attachment of long chain fatty 

acids to the activated ACP domain. 
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MATERIALS AND METHODS 

Enzyme nomenclature. We will follow Nomenclature Committee of IUNMB 

(NC-IUBMB) recommendations to use “ligase” to replace “synthetase” that catalyzes 

“synthetic reactions with concomitant hydrolysis of a nucleoside triphosphate” (see NC- 

IUBMB Newsletter (http://www.chem.qmul.ac.uk/iubmb/newsletter/misc/ 

synthase.html#1). The acyl ligase (AL) may represent either a discrete acyl-CoA ligase 

(ACL) or the acyl-[ACP] ligase domain (AAL) in FAS/PKS, in which ACL and acyl-

CoA synthetase (ACS) are in fact interchangeable. 

Protein motif analysis. The CpPKS1 loading unit AL and ACP domains were 

separately used as queries to search protein databases including all nonredundant 

GenBank Coding Sequence (CDS) translations, RefSeq Proteins, Protein Data Bank 

(PDB), SwissProt, Protein Information Resource (PIR), and Protein Research 

Foundation (PRF) at the National Center for Biotechnology Information using PSI-

BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) (3). Four iterative PSI-BLAST 

searches were performed for both the AL and ACP domains with the BLOSUM62 

matrix (penalties for existence and extension = 11 and 1, respectively). Only those 

sequences with E-values less than 1 × 10-4 were used for multiple sequence alignments 

with the ClustalW algorithm using MacVector v9.0 (Accelrys Software Inc.), and 

observable mistakes in alignments were corrected upon visual inspection. Conserved 

motifs from each domain were determined from the alignments and blocks logos were 

obtained from position-specific scoring matrices (PSSM) from the BLOCKS server 

(http://blocks.fhcrc.org/blocks) (65).  
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Amplification and cloning of DNA construct. The 2,545-bp CpPKS1 loading 

unit (CpPKS1-AL-ACP) was amplified from C. parvum (Iowa strain) genomic DNA 

(gDNA) with high-fidelity Pfu Turbo DNA polymerase (Stratagene) using primers 

CpPKS1-Load-F (5’ aga gga tcc ATG AAT AGT AGT AAA CCT GAG TAT G 3’) and 

CpPKS1-Load-R (5’ aga gga tcc TTA GTG AGC ATT TAT TCC AGA AAT AAC 3’) 

(lower cases represent artificial BamHI linkers). The amplified product was purified 

from a 1% agarose gel using a MinElute gel extraction kit (Qiagen) and first cloned into 

the pCR-XL-TOPO vector (Invitrogen). Plasmids were isolated from positive colonies, 

followed by restriction digestion analysis and sequencing to confirm their identities. 

Plasmids containing correct inserts were then digested with BamHI to release the 

CpPKS1-AL-ACP insert, purified from agarose gel, ligated into the pMAL-c2X 

expression vector (New England Biolabs), and transformed into Escherichia coli Mach1 

cells (Invitrogen). Positive colonies were selected via PCR using CpPKS1-Load-F and 

LacZ-R (5’ CGC CAG GGT TTT CCC AGT CAC GAC 3’, an antisense primer 

downstream to the multiple cloning site), as well as multi-restriction enzyme digestions 

to determine appropriate orientation. 

Expression and purification of protein. Plasmid DNA containing the correctly 

oriented insert (pMAL-c2X-CpPKS1-AL-ACP) was transformed into chemically 

competent E. coli Rosetta cells (Novagen) and plated onto solid Luria-Bertani (LB) 

medium containing ampicillin (50 μg/ml), chloramphenicol (34 μg/ml), and glucose (2 

mM). After incubation overnight at 37 °C, a single colony of transformed bacteria was 

first inoculated into 25 ml LB media containing the appropriate antibiotics and glucose, 
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and grown overnight at 30 °C in a shaking incubator. The overnight cultures were 

diluted 1:10 with fresh medium and allowed to grow for approximately 5 h at 25 °C until 

the OD600 reached ~ 0.5. At this time, isopropyl-1-thio-β-D galactopyranoside (IPTG) 

was added to a final concentration of 0.5 mM to induce protein expression, and cells 

were grown an additional 12 h at 16 °C. The bacteria were collected by centrifugation, 

resuspended in 50 ml TNE buffer (20 mM Tris.HCl pH 7.4, 200 mM NaCl, 1mM 

EDTA) containing a protease inhibitor cocktail optimized for bacteria (Sigma), and 

subjected to mild sonication on ice. Insoluble debris was removed by centrifugation. The 

MBP-CpPKS1-AL-ACP fusion protein was purified using amylose resin-based affinity 

chromatography according the manufacturer’s standard protocol (New England Biolabs). 

SDS-PAGE analysis of the purified protein revealed two distinct bands; one 

corresponding to full-length MBP-fused CpPKS1-AL-ACP (~138-kDa) and another at 

approximately 80-kDa. The full length fusion protein was then extracted from a glycine-

based, 6% native-PAGE gel using a previously reported protocol with minor 

modifications (33). Briefly, the affinity-purified protein was first concentrated using a 

membrane based VivaSpin concentrator with a 100-kDa cut-off (VivaScience) and 

fractionated with a 6% native-PAGE gel. The protein bands were visualized using a zinc 

stain kit (Bio-Rad), individually cut from the gel, and destained in 1.5 mL microtubes for 

a total of 30 min, and then washed with PBS. The gel slices were thoroughly crushed, 

mixed with PBS (pH 7.2) that slightly covered the crushed gel, centrifuged at 20,000 g 

for 30 min at 4 °C, and the supernatant retrieved. This was repeated three times, and 

after pooling the sample a small aliquot was allocated for SDS-PAGE analysis. The full 
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length MBP-CpPKS1-AL-ACP fusion protein was then extensively dialyzed in PBS (pH 

7.2), and concentrated using the VivaSpin concentrator. Protein concentrations were 

determined by a Bradford colorimetric method using bovine serum albumin (BSA) as a 

standard. 

Acyl-[ACP] ligase (AL) activity. The AL domain is proposed to catalyze the 

thioesterification between a fatty acid and the adjacent ACP domain. However, we have 

previously shown that the AL domain from evolutionarily related CpFAS1 is able to use 

Co-enzyme A (CoA) as a receiver, which permits the detailed enzyme kinetic analysis 

for the AL domain (199). In this study, we found that the CpPKS1-AL domain was also 

able to catalyze the thioesterification of palmitic acid with CoA. A typical reaction (100 

μl) was composed of 100 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 2 mM DTT, 2 mM 

EDTA, 5 mM ATP, 300 μM CoA, 2 mM Triton X-100, 1 mM potassium fluoride (KF), 

20 μM [9,10-3H(N)]palmitic acid, and 20 ng MBP-CpPKS1-AL-ACP fusion protein. 

After incubation at 37 °C for 10 min, reactions were stopped with the addition of 125 μl 

of Dole’s solution (40:10:1 = isopropanol/heptane/1 M H2SO4) and 50 μl of water, 

followed by a strong vortex to thoroughly mix. A heptane extraction method was then 

used by the addition of 500 μl of heptane immediately followed by vigorous mixing and 

centrifugation at 10,000 g for 2 min. The upper organic phase was removed, while the 

lower aqueous phase containing the radiolabeled palmitoyl-CoA was washed three more 

times with heptane containing 4 mg/ml unlabeled (cold) palmitic acid (to chase out 

radioactive palmitic acid), and once more with heptane only. Next, 75 μl of the washed 

aqueous phase was mixed with 5 ml of scintillation fluid and the radioactivity was 
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counted in a Beckman Coulter LS 6000SE counter. Enzyme kinetics values for this 

reaction were calculated from a Lineweaver-Burk plot with substrate concentrations 

ranging from 0.39 to 400 μM. Each reaction was assayed in at least duplicates. The 

MBP-tag was used to replace MBP-CpPKS1-AL-ACP for background subtraction as a 

control at each concentration.  

The kinetics for the AL domain were also similarly assayed using varying 

amounts of CoA (0.39 – 100 μM), ATP (0.78 – 1000 μM), and MgCl2 (0.032 – 10 mM). 

We also tested whether the CpPKS1-AL domain could use guanosine triphosphate 

(GTP) or uridine triphosphate (UTP) (each at 5 mM) to replace ATP as alternate energy 

sources. Additionally, the inhibitory effects of triacsin C (2 – 40 μM) on the AL domain 

were analyzed under the same reaction conditions. 

Substrate specificity of the AL domain. A substrate competition assay was 

employed to determine substrate specificity as previously described (199). Briefly, 20 

μM of various unlabeled (cold) even carbon saturated fatty acids from C2:0 to C30:0 

were added to the reaction mixture to compete with the same molar amount of 

[3H]palmitic acid under the same conditions for the typical assay. The same heptane 

extraction method was performed to measure the resulting amount of radiolabeled 

palmitoyl-CoA in the aqueous phase. The resulting data were plotted as the percent 

radioactivity in each assay compared to the reactions containing only [3H]palmitic acid. 

Controls in all experiments included reactions with no protein present and 20 ng MBP 

only for background subtractions. At least three independent assays were performed with 

at least three replicates for each reaction.  
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Phosphopantetheinylation of the ACP domain. Because recombinant ACP 

domains from CpFAS1 could only be expressed in the inactive apo form (22, 199), we 

suspected that the bacterial host cells were also unable to phosphopantetheinylate the 

ACP domain in the CpPKS1 loading unit. Therefore, we wanted to test the ability of 

recombinant C. parvum SFP-type phosphopantetheinyl transferase (CpSFP-PPT) to 

activate the apo-ACP domain of the CpPKS1 loading unit. CpSFP-PPT has been 

previously expressed as an S-tag-fused protein from an artificially synthesized DNA 

fragment, and its capacity in activating the ACP domains from CpFAS1 has been studied 

in detail (22). In this assay, a 40 μl reaction consisting of 75 mM Tris-HCl (pH 7.0), 10 

mM MgCl2, 4 μg MBP-CpPKS1-AL-ACP, 400 ng CpSFP-PPT, and 40 μM [1-

14C]acetyl-CoA was used so that the attachment of the phosphopantetheinyl group could 

be visualized by autoradiography. Reactions were started with the addition of the 

radioactive acetyl-CoA, and incubated at 37 °C for 45 minutes. The entire reaction was 

then subjected to 6% SDS-PAGE, and visualized from dried gels using a FUJI BAS 

1800 II PhosphorImager. As a control, reactions also included no protein, MBP only, or 

no CpSFP-PPT to ensure that the MBP fusion tag has no activity and that the ACP 

domain cannot be activated in the absence of CpSFP-PPT. 

AL domain mediated transfer of long chain fatty acid to holo-ACP. After 

determining that CpSFP-PPT was able to activate the apo-ACP domain in the 

recombinant CpPKS1-AL-ACP protein, we next tested whether the AL domain was able 

to transfer palmitic acid to the adjacent activated holo-ACP by two sequential reactions. 

First, the ACP domain was activated by CpSFP-PPT using the same reaction conditions 
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as above, except unlabeled CoA (40 μM) was used to replace radioactive acetyl-CoA, so 

that only the phosphopantetheinyl moiety (rather than the acetylated moiety) would be 

transferred to the ACP. After free CoA was removed from the reaction using a Zeba 

desalting spin column (Pierce), 40 μl sample was then used in a second reaction (65 μl) 

containing 100 mM Tris-HCl (pH 7.0), 10 mM MgCl2, 2 mM EDTA, 2 mM DTT, 5 mM 

ATP, 2 mM Triton X-100, 1 mM KF, and 20 μM [3H]palmitic acid. The reaction was 

incubated at 37 °C for 45 minutes, fractionated by 6% SDS-PAGE, and visualized with 

autoradiography as before. Similar controls were included as described for the 

phosphopantetheinylation of the ACP domain section.  

 

RESULTS 

The CpPKS1 loading unit contains motifs characteristic to the ACL family 

and ACPs. Of the 13,414-amino acid CpPKS1, the loading unit comprises only 845 

amino acids (Fig. 2.1). The AL domain shares sequence similarities to many other 

adenylate-forming enzymes, particularly the AMP-forming, long chain fatty acyl-CoA 

ligases (also termed as fatty acyl-CoA synthetase, EC 6.2.1.3) (16). Like the AL domain 

in some PKSs, the CpPKS1-AL domain contains both adenylation and ATPase motifs 

(197, 198) (Fig. 2.1). The AL domain adenylation core sequence slightly differs by only 

a few amino acids from that of the typical AMP-binding motif (mXXTSGtTGXPK) 

(170), but still shares a substantial degree of similarity as determined by PSSM analysis 

of 242 sequences. The second motif that appears to be more restricted to the ACL family 

is the ATPase motif. The ATPase motif’s core sequence (TGD) is highly conserved 
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FIG. 2.1. The CpPKS1 loading unit consists of acyl ligase (AL) and acyl carrier 
protein (ACP) domains. The AL domain contains two highly conserved motifs 
responsible for the adenylation and the ATPase activities. The ACP domain 
contains the phosphopantetheinyl binding domain (Ppant) for the attachment of a 
phosphopantetheinyl moiety to the conserved serine reside. PSSM logos for the 
three domains were generated from the specified numbers of sequences retrieved 
from the GenBank protein database. Within each logo, the letter(s) represent the 
respective amino acid position in each motif, whereas the size of each letter 
represents the relative abundance of the respective amino acid within the 
sequences used for comparison. Motifs for the three conserved domains in the 
CpPKS1 loading unit are provided in parentheses for comparison to the PSSM 
logos. Load = loading unit, Mod = elongation modules, Red = reductase domain.
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among all enzymes of this type as can be observed by the PSSM analysis of the same 

242 sequences. The diversity of the 242 analyzed sequences is as follows: bacteria, 93%; 

fungi, 2.5%; plants, 2.1%; protists and insects, each 1.2%. 

Similar to all other ACPs, the ACP domain in the CpPKS1 loading unit contains 

the 4’-phosphopantetheinyl-binding cofactor box (GxDS[I/L]) as defined by the PSSM 

analysis of 198 ACP sequences (bacteria, 92.9%; fungi, 5.6%; protists, 1.5%). However, 

this ACP domain appears to be one of very few ACP sequences analyzed where a 

glutamate (E) replaces the aspartate (D) in the core sequence. Although the function of 

the ACP domain is not expected to differ, it is interesting that this is one of few ACPs 

with this set of amino acids surrounding the conserved serine residue.  

Expression and purification of recombinant CpPKS1-AL-ACP. The CpPKS1 

loading unit was strategically engineered into and expressed in the pMAL-c2X 

expression vector as a 138-kDa MBP-fusion protein. The affinity of MBP for maltose 

allows for an easy amylose resin-based affinity chromatography purification method 

which usually provides for a rapid one-step purification of the fusion protein (83). 

However, regardless of the expression parameters used (i.e. growth/induction time, 

temperature, and IPTG concentration) for CpPKS1-AL-ACP, we always observed two 

major bands when purified using amylose resin-based affinity chromatography. We 

observed a band at the size of the predicted Mr (138-kDa), but we also observed a 

stronger band at ~80-kDa (Fig. 2.2, lane 2) that may represent premature termination of 

translation or degradation of the protein of interest. For better characterization of enzyme 

kinetics, the 138-kDa protein was isolated to homogeneity using a modified method for  
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FIG. 2.2. SDS-PAGE analysis of 
the MBP-CpPKS1-AL-ACP fusion 
protein purified by a two-step 
approach (amylose resin-based 
affinity chromatography and PAGE 
gel extraction). The full-length 
fusion protein (138-kDa) was used 
in all enzymatic assays. M = protein 
marker, lane 1 = full length fusion 
protein from gel purification, lane 2 
= amylose resin-based affinity 
purified protein. 
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eluting proteins from PAGE gels (33) (Fig. 2.2, lane 1), and used in subsequent analyses. 

For each one-liter culture used for protein expression, we obtained an average of ~4 

mg/L of protein when purified utilizing affinity resin-based chromatography.  Due to the 

presence of protein bands other than the protein of interest being visualized using SDS-

PAGE, we estimated that the 138-kDa fusion protein was approximately 7.71% (0.316 

mg/L) of the total protein purified from affinity chromatography. After gel extraction of 

the concentrated affinity purified protein sample, we obtained an average of 0.241 mg/L 

of the single-banded full length fusion protein shown in Figure 2.2, lane 1. This 

corresponds to a ~76% recovery of the full length 138-kDa fusion protein.  

 Enzyme kinetics of the AL domain. The ACL family catalyzes the formation of 

a fatty acyl-CoA from a fatty acid substrate, ATP, and CoA in a Mg2+-dependent two-

step reaction (10, 11, 16) (Fig. 2.3). A fatty acyl-adenylate intermediate is formed with 

the release of pyrophosphate in the first reaction, followed by conversion of the fatty 

acyl-adenylate to fatty acyl-ACP or acyl-CoA with the release of AMP. Like the AL 

domain in CpFAS1, the CpPKS1-AL domain was able to use CoA to replace holo-ACP 

to receive the C16 palmitic acyl chain. Using a heptane extraction-based radioactive 

assay, we observed that the AL activity towards palmitic acid in general followed 

Michaelis-Menten kinetics (Km and Vmax values at 1.178 μM and 2.744 μmol mg-1 min-1, 

respectively) (Fig. 2.4A, dashed curve labeled with h [Hill coefficient] = 1). However, 

further analysis indicated that the AL kinetics actually fit better to a sigmoidal curve; 

coefficient of determination (R2) = 0.9906 compared to 0.9829 for Michaelis-Menten 

kinetics (Fig. 2.4A, solid curve labeled with h = 1.46), indicating the presence of positive 
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FIG. 2.3. Acyl ligase (AL) catalyzes a two-step reaction 
to activate fatty acids. The first step forms fatty acyl-
AMP (reaction 1). In second step, AL catalyzes the 
formation of acyl-ACP (reaction 2a), while acyl-CoA 
ligase (ACL) catalyzes the formation of acyl-CoA ester 
(reaction 2b). However, when HSCoA is present, AAL 
may also catalyze the formation of acyl-CoA, thus 
allowing the detection of its activity by a simple heptane 
extraction assay. The synthesis of holo-ACP from apo-
ACP is catalyzed by phosphopantetheinyl transferase 
(PPT). ABP = Adenosine 3',5'-bisphosphate. 
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FIG. 2.4. The activity of the CpPKS1-AL domain for catalyzing the formation of 
palmitoyl-CoA as determined by a heptane extraction assay. (A) Allosteric 
kinetics assayed with various concentrations of palmitic acid indicates the 
presence of a positive cooperativity in the reaction (Hill coefficient, h = 1.46). 
(B) Allosteric kinetics assayed with various CoA indicates the presence of a 
small negative cooperativity (h = 0.704). (C) Binding kinetics assayed with 
various concentrations of ATP.  The AL domain displayed two-site binding 
kinetics suggesting the presence of possible overall biphasic kinetics. (D) The 
AL domain activity is Mg2+-dependent with an optimal concentration at ~2 mM. 
In all samples, bars represent the standard deviation derived from duplicate or 
triplicate reactions. U = µmol mg-1 min-1. 
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cooperativity between the two steps of the overall reaction [i.e., formations of palmitoyl-

AMP and palmitoyl-CoA, respectively]. Under the consideration of cooperativity, the 

values for K50 (equivalent to Km) and Vmax were determined at 0.751 μM and 2.236 μmol 

mg-1 min-1, respectively. 

The kinetic values of the CpPKS1-AL domain using CoA and ATP as substrates 

were also studied in detail. Using CoA as a substrate, the AL domain displayed close to 

typical Michaelis-Menten kinetics (Km and Vmax were 3.533 μM and 0.484 μmol mg-1 

min-1, respectively) (Fig. 2.4B, dashed curve). Nonlinear curve fit using an allosteric 

enzyme model was able to give a slightly better fit curve (R2 = 0.9701 vs. 0.957), 

suggesting the presence of weak negative cooperativity (Fig. 2.4B, solid curve, h = 

0.704). Under the consideration of cooperativity, the K50 and Vmax values were 

determined at 5.627 μM and 0.557 μmol mg-1 min-1, respectively. The AL domain 

appeared to have relatively strong affinity towards ATP. At ATP concentrations from 

0.78 μM to 1 mM, the AL domain fit well with a biphasic kinetics model.  Using this 

model (i.e. Observed Total Velocity (v) = v1 + v2 = Vmax1*X/(Km1+X) + 

Vmax2*X/(Km2+X)), the AL kinetic values for ATP were determined as Km1 = 3.149 μM, 

Vmax1 = 373.7 nmol mg-1 min-1, Km2 = 563.7 μM, Vmax2 = 121.0 nmol mg-1 min-1 (Fig. 

2.4C). The AL domain also fit to the Michaelis-Menten model, although not as strong 

(R2 = 0.9472 vs. 0.9664 for the biphasic model), and displayed kinetics similar to the 

first phase (Km = 3.916 μM, Vmax = 543.8 nmol mg-1 min-1). 

Like the AL domain in the loading unit of CpFAS1 (199), as well as other ALs 

and ACLs (16, 103), the activity of CpPKS1-AL can be inhibited by 5 mM AMP when 
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assayed with 5 μM ATP (Fig. 2.5). In contrast to one ACL in Plasmodium falciparum 

which can actually utilize GTP or UTP (103), CpPKS1-AL cannot (Fig. 2.5). Assay 

results using GTP and UTP showed very similar inhibition to the AL of CpFAS1 (199). 

Negative data for both of these reactions suggests that, compared to negative controls, 

these two co-factors might increase the efficiency during the heptane extraction method 

when extracting palmitic acid (199). The CpPKS1-AL domain is also Mg2+-dependent 

with an optimal concentration at ~ 2 mM (Fig. 2.4D).  

The CpPKS1 activity could be specifically inhibited by triacsin C (1-hydroxy-3-

(E,E,E-2’,4’,7’-undecatrienylidine) (Fig. 2.6). Triacsin C is a fungal metabolite that 

resembles polyunsaturated fatty acids and can differentially inhibit various ACLs (Fig. 

2.6, inset) (62, 86, 122). The observed IC50 for triacsin C to inhibit the thioesterification 

of palmitic acid with CoA by CpPKS1-AL was 6.64 μM (Fig. 2.6).  

CpPKS1-AL prefers long chain fatty acids. The substrate specificity for 

CpPKS1-AL was determined using a wide range of even carbon saturated fatty acids 

(C2:0 – C30:0) to compete with the same molar amount of [3H]palmitic acid. In this 

competition assay, the CpPKS1-AL domain displayed the highest affinity for arachidic 

acid (C20:0), with gradually reduced activities for other fatty acids with chain lengths 

shorter or longer than C20 (Fig. 2.7). Although long chain fatty acids (C14 to C24) are 

favorite substrates, it appears that CpPKS1-AL may also utilize a wide range of other 

fatty acids from short to very long chain fatty acids, since all tested fatty acids showed  

 



 35

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 2.5. Heptane extraction assays indicate that the activity of the 
CpPKS1-AL domain is ATP-dependent and can be inhibited by the 
product AMP. It cannot use GTP or UTP as an alternative energy 
source to activate palmitic acid. Bars represent the standard deviation 
derived from duplicate reactions. 
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FIG. 2.6. Inhibitory effect of Triacsin C (structure depicted in the 
inset) on the activity of the CpPKS1-AL domain as measured by 
the incorporation of [3H]palmitic acid into palmitoyl-CoA. Bars 
represent the standard deviation derived from duplicate reactions. 
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 FIG. 2.7. Substrate competition assay using the same molar amount (20 μM) of 
unlabeled fatty acids from C2:0 to C30:0 to compete with [3H]palmitic acid. 
Values indicate the percent activity of the formation of [3H]palmitoyl-CoA 
relative to the positive control containing radioactive palmitic acid only (Ctl). 
The value obtained for C16 (indicated in black) indicates that the formation of 
[3H]palmitoyl-CoA was formed by approximately equal amounts of both 
radiolabeled and non-radiolabeled palmitic acid.  Bars represent the standard 
deviation derived from triplicate reactions. 
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some degree of displacement of activity towards to palmitic acid (Fig. 2.7). However, it 

remains to be determined whether the short chain (C2 and C4) or very long chain (C30) 

fatty acids may truly serve as endogenous substrates for CpPKS1-AL as these fatty acids 

could only displace ~20% of the activity while competing with palmitic acid. 

CpPKS1-AL is capable of transferring fatty acid to the adjacent ACP 

domain in vitro. A two-step approach was employed to investigate the transfer of fatty 

acid to the ACP domain. In step one, the apo-ACP domain within the recombinant 

CpPKS1 loading unit was activated by CpSFP-PPT. We first confirmed that CpSFP-PPT 

was able to transfer the phosphopantetheinyl moiety from [14C]acetyl-CoA to the ACP 

domain within the loading unit by autoradiography (Fig. 2.8A, lane 2). The transfer of 

the radioactive moiety from [14C]acetyl-CoA to ACP could be chased out when same 

amount of cold acetyl-CoA was included in the reaction (Fig. 2.8A, lane 4), which 

indicates that the radioactive signal was not due to the potential non-specific binding of 

recombinant proteins to acetyl-CoA. We then used CpSFP-PPT to synthesize the holo-

ACP domain using unlabeled HSCoA as a donor for the phosphopantetheinyl moiety. In 

step two, the CpPKS1-AL domain-mediated attachment of [3H]palmitic acid to the holo-

ACP domain was demonstrated by autoradiography (Fig. 2.8B). No radioactivity was 

observed in all negative controls (e.g. CpSFP-PPT only, CpPKS1 loading unit only, and 

PPT + MBP), indicating that only the activated ACP domain within the loading unit 

received palmitic acid and both CpSFP-PPT and the AL domain were required for this 

activity (Fig. 2.8B). 
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DISCUSSION 

 CpPKS1 is the first PKS identified from a protist (protozoan) (198). It appears to  

share the same evolutionary ancestor with CpFAS1 based on the overall sequence 

similarities and phylogenetic evidence inferred from the AT and KS domains  (196, 

198). Among other apicomplexans that possess a plastid and associated Type II FAS, P. 

falciparum lacks Type I FAS or PKS, whereas T. gondii and E. tenella have both Type I 

FAS and PKS present in their genomes (data not shown, but they can be easily identified 

by BLAST-searching the two parasite genome databases using CpFAS1 and CpPKS1 as 

queries at http://ToxoDB.org and http://www.sanger.ac.uk/Projects/E_tenella). More 

recently, PKS genes closely related to CpPKS1 have been reported from the 

dinoflagellates (162, 163), suggesting that Type I FAS or PKS might have been present 

before the species expansion of Alveolata. 

 Among these two C. parvum megasynthases, preliminary biochemical analysis 

using recombinant proteins has indicated that CpFAS1 may be involved in the 

elongation, rather than the de novo synthesis, of fatty acids (196, 199). However, 

nothing was previously known about the biochemical features of CpPKS1. Furthermore, 

no previous studies have clearly evaluated the biochemical features of this type of 

loading domain among various other PKSs.  The CpPKS1 product(s) and biological 

roles remain to be elucidated. The present study focuses on delineating the biochemical 

features and substrate preference for the CpPKS1 loading unit, which serves as a first, 

but essential step for elucidating the functional role(s) of this megasynthase.  
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 We first expressed the loading unit containing AL and ACP domains as an MBP-

fused protein and purified the fusion protein to homogeneity. Like the CpFAS1-AL 

domain, the CpPKS1-AL domain was able to utilize HSCoA to replace ACP for 

receiving the fatty acyl chain, thus allowing the detailed analysis of enzyme kinetics. It 

is interesting that the CpPKS1-AL domain displayed allosteric kinetics when using 

palmitic acid as a substrate (h = 1.46 [Fig. 2.4A]). This feature has yet to be reported 

among other ACLs, probably due to the fact that the enzyme kinetics might also be well 

analyzed by a simple Michaelis-Menten algorithm. Although a detailed mechanism 

behind the allosteric kinetics remains to be elucidated, it implies the presence of positive 

cooperativity between the two reactions catalyzed by AL (i.e., the formations of 

palmitoyl-AMP and palmitoyl-CoA). The kinetics for the AL domain to use ATP is also 

intriguing. It follows both Michaelis-Menten kinetics, and also, to a greater extent, two-

site binding kinetics suggesting possible biphasic kinetics, for which the mechanism has 

yet to be determined. It is possible that two forms of recombinant CpPKS1 loading unit 

were present in purified proteins, which have different affinities for ATP. 

 Substrate competition assays have shown that the CpPKS1-AL domain has a 

general preference for long chain fatty acids, particularly to arachidic acid. This implies 

that CpPKS1 may be able to add a polyketide chain (likely 14 carbons due to the 

presence of 7 elongation modules) to a fatty acyl precursor. Although the CpPKS1-AL 

domain may effectively use various fatty acids, its true substrate(s) may be limited by 

the availability of fatty acids in the parasite cells. Due to the lack of Type II FAS in C. 

parvum, together with the fact that CpFAS1 prefers palmitic acid as its substrate, this 
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protist is probably incapable of synthesizing fatty acids de novo, thus it may have to rely 

on the uptake of fatty acids (both saturated and unsaturated) from host cells or the 

intestinal lumen to supply substrates for CpPKS1 and CpFAS1. On the other hand, it is 

possible that other types of substrates, such as polyketides, may be used by CpPKS1. 

However, this is less likely since this parasite lacks any other PKS genes to make 

precursors for CpPKS1 and the host cells or intestinal lumen are not reliable sources for 

polyketides. Nonetheless, the profile of substrate preference provides us important 

information in selecting substrates for the reconstitution of entire reactions catalyzed by 

CpPKS1 in the future. 

 CpPKS1 contains eight ACP domains (one in the loading unit and seven at the 

end of each elongation module), while CpFAS1 contains four ACP domains. It appears 

that all of these ACP domains need to be activated by the addition of a prosthetic 

phosphopantetheinyl moiety, which is catalyzed by PPT. Cryptosporidium possesses 

only one single SFP-type PPT (CpSFP-PPT) that was able to activate the ACP domains 

in CpFAS1 (22). Here we have shown that CpSFP-PPT was able to activate the ACP 

domain in CpPKS1 (Fig. 2.8A), indicating that this single parasite PPT may be 

responsible for activating the ACP domains in both CpFAS1 and CpPKS1. 

 Upon the activation of the ACP domain within the CpPKS1 loading unit, the 

function of the AL domain to transfer an acyl chain to the ACP was ultimately validated 

by autoradiography (Fig. 2.8B). This demonstrates that the ACP domains in all CpPKS1 

modules may also be activated after they are expressed as fusion proteins, thus 
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permitting the future reconstitution of polyketide chain elongation and release in vitro 

using recombinant CpPKS1 modules and units. 
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CHAPTER III 

Cryptosporidium parvum  LONG CHAIN FATTY ACID ELONGASE* 

 

OVERVIEW 

As one of the vital compounds for all organisms, fatty acids of 14 to 18 carbons 

in length comprise the bulk of cellular fatty acids that serve structural and biological 

functions and are usually the major products of de novo synthesis in most cells. These 

long chain fatty acids (LCFAs) play important roles in many biological functions such as 

energy metabolism and membrane structure. There are several metabolic pathways that 

produce LCFAs, most notably the type I and type II fatty acid synthases (FASs). The 

type I enzymes of mammals and fungi are typically cytosolic and composed of multiple 

enzymes arranged into domains of one or two large polypeptide(s) (161). In contrast, the 

enzymes of the type II FASs are all located on separate domains and are found in 

prokaryotes or eukaryotic organelles of prokaryotic origin (188).  

Relatively common among eukaryotic organisms are the fatty acid elongase-

based systems, These elongase-based systems directly elongate a fatty acyl chain 

esterfied with CoA (fatty acyl-CoA), which is in contrast to the type I and type II FAS 

systems that elongate a fatty acyl chain attached to an acyl carrier protein (ACP). The 

elongase system is comprised of at least four enzymes that are responsible for adding 

two carbon units to the fatty acyl carboxyl end. The chemistry of this pathway is similar 

                                                 
* Part of this chapter is reprinted from Fritzler, J. M., and G. Zhu. 2007. Cryptosporidium parvum long 
chain fatty acid elongase. Eukaryot. Cell 6: 2018-2028, with permission from American Society for 
Microbiology. 
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to that used by type I and type II FASs. Fatty acyl elongation begins with the 

condensation of malonyl-CoA with a fatty acyl-CoA catalyzed by the condensing 

enzyme LCE (= β-ketoacyl-CoA synthase) (Fig. 3.1, step 1). The resulting β-ketoacyl-

CoA is now two carbons longer and is then reduced to β-hydroxyacyl-CoA in a 

NAD(P)H-dependent reaction by β-ketoacyl-CoA reductase (Fig. 3.1, step 2). 

Dehydration occurs through the action of β-hydroxyacyl-CoA dehydratase to yield 

enoyl-CoA (Fig. 3.1, step 3), which is further reduced by enoyl-CoA reductase in a 

NAD(P)H-dependent manner (Fig. 3.1, step 4) to yield the elongated fatty acyl-CoA. 

Whether or not the elongated product is released for use elsewhere in the cell or is 

retained to undergo another round of elongation largely depends on the specific needs of 

the organism.  

Although purification and biochemical characterization of these four enzymes is 

difficult due to their membrane-bound nature, it appears that the condensing enzyme is 

the rate-limiting enzyme of the elongase system and is commonly referred to as 

“elongase” (15, 32, 119). Thus, it is responsible for the fatty acid substrate specificity 

regarding chain length and pattern of double bonds, whereas the other three components 

of the elongase system display little or no particular substrate specificity (32). 

Comparative protein sequence analysis has classified the condensing enzymes into two 

distinct groups: the KCS/fatty acid elongation (FAE) group present mainly in plants, and 

the elongase (ELO) group present in protozoa, mammals and fungi (93). It is not 

uncommon for a cell or organism to contain multiple condensing enzymes that share the  
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FIG. 3.1. The fatty acid elongation system. The diagram displays the four enzymes 
and fatty acyl-CoA intermediates involved in the two-carbon elongation of fatty 
acyl-CoAs. The first step is a condensation reaction catalyzed by the “elongase” 
enzyme (CpLCE1). This is the enzyme that determines chain length and degree of 
unsaturation of the substrate, and is the rate-limiting step of the system. The product 
of the condensation reaction then undergoes reduction by a β-ketoacyl-CoA 
reductase (step 2), dehydration by β-hydroxyacyl-CoA dehydratase (step 3), and a 
final reduction by enoyl-CoA reductase (step 4). Whether or not the elongated 
product is utilized elsewhere in the cell or organism or undergoes an additional 
round(s) of elongation largely depends on the needs of the specific cell/organism at 
that time. 
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same reductase-dehydratase-reductase enzymes. Furthermore, each system within a cell 

or organism may exhibit a broad range of substrate specificities (sometimes overlapping) 

for fatty acid chain length as well as saturated or unsaturated fatty acids (93). For 

example, Saccharomyces cerevisiae contains three elongases termed ELO1, ELO2, and 

ELO3, in which ELO1 has a preference for elongating C12 to C16 fatty acids, whereas 

ELO2 and ELO3 elongate C16 saturated and monounsaturated fatty acids to C24 and 

C26, respectively (133). This study aims to characterize the sole long chain elongase 

from Cryptosporidium parvum (CpLCE1), the first such study among the apicomplexan 

parasitic protozoa.  

 

MATERIALS AND METHODS 

Identification of CpLCE1 and phylogenetic reconstructions. The CpLCE1 

gene was originally identified from a C. parvum genome contig by homolog searches, 

which was then cloned and sequenced to confirm its identity (GenBank accession No. 

AAO34582). It was later annotated in the genome sequencing projects as a “7 pass 

integral membrane protein with FLHWFHH motif shared with fatty-acyl elongase” for 

C.  parvum (XP_627348) and “fatty-acyl elongase” for C. hominis (XP_666343). 

To determine the evolutionary relationship of CpLCE1 among elongases from 

other organisms we performed maximum likelihood (ML)-based phylogenetic analyses. 

The CpLCE1 amino acid sequence was used as a query to search protein databases 

including all nonredundant GenBank CDS translations, RefSeq Proteins, PDB, 

SwissProt, PIR and PRF at the National Center for Biotechnology Information (NCBI) 
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using the PSI-BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) (3). Elongase 

sequences from other apicomplexans were also obtained from http://PlasmoDB.org 

(Plasmodium) and http://ToxoDB.org (Toxoplasma gondii). Four iterative BLAST 

searches were performed and only sequences with E-values better than 1 × 104 were 

selected for phylogenetic analysis.  

Multiple sequence alignments were performed on 75 sequences using the 

ClustalW algorithm housed in the MacVector v9.5.2 program (MacVector, Inc.) and 

apparent mistakes in alignment were corrected upon visual inspection. A dataset 

containing 91 unambiguously aligned amino acid positions were used in subsequent 

analysis. The MrBayes v3.1.2 program (http://mrbayes.csit.fsu.edu/) was used to 

reconstruct trees using a Bayesian inference (BI) method (73). The program was allowed 

to “jump” among all available amino acid substitution models, and to consider among-

site rate heterogeneity using a fraction of invariance (Inv) plus a four-rate Γ-distribution 

model during Markov chain Monte Carlo (MCMC) analysis. A total of 5 × 106 

generations of searches were performed with two independent runs, each containing four 

chains simultaneously running. The current trees were saved every 1000 generations. 

Posterior probability (PP) values at tree nodes were obtained by calculating consensus 

trees from the last 3,000 BI trees that were obtained after the runs converged. In 

addition, ML analysis was also performed using the PROML program included in the 

PHYLIP package (http://evolution.gs.washington.edu/phylip.html). The Jones-Taylor-

Thornton (JTT) model (77), with the consideration of Inv and four-rate Γ- that were 

estimated using TREE-PUZZLE v.5.2 program (http://www.tree-puzzle.de).  
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Transcript analysis for CpLCE1 at various developmental stages. Freshly 

isolated C. parvum oocysts (Iowa strain) purified by Percoll gradient centrifugation and 

stored in water at 4 °C (8) were used to analyze the relative transcript levels for CpLCE1 

gene. Oocysts were excysted in PBS containing 0.1% trypsin and 0.5% taurodeoxycholic 

acid for 90 min at 37 °C to release free sporozoites which were further purified using a 

Percoll gradient centrifugation method (145). Intracellular stages of C. parvum were 

obtained by infecting human HCT-8 cells with oocysts for various times (6-72 h). Total 

RNA was isolated from oocysts, free sporozoites, and intracellular stages using an 

RNeasy kit (Qiagen) following the manufacturer’s recommended protocol for animal 

cells. The only addition to RNA isolation using this method was that oocysts were 

suspended in the recommended lysis buffer and underwent 10 freeze/thaw cycles (liquid 

nitrogen/37 °C) to disrupt the oocyst wall prior to RNA isolation.  

A SYBR-green-based real time quantitative RT-PCR method was used to 

determine the transcript levels of CpLCE1 at the various developmental stages. The 

primer pair CpLCE1-F07 (5’ TCA CTT TAT CAG AAC CAA CGG TG 3’) and 

CpLCE1-R07 (5’ GGC AGT TAC CCA TTC AGC AAG 3’) was used to amplify 

CpLCE1 transcripts. To amplify C. parvum 18S rRNA as a control for normalization we 

used the previously reported primers 995F (5’ TAG AGA TTG GAG GTT GTT CCT 

3’) and 1206R (5’ CTC CAC CAA CTA AGA ACG GCC 3’) (1). The relative level of 

CpLCE1 transcripts expressed relative to those of 18S rRNA and values are reported 

based on at least three replicates as previously described (22, 144). 
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Production of antibodies. A short peptide corresponding to a unique internal 

sequence of CpLCE1 (76FGPKIMEKRKPFKLEKPLKYW) was synthesized by the 

Peptide Core Facility at the Department of Veterinary Pathobiology, Texas A&M 

University. This short peptide is unique to CpLCE1 and is reasonably antigenic as 

determined by various antigenicity indexes using the MacVector v9.5.2 program 

(MacVector, Inc.). Initially, sera from six pathogen-free rats were collected prior to the 

immunization protocol, of which pre-immune sera from two of the six showed no 

reactivity to dot blot tests using parasite protein extracts. The synthetic peptide was 

freshly cross-linked to Keyhole Limpet Haemocyanin prior to each immunization. 

Polyclonal antibodies to CpLCE1 were raised in two pathogen-free rats that were 

initially immunized with 200 μg of antigen emulsified in an equal volume of Freunds 

complete adjuvant. Booster immunizations (100 μg) were performed at 30 and 60 days, 

respectively, after the primary immunization. Rat sera were then collected after the 

immunization protocol and specificity of the rat polyclonal antibodies were evaluated by 

dot and Western blot analyses with protein extracts of parasites and host cells. 

Immunofluorescence microscopy. Sporozoites and intracellular developmental 

stages for immunolocalization analysis were obtained as above. Intracellular parasites 

were obtained by infecting human HCT-8 cells grown on glass coverslips treated with 

poly-L-lysine for 12, 36 or 60 h. Samples were fixed with 10% formalin, rinsed with 

PBS, and extracted with cold methanol (-20 °C). Free sporozoites were applied directly 

to poly-L-lysine-treated coverslips, air-dried, and then extracted. Cells were then 

blocked with 0.5% BSA-PBS for 10 min before incubation with primary antibodies for 1 
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h in 0.5% BSA-PBS. Free sporozoites were then labeled with anti-rat IgG secondary 

antibodies conjugated with FITC for 1 h in 0.5% BSA-TBS. Intracellular developmental 

stages were all exposed to a 1 h incubation in 0.5% BSA-PBS with anti-rat IgG-TRITC 

to visualize CpLCE1 localization. Co-localization of CpLCE1 with C. parvum fatty acyl-

CoA binding protein (CpACBP1) and with total membrane proteins (TMPs) was 

similarly performed. The anti-TMP antibodies and FITC-conjugated secondary 

antibodies were incubated simultaneously with anti-CpLCE1 and corresponding 

secondary antibodies, respectively; whereas the CpACBP1 antibodies were directly 

labeled with Alexa Fluor 488 using the appropriate fluorophore labeling kit (Invitrogen). 

Co-localization of CpLCE1 with TMP or CpACBP1 was selected because the TMP 

antibodies have been shown to label the parasitophorous vacuolar membrane (PVM) and 

feeder organelle (28) and CpACBP1 localizes to the surface of merozoites as well as co-

localizes with TMPs (194). All samples were mounted with a SlowFade Gold AntiFade 

reagent containing 4’,6’-diamidino-2-phenylindole (DAPI) for DNA counter-staining 

(Invitrogen) and examined with an Olympus BX51 Epi-Fluorescence microscope 

equipped with differential interference contrast and TRITC/FITC/DAPI filters.  

Cloning and expression of CpLCE1. The 972-bp CpLCE1 gene was amplified 

from C. parvum (Iowa strain) genomic DNA (gDNA) using the high-fidelity Pfu Ultra 

DNA polymerase (Stratagene) with the primer sets CpLCE1-Fwd (5’ gcg aat tcA TGT 

TCA TAG AAA ATA ATA ATA AT 3’) and CpLCE1-Rev (5’ gct cta gaA TCG CGC 

TTA GTT GGT TTT T 3’) (lower cases represent artificial EcoRI and XbaI linkers, 

respectively). The amplified product was directly ligated into the pcDNA3.1/HisC 
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mammalian expression vector (Invitrogen) and transformed into Escherichia coli TOP10 

cells (Invitrogen).  

Plasmid DNA containing the correct insert (pcDNA3.1/HisC-CpLCE1) and 

confirmed by sequencing was transfected into Human Embryonic Kidney (HEK)-293T 

cells. HEK-293T cells were plated in 100-mm tissue culture plates and grown at 37 °C in 

an atmosphere of 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM - high 

glucose) supplemented with 10% Fetal Bovine Serum (FBS). At ~90% confluency the 

pcDNA3.1/HisC-CpLCE1 plasmid or the empty plasmid pcDNA3.1/HisC (10 μg) was 

transfected into cells using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s protocol. After transfection, cells were grown for 48 h at 37 °C in 

DMEM plus 10% FBS.  

Confirmation of transfection and protein expression. Forty-eight hours after 

transfection of HEK-293T cells, total RNA was isolated from CpLCE1 and 

pcDNA3.1/HisC transfected cultures, and non-transfected cultures (as a negative 

control) using an RNeasy Mini kit (Qiagen) following the manufacturer’s protocol. The 

vector-specific T7-Fwd and BGH-Rev primers were used in conjunction with the One-

Step RT-PCR kit (Qiagen) to confirm positive transfection. 

Transfections were also performed in 24-well format to assess protein expression 

using immunofluorescence microscopy. Cells were first seeded onto glass coverslips 

treated with poly-L-lysine and transfected with CpLCE1 or pcDNA3.1/HisC using the 

method above while following the recommended protocol for Lipofectamine 2000 

transfection in 24-well format. After incubation for 48 h cells were fixed with 10% 
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formalin, rinsed with PBS, extracted with -20°C methanol for 5 min and blocked in 0.5% 

BSA-PBS for 10 min. Cells were then labeled with anti-CpLCE1 primary antibodies for 

1 h in 0.5% BSA-PBS followed by incubation with secondary antibodies conjugated 

with TRITC for 1 h in 0.5% BSA-PBS. The samples were washed after each incubation 

step three times with PBS for 5 min each. All samples were mounted using DAPI and 

examined using an Olympus BX51 Epi-Fluorescence microscope equipped with 

differential interference contrast and TRITC/DAPI filters. Cultures that were not 

transfected or transfected with pcDNA3.1/HisC were used as negative controls.  

Total membrane preparation of transfected cells. Total membrane protein 

fractions were prepared in a method similar to that for preparing microsomal protein 

(104). Forty-eight hours post-transfection, cells were washed with PBS and scraped into 

5 ml of ice-cold 250 mM sucrose, 20 mM HEPES, pH 7.5 containing a mammalian 

protease inhibitor (PI) cocktail (Sigma). After centrifugation at 1,000 g for 7 minutes at 

4 °C, the cell pellet was resuspended in 3 ml of ice-cold sucrose/HEPES with PI. The 

sample was then dounce-homogenized and centrifuged at 1,000 g at 4 °C to remove 

large cellular debris. The supernatant was then centrifuged at 100,000 g for 1 h at 4 °C. 

The supernatant was discarded, and the resulting pellet was resuspended in 500 μl of 100 

mM Tris-HCl, 0.1% Triton X-100, pH 7.4. Protein concentration was determined by a 

Bradford colorimetric method using BSA as a standard. Aliquots were snap-frozen in 

liquid nitrogen, and stored at -80 °C. Western blot analysis using the rat anti-CpLCE1 

antibodies and monoclonal rabbit anti-rat IgG antibodies was also performed to test for 

the presence of CpLCE1 in the prepared membrane fractions of transfected cells.  
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 Fatty acyl-CoA elongation assay. Initial activity of the elongation of fatty acyl-

CoA by CpLCE1 was determined using variations of a mixture of previously described 

methods (104, 113, 155, 185). To optimize reaction conditions a 100 μl reaction 

containing 50 mM potassium phosphate, pH 6.5, 5 μM rotenone, 20 μM fatty acid-free 

BSA, 1 mM MgCl2, 0.5 mM NADH, 0.5 mM NADPH, 60 μM palmitoyl-CoA, and 200 

μM [2-14C]malonyl-CoA was heated at 37°C for 2 min. The reaction was started with 

the addition of 30 μg of protein from CpLCE1 or pcDNA3.1/His C transfected cells, and 

allowed to proceed for 30 min at 37°C before the addition of 100 μl of 5N KOH in 10% 

methanol. The samples were then saponified at 65 °C for 1 h and cooled to room 

temperature when 100 μl each of 5N HCl and ethanol were added. Radiolabeled 

incorporated fatty acids were then extracted from the mixture using 1 ml of hexane 

followed by vigorous mixing and centrifugation at 10,000 g for 2 min. The upper 

organic phase was removed, while the lower aqueous phase was washed twice more with 

1 ml of hexane. The hexane extracts were pooled and dried under vacuum, then 5 ml of 

scintillation fluid was added and the radioactivity was counted in a Beckman Coulter LS 

6000SE counter. Activity was determined by subtracting the values obtained for the 

pcDNA3.1/HisC transfected samples from the values obtained for the CpLCE1 

transfected samples. Reactions containing no membrane protein were also used as 

controls to determine additional background levels.  

Dependence on NADH or NADPH was determined using the same assay, and the 

optimum pH for this enzyme was determined using the above reaction while including 

50 mM potassium phosphate buffer at pH 5.0, 5.5, 6.0, and 6.5, and 50 mM Tris buffer 
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at pH 7.0, 7.5, 8.0, and 8.5. The kinetics for CpLCE1 were similarly assayed using 

varying amounts of palmitoyl-CoA (0.98 – 250 μM), malonyl-CoA (0.98 – 500 μM), 

and NADPH (3.9 μM – 1 mM).  

Substrate preference. Once optimal reaction parameters were known, the 

substrate preference for CpLCE1 was determined. The fatty acyl-CoA elongation assay 

used was similar to that described above except it lacked NADH (included 500 μM 

NADPH) and included 125 μM of various saturated (C2:0 to C24:0) and unsaturated 

fatty acyl-CoAs (C18:1, C18:3, C20:4, and C22:6), and 250 µM [2-14C]malonyl-CoA. 

Reactions consisted of protein fractions from either CpLCE1 or pcDNA3.1/HisC 

transfected samples. Activity was determined by subtracting values obtained for the 

pcDNA3.1/HisC transfected samples from the values obtained for the CpLCE1 

transfected samples. Additionally, substrate preference data were used to test the 

inhibitory effect of cerulenin, a known inhibitor of both type I and II β-ketoacyl-CoA 

synthase, on CpLCE1 using the same reaction conditions as above while including 0.2 - 

200 μM cerulenin.  

TLC analysis of elongated fatty acids. The fatty acid elongation reaction was 

assayed as above using 30 μg protein from either CpLCE1 or pcDNA3.1/HisC 

transfected cells, 250 μM nonradiolabeled malonyl-CoA, and 125 μM of either 

myristoyl-CoA or palmitoyl-CoA (C14:0-CoA and C16:0-CoA, respectively). Reactions 

were terminated and fatty acids were extracted as above. Hexane fractions containing the 

elongated fatty acids were dried by evaporation under nitrogen before the addition of 3 

ml methanol/toluene/sulfuric acid (88:10:2 v/v) to convert the extracted fatty acids into 
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their fatty acid methyl ester (FAME) derivatives (56, 155). The suspension was 

incubated for 1 h at 80 °C, allowed to cool to room temperature, and FAMEs were 

extracted two times with 2 ml hexane. The hexane fractions were once again allowed to 

evaporate to dryness under nitrogen, and were resuspended in 40 µl hexane for TLC 

analysis. Reverse phase LKC18 silica gel 60Å TLC plates (Whatman, Inc.) were washed 

with chloroform/methanol (1:1) followed by incubation at 110 °C for 1 h and cooled to 

room temperature before samples were spotted. The elongated products were separated 

using methanol:chloroform:water (15:5:1) using authentic FAME standards (Supelco) 

(126).  

HPLC analysis of elongated fatty acids. The elongation assay and FAME 

preparation used for HPLC analysis were replicas of that used for TLC analysis except 

that the FAMEs were suspended in 200 μl 65% acetonitrile in water instead of 40 μl 

hexane. FAME derivatives of the elongation products were separated by reverse phase 

HPLC using a Shimadzu Prominance HPLC and a Zorbak SB-C18 semi-preparative 

column (5 μm, 9.4 × 250 mm, Agilent Technologies). Injection volumes were 100 μl and 

elution was performed using a binary gradient of 95% acetonitrile 5% water at a flow 

rate of 1.0 ml/min. The absorbance at 205 nm (A250) was monitored using a SPD-M20A 

Diode Array Detector and the identity of the eluted products were compared to the 

retention times of known FAME standards (Supelco) originally suspended in 65% 

acetonitrile.  
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RESULTS 

Sequence comparison of elongases related to CpLCE1. Contrary to many 

other eukaryotic organisms, CpLCE1 is the only elongase homologue that can be 

identified from the C. parvum genome. This intronless gene encodes 324 amino acids 

that share several characteristics with related elongase homologues. Figure 3.2 displays 

the CpLCE1 amino acid sequence aligned with those of selected mammalian and 

protozoan elongases. The Toxoplasma gondii elongase sequence had the highest 

similarity with CpLCE1 (45% identical) while the six others were between 31% and 

38% identical. The alignment shows that all the sequences share the characteristic 

FLHxxHH motif that is conserved among elongases and even fatty acid desaturases. 

Additionally, the KxxExxDT, NxxxHxxMYxYY, and TxxQxxQ motifs are present 

which are also characteristic among elongases and appear to be highly conserved 

especially among the polyunsaturated fatty acid (PUFA) elongases (109). Structural 

analysis of CpLCE1 aligned with these related elongases revealed several hydrophobic 

domains. Analysis with the TMAP algorithm (131) predicts six transmembrane domains 

which are clearly indicated. This is typical of elongases and confirms the suggestion that 

CpLCE1 is anchored to a membrane.  

Phylogenetic relationships among apicomplexan and other eukaryotic 

elongases. Thousands of elongase homologues were identified from BLAST searching 

the GenBank protein databases. Because our goal was to obtain information about the 

evolution of apicomplexan elongases rather than a global approach to analyze the  
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FIG. 3.2. Amino acid sequence comparison of CpLCE1 and representative eukaryotic elongase
enzymes. CpLCE1 (AAO34582) is aligned with the sequences of Toxoplasma gondii (20.m00392), 
Plasmodium falciparum (XP_001351023), Trypanosoma cruzi (XP_813971), Leishmania major 
(CAJ03003), Homo sapiens (NP_076995), Mus musculus (NP_569717), and Gallus gallus 
(NP_001026710). Amino acids with at least 50% conservation between CpLCE1 and other sequences 
are shaded. The four highly conserved domains are indicated below the sequence, and the six 
transmembrane domains are labeled I-VI. (*) indicate the epitope used for antibody production. 
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elongase protein family, we constructed phylogenetic trees from a total of 75 taxa from a 

variety of other organisms. Applying a Bayesian analysis to the phylogeny resulted in 

distinct groups organized both by the type of elongases and to a minimal extent the 

taxonomy (Fig. 3.3). Although the apicomplexan elongases do not form a monophyletic 

clade, all of the protozoans, including both apicomplexans and the kinetoplastids 

(Trypanosoma and Leishmania) remain clustered together. Similar to previous 

phylogenetic reconstructions (101) the putative kinetoplastid elongases group together in 

a clade exclusive to this group of parasites. With respect to putative saturated fatty acid 

elongases among the apicomplexans, they form two clades, of which both appear to be 

closely related to the ELO-6 family of saturated fatty acid elongases.  

CpLCE1 is differentially expressed and is localized to the PVM. To 

determine the CpLCE1 expression pattern in the complex parasite life cycle, real-time 

qRT-PCR and immunofluorescence detection were performed. Real-time qRT-PCR 

analysis indicated that the CpLCE1 gene is differentially expressed in the C. parvum life 

cycle stages (Fig. 3.4). Relative transcript levels also increased at 36 h post-infection 

(PI), and to a minor extent at 60 h PI, but were detectable at all time points. The free 

sporozoites (a motile invasive stage of the parasite) exhibited a much higher level of 

CpLCE1 transcripts compared to all other life cycle stages. The presence of CpLCE1 in 

protein extracts from sporozoites was clearly displayed by Western blot analysis using 

polyclonal rat anti-CpLCE1 antibodies (Fig. 3.4B). 

Immunofluorescence microscopy indicates that CpCLE1 is present in free 

sporozoites, and localizes to the sporozoite membrane (Fig. 3.5A). Furthermore, 
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Immunofluorescence microscopy indicates that CpCLE1 is present in free 

sporozoites, and localizes to the sporozoite membrane (Fig. 3.5A). Furthermore, 

CpLCE1 localizes to the parasitophorous vacuolar membrane (PVM) during intracellular 

development (Fig. 3.5B and 3.5C). This was determined by two separate co-localization 

studies. Dual-labeling experiments using a rabbit polyclonal antibody mainly against the 

PVM and the electron-dense feeder organelle co-localized CpLCE1 and PVM proteins 

(Fig. 3.5B). It has previously been shown that CpACBP1 also co-localizes with the PVM 

proteins (194). An additional dual-labeling experiment using rabbit polyclonal 

antibodies against CpACBP1 co-localized CpLCE1 and CpACBP1 proteins (Fig. 3.5C).  

Combined, CpLCE1 localizes to the PVM but not the merozoites within the meronts.  

Cloning and expression of CpLCE1. Previous attempts in our laboratory to 

express and purify recombinant CpLCE1 in bacteria were unsuccessful, typically 

resulting in the formation of inclusion bodies. However, this is consistent of the elongase 

family of enzymes as they tend to have a membrane bound nature. Therefore, we 

expressed CpLCE1 in mammalian HEK-293T cells for characterization of this enzyme. 

HEK-293T cells were used as they offer several advantages. It is widely accepted that 

this cell line displays a very high level of transfection efficiency. This, in combination 

with using the pcDNA3.1/HisC expression vector allows for high-level non-replicative 

transient expression. Additionally, these cells also contain their own native elongase 

system. Thus, recombinant CpLCE1 acts in conjunction with the native HEK-293T 

elongase system in order to carry out the entire two-carbon fatty acid elongation cycle. 

However, this can sometimes be a disadvantage due to recombinant and native elongase 
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enzymes competing for the same substrate. This often results in a relatively high degree 

of background activity that must be taken into consideration when interpreting data 

obtained from using a heterologous assay system.  

Successful transfection and protein expression using this method were analyzed 

using RT-PCR, Western blot and immunolabeling. Total RNA was isolated from cells 

transfected with either CpLCE1 or pcDNA3.1/HisC (and nontransfected cells as a 

negative control) 48 h after transfection, and vector specific primers were used during 

RT-PCR to confirm positive transfection. Amplicons of the correct size corresponding to 

pcDNA3.1/HisC and CpLCE1 transfected cells were observed (259 bp and 1,195 bp, 

respectively) (Fig. 3.6A).  

Western blot analysis of the membrane fractions using rat polyclonal antibodies 

against CpLCE1 clearly confirm that CpLCE1 is expressed, and indicate that it is 

contained in the purified membrane fractions (Fig. 3.6B). Immunofluorescence 

microscopy indicated that this protein was expressed relative to cells transfected with 

pcDNA3.1/HisC or nontransfected cells (Fig. 3.6C). The fluorescent signal was largely 

increased for the CpLCE1 transfected cells and could be observed using a relatively low 

exposure time (280 ms). At the same exposure there was no observed fluorescent signal 

from pcDNA3.1/HisC transfected or nontransfected cells. Only at an exposure time of 

9.8 s did fluorescence signal begin to appear in these samples (Fig. 3.6C insets) 

indicating that the CpLCE1 transfected cells were indeed expressing the desired protein.  

Determination of enzyme activity. It is imperative that we first clarify the 

elongation assay in order for the results to be appropriately understood. The membrane 
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preparations of HEK-293T cells used in this study contain all four enzymes of the 

elongase system. Thus, in samples that have been transfected with CpLCE1 there are 

two sets of condensing enzymes which are responsible for the incorporation of 14C from 

[2-14C]malonyl-CoA. The products formed during the initial condensation reaction 

(catalyzed by the native elongase and by CpLCE1) then proceed through the subsequent 

three steps of the elongation system (β-ketoacyl-CoA reductase, β-hydroxyacyl-CoA 

dehydratase, enoyl-CoA reductase) to produce a final two-carbon extended product 

(refer to Fig. 3.1 for reaction details). Therefore, there is detectable background activity 

that is present when using this heterologous system and must be distinguished from 

activity produced by recombinant CpLCE1.  

Total fatty acid elongation activity was measured in isolated membrane fractions 

of HEK-293T cells transfected with CpLCE1 and compared with HEK-293T cells 

transfected with the empty vector alone (pcDNA3.1/HisC). Supernatant fractions 

resulting from the membrane purification process were also used as controls. Palmitoyl-

CoA (C16:0-CoA) was initially chosen as the fatty acid substrate for the elongation 

assay, which measured the incorporation of 14C from [2-14C]malonyl-CoA into elongated 

fatty acid products. Total elongation activity was increased in the membrane fractions 

from CpLCE1 transfected cells compared to cells transfected with the empty vector (Fig. 

3.7A). The activity detected in the supernatant fractions of both CpLCE1 and 

pcDNA3.1/HisC transfected cells were not significantly different from each other, but 

were significantly higher than the activity detected in the membrane fractions (Fig. 

3.7A). The activity in the supernatant fractions is expected due to the soluble enzymes  
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 FIG. 3.7. Elongase activity determination and NADPH dependence. (A) The 
final pellet fraction after membrane purification of CpLCE1 transfected cells 
displayed higher elongase activity than that from cells transfected with the empty 
vector. Both NADH and NADPH were used as co-substrates. The high activity 
observed in the soluble fractions likely results from soluble proteins utilizing 
malonyl-CoA and NAD(P)H. (B) Total elongation activity as measured when 
including various combinations of NAD(P)H. As expected, the most significant 
difference among fractions containing CpLCE1 and control fractions was 
observed when using NADPH as the sole co-substrate. Values were obtained by 
subtracting the activity detected using fractions from cells transfected with the 
empty vector. Values are represented as U = pmol/min/mg of total membrane 
protein. In all samples, bars represent the standard error-of-the-mean from 
triplicate reactions. 
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that use malonyl-CoA as a co-substrate such as the soluble FAS enzymes. Thus, in 

agreement with western blot and immunofluorescent analysis (Fig. 3.6B and 3.6C, 

respectively) the CpLCE1 activity is contained in the membrane fractions of cells 

transfected with CpLCE1.  

To further confirm that the observed activity was indeed that of the elongase 

complex, we separately incubated membrane fractions with or without NAD(P)H (Fig. 

3.7B). When NADH was used as a co-substrate activity was detected in both the 

CpLCE1 and pcDNA3.1/HisC transfected samples, however they were not significantly 

different from each other confirming that the subsequent reduction reactions of the 

elongation system do not utilize NADH as a co-substrate. The activity observed here is 

due to partial contribution of other membrane enzymes that make use of NADH. When 

NADPH was used as the sole co-substrate the membrane fractions from the CpLCE1 

transfected cells displayed a significantly greater elongation activity compared to the 

cells transfected with the vector alone. Combined, this data confirms that NADPH is the 

required co-substrate for the elongation system reduction reactions, and that CpLCE1 is 

capable of carrying out the initial reaction of the elongase system.  

 Optimization of CpLCE1 assay and enzyme kinetics. Because palmitoyl-CoA 

could serve as a substrate for CpLCE1, it was used to optimize the conditions of the 

elongation reaction prior to testing additional fatty acid substrates to determine substrate 

specificity. The highest rate of [14C]malonyl-CoA incorporation into elongated fatty acid 

products was observed when the concentration of palmitoyl-CoA was 125 µM (Fig. 

3.8A). Additionally, enzyme kinetics analysis revealed that CpLCE1 displayed typical 



 69

 

 

 

 

 

 

 

 

 

 

 

 FIG. 3.8. Enzyme kinetics of the condensation reaction, and kinetics and pH 
optimum for the overall elongation system. (A) Allosteric kinetics assayed with 
various concentrations of palmitoyl-CoA indicates the presence of positive 
cooperativity in the condensation reaction (Hill coefficient, h = 1.727). The optimum 
palmitoyl-CoA concentration was 125 μM. (B) Allosteric kinetics assayed with 
various concentrations of malonyl-CoA indicates the presence of negative 
cooperativity (h = 0.703) with an optimum concentration of 250 μM. (C) Enzyme 
kinetics assayed with various concentrations of NADPH. As the two reduction steps 
of the elongation system require NADPH, results show that when using palmitoyl-
CoA as a substrate and CpLCE1 as the condensing enzyme, the elongase system 
displays general Michaelis-Menten kinetics. (D) The optimum pH of the condensing 
enzyme is 6.5. Values were obtained by subtracting the activity detected using 
fractions from cells transfected with the empty vector. Values are represented as U = 
pmol/min/mg of total membrane proteins. In all samples, bars represent the standard 
error-of-the-mean from triplicate reactions. 
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Michaelis-Menten kinetics towards palmitoyl-CoA (h = 1, Km = 73.30 µM, Vmax = 67.64 

U [1 U = pmol/min/mg of total membrane protein] (Fig. 3.8A, solid curve). However, 

further analysis indicated that the CpLCE1 kinetics actually fit better to a sigmoidal 

curve (R2 = 0.9707 vs. 0.9577) indicating the presence of positive cooperativity (Fig. 

3.8A, dashed curve labeled with h = 1.727). Under the consideration of cooperativity, 

the values for K50 (equivalent to Km) and Vmax were determined to be 43.76 µM and 

52.74 U, respectively. Kinetics analysis of CpLCE1 towards malonyl-CoA revealed 

similarities to that observed towards palmitoyl-CoA. While the optimal concentration of 

malonyl-CoA was 250 µM, CpLCE1 displayed a slightly better fit to a sigmoidal curve 

(Fig. 3.8B, dashed curve labeled with h = 0.703; R2 = 0.9387). This is a slight negative 

cooperativity with K50 = 15.45 µM and Vmax = 50.97 U as compared to the general 

Michaelis-Menten kinetics (Fig. 3.8B, solid curve labeled with h = 1, Km = 10.88 µM, 

Vmax = 45.63 U; R2 = 0.9265). When using increasing concentrations of NADPH, general 

Michaelis-Menten kinetics were observed (Fig. 3.8C) with  Km = 61.53 µM and Vmax = 

62.19 U, and the optimum concentration of NADPH was 500 µM. The observed 

NADPH kinetics are in respect to the two reduction reactions that occur as a result of 

activity initiated by CpLCE1 – the condensation reaction. Fatty acid elongation activity 

was also determined to be highest at a pH optimum of 6.5 (Fig. 3.8D). 

 CpLCE1 displays the highest activity towards C14:0 and C16:0. Using the 

optimal assay conditions found above, we determined the substrate specificity of 

CpLCE1 using a wide range of fatty acyl-CoAs. Figure 3.9 shows the total fatty acid 

elongation activity in membrane fractions from CpLCE1 transfected HEK-293T cells  
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FIG. 3.9. Substrate specificity of CpLCE1. Saturated fatty acyl-CoAs from C2:0 
to C24:0, and various unsaturated fatty acyl-CoAs were used to determine the 
substrate preference of the condensing enzyme. Values were obtained by 
subtracting the activity detected using fractions from cells transfected with the 
empty vector. Values are represented as U = pmol/min/mg of total membrane 
proteins. In all samples, bars represent the range of values from two sets of 
triplicate reactions. 
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using even carbon saturated fatty acyl-CoAs from C2:0 to C24:0, and the unsaturated (or 

polyunsaturated) fatty acyl-CoAs C18:1, C18:3, C20:4, and C22:6. When compared to 

membrane fractions from pcDNA3.1/HisC transfected cells, the cells expressing 

recombinant CpLCE1 displayed significantly higher elongase activities when assayed 

with the medium to long chain fatty acyl-CoAs C10:0 – C18:0, and the highest with 

C14:0 and C16:0. Relatively little to no activity was detected above background when 

short or very long chain fatty acyl-CoAs were used as substrates. Interestingly, 

arachidonic acid (C20:4) was the only unsaturated fatty acid that displayed a rather 

significant activity above background. This was not expected and is considered to be an 

artifact due to in vitro assay conditions.  

Analysis of elongation products. The two fatty acyl-CoAs shown to display the 

highest elongation activity when used as substrates (myristoyl-CoA and palmitoyl-CoA) 

were used to analyze the elongated products using both TLC and HPLC. Upon 

completion of the reaction the elongation fatty acid products were methylated to their 

methyl ester derivatives for comparison with fatty acid methyl ester standards. When 

elongation products of membrane fractions from CpLCE1 transfected cells were 

analyzed using reverse phase TLC the major products were palmitic acid (C16:0) and 

stearic acid (C18:0) when incubated with myristoyl-CoA (C14:0) or palmitoyl-CoA 

(C16:0), respectively (Fig. 3.10A). As a background control, membrane fractions from 

cells transfected with pcDNA3.1/HisC were also analyzed using TLC. The major 

product of the control when using palmitoyl-CoA as a substrate was stearic 

acid.However, when incubated with myristoyl-CoA there were two products detected on  
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FIG. 3.10. Fatty acid elongation product analysis using TLC and HPLC. (A) 
The products of fatty acid elongation were converted to their methyl ester 
derivatives for analysis using reverse-phase TLC. Both myristoyl-CoA and 
palmitoyl-CoA (C14:0 and C16:0, respectively) were used as substrates 

 

 
based on the substrate preference data. (B) HPLC analysis of elongation 
products converted to methyl esters is comparable to that observed using 
TLC. The data shows that only one round of elongation occurs regardless of 
the fatty acyl substrate used. Retention times of all samples were compared 
to authentic fatty acid methyl standards. HPLC peaks were detected at an 
absorbance of 250 nm (A250). 
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TLC: palmitic acid and stearic acid indicating that membrane fractions not transfected 

with CpLCE1 were capable of additional rounds of elongation. In either case, the 

production of a two-carbon elongated product by the CpLCE1 transfected cells resulted 

in a significantly larger quantity than that of the pcDNA3.1/HisC transfected samples. 

To ensure that only one round of elongation was occurring in membrane 

fractions transfected with CpLCE1, the elongation products were also analyzed using 

HPLC. If additional rounds of elongation were indeed occurring, then the higher 

sensitivity HPLC analysis would detect multiple products. Similar to analysis with TLC 

the elongation reaction, fatty acid methyl esters were derived from the elongated 

products for comparison to methyl ester standards. Analysis by HPLC agreed with TLC 

analysis further indicating only one round of elongation occurs in the CpLCE1 

transfected samples. When incubated with myristoyl-CoA as a substrate, palmitic acid 

was detected (Fig. 3.10B) and when palmitoyl-CoA was used as a substrate the addition 

of two carbons resulting in stearic acid was detected (Fig. 3.10C). In both instances, the 

substrate was also detected indicating that not all substrate was converted into an 

elongated product.  

Inhibition of elongation by cerulenin. Cerulenin is a common eukaryotic and 

bacterial β-ketoacyl-[ACP] synthase inhibitor. Initially, we tested its inhibitory effects 

using palmitoyl-CoA as the substrate, in which cerulenin displayed a maximum 

inhibition of 20.5% at a concentration of 200 µM (Fig. 3.11, solid line). Because 

differential inhibition of cerulenin has been shown to occur depending on fatty acid  

chain length (117) we also tested inhibition when using myristoyl-CoA as a substrate.  
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FIG. 3.11. Inhibitory effect of cerulenin on the activity of CpLCE1. The 
inhibition effects when using both myristoyl-CoA (C14:0) and palmitoyl-CoA 
(C16:0) were assayed. . Values were obtained by subtracting the activity 
detected using fractions from cells transfected with the empty vector. Values are 
represented as total [14C]malonyl-CoA incorporation (pmoles) based on a total of 
30 μg membrane protein. In all samples, bars represent the range of values from 
two sets of triplicate reactions. 
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However, similar to using palmitoyl-CoA as a substrate, cerulenin displayed a maximum 

inhibition of 32.7% at a concentration of 200 µM (Fig. 3.11, dashed line). Thus, 

CpLCE1 appears to be relatively insensitive to cerulenin up to 200 µM when using both 

myristoyl-CoA and palmitoyl-CoA as substrates.  

 

DISCUSSION 

Among the apicomplexans CpLCE1 is the first elongase to be studied, and one of 

very few studied among the parasitic protists. It is interesting that the C. parvum genome 

encodes only one elongase, whereas both T. gondii and P. falciparum contain three. 

However, differences in fatty acid metabolism (and lipid metabolism in general) among 

these organisms do exist. Among the apicomplexans that possess a plastid and associated 

type II FAS, P. falciparum lacks a type I FAS or PKS, but T. gondii and E. tenella both 

possess a type I FAS and PKS (196). Similarly, C. parvum contains only a type I FAS 

and PKS (53, 198, 199, 201). Thus, it is not a surprise that C. parvum, with its very 

streamlined metabolism, contains only one elongase.  

Generally, fatty acid elongases are divided into two groups: (i) those involved or 

suspected to be involved in the elongation of saturated and monounsaturated fatty acids, 

and (ii) those that are responsible for elongation of PUFAs (75). Those of the first group 

are typically of the ELO1, 3 and 6 families, whereas the latter consists of the ELO2, 4 

and 5 families. Molecular analyses of CpLCE1 indicated that it contains structural 

characteristics possessed by the elongase family including four highly conserved motifs 

and several predicted transmembrane domains. Furthermore, phylogenetic 
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reconstructions indicate that CpLCE1 is contained within the ELO6 family. This family 

is suggested to be involved in the elongation of C12:0 to C16:0 saturated fatty acid 

substrates to C18:0 products and do not have the ability to elongate beyond C18:0 (75). 

The majority of the kinetoplastid elongases analyzed form a clade with the ELO6-like 

apicomplexan elongases suggesting that all of these originated from a common ancestor. 

Additionally, CpLCE1 appears to be more distant from unsaturated elongase families. 

Real-time qRT-PCR indicated that CpLCE1 transcript levels are expressed in all 

stages of the C. parvum life cycle, but are highest in the sporozoites followed by stages 

at 36 h and 60 h PI. In addition to membrane localization in sporozoites, immuno-

staining has primarily localized CpLCE1 to the PVM similar to both CpACBP1 and the 

C. parvum oxysterol binding protein (OSBP)-related protein 1 (CpORP1) (194, 195). 

Cryptosporidium parvum is an intracellular parasite, but it is considered 

extracytoplasmic because of being covered by a PVM on the host intestinal epithelial 

cells (29). Although association with the feeder organelle is still undetermined, it is 

interesting that CpLCE1 localizes to the PVM along with CpACBP1 and CpORP1 

which could possibly be involved in lipid uptake across the PVM (194, 195). Whether 

CpLCE1 acts in conjunction with these two in either lipid uptake or formation of the 

PVM is not understood at this time. Regardless, PVM proteins may serve as prime 

chemotherapeutic and/or immunotherapeutic targets in this parasite for which fully 

effective treatment is currently unavailable.  

The extreme hydrophobicity of elongase proteins has caused many difficulties in 

the solubilization and purification of these membrane-bound condensing enzymes, and 
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has greatly hindered the biochemical characterization of their defined roles in fatty acid 

elongation. Nearly all enzymatic studies of these elongase enzymes have been carried 

out using membrane fractions. Thus, we expressed CpLCE1 in mammalian HEK-293T 

cells in order to characterize the biochemical features of this enzyme.  

Substrate preference revealed that CpLCE1 displays the highest activity when 

myristoyl-CoA and palmitoyl-CoA (C14:0 and C16:0, respectively) are used as 

substrates. This is in agreement with phylogenetic reconstructions that grouped CpLCE1 

with the ELO6 family of elongases which generally prefer C12:0 to C16:0 as substrates. 

It is interesting that CpLCE1 showed little to no preference for all other saturated and 

unsaturated substrates except for arachidonyl-CoA (C20:4). It is unknown if this is due 

to in vitro effects, or whether CpLCE1 would potentially have the ability to elongate 

C20:4 in vivo. Although total lipid analysis studies in C. parvum is lacking, one report 

suggests that C20:4 comprises only 0.7% of the total neutral fatty acid content in C. 

parvum, and 2.3% and 1.2% in the total phospholipid and phosphatidylcholine content, 

respectively (112), indicating that that C20:4 is present only in small amounts in C. 

parvum. However, the C22 product of elongation was not detected. No other enzyme 

involved in C. parvum fatty acid metabolism has displayed preference for an unsaturated 

substrate, which leads us to believe that elongation of arachidonyl-CoA is an assay 

artifact.  

Analyses of the CpLCE1 catalyzed elongation products indicate that only one 

round of elongation occurs, thus extending the length of each substrate by only two 

carbons. The factors that determine exactly how many rounds of elongation occur are 
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unknown, and could rely on the needs of the individual cell or organism at the time in 

which elongation occurs. Our substrate preference data indicated that both myristoyl-

CoA and palmitoyl-CoA are capable of serving as substrates. However, it is intriguing 

that the longest chain product observed when using C14:0 as a substrate was C16:0. It is 

not clear why the elongated C16:0 does not serve as a substrate itself and undergo 

another round of elongation. This could be an artifact due to heterologous assay 

conditions, however other elongase enzymes expressed and assayed using similar 

methods clearly demonstrate as many as three rounds of elongation (114).  

Cerulenin was shown to have a minimal effect in inhibition of CpLCE1 with a 

maximal inhibition of 20.5% and 32.7% when using the substrates C16:0-CoA and 

C14:0-CoA, respectively. This is interesting due to the ability of cerulenin to efficiently 

inhibit both type I and type II β-ketoacyl-CoA synthases, which was the case for the 

control fractions transfected with pcDNA3.1/HisC. At low concentrations of cerulenin 

(~2.1 μM) activity was inhibited by 80% and remained constant over the tested 

concentrations (data not shown). The observed activity of cerulenin on CpLCE1 could 

be due to several of factors: (i) the alkyl chain of cerulenin is too long to bind to the 

active site of the enzyme (63), or (ii) the active site serving as the target of cerulenin 

could be somewhat inaccessible due to the extreme hydrophobicity of the enzyme (193). 

Elongase enzymes of other types and different families from various organisms have 

also shown differential inhibition by cerulenin. For example, the plant type elongases 

appear to be fairly resistant (50, 126), whereas ELO2 and ELO3 but not ELO1 from 

Trypanosoma is susceptible (63). Further analyses on the ELO-6 family of enzymes as 
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well as elongase enzymes purified to homogeneity are needed in order to fully and 

accurately determine the effects of cerulenin.  
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CHAPTER IV 

THE PURSUIT OF THE Cryptosporidium parvum  FATTY ACYL-CoA  

BINDING PROTEIN (ACBP) AS A DRUG TARGET 

 

OVERVIEW 

 Cryptosporidium is well known to be a troublesome water-borne pathogen for 

immunocompetent and especially immunosuppressed individuals. A countless number of 

outbreaks caused by both C. parvum and C. hominis occur each year around the world. 

Transmission is typically via contaminated water supplies and/or recreational water by 

the environmentally and chlorine resistant oocysts. The vulnerability of community 

water supplies to this parasite, as well as increased biodefense concerns have escalated 

Cryptosporidium to one of the water-borne category B pathogens in the NIH and CDC 

biodefense research programs.  

 Despite numerous investigations, there is currently no real effective drug to treat 

cryptosporidiosis. Drug therapy would no doubt benefit several groups (106). Severe 

cases often requiring hospitalization among immunocompetent individuals usually occur 

in children and the elderly. Transplant recipients and those undergoing cancer 

chemotherapy are often immunocompromised. These patients usually have to 

temporarily halt their treatment regimens in order to combat cryptosporidiosis. Anti-

cryptosporidials would certainly be beneficial to these patients, as well as to those who 

are HIV-positive and are at great risk for a devastating infection with Cryptosporidium.  
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 Several suggestions have been postulated as to why this apicomplexan appears to 

have a natural resistance to drug therapy (106). One such factor is the apparent lack of or 

difference in drug targets at both molecular and structural levels, namely differences in 

biochemical pathways. Additionally, if drugs actually reach the parasite, they may be 

readily transported out via transport proteins. Perhaps the most widely discussed factor is 

the parasites’ unique intracellular but extracytoplasmic location within the host cell (72, 

106, 178). Upon initiation of infection, the infective sporozoite is enveloped by the host 

cell apical membrane forming a space between the parasite and host cell membrane 

known as the parasitophorous vacuole (PV). Because parasite basal membranes fuse 

with the host cell membrane, the PV extends only over the apical end and its membrane 

covering is termed the parasitophorous vacuolar membrane (PVM). Although it is 

unclear at this time, preliminary data indicate that the basal membranes modulate the 

transport of some drugs and do not allow drugs that enter the cytoplasm of the host cell 

to enter the parasite (59, 106). This appears to be the case for both geneticin, and the 

clinically relevant drug paromomycin as apical but not basolateral exposure of these 

drugs led to parasite inhibition (59).  

 We hypothesize that parasite proteins located in the PVM may serve as valuable 

drug targets. One such protein is the C. parvum acyl-CoA binding protein (CpACBP1). 

Our laboratory has previously characterized this unique protein both at the molecular 

and biochemical levels (194). This family of proteins is critical to lipid metabolism as 

their main function is as an intracellular acyl-CoA transporter and pool former (58, 88, 

157). Animals, plants, protists and several pathogenic bacteria have been found to 
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contain this highly conserved protein (20). Although they are typically small (~10-kDa) 

cytosolic molecules, there have been larger (≥ 55-kDa) ACBPs found in animals and 

plants. The unique CpACBP1 is a long-type ACBP containing an N-terminal ACBP 

domain and a C-terminal ankyrin-repeat sequence. Although it differs from the typical 

cytosolic ACBPs, it is similar to the membrane bound ACBPs from Arabidopsis (31, 

94). Our previous analysis indicates that CpACBP1 is also a membrane protein 

associated with the PVM probably via interaction of its ankyrin repeats with other 

proteins in the PVM. It is unlikely that CpACBP1 is involved in the early stages of PVM 

formation as it is not expressed during initial stages of infection, but it is widely known 

that C. parvum must import fatty acids from the host cell or the intestinal lumen. 

Although C. parvum is incapable of de novo fatty acid synthesis, it is capable of 

elongating and utilizing long-chain fatty acids (52, 53, 196, 199). Thus, in cooperation 

with an acyl-CoA synthetase, it is possible that CpACBP1 serves as a fatty acyl-CoA 

scavenger to facilitate fatty acid uptake at the PVM.  

 Here, we report improved enzyme kinetics and substrate preference for 

CpACBP1 through the use of a fluorescence-based binding assay. Additionally, we 

identified several compounds that inhibit the binding of fatty acyl-CoA to CpACBP1. 

This is the first report of its kind that we are aware of. To identify these inhibitors, we 

screened a library of 1,040 compounds, most of which are approved for use in humans 

for various diseases and/or ailments.  
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MATERIALS AND METHODS 

Cloning and expression of CpACBP1. We have previously cloned and 

expressed CpACBP1 (194). Briefly, the entire ORF of CpACBP1 was amplified from C. 

parvum (Iowa Strain) genomic DNA (gDNA) and cloned into the pMAL-c2x expression 

vector (New England Biolabs). After selecting and sequencing PCR-positive colonies, 

the constructs were transformed into chemically competent Rosetta 2 Escherichia coli 

cells (Novagen) and plated onto solid Luria-Bertani (LB) medium containing ampicillin 

(50 μg/ml), chloramphenicol (34 μg/ml), and glucose (2 mM). After incubation 

overnight at 37 °C, a single colony of transformed bacteria was first inoculated into 25 

ml LB media containing the appropriate antibiotics and glucose, and grown overnight at 

30 °C in a shaking incubator. The overnight cultures were diluted 1:10 with fresh 

medium and allowed to grow for approximately 5 h at 30 °C until the OD600 reached ~ 

0.5. At this time, isopropyl-1-thio-β-D galactopyranoside (IPTG) was added to a final 

concentration of 0.5 mM to induce protein expression, and cells were grown an 

additional 5 h at 30 °C. The bacteria were collected by centrifugation, resuspended in 50 

ml TNE buffer (20 mM Tris.HCl pH 7.4, 200 mM NaCl, 1mM EDTA) containing a 

protease inhibitor cocktail optimized for bacteria (Sigma), and subjected to mild 

sonication on ice. Insoluble debris was removed by centrifugation. The MBP-CpACBP1 

fusion protein was purified using amylose resin-based affinity chromatography 

according the manufacturer’s standard protocol (New England Biolabs). Purified 

proteins were dialyzed extensively against Dulbecco’s PBS (Sigma), and stored at -80 

ºC. 
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Fluorometry. All reactions were set up in 96-well white plates that offer a high 

signal reflectance and reduced background fluorescence (Thermoelectron), and all 

fluorescence measurements were taken using a Fluoroskan Ascent fluorometer 

(Thermoelectron, Inc.). The fluorometer program was set to maintain a constant 

temperature of 25 ºC and to shake the samples for 20 s at 120 rpm (1 mm diameter 

rotation) prior to fluorescence measurement. Fluorescence was measured using a set of 

filters (excitation – 544/7.5 nm; emission – 590/7 nm) sufficient for 16-NBD-C16:0-

CoA (N-[(7-nitro-2-1,3-benzoxadiazol-4-yl)-methyl]amino palmitoyl Coenzyme A; 

Avanti Polar Lipids) and was set at a 20 – 60 ms integration time, normal beam. 

Measurements were based on the increase in fluorescence observed with binding of 

substrate to the enzyme. The average of 3 – 5 scans was taken for each measurement, 

and each experiment was replicated three times.  

Enzyme kinetics and substrate preference. Previous characterization of 

CpACBP1 by our lab was carried out using a Lipidex 1000 assay (136, 148, 194). 

Because our ultimate goal in this study involved fluorescence measurements using NBD 

labeled palmitoyl-CoA as a substrate, we wanted to determine a relative comparison of 

data between the two methods. First, the pH of the reaction was optimized using PBS at 

pH 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5. In addition to PBS, reaction components consisted 

of 0.1 µM MBP-CpACBP1 and 0.25 µM NBD-C16:0-CoA in a volume of 100 µl. 

Enzyme kinetics assays were performed using 0.1 µM MBP-CpACBP1, NBD-C16:0-

CoA (16 nM – 1 µM), and PBS pH 7.5 to a final volume of 100 µl. We also employed a 

susbtrate competition assay to determine substrate specificity using this assay set-up. 
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Assays included 0.1 µM MBP-CpACBP1, 0.25 uM NBD-C16:0-CoA, 0.25 uM 

unlabeled saturated (C2:0 – C26:0) or unsaturated (C18:1, C18:3, C20:4, and C22:6) 

fatty acyl-CoAs, and PBS pH 7.5 in a final volume of 100 µl. In addition we also 

assayed the binding of palmitic acid (C16:0) to CpACBP1. For each assay, the enzyme 

was the final reaction component added and reactions incubated at 25 ºC for 5 min to 

assure maximum binding before proceeding with fluorescence measurements. 

 Screening of compound library against CpACBP1. We were graciously given 

access to a drug library consisting of 1,040 compounds by Friedhelm Schroeder (Texas 

A&M University). This library was purchased from Microsource Discovery Systems as 

the National Institutes of Health and Juvenile Diabetes Research Foundation 

(NIH/JDRF) custom collection. Our goal was to test the compounds in this library on 

their effect of inhibiting binding of NBD-C16:0-CoA to CpACBP1. Each compound was 

provided dissolved in DMSO at a concentration of 10 mM, and was diluted to 10 µM in 

PBS pH 7.5 prior to the assay. Thus, the final concentration of DMSO in the assay was 

0.0025%. 

We first performed an initial screen of all compounds in order to determine 

which displayed a ≥ 50% inhibition of binding. These assays included 0.1 µM MBP-

CpACBP1, 0.25 µM NBD-C16:0-CoA, 0.25 µM library compound, and PBS pH 7.5 in a 

final volume of 100 µl. As previously, the enzyme was the final reaction component 

added and reactions were incubated at 25 ºC for 5 min before proceeding with 

fluorescence measurements. Additionally, the absorption spectrum of selected 

compounds was obtained using a Multiskan Spectrum spectrophotometer 



 87

(Thermoelectron). Those compounds that exhibited an absorption spectrum in the range 

of 580 – 600 nm were excluded from further assays. 

 After determining which compounds displayed a ≥ 50% inhibition of binding of 

NBD-C16:0-CoA to MBP-CpACBP1, we performed inhibition kinetics measurements. 

Kinetics assays included 0.1 µM MBP-CpACBP1, 0.25 µM NBD-C16:0-CoA, 20 nm – 

2 µM library compound, and PBS pH 7.5 to a final volume of 100 µl. After a 5 minute 

incubation at 25 ºC, fluorescence measurements were taken.  

 

RESULTS 

 Determination of enzyme activity. Binding of fatty acyl-CoA to recombinant 

CpACBP1 was determined using a fluorescence-based assay. Based on prior data from 

our laboratory using the Lipidex 1000 assay, CpACBP1 displayed the highest binding 

affinity for palmitoyl-CoA (C16:0-CoA) (194). Partially due to this result, and in 

addition to limited fluorescent fatty acyl-CoA analogues, we chose to use NBD labeled 

palmitoyl-CoA as our substrate. When NBD is in a non-polar environment, it displays 

minimal fluorescence. However, when present in a polar environment, such as the 

binding pocket of an enzyme, the fluorescence signal produced greatly increases.  

 We first tested our assay to ensure that this fluorescent palmitoyl-CoA analogue 

was indeed able to bind to CpACBP1. Because we expressed CpACBP1 as a MBP-

fusion protein, we also tested the interaction between MBP and NBD-C16:0-CoA. 

Overall results display that the fluorescence signal obtained when using MBP only as a 

control was virtually null, whereas that of the CpACBP1 fusion protein was much 
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greater affirming the basis of our assay (Fig. 4.1A). Additionally, we optimized the assay 

with respect to pH of the reaction. We found that binding affinity is highest with a basic 

pH, and was the highest at a pH of 7.5 (Fig. 4.1B).  

 Enzyme kinetics. Previous data also indicated that CpACBP1 kinetics when 

using palmitoyl-CoA resulted in a Kd value of 405 nM, a value that is comparable to 

other ACBPs when determined using the same assay (137, 194). We also determined 

enzyme kinetics using the fluorescence-based assay for three reasons: first, the Lipidex 

1000 assay reflects competitive binding between ACBP and Lipidex 1000 rather than the 

true acyl-CoA binding affinity (137, 194); next, other assays such as fluorescence or 

dialyser-based assays typically give much better Kd values and are a better 

representation of true binding affinity (27, 54, 111, 182, 184); and finally to compute a 

Kd value needed to calculate IC50 values during enzyme inhibition studies. Our kinetics 

measurements revealed a Kd value of 171.2 nM (Fig. 4.2). Data are presented as the 

mean and standard error of triplicate experiments each measured three times. Controls 

included reactions with only MBP or NBD-C16:0-CoA, or both to subtract background 

fluorescence. 

Substrate preference. Various unlabeled fatty acyl-CoAs (0.25 uM) were used 

in competition with an equimolar concentration of NBD-C16:0-CoA to determine the 

binding preference of CpACBP1. Results show that CpACBP1 prefer short-to-long-

chain fatty acyl-CoAs (C4:0 – C16:0) with the highest (and similar) affinity (Fig. 4.3). 

Although binding affinity was decreased for all other saturated acyl-CoA esters tested 

(up to C26:0), there was no apparent binding to unsaturated acyl-CoA  
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A 

B 

FIG. 4.1. Enzyme activity and pH optimization of 
the binding of C16:0-CoA to CpACBP1. (A) 
Specific and non-specific binding of NBD-C16:0-
CoA (0.25 µM) by MBP-fused CpACBP1 (0.1 µM) 
and the MBP tag (0.1 µM) as determined by a 
fluorescent-based assay. (B) The optimum pH for 
the highest binding affinity was 7.5. Values were 
obtained by subtracting the activity detected using 
reactions containing only MBP or NBD-C16:0-CoA, 
or both. In all samples, bars represent the standard-
error-of-the-mean from triplicate experiments. (a.u.) 
= arbitrary units. 
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FIG. 4.2. Binding kinetics of recombinant CpACBP1 with NBD-
C16:0-CoA as determined from fluorescence detection. Bars 
represent the standard-error-of-the-mean from triplicate experiments. 
(a.u.) = arbitrary units. 
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FIG. 4.3. Substrate specificity of CpACBP1. Saturated fatty acyl-CoAs from 
C2:0 to C26:0, and various unsaturated fatty acyl-CoAs were used to 
determine the substrate preference of CpACBP1 using a competition assay. 
Additionally, three concentrations of C16:0 fatty acid was used in 
competition with NBD-C16:0-CoA to determine whether CpACBP1 bound 
to fatty acids. Values are represented as the percent activity of CpACBP1 as 
determined by the amount of bound NBD-C16:0-CoA. Bars represent the 
standard-error-of-the-mean from triplicate experiments. 
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esters. Similarly, no binding affinity to palmitic acid at concentrations of 0.1, 0.25, and 

1.0 µM which is consistent with the ACBP protein family. Substrate preference data 

using the Lipidex 1000 assay were similar, except CpACBP1 was unable to bind acyl-

CoA esters with acyl chains of 20 carbons or longer (194). This observation is likely due 

to binding competition between ACBP and Lipidex 1000 during the extraction step of 

the assay (137, 194). Data are presented as the mean and standard error of triplicate 

experiments each measured three times. Controls included reactions with only MBP or 

NBD-C16:0-CoA (or C16:0 fatty acid), or both to subtract background fluorescence. 

Elucidation of CpACBP1 inhibitors. The ultimate goal of this study was to 

discover compounds that inhibit the binding properties of CpACBP1. The NIH/JDRF 

compound library contains 1,040 compounds of which most are approved for use in 

humans, and all have known bioactivities. Of the 1,040 compounds initially screened, 

we found that 37 (3.56%) displayed ≥ 50% inhibition. These 37 compounds were then 

examined to ensure that they did not have properties that interfered with our assay. Of 

these, nine displayed absorption spectra in the 580 – 600 nm range, thus likely serving as 

fluorescent quenchers in our assay. Therefore, we ended with 28/1040 (2.69%) 

compounds that displayed 50% or greater inhibition in the binding of NBD-C16:0-CoA 

to CpACBP1. Table 4.1 displays these 28 compounds along with their mean binding 

inhibitory effect [mean (± standard error)]. Additionally, we have listed  



 93

TABLE 4.1. Compounds that were shown to inhibit the binding affinity of CpACBP1 by ≥ 50%. 

 

Compounda 
% ACBP 
Inhibition 

(S.E.)b 

IC50 
(µM)c 

Ki 
(µM)d Bioactivitye 

1S,2R-Phenylpro-
panolamine HCl 51.22 (2.19) 0.202 0.082 Decongestant, Anorexic 

Acetazolamide 49.89 (3.20) 0.018 0.007 Carbonic Anhydrase Inhibitor, 
Diuretic, Antiglaucoma 

Bithionol 59.44 (0.68) 0.117 0.048 Anthelmintic, Antiseptic 
Broxyquinoline 72.18 (7.82) 0.132 0.054 Antiinfectant, Disinfectant 
Chlorpromazine 58.00 (2.04) 0.144 0.059 Antiemetic, Antipsychotic 

Cloxacillin Sodium 55.24 (12.9) 0.123 0.05 Antibacterial 
Cloxyquin 63.86 (3.11) 0.097 0.039 Antibacterial, Antifungal 

Curcumin 56.32 (0.46) 0.216 0.088 
Antiedemic, Antiinflammatory, 

Anti-bacterial, Antifungal, 
Lipo/cyclooxygenase Inhibitor 

Gambogic Acid 50.62 (2.98) 0.207 0.084 Antiinflammatory, Cytotoxic, 
Inhibits HeLa Cells In Vitro 

Homatropine 
Methylbromide 59.23 (18.2) 0.811 0.33 Anticholinergic (Opthalmic) 

Hydralazine HCl 62.85 (11.1) 0.163 0.066 Antihypertensive 
Hydrocortisone 

Acetate 49.17 (9.95) 0.362 0.147 Glucocorticoid, Antiinflammatory 

Isoxicam 57.18 (12.6) 0.176 0.072 Antiinflammatory 
Meclocycline 
Sulfosalicylate 56.75 (2.13) 0.153 0.062 Antibacterial 

Mitoxanthrone HCl 50.96 (8.34) 0.128 0.052 Antineoplastic 
Oxacillin Sodium 50.30 (1.63) 0.272 0.111 Antibacterial 
Phenazopyridine 

HCl 67.24 (1.21) 0.144 0.059 Analgesic 

Phenelzine Sulfate 51.69 (5.95) 0.199 0.081 Antidepressant 
Phenothrin 73.87 (2.84) 0.14 0.057 Ectoparasiticide 

Phenytoin Sodium 64.40 (5.55) 0.327 0.133 Anticonvulsant, Antieleptic 
Pregnenolone 53.35 (6.29) 0.259 0.105 Glucocortcoid, Antiinflammatory

Pristimerin 53.52 (4.64) 0.168 0.068 Antineoplastic, Antiinflammatory

Quinalizarin 78.95 (3.24) 0.141 0.057 Antiviral, HIV-1 Integrase 
Inhibitor 

Rifampin 58.73 (5.07) 0.227 0.092 Antibacterial 

Rifaximin 56.14 (3.08) 0.269 0.109 Antibacterial, RNA Synthesis 
Inhibitor 

Sodium 
Dehydrocholate 51.05 (7.16) 0.116 0.047 Choleretic 

Streptozosin 49.75 (5.77) 0.304 0.124 Antineoplastic, Alkylating Agent 
Tyrothricin 75.27 (2.24) 0.039 0.016 Topical Antibacterial 

 
 

 (a) Compound names as provided in the NIH/JDRF library. (b) Average percent inhibition (± 
standard error of five experiments) of the binding affinity by each compound (0.25 µM) of 
CpACBP1 (0.1 µM) to NBD-C16:0-CoA (0.25 µM). (c) Values determined from inhibition 
curves (supplementary figure A-2). Defined as the value that displays 50% binding inhibition. (d) 
See results section for formula used to calculate Ki values. (e) The bioactivities as provided in 
the NIH/JDRF library. These activities are not an exhaustive list.  



 94

their respective bioactivities as provided by the producers of the compound library, 

although we realize that some of these compounds may have activities other than those 

listed. Data were derived from triplicate experiments each measured five times. Controls 

included reactions with only MBP or NBD-C16:0-CoA, or both to subtract background 

fluorescence. 

Inhibition kinetics. The top 28 compounds were then assayed to determine their 

enzyme kinetics. Using compound concentrations ranging from 20 nM – 2 µM, we 

analyzed each compound to elicit their respective IC50 values. Table 4.1 also lists these 

values for each compound, and inhibition plots are provided as supplementary material 

(Fig. A-2). From the IC50 values, we derived the Ki constants for each compound using 

the following formula: Ki = IC50 / (1 + (substrate / Kd)), where substrate is the 

concentration of NBD-C16:0-CoA (0.25 µM) and Kd is the value calculated above 

(171.2 nM).  

  

DISCUSSION 

 Drug discovery is a very challenging and difficult endeavor, especially for 

Cryptosporidium for several reasons: first, the biochemistry and cell biology of this 

parasite are not completely understood. With current genomic and molecular techniques, 

we are quickly gaining a better perceptive of these two main barriers to efficacious drug 

development; second, the inability to cryopreserve this parasite which would smooth the 

process of establishing standard isolates in an attempt to provide consistency and lesser 

variability (106); third, positively identifying viable potential drug targets that are 
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essential to replication of the parasite are lacking. Although “best guesses” are made, 

and could prove to be accurate, the ability to propagate Cryptosporidium continuously in 

vitro would open many avenues of therapeutic research; and finally, as with most 

parasitic drug development, the majority of Cryptosporidium drug discovery occurs at 

academic and nonprofit research institutions that are not ideally suited for drug 

discovery. 

 The genome projects for both C. parvum (2) and C. hominis (192) have no doubt 

increased our understanding of the biochemical pathways and of host/parasite 

interactions. As with all organisms, lipids are essential to the growth and survival of 

Cryptosporidium. We now know that this parasite cannot synthesize fatty acids de novo, 

thus it must obtain them from the host cell or the intestinal lumen. Our understanding of 

the exact process of fatty acid transport from these locations into the parasite is lacking. 

However, we are gaining a better understanding of proteins that likely aid in this 

undertaking, as well as where these proteins are located at various stages of the parasite 

life cycle. 

 Although we remain unsure of whether or not CpACBP1 is essential to 

Cryptosporidium survival, we believe that it serves as a viable drug target. Fatty acids 

that enter the parasite cell must first be converted to their acyl-CoA esters before further 

processing through the fatty acid metabolic machinery. Because C. parvum contains only 

one ACBP it is likely that this parasite could not survive without the intracellular 

transfer and pooling of fatty acyl-CoA esters. Previous data has shown that CpACBP1 

localizes to the PVM, which is likely in conjunction with a fatty acyl-CoA synthetase or 
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another unknown PVM protein (194). Thus, it appears that inhibiting binding of acyl-

CoAs to CpACBP1 would result in the inability of the parasite to further process fatty 

acids. 

 Although there are very minimal investigations into halting the supply of fatty 

acids for their further metabolism in Cryptosporidium, we have proceeded with this area 

of exploration. We have identified several compounds which inhibit binding of fatty 

acyl-CoA to CpACBP1 in vitro. Whether or not these drugs have the potential to act on 

CpACBP1 in vivo is unknown, and will likely remain unknown for a long period of 

time. Of the final 28 compounds found to be viable CpACBP1 inhibitors in this study, 

several have been studied in greater detail in other parasitic protozoa (Table 4.2) 

resulting in a wide array of effects on those parasites. Only three of the drugs presented 

here have been previously tested as treatments for cryptosporidiosis. Bithionol was 

shown to be relatively inactive in in vitro studies (190). In another study, rifampin 

reduced the number of parasites by 17.4% when used at a concentration of 8 µg/µl, and 

by 74.4% when used in combination with 50 µM of ranalexin (57). Treatment with 600 

mg, 3 times a day for 14 days resulted in resolution of clinical symptoms and clearing 

infection in HIV-infected patients (6). Further studies, which we are currently pursuing, 

are needed to further analyze the CpACBP1 inhibitors to determine their effect on 

Cryptosporidium itself. 
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TABLE 4.2. CpACBP1 inhibitors from this study that have 
been examined in other parasitic protozoa. 

 
Protist Compound (Reference) 

Plasmodium spp. Acetazolamide (90, 91, 143) 
 Chlorpromazine (55, 79, 110, 156) 
 Rifampin (134, 135) 
 Tyrothricin (138) 
 Curcumin (35, 140) 
  

Giardia lamblia Bithionol (169) 
 Curcumin (130) 
  

Trichomonas vaginalis Bithionol (169) 
  

Entamoeba histolytica Bithionol (168) 
 Chlorpromazine (123) 
  

Trypanosoma spp. Chlorpromazine (38, 44, 60) 
 Hydralazine (80) 
  

Schistosoma mansoni Chlorpromazine (17) 
  

Leishmania spp. Chlorpromazine (127, 186) 
 Rifampin (14, 30) 

 Curcumin (26) 
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CHAPTER V 

SUMMARY 

 

 The apicomplexan Cryptosporidium parvum possesses several unique features in 

its highly streamlined metabolism, and we are just beginning to glimpse the many 

secrets that this parasite holds. The scope of the research presented here encompasses the 

C. parvum fatty acid metabolism. This emerging parasite possesses a unique 1,500-kDa 

polyketide synthase (CpPKS1) comprised of 29 enzymes for synthesizing a yet 

undetermined polyketide. Our studies in Chapter I were on the biochemical 

characterization of the 845-aa loading unit containing acyl-[ACP] ligase (AL) and acyl 

carrier protein (ACP). We determined that the CpPKS1-AL domain has a substrate 

preference for long chain fatty acids, particularly for the C20:0 arachidic acid. When 

using [3H]palmitic acid and CoA as co-substrates, the AL domain displayed allosteric 

kinetics towards palmitic acid (Hill coefficient, h = 1.46, K50 = 0.751 μM, Vmax = 2.236 

μmol mg-1 min-1) and CoA (h = 0.704, K50 = 5.627 μM, Vmax = 0.557 μmol mg-1 min-1), 

and biphasic kinetics towards to ATP (Km1 = 3.149 μM, Vmax1 = 373.3 nmol mg-1 min-1, 

Km2 = 121.0 μM, and Vmax2 = 563.7 nmol mg-1 min-1). The AL domain is Mg2+-

dependent, and its activity could be inhibited by triacsin C (IC50 = 6.64 μM). 

Furthermore, the ACP domain within the loading unit could be activated by the C. 

parvum surfactin production element (SFP)-type phosphopantetheinyl transferase 

(CpSFP-PPT). After attachment of the fatty acid substrate to the AL domain for 

conversion into the fatty-acyl intermediate, the AL domain is able to transfer palmitic 
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acid to the activated holo-ACP in vitro. These observations ultimately validate the 

function of the CpPKS1-AL-ACP unit, and make it possible to further dissect the 

function of this megasynthase using recombinant proteins in a stepwise procedure.  

 In Chapter II, we reported the presence of a new fatty acyl-CoA elongation 

system in Cryptosporidium and the functional characterization of the key enzyme -- a 

single long chain fatty acid elongase (LCE). This enzyme contains conserved motifs and 

predicted transmembrane domains characteristic to the elongase family, and is placed 

within the ELO6 family specific for saturated substrates. CpLCE1 gene transcripts are 

present at all life cycle stages, but the levels are highest in free sporozoites and stages at 

36 h and 60 h post-infection that typically contain free merozoites. Immuno-staining 

revealed localization to the outer surface of sporozoites and to the (PVM). Recombinant 

CpLCE1 displayed allosteric kinetics towards malonyl-CoA and palmitoyl-CoA, and 

Michaelis-Menten kinetics towards NADPH. Myristoyl-CoA (C14:0) and palmitoyl-

CoA (C16:0) display the highest activity when used as substrates, and only one round of 

elongation occurs. CpLCE1 is fairly resistant to cerulenin, an inhibitor for both type I 

and II fatty acid synthases (i.e., maximum inhibition of 20.5% and 32.7% when C16:0 

and C14:0 were used as substrates). These observations ultimately validate the function 

of CpLCE1, which could serve as a possible drug target in future studies. 

 As with many of the fatty acid metabolism enzymes, C. parvum contains only 

one acyl-CoA binding protein (ACBP). Previous molecular and biochemical 

characterization of this enzyme by our laboratory resulted in some interesting findings. 

Most notably was its localization to the PVM in mid-to-late parasite life stages. The 
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localization of this protein to this region is intriguing because it is believed that many of 

the nutrients (including fatty acids, nucleotides, sugars, carbohydrates, etc) enter the 

parasite via the apically located PVM. Although it is currently unknown if CpACBP1 

truly is a PVM protein, or if it is attached to another protein localized at the PVM, we 

hypothesized that CpACBP1 may serve as a viable drug target. Therefore, we were 

interested in utilizing a compound library consisting of compounds with known 

functions, many of which are currently used for various diseases or ailments. Using a 

fluorescence-based assay we identified several compounds that successfully inhibited the 

binding of fatty acyl-CoA to CpACBP1. Although this is a preliminary step in the drug 

discovery process, it has provided very beneficial data. Whether or not the compounds 

discussed here actually inhibit CpACBP1 in the parasite itself is unknown. Our 

laboratory is currently testing these compounds against C. parvum development using in 

vitro culture methods.  
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APPENDIX 

 

 

 

 

 

 

 

 

FIG. A-1. The elongase maximum likelihood (ML) tree containing GenBank GI 
numbers and species names for all taxa. Posterior probability (PP) values at major nodes 
are indicated as either percent values, as 100% (solid diamonds), or 90 – 99% (solid 
circles). These PP values were derived from 3000 trees obtained after the ML values 
converged. GenBank GI numbers and species names for all taxa are provided. 
Additional ML analysis using PROML program yielded essentially the same topology 
shown here. 
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FIG. A-2. Inhibition curves of the CpACBP1 inhibitors. Values are represented as 
percent activity indicating the percent binding of NBD-C16:0-CoA to CpACBP1. 
The IC50 values displayed are defined as the compound concentration that 
displays a 50% inhibition of binding. Bars indicate the standard-error-of-the-mean 
of five experiments. 
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FIG. A-2 Continued 
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FIG. A-2 Continued 
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FIG. A-2 Continued 
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FIG. A-2 Continued 
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