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ABSTRACT 

 

Effect of Droplet Size on the Behavior and Characteristics of 

Emulsified Acid. (May 2008) 

Saleh H. Almutairi, B.S., King Fahd University of Petroleum and Minerals; 

M.S. University of Texas at Austin; 

M.B.A., King Fahd University of Petroleum and Minerals 

Co-Chairs of Advisory Committee:  Dr. A. Daniel Hill 
                                         Dr. Hisham A. Nasr-El-Din 

 

 

Emulsified acids have been extensively used in the oil industry since 1933. Most 

of the available research and publications discussed mainly the application of emulsified 

acid in the field. A fair number of the published work also discussed in depth some of 

the emulsified acid properties such viscosity, stability and reactivity. However, all of the 

available research discussed the emulsified acid without sufficient details of its 

preparation. 

Beside their chemical composition, the ways emulsified acids are prepared cause 

significant differences in their physical properties. The characterization of emulsified 

acid by its droplet size and size distribution complements its chemical composition and 

gives the emulsified acid a unique description and thus reproducible properties.  No 

previous study considered the impact of the droplet size on the characteristics and 

properties of emulsified acid. Therefore, the main objective of this research is to study 
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the effects of the droplet size on various properties of emulsified acid such as viscosity, 

stability and reactivity. 

Results showed that the droplet size and size distribution have a strong effect on 

the stability, viscosity and diffusion rate of the emulsified acid. The results of this work 

are important because knowledge of the effect of the droplet size on major design 

parameters will guide the way emulsified acid is prepared and applied in the field. 
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NOMENCLATURE 

 

a   radius of the disk, cm  

bC    concentration of H+ in the solution, mole/cm3 

sC    concentration of H+ on the reactive surface, mole/cm3 

d   diameter of the droplet, µm 

d    average diameter of the droplet, µm 

D    effective diffusion coefficient, cm2/s 

BD     Brownian diffusion coefficient, cm2/s 

Do    maximum diffusion coefficient (at infinite temperature), cm2/s 

aE    activation energy for reaction/diffusion, J/mole 

+
H

J    mass transfer rate of H+ from the liquid to the disk, moles/cm2.s 

++
Ca

J    mass transfer rate of Ca++ from the disk to the liquid, moles/cm2.s  

k    reaction rate coefficient, cm2/s 

mtk    mass transfer coefficient, cm/s, 

ok    frequency factor for the reaction, cm2/s  

K   power-law consistency index, g/(cm-s2-n) 

n    number of the droplets, droplets 

n    power-law index, - 

N   K/ρ, g/(cm-s2-n)/(g/cm3) 

 r   Brownian radius of the diffusing particle, m 



 

 

 ix 

R    universal gas constant, 8.314472 J/(mole-oK) 

+
H

R    surface reaction rate, moles/cm2.s 

t    thickness of emulsifier film. 

T    absolute temperature, oK 

emV    volume of emulsifier in the emulsion. 

AcidV    volume of acid in the emulsion. 

AW    weight of the calcite disk before the test, g 

BW    weight of the calcite disk after the test, g 

γ�    shear rate, s-1 

µ    newtonian viscosity, mPa.s 

aµ    apparent viscosity, mPa.s 

Cµ    viscosity of continuous phase, mPa.s 

Dµ    viscosity of dispersed phase, mPa.s 

rµ    relative viscosity, - 

0µ    zero shear rate viscosity, mPa.s 

∞µ    infinite shear rate viscosity, mPa.s 

δ    thickness of emulsifier film, µm 

τ    shear stress, mPa 

φ    volume fraction of dispersed phase, - 

∞φ     maximum volume fraction of dispersed phase, - 



 

 

 x 

α    order of the reaction, - 

 ρ   density of the fluid, g/cm3 

 η   viscosity of the continuous phase (g/cm.s) 

 ω   disk rotational speed, rad/s 

)(nφ    empirical function, - 
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1. INTRODUCTION 

An emulsion is a mixture of two immiscible liquids. One liquid is called the 

dispersed phase because it forms the internal phase and the other liquid is called the 

continuous phase because it forms the external phase. In the emulsified acid system, a 

continuous liquid phase which is diesel surrounds droplets of hydrochloric acid forming 

acid-in-diesel emulsion. It is the practice of the petroleum industry to use a concentrated 

(15-28 wt%) hydrochloric acid. The emulsified acid system is stabilized by adding an 

emulsifier. Because emulsions are unstable and thus do not form spontaneously, the 

emulsifier is needed to reduce the interfacial tension between the acid and the diesel to a 

value that allows the two phases to mix and form one mixture. Once formed, the 

emulsified acid system should remain stable for a minimum time that allows it to be 

pumped to the formation. The emulsifier is a surface active agent (surfactant) that 

reduces the interfacial tension between oil (diesel) and water (acid) by adsorbing at the 

liquid-liquid interface. 

1.1. Previous Work 

Perhaps the first introduction of emulsified acid to the oil industry was by a 

patent filed by de Groote (1933). According to de Groote, the aim of his invention was 

to remove the damage from carbonate rocks using “an aqueous acid solution emulsified 

in a suitable vehicle that effectively protects the metallic parts of the well from injury by 

the acid in the solution while the solution is being introduced into the well.”   

_____________ 

This dissertation follows the style of SPE Journal. 
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de Groote used hydrochloric acid, nitric acid and mixture of the two acids to 

prepare his emulsion. Crude oil, coal tar distillates such as naphtha and carbon 

tetrachloride were used as dispersing fluids. Sulfonic acid was used as the emulsifying 

agent, but he described the possibility of using asphalt. The procedure he described in 

the patent for preparing the emulsion is similar to today’s practices. However, today’s 

emulsifiers are more efficient than what he described. He added from two to five percent 

of the emulsifying agent to the continuous phase [crude oil in his case], and then added 

the acid to the mixture in 33.3 acid to 66.7 crude oil volume ratio. 

Interestingly, the objective that inspired the invention of emulsified acid was not 

to deepen the penetration of the acid, not to decrease the leak-off rate, nor to retard the 

acid reaction. The inventor objected to the old and previously known chemical 

treatment, according to him, in that the raw acid used as the treating agent attacks the 

metal parts of the well structure and its working parts which limit the foreseen benefits 

from the whole treatment. From this point of view, the emulsified acid was invented to 

be a corrosion inhibitor much more than of it being an improved stimulation fluid. 

Although no publications were found about the emulsified acid after its invention 

in 1933, Dill (1960) highlighted the extensive use of gelled acid and acid-in-oil 

emulsions to slow the reaction of hydrochloric acid with limestone. The emulsification 

process was not unique to the hydrochloric acid however. Harris (1961) reported the use 

of emulsified acetic acid in well completion and stimulation applications. Davis et al. 

(1965) used emulsified acid to test the effectiveness of their spearhead film technique. 

The emulsified acid was composed of 90 percent by volume of 15 wt% HCl and 10 



 

 

 3 

percent kerosene. Davies et al.’s idea was to pump a water preflush containing special 

combinations of fluid loss additives, which can place a film on the face of the fracture 

and allow more penetration for subsequent acid. They recommended the emulsified acid 

to be pumped behind this spearhead film because: (1) straight acid will remove the film, 

and (2) the viscosity of emulsified acid increases upon contact with this film. 

Knox et al. (1965) indicated that the maximum retardation can be achieved with 

oil-external emulsions. According to their study, emulsified acid works over a wide 

range of temperatures, but its reactivity is heavily dependent on temperature. They also 

reported the issue of emulsion stability to be a controlling factor. The emulsion may 

break before the reaction is complete. However, once it breaks, the reaction will be that 

of straight acid and will be significantly higher. Knox et al. (1965) reported the 

following disadvantages of emulsified acid: (1) its viscosity is so high so the friction 

losses are too high, (2) it cannot be pumped under matrix acidizing conditions, and (3) it 

is incompatible with common acid additives. They also pointed to the storage problem of 

emulsions which will break with time and lose their effectiveness.  

Broaddus et al. (1968) showed that different acids including emulsified acid 

cause different etching for the fracture surface and cause different flow capacity. They 

showed that emulsified acids provided excellent etching and better fracture flow capacity 

than regular hydrochloric acid. They advised to combine acid solutions having different 

degrees of retardation to get the desired fracture conductivity. The most retarded acid 

will be pumped first and the least retarded acid will be pumped last. 
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Crenshaw et al. (1968) discussed why the emulsified acid was not needed for 

stimulating the Ellenburger deep, hot gas wells in the Delaware Basin. In their opinion, 

the acid needed to be emulsified because there was no corrosion inhibitor that can stand 

the high concentration HCl at high temperature during the treatment time. Note that this 

was de Groote’s logic for inventing the emulsified acid. Their alternative solution was to 

reduce the treatment time by using friction reducers instead of increasing the efficiency 

of the inhibitor. Crenshaw et al. (1968) mentioned the following problems with using the 

emulsified acid: (1) very high friction pressure and lower injection rates, and (2) the 

undesirable injection of liquid hydrocarbon to a gas reservoir. They showed the 

desirability of a viscous acid with low friction characteristics. The acid retardation was 

substituted in their opinion by incorporating a viscous water spearhead in front of the 

acid, and viscous water overflush behind the acid. 

Retarded acids are those whose reaction rate during flow along the fracture is 

significantly lower than the reaction rate of the straight HCl acid (Nierode and Kruk 

1973, Williams et al. 1979). The need for retardation stems from the fact that the HCl 

acid (the primary acid used in carbonate stimulation) reacts rapidly with limestone and is 

spent before it can increase the permeability of the formation an appreciable distance 

from the wellbore. Nierode and Kruk (1973) stated the requirements for an effective acid 

system to be the one having: (1) effective fluid loss additives, (2) significantly higher 

viscosity, and (3) having reduced reaction rates. They claimed that fluid loss control is 

the most urgent improvement needed in acid fracturing and that acid emulsions to be 

typical systems that fulfill these requirements. 
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The retardation process involves interference with the mobility of the hydrogen 

ion from the acid solution to the surface of the rock (Knox et al. 1965). Knox et al.  

(1965) discussed the retardation methods available at that time and recommended 

improved testing procedures.  The retarding efficiency was based on the longest reaction 

time which is defined to be the time required to bring the acid concentration from 15 

wt% to 3.2 wt% during the reaction. The final acid concentration of 3.2 wt% was chosen 

because it is claimed that the theoretical minimum flow capacity will result when the 

acid reduce from 15 wt% to 3.2 wt% in a 0.24 inch fracture. 

Knox et al. (1965) stated that retardation is not needed in damage removal 

treatments and that straight acid, either alone or with surfactants, can do the job. They 

pointed that maximum retardation should be with the lowest possible viscosity, if 

pumping rate is an issue. 

While original work was aimed to the corrosion inhibition mechanism of 

emulsified acids, later work concentrated on their applications to acid fracturing 

focusing on their retardation function. The Nierode and Kruk (1973) work can be 

considered to be the beginning of studying other characteristics of emulsified acid such 

as leakoff. Later work such as that of Crowe and Miller (1974) realized the high 

viscosity problems during the pumping of emulsified acids. They described 

improvements to the emulsified acids by incorporating a surfactant system that both 

emulsifies the acid and forms a barrier on the surface of the rock. Their emulsion had 

lower viscosity than previous emulsified acids. Bergstrom and Miller (1975) reported the 

use of this low viscosity emulsion for matrix and fracture acidizing in the high 
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temperature, low permeability carbonate formation of the Cedar Creek Anticline in 

Southeastern Montana. They reported that acid fracturing using this emulsion provided 

significant initial production increase, but rapid declines occurred later in most of the 

wells. Their application of the emulsified acids to the matrix stimulation was pioneering 

and provided promising results. Several searchers had the misconception of referring the 

first use of emulsified acid in matrix acidizing to the later work of Hoefner and Fogler 

(1985). 

Dill and Keeney (1978) showed that the HCl/Formic acid system can be also 

emulsified to give more retardation and lower corrosivity. They found that the 

emulsified HCl/Formic is 2.2 and 5.3 times more retarded than the emulsified 15 wt% 

HCl at 250 and 300 oF, respectively.   

Hoefner and Fogler (1985) introduced the use of microemulsion to matrix 

stimulate chalk formations. The name microemulsion is used when the acid droplets are 

smaller than 0.1 µm in diameter. At this small size the emulsion might flow through the 

pores of the rock. Microemulsions are formed by adding cosurfactant. The 

surfactant/cosurfactant combination forms a very stable emulsion having very small 

droplet sizes. Their work was the first to touch on the mechanism of the retardation 

effect of emulsified acid. They stated that microemulsions are good retarded systems 

because they restrict the mobility of the internal acid droplets and surfactant structure in 

the solutions act as a barrier to diffusion. 

Hoefner and Fogler (1985) mentioned the rapid exchange of hydrogen ion 

between the droplets compared to Stoke’s diffusion of the micelles and droplets 
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themselves. They measured the diffusion rates of acid microemulsions using the rotating 

disk procedure for Newtonian fluids. Their results showed that the diffusivity of acid 

microemulsion is two orders of magnitude less than that of straight acid and only small 

part of the decrease in the diffusivity is a viscosity effect. Hoefner et al. (1987) showed 

that this measured diffusion coefficient is not affected by the ionic change resulting from 

reaction products. They stated that when diffusion rate is decreased by microemulsions 

the volume required to stimulate a core is decreased and could be achieved at low 

injection rates. Therefore, in a carbonate reservoir, the microemulsions will allow deep 

and uniform stimulation even under low pumping rates. 

Gardner and Wood (1989) reported a fourfold increase in production from 

acidizing with microemulsions. They stated that microemulsions sweep the crude oil 

through pore spaces to penetrate deeper into the formation al lower injection rates. 

According to them, this reduces crude oil saturation in the vicinity of the wellbore and 

water relative permeability is increased allowing for the water-based acid to move freely 

through the formation. Their system consisted of alkyl alcohol, surfactants, and blends of 

solvent and cosolvent. Their microemulsion had droplets diameters of less than 0.14 µm 

and was stable for long time. Gardner and Wood (1989) mentioned the following 

advantages of their microemulsions: (1) they reduce injection pressures, (2) provide 

uniform and deep penetration, (3) provide strong water wetting, (4) have low-interfacial 

tension, (4) and temporally sweep oil from formations. 

Guidry et al. (1989) described the use of the nitrified emulsified acid for matrix 

acidizing of soft, low permeability oil bearing Shuaiba limestone formation in northern 
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Oman. They claimed that adding nitrogen to the emulsified acid creates three phase 

emulsion and causes substantial decrease in its reaction rate. In the nitrified emulsified 

acid, the oil phase surrounds a dual inner phase composed of separated droplets of acid 

(20 µm) and bubbles of nitrogen (200 µm). In this situation, nitrogen bubbles which 

have higher energy compete with acid droplets and are released first from the emulsion 

interfaces. This rivalry mechanism slows the reaction rate of the acid with the formation 

rock. Their results of matrix acidizing with the nitrified emulsified acid showed 

production improvements comparable to that of acid fracturing treatments with more 

than 20 ft of penetrated depth. 

Peters and Saxon (1989) stated that the emulsified acid does not affect the 

reaction rate of the acid with the rock but delays the contact between the acid and the 

rock. They attributed the retardation effects to the strong interfacial tension that acid 

must overcome to expose to the rock. Their study focused on the nitrified emulsified 

acid. 

Crowe et al. (1990) questioned if the very high retardation of emulsified acid 

could results in adequate etching of the fracture faces. They stated that the greatest 

retardation is achieved when a surfactant retarder is added to the emulsified acid and that 

retardation of up to 98% could be achieved with this system. 

Aud et al. (1992) reported a successful refracturing program using the emulsified 

acid in the dolomite formation of the Cottonwood Creek Unit in Wyoming. Their work 

exemplified the use of emulsified acid in vugular reservoir. They stated that emulsified 

acid does not break when pumped through cores with a large vugular porosity. In this 
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situation, the emulsified acid preserves its high viscosity and provides excellent leak-off 

control.       

Several other researchers have done significant work on the characteristics and 

performance of emulsified acids. Bartko et al. (1992) can be considered the first 

comprehensive study about the application of emulsified acids. They showed that acid to 

crude volume ratio has significant effect on emulsified acid etching, stability and 

viscosity. The mixing and addition procedures and their effect on the final properties of 

the emulsion were also emphasized by their work. They found that 10 wt% HCl 

emulsified acid at 70:30 acid to oil ratio exhibited very textured surface as compared to 

the other fluid systems such as straight HCl, HCl/acetic, gelled, and foamed acids. They 

described the numerous uniform deep wormholes caused by emulsified acid compared to 

a single main wide wormhole caused by other systems. The main conclusion of their 

work was that after closure acidizing (CFA) with emulsified acid produces excellent 

long lasting fracture conductivity compared to conventional open fracture treatments 

with the same acid. 

Bartko et al. (1992) also examined the nitrified emulsified acid to increase the 

retardation and decrease the leakoff. They did not notice significant decrease in the 

reaction rate and observed only slight increase in the created fracture conductivity. When 

comparing 10 wt% to 15 wt% HCl emulsified acid, they found that the 10 wt% created 

better fracture conductivity and they reasoned this to the weakening of the rock by the 

stronger acid. They found that the 15 wt% HCl emulsified acid lowered the embedment 

strength from 100,000 to 33,000 psi (67 % strength reduction). 
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Bartko et al. (1992) also discussed the stability of emulsified acid and stated that 

the 70:30 volume ratio is the correct volume ratio for acid fracturing. They indicated that 

it is less stable than the 60:40 volume ratio but created better etching than the 60:40 

volume ratio. 

Li et al. (1993) reviewed the acidizing models with emphasis on the emulsified 

acids. They presented a procedure to calculate the mass transfer parameters of emulsified 

acids using the rotating disk apparatus. They attributed the retardation and reduction of 

the overall reaction rate to the low values of diffusion coefficient and provided measured 

values for it. 

de Rozieres et al. (1994) measured and compared the effective diffusion 

coefficients for emulsified, gelled and straight acids using the rotating disk apparatus. 

Their major finding were that (1) the diffusion coefficient of emulsified acid is 10 to 100 

times smaller than that of gelled acid; (2) the diffusion coefficients of emulsified acids 

are in the range of the Brownian diffusion coefficients of particles. One concern about 

their work is the low correlation factor on their emulsified acid data. A probable reason 

for this large dispersion in their experimental data might be the different properties of 

the emulsion from one preparation to another.  

Ortiz et al. (1996) presented the benefits of using aromatic solvent (xylene) as 

the external phase. They included iron control agents in the emulsion system and their 

primary goal was to control the organic deposits and sludging problems. Their objective 

was to minimize the contact of acid with the tubing goods causing less descaling and 
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iron contamination. Again, they energized the emulsion with nitrogen to achieve deeper 

penetration, good diversion, and reduced fluid loss. 

Krawietz and Real (1996) showed that a combination of nitrogen foam and 

viscous emulsified acid pumped with coiled tubing has been successfully used to 

stimulate horizontal wells in the Lisburne field at Prudhoe Bay in Alaska. Foam was 

added for diversion purposes. They provided examples of jetting the emulsified acid 

across the formation face in horizontal wells and stated that jetting provided better 

diversion than bullheading.    

Buijse and van Domelen (1998) discussed the use of emulsified acid for matrix 

acidizing in heterogeneous carbonate formations. Their results showed that emulsified 

acid is effective in large intervals that have streaks of thief zones. It improves zonal 

coverage in horizontal wells. They mentioned the following advantages of emulsified 

acids: its high viscosity leads to fluid diversion and better zonal coverage; the emulsified 

acid breaks upon contact with the formation and its viscosity decreases considerably; no 

residual formation damage; low reaction rate and efficient wormholing at high 

temperatures; high dissolving powers;  low corrosion rates and can be mixed and 

pumped on the fly. 

Buijse and van Domelen (1998) stated that the spending characteristics of coarse 

emulsions are different from microemulsions. However, diffusion retardation and 

wormholing efficiency at low inject rates are a property of both coarse emulsions and 

microemulsions but coarse emulsions are more economical. Coarse emulsions require 

less emulsifier and hold more acid volume fractions. They clearly stated that the 
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diffusion process is associated with the mobility of the droplets in the oil phase it is not a 

diffusion of the acid molecules (molecular diffusion) as in the straight and gelled acids. 

They described the process of wormholing using the emulsified acid by that it creates 

many very narrow wormholes. The acid reacts with the wormhole walls very slowly and 

thus the width increases slowly. The viscous effects of emulsified acid cause friction 

with the walls of the wormhole and create high pressure drop across the wormhole 

length. 

Buijse and van Domelen (1998) also studied the effect of changing acid volume 

fraction on the wormholing process. They found that 0.5 acid volume fraction is more 

retarded and breaks through faster in the coreflood tests. However, it creates narrower 

wormholes and the final permeability is less than that of 0.7 acid volume fraction. 

Al-Anazi et al. (1998) studied the application of emulsified acid for matrix 

acidizing in tight oil carbonate reservoir in Saudi Arabia. Their study included the 

measurement of viscosity, stability, and flow through cores. Also, their study included 

the measurement of the average droplet size of the emulsion to be 77 µm. They found 

that under static conditions, the reaction rate of emulsified 15wt% HCl is 45 times 

slower than straight 15 wt% HCl at room temperature. They found that stability of 

emulsified acid decreases with temperature. Viscosity of emulsified acid followed the 

power-law model at their low shear rates. They found that the number and the sizes of 

wormholes created by the emulsified acid during core flooding increase with the 

injection rate.  
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Navarrete et al. (1998) showed that the reaction of 28 wt% emulsified acid with 

limestone is 8.5 times less than the reaction of 28 wt% straight acid with limestone. 

Furthermore, they concluded that emulsified acid provides more efficient use of acid 

capacity with longer fracture length at high temperatures. 

Stability of the emulsified acid was one of the major difficulties in the HTHP 

deep wells. Navarrete et al. (2000) introduced an emulsified acid that is stable up to 350 

oF and showed its application to the Smackover formation in Alabama. Their work 

provided excellent data about the rheology and fracture conductivity in such sever 

environments. They also provided analytical method to calculate the retardation factor of 

the emulsified acid. 

Navarrete et al. (2000) stated that emulsified acid falls in the laminar regime 

during acid fracturing because of its high viscosity. They stated that high inject rates, 

narrow fracture widths or large fracture heights leads to low emulsified acid viscosity 

which in turn yields low retardation factors. They found that emulsified acid is 14 to 19 

times more retarded than straight acid at temperatures between 250 and 350 oF in acid 

fracturing and only 6.6 times more retarded in matrix acidizing. 

Conway et al. (1999) conducted measurement of the diffusion coefficients of 

emulsified acid under various conditions using the rotating disk apparatus. They 

provided a correlation for predicting the diffusion coefficient as function of temperature, 

ionic strength, counter ions, and rock type. Their findings contradict the comment made 

by Hoefner et al. (1987) that the change of ionic strength by the reaction products does 

not affect the diffusion coefficient. Conway et al. (1999) stated that the hydrogen ion 
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diffusivity may increase if the ratio of H+ to counter ions (Na+, Ca2+, Mg2+) is low or it 

may decrease if the ratio is high. However, the comment of Hoefner et al. (1987) was for 

the acid droplets in the microemulsions. 

Bazin and Abdulahad (1999) demonstrated the effectiveness of emulsified acids 

especially at low injection rates. They discussed the effect of acid concentration, acid 

volume fraction and emulsifier type. They stated that emulsified acid main advantage is 

to provide deep penetration at low injection rates. They indicated that at high rates this 

advantage is absent and HCl performs better. They also stated that, based on core flood 

data, there is no significant change in retarding the acid as a result of changing the acid 

volume fraction. Another major conclusion of their work was that unlike plain HCl, the 

emulsified acid does not have optimum injection rate. They indicated that decreasing 

acid volume fraction increases emulsion stability but also viscosity. Bazin (2001) studied 

the use of emulsified acids under matrix conditions and found the emulsified acid to be a 

promising matrix acidizing fluid especially for heavily damaged formations where the 

injection rates are very low and high retardation and long penetration are needed. 

Lynn and Nasr-El-Din (1999) utilized emulsified acid to remove filter cake 

induced by water-based drilling mud and provided a procedure for designing such 

treatments. They discussed the required soaking time for emulsified acid and stated that 

it is a function of reservoir lithology and temperature. It could be determined from 

measuring acid concentration of flowback samples after one treatment in the reservoir. 

They found that soaking time of 1-2 hours was adequate for oil producers with bottom 
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hole temperatures in the range of 200-240 oF and up to 48 hours for the water injectors 

with bottom hole temperatures of 120-150 oF.  

Jones et al. (2001) described the use of 28 wt% HCl emulsified in 70:30 acid to 

oil volume ratio matrix stimulate a gas well in naturally fractured, tight HTHP carbonate 

reservoir. Their work showed the success of the emulsified acid in this type of treatments 

and improvements of 10 times in the production. Their paper is an excellent reference 

for the detailed operational planning and execution of such a treatment. 

Nasr-El-Din et al. (2000) used the emulsified acid for the first time to stimulate 

disposal wells. Mohamed et al. (1999) presented another application to disposal wells 

and power water injectors in a carbonate reservoir in Saudi Arabia. 

Lynn and Nasr-El-Din (2001) provided an excellent comparison between 

emulsified and gelled acids. They found that gelled acid enhanced the permeability of 

core plugs significantly more than emulsified acid. However, the emulsified acid was 

more stable at high temperatures (250 oF) and created deeper penetration. The gelled 

acid required larger volumes to reach equivalent penetration depths created by the 

emulsified acid. They found that the emulsified acid did not leave any residual materials 

inside the wormholes while the gelled acid left a residuum of polymeric materials.    

Nasr-El-Din et al. (2001) provided evaluation of the acid fracturing treatments 

using emulsified acids in the deep, sour gas Khuff reservoir in Saudi Arabia. They 

highlighted the substantial increase in gas production after stimulating with emulsified 

acids without encountering operational problems during mixing or pumping at these 
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elevated pressures and temperatures. Their study provided good reference for analyzing 

flow back samples after the treatment with emulsified acids. 

Al-Qahtani and Rahim (2002) reported the use of an emulsified 28 wt% HCl in 

conjunction with 28 wt% HCl gelled acid to increase fracture half-lengths and achieve 

better etching of the fracture surface in hot and deep Khuff carbonate gas reservoirs. 

Kasza et al. (2006) reported another successful application of emulsified acid in 

BMB reservoir, an oil producing field in Poland. Studies showed poor response of this 

dolomitic formation to straight hydrochloric and acetic acids. Emulsified acid was then 

used and proved to be the most successful treating acid for matrix acidizing this 

formation. The most stable emulsified acid in this study was 15% HCl emulsified in 

BMB crude in a 50 to 50 percent acid to crude volume ratio. Their work provided good 

data for rheological properties and reaction kinetics of the emulsified acid at different 

temperatures. 

Siddiqui et al. (2006) examined the dissolution patterns created by the emulsified 

acid using Computerized Tomography (CT) and monitored the initiation and growth of 

wormholes inside a core while acidizing. Their major finding is the delay mechanism 

caused by the slow release of the acid from the emulsified acid. None of the previous 

researchers attributed the retardation mechanism to the slow release of the acid from the 

emulsion. Their actual finding was that the wormhole initiated far from the inlet of the 

core which indicated that the emulsified acid has flowed some distance before it released 

the acid for the reaction. They concluded that the wormhole development speed and size 

caused by emulsified acid are highest at the highest injection rate. 
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Recently, several papers discussed the etching characteristics and softening of the 

rock with emulsified acid and compared it to other acid systems. Nasr-El-Din et al. 

(2006b) reported that the emulsified acid caused the least softening when compared with 

straight and gelled acids. One interesting observation of their work was the less decline 

rate of wells treated with emulsified acid compared with other acid systems which was 

believed to be a result of less softening. Pournik et al. (2007) studied the effects of the 

acid type, acid contact time, temperature, and rock type on fracture conductivities. They 

found that the emulsified acid system created the least fracture conductivity when 

compared with gelled and viscoelastic acids at 200 oF on Indiana limestone rock.  

In summary, one can notice that publication on the emulsified acid can be 

tracked as follows (see Table 1.1): 

1) The invention of emulsified acid in 1933. 

2) No publication was found on emulsified acid for the period from 1933 to 

1960 although it was extensively used in stimulation treatments. 

3) Publication manly on the application and the retardation effects until 1973. 

4) Study of the characteristics of emulsified acid such as leak-off, viscosity, 

retardation, and fracture conductivity started in 1973. 

5) Application of emulsified acid to matrix acidizing started in 1975. 

6) Use and research on microsemulsion started in 1985 but did not last long 

because of high cost of microemulsion preparations in the field. This was the 

first report of droplet effect and focus of the study of the diffusion 

coefficients and retardation mechanism. 
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7) Application of nitrified emulsified acid started in1989. 

8) Emphasis on core flood experiments and other properties of emulsified acid 

such as acid volume fraction and wormholing effects started in 1992. 

9) Focus on kinetics started in 1993. 

10) Application to various field cases and comparison with other acids were the 

trend of the latest publications. Other recent applications utilized recent 

technology such as utilizing CT scanners. 

  

 

TABLE  1.1- LIST OF PUBLICATIONS RELATED TO EMULSIFIED ACID  

1933 US-1923154     
1960 SPE 211     
1961 SPE 63      
1964 SPE 975     
1965 SPE 1164 Knox et al.    
1968 SPE 2362 SPE 2375 SPE 2075   
1973 SPE 4549     
1974 SPE 4937 SPE 5159    
1975  SPE 5648     
1978 SPE 7567      
1985 Hoefner et al.     
1987 SPE 13564     
1989 SPE 17951 SPE 19496 Gardner et al.   
1990 SPE 18222      
1992 SPE 24855 SPE 21821    
1993 SPE 26581     
1994 SPE 28552     
1996 SPE 31124 SPE 27809    
1998 SPE 39418 SPE 39583 SPE 50612 SPE 39776  
1999 SPE 56532 SPE 53237 SPE 50739 SPE 56533 SPE 54718 
2000  SPE 65069 SPE 63012 SPE 65355   
2001 SPE 71693 SPE 68915 SPE 65386 SPE 49491  
2002 Al-Qahtani et al.     
2006 SPE 98261 Siddiqui et al. SPE 103344   
2007 SPE 106272     
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1.2. Objective 

Emulsified acids have been extensively used in the oil industry since 1933. Most 

of the available research and publications discussed mainly its application in the field. A 

fair number of the published work also discussed in depth its properties such viscosity, 

stability and reactivity. However, all of the available research discussed the emulsified 

acid without sufficient details of its preparation. Beside its chemical composition, the 

ways emulsified acids are prepared cause significant differences in their physical 

properties. The characterization of emulsified acid by its droplet size and size 

distribution complements its chemical composition and gives the emulsified acid a 

unique description and thus reproducible properties.  No previous study considered the 

impact of droplet size on the characteristics and properties of emulsified acid. Therefore, 

the main objective of this research is to study the effects of the droplet size on various 

properties of emulsified acid. 

1.3. Plan for the Work 

The experimental work is conducted in the following sequence. First, a through 

understanding of the droplet size of emulsified acid was acquired. The effect of major 

components of the system on the average droplet size was tested. We studied the effect 

of changing acid volume fraction and changing the emulsifier concentration. Also, the 

effect of the speed of shearing and the way of mixing on the droplet size was studied. 

Right away, we tested the stability of each emulsion that we acquired its droplet size 

information. If the emulsion was stable, we proceeded with measuring the viscosity at 

different shear rates and temperatures using the Brookfield PVS viscometer. The fourth 
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step in the sequence was to measure the diffusion rate of each system using the rotating 

disk apparatus. Having acquired enough information about the emulsified system (i.e. 

droplet size, stability, viscosity and diffusion rate), we tested its effect on a real rock by 

flowing the acid between two parallel plates of Limestone rock. Fig. 1.1 below shows 

the pursued plan. 

    

 

Fig.  1.1- Sequence of the work. 

 

Every stage is discussed in a separate section. Each section is designed to stand 

for itself.  Therefore, each section starts with introduction giving background about the 

subject and reviewing the previous work done on the subject. Then, the experimental 

part describes the method of preparing the emulsion and the equipment and procedures 

for conducting the experiments. The results are then presented and discussed. Finally, 

the main conclusions are outlined. 

Droplet Size 

Analysis 
Stability Rheology Reactivity Conductivity 

Droplet Sizer and Microscope 

See-through-cell 

Brookfield PVS 
Rotating Disk 

Conductivity Cell 
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2. DROPLET SIZE ANALYSIS OF EMULSIFIED ACID 

Emulsions have been used for many applications in the petroleum industry for 

many decades. Emulsified acid has been used in acid fracturing and well acidizing since 

1933. Huge number of fracturing treatments that used emulsified acid has been reported 

in the literature. Another fair number of researchers conducted lab experiments utilizing 

the emulsified acid. However, all of this work cannot be reproduced because of 

inadequate characterization of the emulsion. One essential way to characterize emulsions 

is by their droplet size. Various mixing modes and proportions produce emulsions with 

different size distributions for the dispersed phase. Those physical variations are 

believed to generate different properties (viscosity, stability, etc) of the emulsions. 

The main objective of this section is to provide a detailed description of the 

droplet size distribution of emulsified acids. Methods to measure and represent the data 

are the core of this section. We show that coarse or fine emulsions can be produced by 

selecting the mode of mixing and speed of shearing. Simple mixing and low shearing 

produce coarse emulsions whereas atomizing and high shearing produce fine emulsions. 

It is also demonstrated that the droplet size and specific surface area are affected by 

emulsifier concentration and acid volume fraction. Average droplet size decreases with 

increasing emulsifier concentration. The diameter also increases with increasing acid 

volume fraction. The specific surface area of the droplets increases with increasing 

emulsifier concentration and decreases with increasing acid volume fraction. 
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The change of droplet size has a practical impact on the stability, rheology and 

reactivity of emulsified acid. Good understanding and characterization of the emulsified 

acid by its size distribution will lead to advancements in this area. 

2.1. Introduction 

Few studies have been done on this area. Gardner and Wood (1989) described 

the use of microemulsions of droplet diameters less than 0.14 µm. Guidry et al. (1989) 

reported the average droplet size of nitrified emulsified acid to be 20 µm. Al-Anazi et al. 

(1998) described the way they produced an emulsion with an average droplet size of 77 

µm. These authors gave a picture about what would be the droplet size of the emulsion 

but their work was missing the way and quantity needed for producing it. As we will 

show later several different emulsions could have the same average droplet size. 

There are various ways to describe the size and the size distribution of an 

emulsion. Our first assumption is that the emulsion drop is a spherical one. This 

assumption is justified by experimental evidence for drops with diameters less than 300 

µm (Ahmadzadah and Harker 1974). A sphere is the only shape that can be described by 

one unique number “the diameter”. This seems to be a fair description if we want to 

describe only one drop of the emulsion or if the emulsion is of monodispersed type. For 

a sample of a huge population of droplets, alternative description techniques will be 

required as a single unique diameter cannot give a complete description. The range of 

sizes (size distribution) is the detailed way for describing the system. However, some 

other appropriate mean values give a general picture depending on the application.  
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In the following discussion, we will discuss the most common means and their 

particular uses in order to reach an agreement on what mean we should consider for 

droplet sizing for emulsified acids. Number-length Mean D[1,0] or simply number mean 

is the well known arithmetic average defined as:   

Mean Diameter = 
n

d∑
     (2.1) 

where d is the diameter of the droplet and n is the number of the droplets. It is called 

D[1,0] because it has d1 in the numerator and d0 in the dominator. Number-surface Mean 

D[2,0] is a utility to compare a population of spheres on the basis of their surface areas 

and is defined as:   

Mean Diameter = 
n

d
2

∑
     (2.2) 

Using the same mathematical logic, it is called D[2,0] because it has d2 in the numerator 

and d
0 in the dominator. Number-Volume Mean D[3,0] is also called number-weight 

mean and is used to compare a population of spheres on the basis of there weights or 

volumes. It is defined as:   

Mean Diameter = 
n

d
3

∑
     (2.3) 

This is the D[3,0] because it has d3 in the numerator and d0 in the dominator. 

The above means depend on the number of spheres in the sample. Other 

measuring techniques that are independent of the number of the spheres in the 

population are the moment means. Moment means represent center of gravity of the 

distribution and indicate around which central point of the frequency the distribution 
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would rotate. The most common of these are the volume to surface area mean or Sauter 

Mean Diameter D[3,2], and the mass moment mean or De Brouckere Mean Diameter 

D[4,3]. Sauter Mean Diameter represents the surface area moment mean and is given by:   

Mean Diameter = 

3

2

d

d

∑
∑

     (2.4) 

It is called D[3,2] because it has d
3 in the numerator and d

2 in the dominator. De 

Brouckere Mean Diameter D[4,3] represents the mass or volume moment mean and is 

defined as: 

Mean Diameter =

4

3

d

d

∑
∑

     (2.5) 

Using the same mathematical logic, this is called D[4,3] because it has d
4 in the 

numerator and d
3 in the dominator. Laser diffraction calculates the distribution based 

around volume and this is why it is reported using the De Brouckere Mean Diameter 

D[4,3].    

2.1.1. Methods of Measuring Size and Size Distribution 

There are several techniques for determining the size distribution of the dispersed 

phase in emulsion systems. Mikkula (1992) divided them into three categories: (1) 

techniques that depend upon the differences in electrical properties between the 

dispersed and continuous phases, (2) those that affect a physical separation of the 

dispersed droplet sizes, and (3) those that depend upon scattering phenomena due to the 

presence of the dispersed phase.  
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Size distribution using electrical properties depends on measuring voltage, 

current or capacitance changes with immersed electrodes. This technique is limited to 

oil-in-water emulsions (Mikkula 1992). Size distribution using scattering properties 

depends on interaction between radiation and the particles. Most of the available 

scattering techniques utilize Fraunhofer diffraction and Mie scattering theories. Size 

distribution by physical separation includes chromatography techniques such as 

hydrodynamic and size exclusion chromatography, sedimentation techniques such as 

gravitational or centrifugal techniques, and field-flow fractionation. 

For all mentioned methods, microscopy remains the basis for calibration and 

comparison (Mikkula 1992). Advanced optical microscopy uses transmitted light, 

reflected light, polarized light, fluorescence and confocal microscopy. However, a major 

problem with microscopy is its dependence on the judgment of the operator and his/her 

selection of the sample. Also, microscopy depends on the counting of the droplets and 

thus gives number mean diameter D[1,0]. Recent microscopes are supplied with video 

cameras and advanced image processing softwares. 

A more comprehensive and detailed explanation of these methods is given by 

Mikkula (1992). Azzopardi (1979) can be consulted also for techniques and methods of 

drop sizing. He presented a methodology for the selection of the methods which are 

potentially suitable for certain practical drop size measurements. The laser diffraction 

technique measures the De Brouckere Mean Diameter D[4,3] which gives the size 

distribution. This number indicates around which central point of the frequency the size 

distribution would rotate. One advantage of using this number is that the number of 
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particles is not required for the calculation. When the volume is an important issue or 

when the viscosity is to be correlated to the diameter, the De Brouckere Mean Diameter 

should be used. Therefore, all the following analyses are based on this number. 

2.2. Procedures, Materials and Equipment 

2.2.1. Materials 

In all emulsion preparations, the same source of low-sulfur diesel was used. It 

has sulfur and water contents of less than 1.0 wt% and 0.05 vol.%, respectively. Table 

2.1 provides the specifications of the diesel used in the present study. Specific gravity 

and viscosity of the diesel were measured and are given in Table 2.2 and plotted in Fig. 

2.1. 

TABLE  2.1-SPECIFICATIONS OF DIESEL 

Variable Value 

Ash, wt% Max 0.01 

Carbon Residue, 10 % Bottoms, wt% Max 0.35 

Cloud Point: 
 Winter 
 Intermediate 
 Summer 

 
Max + 2 oC 
Max + 6 oC 
Max + 12 oC 

Cold Filter Plugging Point: 
 Winter 
 Intermediate 
 Summer 

 
Max - 4 oC 
Max  0 oC 
Max + 6 oC 

Color Max 3 

Corrosion Cu strip, 3 hrs at 50 oC Max # 3 

Cetane Index Min 45 

85% Distillation Max 350 oC 

Sulfur Max 1.0 wt% 

Flash, P.M. Closed Min 55 oC 

Water and Sediment by Centrifuge 
Max 0.05 
Vol% 
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TABLE  2.2-DENSITY AND VISCOSITY OF DIESEL 

Temperature 
oC 

Density 
g/cm3 

Viscosity 
cSt 

Viscosity 
mPa.s 

20 0.827 3.887 3.215 

50 0.806 2.103 1.694 

70 0.792 1.544 1.222 

100 0.770 1.062 0.818 
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Fig.  2.1- Viscosity of diesel as a function of temperature. 
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Hydrochloric acid (ACS grade) was obtained from a local supplier. The acid 

concentration was determined by acid-base titration and found to be 37.8 wt%. This 

stock acid was then diluted with distilled water to a concentration of 15 wt% HCl. The 

corrosion inhibitor and the emulsifier (cationic) were obtained from a local service 

company. The emulsifier is amine-based surfactant dissolved in an organic solvent. 

2.2.2. Preparation of Emulsion 

Several emulsified acid systems with varying emulsifier concentrations and acid 

volume fractions were prepared in a systematic way to ensure the reproducibility of the 

emulsions. A concentrated hydrochloric acid (37.8 wt%) was diluted to 15 wt% by 

adding distilled water. Then, a corrosion inhibitor at 5 gpt was added to the acid. The 

emulsifier (at varying concentrations) was added to the diesel in a Waring blender. The 

emulsifier was given enough time to thoroughly mix in the diesel. 

Using a separatory funnel, the desired acid volume was slowly added to the 

emulsified diesel. It is important to add the acid droplet wise and uniformly through out 

the blending. The emulsion is blended for two minutes at a constant speed after the last 

drop of acid is added in order to generate a uniform emulsion.  

It is important to note that the rate of the addition of the acid to the diesel and the 

speed of mixing are very critical to the produced emulsion. The coarsest emulsion will 

be produced when all the acid is added at once to the diesel and then shaken by hand. On 

the other hand, the finest emulsion will be produced when the acid is atomized using a 

spray bottle to add the acid to the diesel in a Waring blender at very high mixing speed. 
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2.2.3. Equipment 

The droplet size distribution was measured using Fritsch’s Laser Particle Sizer 

“Analysette 22: Economy type”. The measuring range of this instrument is 0.1 to 600 

µm. This instrument uses the principle of diffraction of electromagnetic waves to 

determine the particle size distribution in suspensions and emulsions. The light of a 

parallel laser beam is deflected by the particles. The angle of deflection is determined by 

the diameter and the optical properties of the particles. The conventional design includes 

a convex lens focusing the scattered light to form a ring on the focal plane, where a 

detector measures the Fourier spectrum. The particle size distribution is then calculated 

with advanced mathematical methods on the basis of the Fraunhofer or Lorenz-Mie 

theory. 

2.3. Results and Discussion 

2.3.1.   Representing Size Distribution 

The droplet size and size distribution of emulsified acid were measured for 

several emulsifier concentrations and acid volume fractions. Details of the measurements 

are given at the end of this section. Droplet sizes of about 60 µm were observed in some 

size distributions but with very small frequencies. However, the maximum average size 

was 13 µm. One general observation about the particle size distribution of the emulsified 

acid is its skewness. The size distribution has a larger volume in the coarse range than in 

the fine range and this is why it has a positive skewness. Skewness is only one form of 

describing the side distribution curve. Other methods are to use inhomogeneity factor or 
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the degree of dispersety. The curve will be wider if the degree of dispersety is high and 

narrow if it approaches a monodisperse emulsion. The skewness suggests that the 

distribution is asymmetric. Therefore, a logarithmic distribution is applicable. The 

following equation describes the asymmetrical size distribution (Sherman 1968):    

( )










 −−
=
∑

gg

ddn
df

σσ
2

2

ln2

lnln
exp

2ln
)(    (2.6) 

where, 

∑

∑



















 −

=
n

g
DDn

g

2
lnln

lnσ     (2.7) 

 

n   is the number of the droplets 

d   is the diameter of the droplet 

d   is the average diameter of the droplet 

)(df    is the frequency of observation of the diameter d  

 

Another way to represent the size distribution is to plot the cumulative frequency 

against the diameters of the droplets. The characteristic of this distribution is the S-

shaped curve. Schwarz and Bezemer (1956) developed the following size distribution 

function based on the cumulative volume of droplets: 
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d

d

d

d
f z

x

z

cum −+= φlnln      (2.8) 

where,  

φ   is the acid volume fraction 

zd   is some characteristic  diameter 

xd   is the diameter of the largest droplet 

cumf   is the cumulative frequency of observation below the diameter d  

 

A useful prediction for the cumulative frequency can be achieved using the Rosin-

Rammler model. The Rosin-Rammler model is given by: 

 

))/(exp( ξ
ddf cum −=       (2.9) 

 

d is the average droplet diameter and ξ  can be calculated using the following equation: 

 

( )
)/ln(

)ln(ln

dd

f cum−
=ξ       (2.10) 

 

Fig. 2.2 shows that size distribution data for some selected emulsified acids 

perfectly agree with the Rosin-Rammler model. In Fig 2.2, the solid lines are the model 

predictions and the points are the actual data. Values of  ξ  are presented for each 

emulsion. 
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Fig.  2.2- Fitting size distribution data of the emulsified acids to Rosin-Rammler model. 

 

We found that all emulsions that we tested can be fitted to a single distribution 

function after transformation of the axis has been performed. The size axis has been 

normalized using the following equation: 

 

σ

)( dd
d n

−
=        (2.11) 
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where nd  is the normalized droplet size, d is the actual droplet size, d  is the De 

Brouckere Mean Diameter, and σ  is the standard deviation. The frequency axis was 

normalized using the following equation: 

 

maxf

f
fn =        (2.12) 

where nf  is the normalized frequency, f  is the actual frequency, and maxf  is the 

maximum frequency. Plotting the data of new normalized distribution was found to be 

similar for all the emulsions. Fig. 2.3 shows our normalized size distribution that shows 

the distribution curve skewed to the right.   
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Fig.  2.3- Normalized size distribution of the emulsified acids. 
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Fig.  2.4- Normalized size distribution of the emulsified acids. 

 

Another way to represent the size distribution for all the emulsions is to plot the 

cumulative frequency against the normalized diameter. Fig. 2.4 shows that the selected 

emulsions fall into the same size distribution curve. 

 The advantage of using the various representations methods mentioned above is 

that one can construct the full size distribution by knowing only the average droplet 

diameter and the standard deviation of the population. 
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2.3.2. Effect of Mixing and Shearing 

The mode and the speed of the mixing have a strong influence on the 

characteristics of the produced emulsion. Fig. 2.5 shows three prepared emulsions with 

their microscopic pictures. The emulsion in Fig. 2.5A was prepared by just adding the 

acid containing the corrosion inhibitor to the diesel containing the emulsifier. The acid 

volume fraction was 0.7. The emulsifier and corrosion inhibitor concentrations were 

both 5 gpt. The mixture was shaken by hand for a few minutes. The microscopic picture 

and particle sizer showed that this emulsion has an average droplet size of 19 µm. On the 

other hand, the emulsion in Fig. 2.5C was prepared by atomizing the acid to the diesel 

with a pressure nozzle. The acid volume fraction of this emulsion was also 0.7. It had 

emulsifier and corrosion inhibitor concentrations of 0.5 as well. This emulsion has an 

average droplet size of 9 µm. The emulsion in Fig. 2.5B was prepared by mixing the two 

emulsions at a 1 to 1 volume ratio. This emulsion has an average droplet size of 12 µm. 

The above observations indicate that the mode and the rate of mixing affect the 

color and droplet size of the produced emulsion. Atomizing the acid to the diesel with 

high shearing produces smaller droplet sizes and light yellowish emulsions. Supplying 

the energy that is just required for the emulsion to form (through mere adding and 

shaking) produces a coarse dark emulsion. The average droplet size of an emulsion that 

resulted from adding two emulsions was between the averages of the two emulsions. 
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   Mixing with Low shear                                     Atomized at High shear rate 

 

 

 
Fig.  2.5- Effect of mixing and shearing on droplet size. 

 19 µµµµm     12 µµµµm    9 µµµµm 
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2.3.3. Effect of Emulsifier Concentration and Acid Volume Fraction 

The average droplet size decreases with increasing the emulsifier concentration. 

Fig. 2.6 shows that for an emulsion with 0.7 acid volume fraction, the average droplet 

size decreases from 12.3 µm for emulsifier concentration of 1 gallons per thousand 

gallons (gpt) to an average droplet size of 6 µm for emulsifier concentration of 10 gpt. 

When more emulsifier is supplied to the system the acid droplets break down to even 

smaller droplets and create more surface area for the emulsifier. However, there is an 

emulsifier concentration at which the available continuous phase (diesel) is not sufficient 

to cover the created surface area of acid droplets. 
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Fig.  2.6- Change of average droplet size with emulsifier concentration. 
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Assuming all added emulsifier is adsorbed to the surface of the acid droplets, we 

can calculate the thickness of emulsifier film using simple material balance. This 

assumption is not totally valid because part of the emulsifier does not adsorb on the 

surface but dissolves in the continuous diesel phase or forms micelles. However, we 

believe this will establish a limiting case for the maximum thickness of the emulsifier 

film. The volume of emulsifier that is adsorbed to the droplets of acid can be calculated 

by: 

 

 ( )[ ]33
2

6
dtdnVem −+=

π
    (2.13) 

where,  

emV :  Volume of emulsifier in emulsion. 

n :  Number of droplets in emulsion. 

d :  Average diameter of droplets in emulsion. 

t :  Thickness of emulsifier film in emulsion. 

 

The volume of acid in the emulsion can be calculated by: 

 

 3

6
dnVacid

π
=       (2.14) 

 

Where acidV  is the volume of acid in emulsion. Dividing Eq. (2.13) by Eq. (2.14) gives: 
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V

V

acid

em −+
=      (2.15) 

 

In Eq. (2.15), the volume of acid ( acidV ) and the volume of emulsifier ( emV ) are 

known. The average diameter of the droplets ( d ) is measured. The only unknown is the 

thickness of the emulsifier ( t ). Calculation of the emulsifier thickness are summarized in 

Table 2.3 and plotted in Fig. 2.7. 

 

 

  TABLE  2.3- CALCULATION OF EMULSIFIER THICKNESS.  

φ 
Emulsifier 
Concen. 

Total 
Droplet 
Volume 

Number of 
Droplets 

Acid  
Volume/ 
droplet 

Emulsifier 
Volume/  
droplet 

Acid 
Droplet 

Diameter 

Emulsifier 
Thickness 

- gpt m
3
 drops m

3
 m

3
 m m 

1 2.224E-16 3.6E+11 2.22E-16 3.331E-19 7.51E-06 1.88E-09 

5 3.304E-17 2.44E+12 3.28E-17 2.459E-19 3.97E-06 4.95E-09 0.4 

10 1.133E-17 7.16E+12 1.12E-17 1.675E-19 2.77E-06 6.9E-09 

1 3.014E-16 3.32E+11 3.01E-16 3.011E-19 8.32E-06 1.39E-09 

5 1.192E-16 8.43E+11 1.19E-16 5.930E-19 6.10E-06 5.07E-09 0.5 

10 5.520E-17 1.83E+12 5.47E-17 5.465E-19 4.71E-06 7.82E-09 

1 4.602E-16 2.61E+11 4.60E-16 3.066E-19 9.58E-06 1.06E-09 

5 1.475E-16 8.16E+11 1.47E-16 4.899E-19 6.55E-06 3.63E-09 0.6 

10 7.392E-17 1.63E+12 7.34E-17 4.895E-19 5.20E-06 5.76E-09 

1 9.872E-16 1.42E+11 9.87E-16 4.229E-19 1.24E-05 8.82E-10 

5 3.076E-16 4.56E+11 3.07E-16 6.577E-19 8.37E-06 2.99E-09 0.7 

10 1.106E-16 1.27E+12 1.10E-16 4.719E-19 5.95E-06 4.24E-09 
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The number of droplets for each preparation in Table 2.3 is based on the original 

emulsion sample of 200 cm3. It was easily calculated using Eq. 2.15. Taking an average 

value of 2E+12 droplets in the 200 cm3 of the emulsion leads to droplet number density 

of 1E+10 droplets/cm3. This approximate number or an exact number calculated from 

Table 2.3 can be used to calculate the number of droplets inside the fracture during an 

acid fracturing treatment. Droplet number densities for different emulsions are plotted in 

Fig. 2.8. For example, a fracture that is 0.1 inch wide contains around 415 droplets of 

acid along its width. If the fracture height is 100 ft, the cross section at the fracture inlet 

contains about 1,700,000,000 droplets of acid. 
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Fig.  2.7- Change of emulsifier film thickness with emulsifier concentration. 
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Fig.  2.8- Droplet number density for different emulsions. 

 

Fig. 2.9 shows that average droplet size increases with increasing acid volume 

fraction. Increasing acid volume fraction has a similar effect as decreasing emulsifier 

concentration. This is obvious because increasing acid volume fraction will increase the 

acid droplet surface area and thus needs more emulsifier for the same droplet size. 

However, increasing the acid volume fraction without increasing the emulsifier 

concentration will tend to generate larger droplets to maintain the same surface area.  
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Fig.  2.9- Change of average droplet size with acid volume fraction. 

 

 

Fig. 2.10 shows the relationship between the specific surface area and the 

concentration of the emulsifier. There is a linear reliance of the specific surface area on 

emulsifier concentration. One can observe an inflection point at acid volume fraction of 

0.5. We notice that emulsions with 0.5, 0.6 and 0.7 acid volume fractions have the same 

slope; and the 0.4 acid volume fraction has different slope which indicates the presence 

of inflection point. This point is significant in Fig. 2.11 where two modes of the specific 

surface area can be seen. 
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Fig.  2.10- Change of specific surface area with emulsifier concentration. 
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Fig.  2.11- Change of specific surface area with acid volume fraction. 



 

 

 44 

2.4. Conclusions 

The droplet size has a practical impact on the performance of emulsified acid. 

Good understanding and characterization of the emulsified acid by its size distribution 

will lead to better understanding of its stability, rheology and reactivity. 

In this section, we showed that coarse or fine emulsions can be produced by 

selecting the mode of mixing and speed of shearing. Simple mixing and low shearing 

produced coarse emulsions whereas atomizing and high shearing produced fine 

emulsions. It was also demonstrated that the droplet size and specific surface area are 

affected by emulsifier concentration and acid volume fraction. Average droplet size 

decreased with increasing emulsifier concentration and increased with increasing acid 

volume fraction. The specific surface area of the droplets increased with increasing 

emulsifier concentration and decreased with increasing acid volume fraction. 

Figs. 2.12 to 2.26 give the details for all droplet size and size distribution 

measurements. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.10 0.10 

0.60 0.65 0.70 0.20 0.29 

0.70 0.77 0.83 0.41 0.71 

0.83 0.90 0.97 0.84 1.55 

0.97 1.06 1.14 1.55 3.10 

1.14 1.24 1.34 2.52 5.62 

1.34 1.45 1.57 3.64 9.26 

1.57 1.71 1.84 4.93 14.19 

1.84 2.01 2.17 6.32 20.51 

2.17 2.35 2.54 7.76 28.27 

2.54 2.76 2.99 9.14 37.41 
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2.99 3.25 3.50 10.67 48.08 Arithmetic Mean Diameter [µm] 3.804 

3.50 3.81 4.11 11.95 60.03 Geometric Mean Diameter [µm] 3.359 

4.11 4.47 4.83 12.67 72.70 Quadr. Sq. Mean Diameter [µm] 4.209 

4.83 5.25 5.67 11.58 84.28 Harmonic Mean Diameter [µm] 2.895 

5.67 6.16 6.66 8.72 92.99 Mode [µm] 4.441 

6.66 7.24 7.82 4.81 97.80 Median [µm] 3.598 

7.82 8.50 9.18 1.79 99.59 Mean/Median Ratio 1.057 

9.18 9.98 10.77 0.35 99.94 Variance [µm²] 3.281 

10.77 11.71 12.65 0.05 99.99 Mean Square Deviation [µm] 1.811 

12.65 13.75 14.85 0.01 100.00 Average Deviation [µm] 1.467 

14.85 16.14 17.43 0.00 100.00 Coefficiant of Variation [%] 47.623 

17.43 18.95 20.47 0.00 100.00 Skewness 0.6 

20.47 22.25 24.03 0.00 100.00 Curtosis 0.01 

24.03 26.12 28.21 0.00 100.00 Span 1.3 

28.21 30.66 33.12 0.00 100.00 Uniformity 0.405 

33.12 36.00 38.88 0.00 100.00 Spec.Surface Area [cm²/cm³] 20724.45 

38.88 42.27 45.65 0.00 100.00 Density [g/cm³] 1 

45.65 49.62 53.59 0.00 100.00 Spec.Surface Area [cm²/g] 20724.45 

53.59 58.25 62.92 0.00 100.00 Form Factor 1 

62.92 68.39 73.87 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 20724.45 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

3.81 3.33 2.86 2.44 2.91 2.47 2.1 2.1 1.78 1.52 

Fig.  2.12- Size measurement for emulsion with 30 % acid & 1 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.05 0.05 

0.60 0.65 0.70 0.12 0.17 

0.70 0.77 0.83 0.27 0.44 

0.83 0.90 0.97 0.60 1.04 

0.97 1.06 1.14 1.23 2.27 

1.14 1.24 1.34 2.26 4.53 

1.34 1.45 1.57 3.75 8.28 

1.57 1.71 1.84 5.80 14.08 

1.84 2.01 2.17 8.23 22.31 

2.17 2.35 2.54 10.74 33.05 

2.54 2.76 2.99 12.81 45.86 
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2.99 3.25 3.50 14.34 60.20 Arithmetic Mean Diameter [µm] 3.296 

3.50 3.81 4.11 14.35 74.55 Geometric Mean Diameter [µm] 3.004 

4.11 4.47 4.83 12.15 86.71 Quadr. Sq. Mean Diameter [µm] 3.597 

4.83 5.25 5.67 7.90 94.61 Harmonic Mean Diameter [µm] 2.707 

5.67 6.16 6.66 3.79 98.40 Mode [µm] 3.627 

6.66 7.24 7.82 1.25 99.66 Median [µm] 3.128 

7.82 8.50 9.18 0.28 99.94 Mean/Median Ratio 1.054 

9.18 9.98 10.77 0.04 99.97 Variance [µm²] 2.095 

10.77 11.71 12.65 0.01 99.98 Mean Square Deviation [µm] 1.448 

12.65 13.75 14.85 0.00 99.98 Average Deviation [µm] 1.102 

14.85 16.14 17.43 0.00 99.98 Coefficiant of Variation [%] 43.923 

17.43 18.95 20.47 0.00 99.98 Skewness 3.26 

20.47 22.25 24.03 0.00 99.98 Curtosis 87.48 

24.03 26.12 28.21 0.01 99.99 Span 1.12 

28.21 30.66 33.12 0.01 100.00 Uniformity 0.35 

33.12 36.00 38.88 0.00 100.00 Spec.Surface Area [cm²/cm³] 22162.83 

38.88 42.27 45.65 0.00 100.00 Density [g/cm³] 1 

45.65 49.62 53.59 0.00 100.00 Spec.Surface Area [cm²/g] 22162.83 

53.59 58.25 62.92 0.00 100.00 Form Factor 1 

62.92 68.39 73.87 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 22162.83 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

3.31 3 2.69 2.39 2.72 2.42 2.15 2.16 1.91 1.68 

Fig.  2.13- Size measurement for emulsion with 30 % acid & 5 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.09 0.09 

0.60 0.65 0.70 0.18 0.26 

0.70 0.77 0.83 0.37 0.64 

0.83 0.90 0.97 0.78 1.42 

0.97 1.06 1.14 1.50 2.92 

1.14 1.24 1.34 2.58 5.50 

1.34 1.45 1.57 4.03 9.52 

1.57 1.71 1.84 5.89 15.42 

1.84 2.01 2.17 8.04 23.46 

2.17 2.35 2.54 10.32 33.77 

2.54 2.76 2.99 12.33 46.10 
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2.99 3.25 3.50 13.89 59.99 Arithmetic Mean Diameter [µm] 3.301 

3.50 3.81 4.11 13.90 73.89 Geometric Mean Diameter [µm] 2.985 

4.11 4.47 4.83 11.94 85.83 Quadr. Sq. Mean Diameter [µm] 3.627 

4.83 5.25 5.67 8.10 93.93 Harmonic Mean Diameter [µm] 2.661 

5.67 6.16 6.66 4.15 98.08 Mode [µm] 3.627 

6.66 7.24 7.82 1.48 99.56 Median [µm] 3.124 

7.82 8.50 9.18 0.35 99.91 Mean/Median Ratio 1.057 

9.18 9.98 10.77 0.05 99.96 Variance [µm²] 2.282 

10.77 11.71 12.65 0.01 99.97 Mean Square Deviation [µm] 1.51 

12.65 13.75 14.85 0.00 99.97 Average Deviation [µm] 1.147 

14.85 16.14 17.43 0.00 99.97 Coefficiant of Variation [%] 45.756 

17.43 18.95 20.47 0.00 99.97 Skewness 2.93 

20.47 22.25 24.03 0.00 99.97 Curtosis 62.86 

24.03 26.12 28.21 0.01 99.98 Span 1.16 

28.21 30.66 33.12 0.01 100.00 Uniformity 0.364 

33.12 36.00 38.88 0.00 100.00 Spec.Surface Area [cm²/cm³] 22546.76 

38.88 42.27 45.65 0.00 100.00 Density [g/cm³] 1 

45.65 49.62 53.59 0.00 100.00 Spec.Surface Area [cm²/g] 22546.76 

53.59 58.25 62.92 0.00 100.00 Form Factor 1 

62.92 68.39 73.87 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 22546.76 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

3.31 2.97 2.64 2.32 2.67 2.35 2.06 2.07 1.81 1.58 

Fig.  2.14- Size measurement for emulsion with 30 % acid & 10 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.48 0.53 0.58 0.09 0.09 

0.58 0.63 0.68 0.17 0.26 

0.68 0.74 0.80 0.32 0.58 

0.80 0.87 0.94 0.61 1.19 

0.94 1.02 1.10 1.05 2.24 

1.10 1.20 1.29 1.63 3.87 

1.29 1.40 1.52 2.27 6.15 

1.52 1.65 1.78 2.95 9.10 

1.78 1.93 2.09 3.60 12.70 

2.09 2.27 2.45 4.15 16.85 

2.45 2.67 2.88 4.49 21.34 
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2.88 3.13 3.38 4.75 26.09 Arithmetic Mean Diameter [µm] 7.517 

3.38 3.67 3.97 4.88 30.97 Geometric Mean Diameter [µm] 5.779 

3.97 4.31 4.66 5.14 36.11 Quadr. Sq. Mean Diameter [µm] 9.067 

4.66 5.06 5.47 5.53 41.65 Harmonic Mean Diameter [µm] 4.145 

5.47 5.94 6.42 6.34 47.99 Mode [µm] 9.626 

6.42 6.98 7.54 7.44 55.42 Median [µm] 6.711 

7.54 8.19 8.85 8.88 64.30 Mean/Median Ratio 1.12 

8.85 9.62 10.39 9.55 73.85 Variance [µm²] 25.966 

10.39 11.29 12.20 9.02 82.87 Mean Square Deviation [µm] 5.096 

12.20 13.26 14.32 7.26 90.14 Average Deviation [µm] 4.08 

14.32 15.57 16.81 4.85 94.99 Coefficiant of Variation [%] 67.79 

16.81 18.27 19.74 2.83 97.82 Skewness 1.01 

19.74 21.45 23.17 1.42 99.24 Curtosis 1.64 

23.17 25.19 27.20 0.58 99.82 Span 1.85 

27.20 29.57 31.94 0.13 99.95 Uniformity 0.602 

31.94 34.72 37.49 0.03 99.98 Spec.Surface Area [cm²/cm³] 14474.55 

37.49 40.76 44.02 0.01 99.99 Density [g/cm³] 1 

44.02 47.85 51.68 0.00 100.00 Spec.Surface Area [cm²/g] 14474.55 

51.68 56.17 60.67 0.00 100.00 Form Factor 1 

60.67 65.95 71.23 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 14474.55 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

7.54 5.6 4.09 3.11 4.16 3.01 2.32 2.18 1.73 1.37 

Fig.  2.15- Size measurement for emulsion with 40 % acid & 1 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.05 0.05 

0.60 0.65 0.70 0.12 0.17 

0.70 0.77 0.83 0.28 0.45 

0.83 0.90 0.97 0.65 1.10 

0.97 1.06 1.14 1.30 2.40 

1.14 1.24 1.34 2.25 4.65 

1.34 1.45 1.57 3.35 8.00 

1.57 1.71 1.84 4.48 12.48 

1.84 2.01 2.17 5.60 18.07 

2.17 2.35 2.54 6.75 24.82 

2.54 2.76 2.99 8.08 32.90 
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2.99 3.25 3.50 10.02 42.92 Arithmetic Mean Diameter [µm] 3.981 

3.50 3.81 4.11 12.25 55.17 Geometric Mean Diameter [µm] 3.539 

4.11 4.47 4.83 13.99 69.16 Quadr. Sq. Mean Diameter [µm] 4.377 

4.83 5.25 5.67 13.21 82.37 Harmonic Mean Diameter [µm] 3.068 

5.67 6.16 6.66 9.86 92.23 Mode [µm] 4.511 

6.66 7.24 7.82 5.29 97.52 Median [µm] 3.849 

7.82 8.50 9.18 1.97 99.49 Mean/Median Ratio 1.034 

9.18 9.98 10.77 0.42 99.91 Variance [µm²] 3.341 

10.77 11.71 12.65 0.07 99.99 Mean Square Deviation [µm] 1.828 

12.65 13.75 14.85 0.01 100.00 Average Deviation [µm] 1.475 

14.85 16.14 17.43 0.00 100.00 Coefficiant of Variation [%] 45.912 

17.43 18.95 20.47 0.00 100.00 Skewness 0.67 

20.47 22.25 24.03 0.00 100.00 Curtosis 4.76 

24.03 26.12 28.21 0.00 100.00 Span 1.22 

28.21 30.66 33.12 0.00 100.00 Uniformity 0.382 

33.12 36.00 38.88 0.00 100.00 Spec.Surface Area [cm²/cm³] 19559.62 

38.88 42.27 45.65 0.00 100.00 Density [g/cm³] 1 

45.65 49.62 53.59 0.00 100.00 Spec.Surface Area [cm²/g] 19559.62 

53.59 58.25 62.92 0.00 100.00 Form Factor 1 

62.92 68.39 73.87 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 19559.62 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

3.99 3.51 3.02 2.59 3.08 2.63 2.24 2.24 1.91 1.62 

Fig.  2.16- Size measurement for emulsion with 40 % acid & 5 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.18 0.18 

0.60 0.65 0.70 0.35 0.53 

0.70 0.77 0.83 0.68 1.22 

0.83 0.90 0.97 1.31 2.53 

0.97 1.06 1.14 2.32 4.85 

1.14 1.24 1.34 3.64 8.49 

1.34 1.45 1.57 5.17 13.66 

1.57 1.71 1.84 6.99 20.64 

1.84 2.01 2.17 9.33 29.97 

2.17 2.35 2.54 12.41 42.38 

2.54 2.76 2.99 15.65 58.04 
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2.99 3.25 3.50 17.36 75.40 Arithmetic Mean Diameter [µm] 2.787 

3.50 3.81 4.11 14.13 89.52 Geometric Mean Diameter [µm] 2.567 

4.11 4.47 4.83 7.49 97.01 Quadr. Sq. Mean Diameter [µm] 2.982 

4.83 5.25 5.67 2.44 99.45 Harmonic Mean Diameter [µm] 2.322 

5.67 6.16 6.66 0.49 99.94 Mode [µm] 3.202 

6.66 7.24 7.82 0.06 100.00 Median [µm] 2.752 

7.82 8.50 9.18 0.00 100.00 Mean/Median Ratio 1.013 

9.18 9.98 10.77 0.00 100.00 Variance [µm²] 1.134 

10.77 11.71 12.65 0.00 100.00 Mean Square Deviation [µm] 1.065 

12.65 13.75 14.85 0.00 100.00 Average Deviation [µm] 0.858 

14.85 16.14 17.43 0.00 100.00 Coefficiant of Variation [%] 38.204 

17.43 18.95 20.47 0.00 100.00 Skewness 0.33 

20.47 22.25 24.03 0.00 100.00 Curtosis -0.15 

24.03 26.12 28.21 0.00 100.00 Span 1 

28.21 30.66 33.12 0.00 100.00 Uniformity 0.312 

33.12 36.00 38.88 0.00 100.00 Spec.Surface Area [cm²/cm³] 25844.26 

38.88 42.27 45.65 0.00 100.00 Density [g/cm³] 1 

45.65 49.62 53.59 0.00 100.00 Spec.Surface Area [cm²/g] 25844.26 

53.59 58.25 62.92 0.00 100.00 Form Factor 1 

62.92 68.39 73.87 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 25844.26 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

2.8 2.55 2.29 2.03 2.33 2.08 1.83 1.85 1.62 1.42 

Fig.  2.17- Size measurement for emulsion with 40 % acid & 10 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.06 0.06 

0.60 0.65 0.70 0.11 0.18 

0.70 0.77 0.83 0.22 0.40 

0.83 0.90 0.97 0.42 0.82 

0.97 1.06 1.14 0.75 1.57 

1.14 1.24 1.34 1.19 2.76 

1.34 1.45 1.57 1.72 4.47 

1.57 1.71 1.84 2.32 6.80 

1.84 2.01 2.17 2.95 9.74 

2.17 2.35 2.54 3.53 13.28 

2.54 2.76 2.99 4.01 17.28 
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2.99 3.25 3.50 4.47 21.75 Arithmetic Mean Diameter [µm] 8.319 

3.50 3.81 4.11 4.89 26.64 Geometric Mean Diameter [µm] 6.453 

4.11 4.47 4.83 5.52 32.16 Quadr. Sq. Mean Diameter [µm] 10.244 

4.83 5.25 5.67 6.27 38.43 Harmonic Mean Diameter [µm] 4.739 

5.67 6.16 6.66 7.33 45.76 Mode [µm] 9.38 

6.66 7.24 7.82 8.43 54.19 Median [µm] 7.224 

7.82 8.50 9.18 9.54 63.72 Mean/Median Ratio 1.152 

9.18 9.98 10.77 9.55 73.28 Variance [µm²] 36.104 

10.77 11.71 12.65 8.54 81.82 Mean Square Deviation [µm] 6.009 

12.65 13.75 14.85 6.75 88.57 Average Deviation [µm] 4.408 

14.85 16.14 17.43 4.69 93.26 Coefficiant of Variation [%] 72.232 

17.43 18.95 20.47 3.04 96.30 Skewness 2.04 

20.47 22.25 24.03 1.82 98.11 Curtosis 9.83 

24.03 26.12 28.21 0.98 99.09 Span 1.85 

28.21 30.66 33.12 0.46 99.55 Uniformity 0.598 

33.12 36.00 38.88 0.19 99.74 Spec.Surface Area [cm²/cm³] 12662.2 

38.88 42.27 45.65 0.12 99.86 Density [g/cm³] 1 

45.65 49.62 53.59 0.05 99.91 Spec.Surface Area [cm²/g] 12662.2 

53.59 58.25 62.92 0.05 99.95 Form Factor 1 

62.92 68.39 73.87 0.05 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 12662.2 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

8.34 6.3 4.65 3.53 4.76 3.47 2.65 2.53 1.98 1.54 

Fig.  2.18- Size measurement for emulsion with 50 % acid & 1 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.48 0.53 0.58 0.01 0.01 

0.58 0.63 0.68 0.04 0.05 

0.68 0.74 0.80 0.11 0.16 

0.80 0.87 0.94 0.27 0.43 

0.94 1.02 1.10 0.60 1.03 

1.10 1.20 1.29 1.13 2.15 

1.29 1.40 1.52 1.81 3.96 

1.52 1.65 1.78 2.62 6.58 

1.78 1.93 2.09 3.48 10.06 

2.09 2.27 2.45 4.28 14.34 

2.45 2.67 2.88 4.92 19.26 
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2.88 3.13 3.38 5.59 24.85 Arithmetic Mean Diameter [µm] 6.106 

3.38 3.67 3.97 6.32 31.17 Geometric Mean Diameter [µm] 5.136 

3.97 4.31 4.66 7.49 38.66 Quadr. Sq. Mean Diameter [µm] 6.992 

4.66 5.06 5.47 8.86 47.52 Harmonic Mean Diameter [µm] 4.154 

5.47 5.94 6.42 10.42 57.94 Mode [µm] 7.16 

6.42 6.98 7.54 11.31 69.25 Median [µm] 5.685 

7.54 8.19 8.85 11.17 80.42 Mean/Median Ratio 1.074 

8.85 9.62 10.39 8.79 89.21 Variance [µm²] 11.718 

10.39 11.29 12.20 5.75 94.96 Mean Square Deviation [µm] 3.423 

12.20 13.26 14.32 3.07 98.03 Average Deviation [µm] 2.722 

14.32 15.57 16.81 1.31 99.34 Coefficiant of Variation [%] 56.06 

16.81 18.27 19.74 0.48 99.81 Skewness 0.86 

19.74 21.45 23.17 0.15 99.96 Curtosis 0.98 

23.17 25.19 27.20 0.04 100.00 Span 1.5 

27.20 29.57 31.94 0.00 100.00 Uniformity 0.475 

31.94 34.72 37.49 0.00 100.00 Spec.Surface Area [cm²/cm³] 14443.67 

37.49 40.76 44.02 0.00 100.00 Density [g/cm³] 1 

44.02 47.85 51.68 0.00 100.00 Spec.Surface Area [cm²/g] 14443.67 

51.68 56.17 60.67 0.00 100.00 Form Factor 1 

60.67 65.95 71.23 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 14443.67 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

6.12 5.05 4.08 3.31 4.17 3.32 2.7 2.65 2.17 1.78 

Fig.  2.19- Size measurement for emulsion with 50 % acid & 5 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.48 0.53 0.58 0.00 0.00 

0.58 0.63 0.68 0.02 0.02 

0.68 0.74 0.80 0.07 0.09 

0.80 0.87 0.94 0.22 0.31 

0.94 1.02 1.10 0.58 0.90 

1.10 1.20 1.29 1.23 2.13 

1.29 1.40 1.52 2.11 4.24 

1.52 1.65 1.78 3.22 7.46 

1.78 1.93 2.09 4.53 11.99 

2.09 2.27 2.45 5.82 17.81 

2.45 2.67 2.88 6.83 24.64 
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2.88 3.13 3.38 7.84 32.48 Arithmetic Mean Diameter [µm] 4.724 

3.38 3.67 3.97 8.91 41.39 Geometric Mean Diameter [µm] 4.161 

3.97 4.31 4.66 10.60 51.99 Quadr. Sq. Mean Diameter [µm] 5.237 

4.66 5.06 5.47 12.26 64.25 Harmonic Mean Diameter [µm] 3.579 

5.47 5.94 6.42 13.09 77.35 Mode [µm] 5.848 

6.42 6.98 7.54 11.32 88.67 Median [µm] 4.523 

7.54 8.19 8.85 7.34 96.01 Mean/Median Ratio 1.044 

8.85 9.62 10.39 2.92 98.92 Variance [µm²] 5.165 

10.39 11.29 12.20 0.85 99.77 Mean Square Deviation [µm] 2.273 

12.20 13.26 14.32 0.18 99.96 Average Deviation [µm] 1.841 

14.32 15.57 16.81 0.03 99.99 Coefficiant of Variation [%] 48.111 

16.81 18.27 19.74 0.00 99.99 Skewness 0.8 

19.74 21.45 23.17 0.00 99.99 Curtosis 4.42 

23.17 25.19 27.20 0.00 99.99 Span 1.28 

27.20 29.57 31.94 0.00 99.99 Uniformity 0.406 

31.94 34.72 37.49 0.00 100.00 Spec.Surface Area [cm²/cm³] 16766.5 

37.49 40.76 44.02 0.00 100.00 Density [g/cm³] 1 

44.02 47.85 51.68 0.00 100.00 Spec.Surface Area [cm²/g] 16766.5 

51.68 56.17 60.67 0.00 100.00 Form Factor 1 

60.67 65.95 71.23 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 16766.5 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

4.74 4.12 3.53 3.03 3.59 3.05 2.61 2.59 2.22 1.9 

Fig.  2.20- Size measurement for emulsion with 50 % acid & 10 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.48 0.53 0.58 0.02 0.02 

0.58 0.63 0.68 0.05 0.07 

0.68 0.74 0.80 0.12 0.19 

0.80 0.87 0.94 0.28 0.47 

0.94 1.02 1.10 0.56 1.04 

1.10 1.20 1.29 0.98 2.02 

1.29 1.40 1.52 1.51 3.53 

1.52 1.65 1.78 2.14 5.67 

1.78 1.93 2.09 2.85 8.52 

2.09 2.27 2.45 3.52 12.04 

2.45 2.67 2.88 4.06 16.10 
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2.88 3.13 3.38 4.59 20.69 Arithmetic Mean Diameter [µm] 7.643 

3.38 3.67 3.97 5.06 25.75 Geometric Mean Diameter [µm] 6.16 

3.97 4.31 4.66 5.75 31.50 Quadr. Sq. Mean Diameter [µm] 9.044 

4.66 5.06 5.47 6.60 38.10 Harmonic Mean Diameter [µm] 4.714 

5.47 5.94 6.42 7.83 45.94 Mode [µm] 8.498 

6.42 6.98 7.54 9.10 55.03 Median [µm] 6.903 

7.54 8.19 8.85 10.36 65.40 Mean/Median Ratio 1.107 

8.85 9.62 10.39 10.31 75.71 Variance [µm²] 23.602 

10.39 11.29 12.20 8.94 84.65 Mean Square Deviation [µm] 4.858 

12.20 13.26 14.32 6.64 91.29 Average Deviation [µm] 3.754 

14.32 15.57 16.81 4.18 95.48 Coefficiant of Variation [%] 63.561 

16.81 18.27 19.74 2.40 97.87 Skewness 1.25 

19.74 21.45 23.17 1.25 99.12 Curtosis 3.28 

23.17 25.19 27.20 0.57 99.70 Span 1.68 

27.20 29.57 31.94 0.20 99.90 Uniformity 0.537 

31.94 34.72 37.49 0.06 99.96 Spec.Surface Area [cm²/cm³] 12726.86 

37.49 40.76 44.02 0.03 99.99 Density [g/cm³] 1 

44.02 47.85 51.68 0.00 99.99 Spec.Surface Area [cm²/g] 12726.86 

51.68 56.17 60.67 0.00 100.00 Form Factor 1 

60.67 65.95 71.23 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 12726.86 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

7.67 6.02 4.61 3.59 4.73 3.57 2.79 2.7 2.14 1.7 

Fig.  2.21- Size measurement for emulsion with 60 % acid & 1 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.04 0.04 

0.60 0.65 0.70 0.08 0.12 

0.70 0.77 0.83 0.17 0.29 

0.83 0.90 0.97 0.34 0.63 

0.97 1.06 1.14 0.63 1.26 

1.14 1.24 1.34 1.06 2.32 

1.34 1.45 1.57 1.63 3.95 

1.57 1.71 1.84 2.33 6.28 

1.84 2.01 2.17 3.06 9.35 

2.17 2.35 2.54 3.77 13.12 

2.54 2.76 2.99 4.40 17.52 
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2.99 3.25 3.50 5.16 22.69 Arithmetic Mean Diameter [µm] 6.555 

3.50 3.81 4.11 6.19 28.88 Geometric Mean Diameter [µm] 5.497 

4.11 4.47 4.83 7.70 36.58 Quadr. Sq. Mean Diameter [µm] 7.548 

4.83 5.25 5.67 9.27 45.85 Harmonic Mean Diameter [µm] 4.411 

5.67 6.16 6.66 10.77 56.62 Mode [µm] 7.311 

6.66 7.24 7.82 11.38 68.00 Median [µm] 6.036 

7.82 8.50 9.18 11.04 79.04 Mean/Median Ratio 1.086 

9.18 9.98 10.77 8.77 87.81 Variance [µm²] 14.139 

10.77 11.71 12.65 5.94 93.74 Mean Square Deviation [µm] 3.76 

12.65 13.75 14.85 3.40 97.15 Average Deviation [µm] 2.912 

14.85 16.14 17.43 1.66 98.81 Coefficiant of Variation [%] 57.362 

17.43 18.95 20.47 0.75 99.56 Skewness 1.12 

20.47 22.25 24.03 0.31 99.87 Curtosis 2.76 

24.03 26.12 28.21 0.11 99.97 Span 1.52 

28.21 30.66 33.12 0.02 99.99 Uniformity 0.478 

33.12 36.00 38.88 0.00 100.00 Spec.Surface Area [cm²/cm³] 13601.15 

38.88 42.27 45.65 0.00 100.00 Density [g/cm³] 1 

45.65 49.62 53.59 0.00 100.00 Spec.Surface Area [cm²/g] 13601.15 

53.59 58.25 62.92 0.00 100.00 Form Factor 1 

62.92 68.39 73.87 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 13601.15 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

6.57 5.4 4.29 3.41 4.43 3.46 2.74 2.71 2.15 1.71 

Fig.  2.22- Size measurement for emulsion with 60 % acid & 5 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.01 0.01 

0.60 0.65 0.70 0.02 0.03 

0.70 0.77 0.83 0.08 0.11 

0.83 0.90 0.97 0.22 0.33 

0.97 1.06 1.14 0.56 0.89 

1.14 1.24 1.34 1.16 2.05 

1.34 1.45 1.57 2.04 4.08 

1.57 1.71 1.84 3.11 7.20 

1.84 2.01 2.17 4.21 11.40 

2.17 2.35 2.54 5.10 16.51 

2.54 2.76 2.99 5.75 22.25 
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2.99 3.25 3.50 6.58 28.83 Arithmetic Mean Diameter [µm] 5.207 

3.50 3.81 4.11 7.90 36.73 Geometric Mean Diameter [µm] 4.564 

4.11 4.47 4.83 10.13 46.87 Quadr. Sq. Mean Diameter [µm] 5.781 

4.83 5.25 5.67 12.38 59.25 Harmonic Mean Diameter [µm] 3.884 

5.67 6.16 6.66 13.65 72.90 Mode [µm] 6.159 

6.66 7.24 7.82 12.24 85.14 Median [µm] 5.035 

7.82 8.50 9.18 8.62 93.76 Mean/Median Ratio 1.034 

9.18 9.98 10.77 4.11 97.87 Variance [µm²] 6.365 

10.77 11.71 12.65 1.55 99.42 Mean Square Deviation [µm] 2.523 

12.65 13.75 14.85 0.46 99.87 Average Deviation [µm] 2.032 

14.85 16.14 17.43 0.10 99.98 Coefficiant of Variation [%] 48.45 

17.43 18.95 20.47 0.02 100.00 Skewness 0.6 

20.47 22.25 24.03 0.00 100.00 Curtosis 0.34 

24.03 26.12 28.21 0.00 100.00 Span 1.29 

28.21 30.66 33.12 0.00 100.00 Uniformity 0.403 

33.12 36.00 38.88 0.00 100.00 Spec.Surface Area [cm²/cm³] 15449.36 

38.88 42.27 45.65 0.00 100.00 Density [g/cm³] 1 

45.65 49.62 53.59 0.00 100.00 Spec.Surface Area [cm²/g] 15449.36 

53.59 58.25 62.92 0.00 100.00 Form Factor 1 

62.92 68.39 73.87 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 15449.36 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

5.22 4.51 3.82 3.23 3.9 3.27 2.75 2.74 2.31 1.95 

Fig.  2.23- Size measurement for emulsion with 60 % acid & 10 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.50 0.55 0.60 0.18 0.18 

0.60 0.65 0.70 0.27 0.45 

0.70 0.77 0.83 0.40 0.85 

0.83 0.90 0.97 0.61 1.46 

0.97 1.06 1.14 0.90 2.36 

1.14 1.24 1.34 1.27 3.63 

1.34 1.45 1.57 1.70 5.33 

1.57 1.71 1.84 2.15 7.48 

1.84 2.01 2.17 2.54 10.02 

2.17 2.35 2.54 2.85 12.87 

2.54 2.76 2.99 3.08 15.95 
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2.99 3.25 3.50 3.34 19.28 Arithmetic Mean Diameter [µm] 12.354 

3.50 3.81 4.11 3.63 22.91 Geometric Mean Diameter [µm] 8.127 

4.11 4.47 4.83 4.17 27.08 Quadr. Sq. Mean Diameter [µm] 17.511 

4.83 5.25 5.67 4.89 31.97 Harmonic Mean Diameter [µm] 5.097 

5.67 6.16 6.66 5.88 37.85 Mode [µm] 9.828 

6.66 7.24 7.82 6.89 44.74 Median [µm] 8.699 

7.82 8.50 9.18 7.91 52.65 Mean/Median Ratio 1.42 

9.18 9.98 10.77 8.10 60.75 Variance [µm²] 155.548 

10.77 11.71 12.65 7.60 68.35 Mean Square Deviation [µm] 12.472 

12.65 13.75 14.85 6.59 74.94 Average Deviation [µm] 8.464 

14.85 16.14 17.43 5.31 80.25 Coefficiant of Variation [%] 100.952 

17.43 18.95 20.47 4.28 84.53 Skewness 2.26 

20.47 22.25 24.03 3.42 87.95 Curtosis 5.83 

24.03 26.12 28.21 2.74 90.69 Span 2.86 

28.21 30.66 33.12 2.30 92.99 Uniformity 0.895 

33.12 36.00 38.88 1.95 94.94 Spec.Surface Area [cm²/cm³] 11772.35 

38.88 42.27 45.65 1.60 96.54 Density [g/cm³] 1 

45.65 49.62 53.59 1.17 97.71 Spec.Surface Area [cm²/g] 11772.35 

53.59 58.25 62.92 1.15 98.86 Form Factor 1 

62.92 68.39 73.87 1.14 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 11772.35 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

12.39 7.97 5.17 3.62 5.13 3.34 2.4 2.17 1.64 1.24 

Fig.  2.24- Size measurement for emulsion with 70 % acid & 1 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.48 0.53 0.58 0.04 0.04 

0.58 0.63 0.68 0.08 0.12 

0.68 0.74 0.80 0.17 0.30 

0.80 0.87 0.94 0.36 0.66 

0.94 1.02 1.10 0.67 1.33 

1.10 1.20 1.29 1.11 2.45 

1.29 1.40 1.52 1.64 4.08 

1.52 1.65 1.78 2.26 6.34 

1.78 1.93 2.09 2.94 9.28 

2.09 2.27 2.45 3.63 12.91 

2.45 2.67 2.88 4.26 17.17 
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2.88 3.13 3.38 4.93 22.10 Arithmetic Mean Diameter [µm] 8.375 

3.38 3.67 3.97 5.61 27.71 Geometric Mean Diameter [µm] 6.064 

3.97 4.31 4.66 6.53 34.24 Quadr. Sq. Mean Diameter [µm] 12.105 

4.66 5.06 5.47 7.53 41.77 Harmonic Mean Diameter [µm] 4.495 

5.47 5.94 6.42 8.73 50.50 Mode [µm] 8.11 

6.42 6.98 7.54 9.64 60.14 Median [µm] 6.363 

7.54 8.19 8.85 10.04 70.18 Mean/Median Ratio 1.316 

8.85 9.62 10.39 8.74 78.93 Variance [µm²] 77.169 

10.39 11.29 12.20 6.62 85.54 Mean Square Deviation [µm] 8.785 

12.20 13.26 14.32 4.43 89.97 Average Deviation [µm] 5.031 

14.32 15.57 16.81 2.70 92.66 Coefficiant of Variation [%] 104.892 

16.81 18.27 19.74 1.67 94.33 Skewness 3.65 

19.74 21.45 23.17 1.09 95.43 Curtosis 16.91 

23.17 25.19 27.20 0.78 96.21 Span 1.92 

27.20 29.57 31.94 0.65 96.86 Uniformity 0.736 

31.94 34.72 37.49 0.78 97.64 Spec.Surface Area [cm²/cm³] 13346.85 

37.49 40.76 44.02 0.69 98.33 Density [g/cm³] 1 

44.02 47.85 51.68 0.56 98.89 Spec.Surface Area [cm²/g] 13346.85 

51.68 56.17 60.67 0.56 99.45 Form Factor 1 

60.67 65.95 71.23 0.55 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 13346.85 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

8.4 6.16 4.59 3.52 4.51 3.39 2.64 2.55 2.02 1.6 

Fig.  2.25- Size measurement for emulsion with 70 % acid & 5 gpt emulsifier. 
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Class Low Size Class High Frequ. Cum.Frequ. 

0.48 0.53 0.58 0.07 0.07 

0.58 0.63 0.68 0.15 0.22 

0.68 0.74 0.80 0.31 0.54 

0.80 0.87 0.94 0.64 1.18 

0.94 1.02 1.10 1.17 2.34 

1.10 1.20 1.29 1.86 4.20 

1.29 1.40 1.52 2.60 6.79 

1.52 1.65 1.78 3.33 10.12 

1.78 1.93 2.09 4.02 14.15 

2.09 2.27 2.45 4.65 18.79 

2.45 2.67 2.88 5.20 24.00 
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2.88 3.13 3.38 5.91 29.91 Arithmetic Mean Diameter [µm] 5.776 

3.38 3.67 3.97 6.75 36.65 Geometric Mean Diameter [µm] 4.681 

3.97 4.31 4.66 7.93 44.59 Quadr. Sq. Mean Diameter [µm] 6.873 

4.66 5.06 5.47 9.05 53.63 Harmonic Mean Diameter [µm] 3.649 

5.47 5.94 6.42 9.98 63.62 Mode [µm] 6.728 

6.42 6.98 7.54 10.05 73.66 Median [µm] 5.131 

7.54 8.19 8.85 9.24 82.90 Mean/Median Ratio 1.126 

8.85 9.62 10.39 6.98 89.89 Variance [µm²] 14.018 

10.39 11.29 12.20 4.67 94.55 Mean Square Deviation [µm] 3.744 

12.20 13.26 14.32 2.76 97.31 Average Deviation [µm] 2.832 

14.32 15.57 16.81 1.44 98.74 Coefficiant of Variation [%] 64.823 

16.81 18.27 19.74 0.71 99.45 Skewness 1.69 

19.74 21.45 23.17 0.33 99.78 Curtosis 8.54 

23.17 25.19 27.20 0.14 99.92 Span 1.69 

27.20 29.57 31.94 0.04 99.96 Uniformity 0.543 

31.94 34.72 37.49 0.02 99.98 Spec.Surface Area [cm²/cm³] 16443.57 

37.49 40.76 44.02 0.01 99.99 Density [g/cm³] 1 

44.02 47.85 51.68 0.00 99.99 Spec.Surface Area [cm²/g] 16443.57 

51.68 56.17 60.67 0.00 100.00 Form Factor 1 

60.67 65.95 71.23 0.00 100.00 Spec.Surface Area Form Factor corrected [cm²/g] 16443.57 

d[4,3] d[4,2] d[4,1] d[4,0] d[3,2] D[3,1] d[3,0] d[2,1] d[2,0] d[1,0] 

5.79 4.61 3.6 2.87 3.66 2.84 2.27 2.2 1.78 1.45 

Fig.  2.26- Size measurement for emulsion with 70 % acid & 10 gpt emulsifier. 
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3. STABILITY OF EMULSIFIED ACID 

The knowledge of emulsion stability is very important in the study, quality 

control and application of emulsified acids. The emulsified acid should reach the 

formation in its original form. For this to happen, the emulsion should withstand the high 

temperature, pressure and shearing in the tubing and through the perforations for a 

minimum time that allows it to reach the formation. One quick and simple method to 

determine emulsion stability is to observe phase separation with time. The separation 

process could be monitored under similar conditions of the formation. An HTHP See-

through cell is used to simulate the severe conditions encountered in the field. 

The objective of this section is to test the stability of various preparations of 

emulsified acid. Two emulsions that represent the end extremes of the prepared 

emulsions were tested at 60 oC and 300 psi using the HTHP see-through cell. The other 

emulsions were monitored through the duration of the longest test (acidizing test) by 

observing their separation in a graduated cylinder at room temperature. The stability to 

high shearing was tested by measuring the viscosity of one emulsion with aging. 

3.1. Effect of Droplet Size on Stability 

High energy provided by mixing and shearing is required to form fine emulsions. 

Well-mixed fine emulsions are more stable than coarse emulsions. The coarse emulsion 

in Fig. 3.1A broke completely in nearly one hour at 60 oC and 300 psi.  The fine 

emulsion in Fig. 3.1C, stayed more than four days without breaking under the same 

conditions. These measurements were done using HTHP see-through cell. 
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                 Coarse                                      50-50 mix                                       Fine 

Mixing with Low shear                                                            Atomizing at high shear 

     

             19 µm    12 µm                          9 µm 

 
Fig.  3.1- Effect of mixing and shearing on stability of the emulsified acid. 

3.2. Effect of Acid Volume Fraction on Stability 

The acid volume fraction has a great influence on the stability of the emulsion. 

Fig. 3.2 shows four prepared emulsions with originally different acid volume fractions 

of 0.3, 0.4, 0.5 and 0.6. All four emulsions were prepared using similar mixing and 

shearing procedures. The acid was added at the same rate and the rotational speed of the 

blender was fixed in all of the emulsions preparations. The emulsifier and corrosion 

inhibitor concentrations were both 5 gpt in all of the four emulsions. The average droplet 

A C B 
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sizes for the four emulsions are 3.256, 3.981, 6.106 and 6.555 µm for 0.3, 0.4, 0.5 and 

0.6 acid volume fractions, respectively. It was observed that the emulsion breaks 

gradually expelling extra diesel until it restabilizes at nearly 0.7 acid volume fraction. 

 

 

 

  

 

Fig.  3.2- Effect of acid volume fraction on stability of the emulsified acid. 

 

The electrical conductivity of the acid at the bottom was measured and found to 

be zero. This indicated that emulsion forms below the diesel layer. This is a one breaking 

mechanism of emulsions when the dispersed phase is the denser phase. It is known as 

downward creaming in which the droplets of dispersed phase fall because of gravity. 
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Material balance for the expelled diesel and the remaining emulsion indicated that 

remaining emulsion has 0.7 acid volume fraction. 

3.3. Effect of Repeated Shearing on Stability 

The stability of the emulsified acid was tested by measuring its apparent 

viscosity at different times after preparation. It was tested immediately after 2 mintues 

from preparation time, then after 5 hours and after 15 hours from preparation time. The 

emulsified acid shown in Fig 3.3 is 70 vol. % acid with 5 gpt corrosion inhibitor 

concentration and 10 gpt emulsifier concentration. The test was performed at 25 oC. Fig 

3.3 shows that apparent viscosity did not change considerably with ageing indicating 

good stability of the system for the tested 15 hours. 

3.4. Conclusions 

1. Fine emulsions are more stable than coarse emulsions. 

2. The most stable emulsion was noted at an acid volume fraction of nearly 0.7. 

Other volume fractions were stable for a few hours before diesel was expelled as 

a separate layer above the emulsion. Eventually, the remaining emulsion 

restabilized at an acid volume fraction of 0.7. 

3. Emulsion was stable for around 15 hours even under repeated shearing that 

reached 750 s-1. 
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Fig.  3.3- Effect of repeated shearing on stability of the emulsified acid. 
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4. VISCOSITY OF EMULSIFIED ACID 

Acid-in-diesel emulsions have been extensively used in matrix acidizing and acid 

fracturing treatments. This acid has several advantages including lower corrosion rate, 

minimum number of additives, and deep acid penetration. For stimulation purposes, the 

most important properties of emulsified acid are reactivity, stability, and viscosity. The 

size distribution of the droplets of the emulsion affects these properties.  

The purpose of this section is to study the effect of the droplet size of the 

dispersed phase (acid) on the viscosity of emulsified acids.  Measurements of the droplet 

size were acquired with laser diffraction techniques and analyzed using an advanced 

image processing system as was discussed in section 2. Viscosities were measured using 

a Brookfield PVS rheometer at various temperatures. 

Steady shear viscosity was measured for emulsions with droplet sizes ranging in 

diameter from 1 to 15 µm. The viscosity covered a shear rate range from 10 to 750 s-1 

and a temperature range from 25 to 80 oC. All measurements were regenerated for 

emulsifier concentrations of 1, 5 and 10 gpt. Likewise, similar measurements were 

performed with varying acid volume fractions. 

This section discusses the effects of the acid volume fraction, emulsifier 

concentration and droplet size distribution on the rheological properties of emulsified 

acids. The results of this work are important because knowledge of the effect of the 

droplet size on major design parameters will guide the way emulsified acid is prepared 

and applied in the field. 
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It is known among fracturing engineers that viscous fluids increase the fracture 

width because of their high propagation and friction pressures, and increase the fracture 

length because of their high fluid-loss control. Fracture width increases with increasing 

the viscosity in a cubic root relationship (Kiel 1970). However, viscous fluids are 

unfavorable when considering pumping requirements. The more viscous the fluid is the 

harder it is to be pumped down the tubing. The shear rates in tubular range from 1000 to 

5000 sec-1, while they range from 10 to 100 sec-1 in the fractures. Measurements of n and 

K for design considerations are often made between 170 and 600 sec-1(Holditch 2007). 

Several articles are available about the rheology of emulsified acid. The need for 

low viscosity emulsified acids was highlighted by Crowe and Miller (1974). They 

introduced a low viscosity emulsified acid and compared the resulting friction caused by 

different acid systems. Al-Anazi et al. (1998) found that the emulsified acid that has 0.7 

acid volume fraction is a non-Newtonian shear thinning fluid. They found that the n and 

K parameters of the power-law change linearly with the temperature. However, their 

measurements were done at low shear rates (2-40 s-1). Bazin and Abdulahad (1999) 

concluded that increasing the diesel volume fraction increases the emulsion stability but 

also viscosity. Navarrete et al. (2000) made rheological measurements of emulsified acid 

for shear rates from 800 to 3500 sec-1 at high temperatures (250 to 350 oF). They also 

found that the power-law index (n) increases linearly with the temperature and that the 

power-law consistency index (K) decreases almost linearly with temperature. 

Kasza et al. (2006) reported viscosity data for 50-50 acid –to-oil emulsified acid 

for a temperature range from 20 to 80 oC. Although the shear rate range was not reported 
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in their paper, the interesting result was that the n and K parameters of the power-law 

exhibited non-linear pattern with temperature. 

As will be shown in this section, our data followed the pattern of Kasza et al. 

(2006). Our data and that of Kasza et al. (2006) covered the same temperature range. Al-

Anazi et al. (1998) covered low temperature and shear ranges while Navarrete et al. 

(2000) covered high temperature and high shear ranges.  

4.1. Procedures, Materials and Equipment 

4.1.1. Materials 

In all emulsion preparations, the same source of low-sulfur diesel was used. It 

has sulfur and water contents of less than 1.0 wt% and 0.05 vol.%, respectively. Table 

4.1 provides the specifications of the diesel used in this section. Specific gravity and 

viscosity of diesel were measured as a function of temperature and are given in Table 

4.2 and plotted in Fig. 4.1. Hydrochloric acid (ACS grade) was obtained from a local 

supplier. The acid concentration was determined by acid-base titration and found to be 

37.8 wt%. This stock acid was then diluted with distilled water to a concentration of 15 

wt% HCl. The corrosion inhibitor and the emulsifier (cationic) were obtained from a 

local service company. The emulsifier is amine-based surfactant dissolved in an organic 

solvent. 
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TABLE  4.1- PROPERTIES OF DIESEL 

Variable Value 

Ash, wt% Max 0.01 

Carbon Residue, 10 % Bottoms, wt% Max 0.35 

Cloud Point: 
 Winter 
 Intermediate 
 Summer 

 
Max + 2 oC 
Max + 6 oC 
Max + 12 oC 

Cold Filter Plugging Point: 
 Winter 
 Intermediate 
 Summer 

 
Max - 4 oC 
Max  0 oC 
Max + 6 oC 

Color Max 3 

Corrosion Cu strip, 3 hrs at 50 oC Max # 3 

Cetane Index Min 45 

85% Distillation Max 350 oC 

Sulfur Max 1.0 wt% 

Flash, P.M. Closed Min 55 oC 

Water and Sediment by Centrifuge Max 0.05 Vol% 
  
 
 
 
 

µµµµ  = 0.0053e
(1875/T)

R
2
 = 0.9982

0.1

1.0

10.0
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Fig.  4.1- Viscosity of diesel at different temperatures. 
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4.1.2. Preparation of Emulsion 

Several emulsified acid systems with varying emulsifier concentrations and acid 

volume fractions were prepared in a systematic way to ensure the reproducibility of the 

emulsions. A concentrated hydrochloric acid (37.8 wt%) was diluted to 15 wt% by 

adding distilled water. Then, a corrosion inhibitor at 5 gpt was added to the acid. The 

emulsifier (at varying concentrations) was added to the diesel in a Waring blender. The 

emulsifier was given enough time to thoroughly mix in diesel. 

Using a separatory funnel, the desired acid volume was slowly added to the 

emulsified diesel. It is important to add the acid droplet wise and uniformly through out 

the blending. The emulsion is blended for two minutes at a constant speed after the last 

drop of acid is added in order to generate a uniform emulsion.  

It is important to note that the rate of the addition of the acid to the diesel and the 

speed of mixing are very critical to the produced emulsion. The coarsest emulsion will 

be produced when all the acid is added at once to the diesel and then shaken by hand. On 

the other hand, the finest emulsion will be produced when the acid is atomized using a 

spray bottle to the diesel in a Waring blender at very high mixing speed. 

 

TABLE  4.2- VISCOSITY OF DIESEL AT DIFFERENT TEMPERATURES 

Temperature 
oC 

Density 
g/cm3 

Viscosity 
cSt 

Viscosity 
mPa.s 

20 0.827 3.887 3.215 

50 0.806 2.103 1.694 

70 0.792 1.544 1.222 

100 0.770 1.062 0.818 
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4.1.3. Equipment 

The droplet size distribution was measured using Fritsch’s Laser Particle Sizer 

“Analysette 22: Economy type”. The measuring range of this instrument is 0.1 to 600 

µm. This instrument uses the principle of diffraction of electromagnetic waves to 

determine the particle size distribution in suspensions and emulsions. The light of a 

parallel laser beam is deflected by the particles. The angle of deflection is determined by 

the diameter and the optical properties of the particles. The conventional design includes 

a convex lens focusing the scattered light to form a ring on the focal plane, where a 

detector measures the Fourier spectrum. The particle size distribution is then calculated 

with advanced mathematical methods on the basis of the Fraunhofer or Lorenz-Mie 

theory. Detailed description of the droplet size measurements were given in section 2. 

A Brookfield viscometer (Model PVS) was used to measure the apparent 

viscosity of the emulsified acid under different conditions. The wetted area of this 

viscometer is made of Hastelloy C, which is acid resistant. The PVS viscometer uses 

bob/cup set B1, which requires a sample volume of 30 cm3.  The temperature sensor is 

mounted on the stator/bob. Viscosity measurements were conducted at various 

temperatures up to 80oC, over shear rates of 10 to 750 s-1.  A pressure of 300 psi was 

applied to minimize evaporation of the sample, especially at high temperatures. 
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4.2. Results and Discussion   

4.2.1. Models for Emulsion Viscosity 

The viscosity of emulsions are dependent on the following variables: temperature 

(T), volume fraction of dispersed phase (φ), viscosity of dispersed phase (µD), shear rate 

( γ� ), droplet size distribution, and pressure (P) (Pal et al. 1992).  Newtonian fluids have 

the simplest shear-stress-shear rate relationship that follows Newton’s law of viscosity 

defined in Eq. (4.1): 

 

γ

τ
µ
�

=         (4.1) 

where τ  is the shear stress, γ�  is the shear rate, and µ  is the fluid viscosity.   

Most concentrated emulsions are pseudoplastic fluids (Pal et al. 1992). However, 

some emulsions cannot be dovetailed into one specific class, but stretch over a wide 

range of non-Newtonian behavior depending on the shear rate. 

For pseudoplastic fluids such as emulsions, a plot of shear stress versus shear rate 

is characterized by three regions: (1) a straight line at very low shear rates of which the 

slope gives the viscosity at zero shear rate, 0µ ; (2) a concave down curve in the 

intermediate shear rates of which the viscosity decreases with shear rate; and (3) a 

straight line at very high shear rates of which the slope gives the viscosity at infinite 

shear rate, ∞µ . 
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A plot of shear stress versus shear rate for the intermediate region is 

characterized by straight line on a log-log scale whose slope is the power-law index, n . 

This line is described by the power-law model defined as: 

 

 )1( −= n

a Kγµ �       (4.2) 

 

This is a two-parameter (K, n) model that predicts the viscosity as a function of 

shear rate. aµ  is the apparent viscosity, K is the consistency index, γ�  is the shear rate, 

and n is the power-law index. 

The power-law is valid for the intermediate region of shear rate. At low shear 

rates, the Ellis model (Fredrickson 1964) is applied: 









+−=

−1

1

0

1 α
τ

µ
τγ K�      (4.3) 

And, at high shear rates, the Sisko model (1958) is applied: 

 

( )1

2

−

∞ +−=
δ

γµγτ �� K       (4.4) 

  

Both the Ellis and Sisko models have three adjustable parameters and reduce to 

either Newton’s law or power-law at their end limits. A model that fits the entire 

pseudoplastic curve is provided by Reiner-Philippoff’s model (Bird et al. 1960): 

 










+

−
−= ∞

∞
C/1 2

0

τ

µµ
µγτ �      (4.5) 
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The 1K , 2K , α  and δ and  C  are adjustable parameter. 

Emulsified acid was found to have the characteristics of pseudoplastic fluids. A 

plot of the shear stress versus shear rate, shown in Figs. 4.2 and 4.3, follows the power-

law model. The viscosity in the shear rate range of 250 to 750 s-1 was found to fit the 

power-law model very well. 

Apparent viscosities of all studied emulsions were measured at various 

proportions and conditions and were fitted to Eq. (4.2). Figs. 4.4 to 4.18 show all the 

measurements. Most of the data fitting was done on the range of 100 to 750 s-1 to obtain 

better correlation factors. The parameters n and K were extracted from these figures and 

were tabulated in Tables 4.3 to 4.7.  
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Fig.  4.2- Power law model predictions at φφφφ = 0.7 and 5 gpt emulsifier concentration. 
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Fig.  4.3- Power law model predictions at φφφφ = 0.6 and 5 gpt emulsifier concentration. 
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Fig.  4.4- Apparent viscosity at φφφφ = 0.3 and 1 gpt emulsifier concentration. 
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Fig.  4.5- Apparent viscosity at φφφφ = 0.3 and 5 gpt emulsifier concentration. 
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Fig.  4.6- Apparent viscosity at φφφφ = 0.3 and 10 gpt emulsifier concentration. 
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Fig.  4.7- Apparent viscosity at φφφφ = 0.4 and 1 gpt emulsifier concentration. 
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Fig.  4.8- Apparent viscosity at φφφφ = 0.4 and 5 gpt emulsifier concentration. 
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Fig.  4.9- Apparent viscosity at φφφφ = 0.4 and 10 gpt emulsifier concentration. 
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Fig.  4.10- Apparent viscosity at φφφφ = 0.5 and 1 gpt emulsifier concentration. 
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Fig.  4.11- Apparent viscosity at φφφφ = 0.5 and 5 gpt emulsifier concentration. 
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Fig.  4.12- Apparent viscosity at φφφφ = 0.5 and 10 gpt emulsifier concentration. 
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Fig.  4.13- Apparent viscosity at φφφφ = 0.6 and 1 gpt emulsifier concentration. 
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Fig.  4.14- Apparent viscosity at φφφφ = 0.6 and 5 gpt emulsifier concentration. 
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Fig.  4.15- Apparent viscosity at φφφφ = 0.6 and 10 gpt emulsifier concentration. 
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Fig.  4.16- Apparent viscosity at φφφφ = 0.7 and 1 gpt emulsifier concentration. 



   

 

81 

µµµµ a  = 340.53γγγγ -0.330 
R

2
 = 1.000

µµµµ a  = 297.34γγγγ -0.362 
R

2
 = 0.999

µµµµ a  = 191.11γγγγ -0.321 
R

2
 = 0.998

µµµµ a  = 262.21γγγγ -0.378 
R

2
 = 1.000

µµµµ a  = 286.97γγγγ -0.447 
R

2
 = 1.000

µµµµ a  = 342.84γγγγ -0.559 
R

2
 = 0.998

µµµµ a  = 54.93γγγγ -0.527 
R

2
 = 0.980

1

10

100

10 100 1000

Shear Rate, sec
-1

A
p

p
a
re

n
t 

V
is

c
o

s
it

y
, 
c
p

25

30

40

50

60

70

80

Temperature, 
o
C

 
Fig.  4.17- Apparent viscosity at φφφφ = 0.7 and 5 gpt emulsifier concentration. 
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Fig.  4.18- Apparent viscosity at φφφφ = 0.7 and 10 gpt emulsifier concentration. 



   

 

82 

TABLE  4.3-POWER-LAW PARAMETERS FOR φφφφ = 0.3 

Power-Law Index (n) 
- 

Consistency Index (K) 
g/(cm-s2-n) 

Temperature 
oC 

1 gpt 5 gpt 10 gpt 1 gpt 5 gpt 10 gpt 

25 0.8975 0.6619 0.543 18.918 94.412 223.54 

30 0.7837 0.6187 0.6198 33.96 109.2 116.38 

40 0.7621 0.6822 0.6786 32.07 57.611 62.303 

50 0.6952 0.4994 0.7237 41.201 97.372 34.059 

60 0.6418 0.5117 - 48.01 37.491 - 

 

TABLE  4.4- POWER-LAW PARAMETERS FOR φφφφ = 0.4 

Power-Law Index (n) 
- 

Consistency Index (K) 
g/(cm-s2-n) 

Temperature 
oC 

1 gpt 5 gpt 10 gpt 1 gpt 5 gpt 10 gpt 

25 0.7941 0.737 0.5386 52.653 57.226 130.54 

30 0.7479 0.7793 0.6049 57.275 38.232 75.517 

40 0.8272 0.7384 0.5351 26.157 50.711 86.821 

50 0.4119 0.7967 0.5216 138.63 27.851 72.197 

60 0.6569 0.5529 0.4731 21.739 49.242 81.952 

 

TABLE  4.5- POWER-LAW PARAMETERS FOR φφφφ = 0.5 

Power-Law Index (n) 
- 

Consistency Index (K) 
g/(cm-s2-n) 

Temperature 
oC 

1 gpt 5 gpt 10 gpt 1 gpt 5 gpt 10 gpt 

25 0.7618 0.7225 0.8978 68.472 8.2565 39.686 

30 0.703 - 0.7579 83.041 - 78.584 

40 0.7463 - 0.8626 55.812 - 35.747 

50 0.5040 - 0.7650 127.39 - 46.878 

60 - - 0.5920 - - 52.546 

 

TABLE  4.6- POWER-LAW PARAMETERS FOR φφφφ = 0.6 

Power-Law Index (n) 
- 

Consistency Index (K) 
g/(cm-s2-n) 

Temperature 
oC 

1 gpt 5 gpt 10 gpt 1 gpt 5 gpt 10 gpt 

25 0.7036 0.6957 0.6912 95.98 67.111 247.13 

30 0.6817 0.7054 0.6718 101.76 51.314 212.5 

40 0.6838 0.7223 0.7083 82.977 35.214 136.75 

50 0.6081 0.6444 0.6331 114.91 43.444 181.77 

60 0.6451 0.7165 0.4887 73.333 19.693 417.24 

70 0.6627 0.6312 0.4763 66.333 34.205 439.57 

80 0.6583 0.5129 0.4726 47.134 51.227 390.22 
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TABLE  4.7- POWER-LAW PARAMETERS FOR φφφφ = 0.7 

Power-Law Index (n) 
- 

Consistency Index (K) 
g/(cm-s2-n) 

Temperature 
oC 

1 gpt 5 gpt 10 gpt 1 gpt 5 gpt 10 gpt 

25 0.7834 0.6696 0.6563 84.655 340.53 358.53 

30 0.7636 0.6383 0.6535 40.525 297.3 301.76 

40 0.6884 0.6792 0.6674 52.1 191.11 234.77 

50 0.6266 0.6219 0.6356 61.835 262.21 262.55 

60 0.6286 0.5532 0.5954 30.49 286.97 319.58 

70 - 0.4409 0.5988 - 342.84 204.34 

80 - 0.4734 0.5599 - 54.934 234.6 

 

 

4.2.2. Effect of Temperature on the Viscosity 

Emulsion viscosity decreases with increasing temperature mainly because of the 

decrease in the continuous phase viscosity (diesel) (Pal et al. 1992; Petsev 2004). The 

decrease in the viscosity of diesel with temperature was presented in Fig. 4.1. The basic 

relationship between viscosity and temperature is defined by Arrhenius equation: 

 

)/exp( TBA=µ       (4.6) 

 

Arrhenius equation states that the viscosity is related exponentially to the inverse 

of the absolute temperature, T. The constants A and B are characteristics of the 

emulsion. Fig. 4.1 showed that the continuous phase (diesel) follows Arrhenius equation. 
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Several other correlations are available such as that of Ronningsen (1995) which 

relates the viscosity to both the temperature and the water volume fraction for water-in-

oil emulsions: 

 

φφµ TaaTaar 4321ln +++=      (4.7) 

 

where 1a , 2a , 3a  and 4a  are the correlation coefficients. In Eq. 4.7, rµ  is the relative 

viscosity and φ  is the water volume fraction. The relative viscosity is defined as ratio of 

the viscosity of the emulsion (µ) to that of the continuous phase (µC): 

 

C

r
µ

µ
µ =         (4.8) 

 

Farah et al. (2005) extended the ASTM equation, method D-341, (ASTM 2001) 

for liquid petroleum products to include the variation in dispersed phase volume fraction 

in emulsions. 

Fig. 4.19 shows the decrease in the apparent viscosity as temperature is increased 

from 25 to 80oC. The profile is noticed to be similar at various shear rates. The data are 

shown for an acid volume fraction of 0.7 and an emulsifier concentration of 1 gpt. All 

other volume fractions and emulsifier concentrations showed similar trends. 
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Fig.  4.19- Effect of temperature on viscosity. 

 

Figs. 4.20 and 4.21 show the effect of temperature on the power-law parameters. 

The general trend for the power-law index (n) is decreasing with temperature especially 

at 1 gpt. The decrease of n with temperature agrees with Al-Anazi et al. (1998) and 

Navarrete et al. (2000). For 5 and 10 gpt emulsifier concentrations, our data agree with 

the trend found by Kasza et al. (2006). 

As was mentioned in the beginning of this section, our data and that of Kasza et 

al. (2006) covered the same temperature range. Al-Anazi et al. (1998) covered low 

temperature and shear ranges while Navarrete et al. (2000) covered high temperature and 

shear ranges. 
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Fig.  4.20- Effect of temperature on power-law index (n). 
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Fig.  4.21- Effect of temperature on the power-law consistency index (K). 
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4.2.3. Effect of Emulsifier Concentration on Apparent Viscosity 

Fig. 4.22 shows that viscosity increases with increasing the emulsifier 

concentration at 25 oC for 0.7 acid volume fraction. The same trend was noticed for 

different shear rates. Fig. 4.23 shows that at 0.6 acid volume fraction the increase in 

viscosity appears at higher emulsifier concentrations. Increasing emulsifier concentration 

offers more emulsifier to cover larger surface area.  This larger surface area is created by 

splitting emulsion droplets into smaller ones. Fine emulsions with smaller droplet sizes 

have greater viscosities as will be discussed next.  
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Fig.  4.22- Effect of emulsifier concentration at φφφφ = 0.7 and 25 

o
C. 
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Fig.  4.23- Effect of emulsifier concentration at φφφφ = 0.6 and 25 

o
C. 

 

4.2.4. Effect of Droplet Size on Apparent Viscosity 

Droplet size distribution is one of many variables that affect the apparent 

viscosity of emulsions. Previous researchers indicated that the droplet size has a 

dramatic influence on emulsion viscosity. Pal (1996) stated that the influence of droplet 

size on emulsion viscosity is not well understood. He mentioned that only a little work 

has been done on this area despite its practical significance. The size distribution, in 

particular, has not been studied in detail because it is difficult to control the size 

distribution during the manufacturing processes (Parkinson et al. 1970). We add that 

emulsified acid is no exception. A search on the large work done on emulsified acid 
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finds only two articles that measured and reported average droplet size (Al-Anazi et al. 

1998; Guidry et al. 1989). 

The effect of particle size distribution on viscosities of suspensions consisting of 

dilute uniform-size rigid spherical particles was investigated by Ward and Whitmore 

(1950) and Roscoe (1952). In their works solids volume fraction was less than 0.5. 

Ward and Whitmore (1950) showed that the relative viscosity of suspensions is 

independent both of the viscosity of the suspending liquid and the absolute size of the 

spheres at a given concentration. It is, however, a function of size distribution, 

decreasing with increasing size range. Roscoe (1952) showed theoretically that if the 

spheres are of diverse sizes, the relative viscosity is given by: 

 

( ) 5.2
1

−
−= φµr        (4.9) 

 

Chong et al. (1971) did a similar work on concentrated suspensions (solids > 50 

vol%). They proposed the following empirical equation to correlate the relative viscosity 

of suspensions as a function of solids volume fraction and maximum solids volume 

fraction: 
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∞φ is maximum solid volume fraction and can be determined by plotting )1/( −rr µφµ  

versus φ  and extrapolating the straight line to a point where the two variables become 

equal. This parameter is a minimum for monodisperse spheres and increases to a 

maximum at a mixture composition that depends on the ratio of particle sizes. Gupta and 

Seshardi (1986) theoretically calculated the maximum solids volume fraction and found 

that it decreased with increasing the ratio of the smallest diameter to the largest 

diameters in the distribution. Eq. 4.10 indicates that the relative viscosity of suspensions 

of spherical particles is independent of particle size and is only a function of the reduced 

solids volume fraction, ∞φφ / . However, the reduced volume concentration is a function 

of the particle size and particle size distribution. Eq. 4.10 is not practical for calculating 

relative viscosity of emulsions because of the difficulties involving the calculation of ∞φ . 

Chong et al. (1971) stated that, for monodisperse suspensions, Eq. 4.10 reduces 

to the well-known Einstein equation at dilute solid concentrations. They also studied the 

viscosity of bidisperse suspensions (those having two different sizes) and found that the 

relative viscosity of bimodal suspensions decreases significantly as the number of small 

spheres increases. The reason for this is that the fine spheres act like ball bearings 

between large spheres. 

According to Rodriguez et al. (1992), the influence of the particle size 

distribution on colloidal dispersions is of great practical importance as well as of 

fundamental interest.  Broadening the particle size distribution increases the maximum 

packing fraction of monodisperse spheres. By doing so, polydispersity is introduced to 

the system and can give lower viscosity at the same volume fraction. According to 



   

 

91 

Rodriguez et al. (1992), this technique is utilized in the pigment industry, ceramic 

powder processing and others. Rodriguez et al. (1992) found that for binary mixtures 

having the same volume fraction, the viscosity exhibits a minimum as a function of the 

fraction of small particles. They reasoned this to the most efficient packing. 

Pal (1996) repeated Chong and other’s work on dilute and concentrated 

suspensions on emulsions. He stated that “it is believed that the more polydispersed the 

droplet-size distribution, the lower emulsion viscosity for a given dispersed-phase 

concentration”. He found that fine emulsions (W/O or O/W) have much higher 

viscosities and storage moduli than the corresponding coarse emulsion. He indicated that 

it is always true to say viscosity increases with decreasing droplet size of the emulsion. 

 Pal (1996) found that viscosities of fine emulsions are greater than that of coarse 

ones. The increase of viscosity of emulsions with decreasing the droplet size could be 

caused by the following (Pal 1996; Barnes 1994): 

(1) Hydrodynamic interactions and thus viscosity is more when the distance of 

separation between the droplets is less. 

(2) Decrease in the droplet diameter makes the ratio of the emulsifier thickness to the 

droplet size ( D/δ ) significant thus increases the effective dispersed-phase 

concentration. 

(3) Polydispersity (the range of the droplet size distribution) decreases with decreasing 

the droplet size. Fine emulsions are more monodispersed. 

(4) Fine emulsions have more flocculation. The degree of flocculation increases with 

decreasing particle size. 



   

 

92 

Several studies indicated that when two monodisperse systems, with different 

particle sizes, but the same volume fraction of particles, are mixed together in varying 

proportions, the resulting dispersion exhibits a minimum viscosity at a certain 

composition. According to Pal (1996), this minimum is observed only if the mixed 

dispersion is bimodal. He reasoned that to the fact that the smaller particles serve to 

isolate or lubricate the larger ones. Parkinson et al. (1970) derived a relationship for 

continuous emulsions with different particle sizes added together: 

 

)()3()2()1( ... irrrrir
µµµµµ ××××=

∑
   (4.11) 

 

  Finally, one could expect the viscosity of the emulsion to decrease with aging 

because aging causes coarsening of the emulsion. Hence, increase in droplet size 

decreases the viscosity.  

The effect of average droplet diameter on the viscosity of the acid in diesel 

emulsion at several varying conditions was studied. Figs. 4.24 and 4.25 show the 

viscosity as a function of average droplet diameter for emulsions with 0.7 acid volume 

fraction at 25 and 70 oC and at different shear rates. The shear rate ranged from 30 to 

500 s-1. 
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Fig.  4.24- Viscosity as function of droplet diameter and shear rate at φφφφ = 0.7 and 25 

o
C. 
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Fig.  4.25- Viscosity as a function of droplet diameter and shear rate at φφφφ = 0.7 and 70 

o
C. 
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In general, the apparent viscosity decreases with increasing average droplet 

diameter. This is specifically true for emulsions with acid volume fractions of 0.6 or 

larger and/or at temperatures of 60 oC or higher. 

There is no definite connection that was noted between the viscosity and the 

droplet size for emulsions having acid volume fractions of less than 0.5 and at 

temperatures less than 60 oC. On the other hand, the most stable emulsion of 0.7 acid 

volume fraction provides clear evidence of decreasing emulsion viscosity with 

increasing droplet sizes as reported by previous researchers (Pal 1996). 

Inspection of Figs. 4.24 and 4.25 shows that the change in viscosity as the 

average droplet size increases is minimal at high shear rates and more significant at low 

shear rates. For example, in Fig. 4.24, the viscosity decreased from 51 mPa.s to 2 mPa.s 

at a shear rate of 30 s-1 but only decreased from 17 mPa.s to 1 mPa.s at 500 s-1. Another 

observation is that for coarse emulsions the effect of shear rate on viscosity is 

insignificant. As an example, in Fig. 4.25 also, one can see that for a coarse emulsion 

that has an average droplet size of 12.35 µm, the viscosity decreased from 2 to 1 mPa.s 

as the shear rate increased from 30 to 500 s-1. But, the viscosity decreased from 51 to 17 

mPa.s when the same change in shear rate is applied for a fine emulsion that has an 

average droplet size of 5.96 µm. 

Another factor that can be observed in the Figs. 4.24 and 4.25 is the effect of 

temperature. Figs. 4.24 and 4.25 show the effect of raising the temperature from 25 to 70 

oC. As the temperature increases, the dependency of the viscosity on the droplet size 

becomes more linear. 
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Fig.  4.26- Effect of average droplet diameter on power-law index. 
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Fig.  4.27- Effect of average droplet diameter on power-law consistency index. 
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The effect of the average droplet size on power-law parameters are shown in 

Figs. 4.26 and 4.27. The power-law index increases slightly with increasing average 

droplet size. The consistency index decreases exponentially with the average droplet 

size. 

The viscosity of emulsified acid depends also on the size distribution of droplets 

of the acid. Standard deviation is used in this analysis to magnify the size distribution 

because standard deviation measures the spread of droplets sizes around the average 

droplet size and thus gives the dispersity of the emulsion. In other words, the standard 

deviation tells how tightly the droplets sizes are clustered around the mean. When the 

sizes are tightly clustered and the distribution curve is steep, the standard deviation is 

small as in Fig. 4.28. When the droplets sizes are spread apart and the distribution curve 

is relatively flat, that tells that there is a relatively large standard deviation as in Fig. 

4.30. Fig. 4.29 shows the middle case of the standard deviation.  

Figs. 4.31 and 4.32 show the effect of size distribution, represented by standard 

deviation, on the viscosity of the emulsified acid at 25 and 70 oC and at different shear 

rates. Fig. 4.31 shows that the viscosity varies slightly when the standard deviation 

changes from 3.7 to 8.8 µm but it exhibits strong drop when the standard deviation 

widens from 8.8 to 12.5 µm. Fig. 4.32 show that higher temperatures cause the viscosity 

to respond strongly to the change in size distribution. Figs. 4.31 and 4.32 show that at 

wider size distribution, the viscosity change with shear rate is insignificant. For example, 

in Fig. 4.32, the viscosity at all shear rates is almost unchanged at large standard 

deviation but varies significantly for small size distribution. 
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Fig.  4.28- Droplet size distribution at φφφφ = 0.7 and 1 gpt emulsifier concentration. 

Fig.  4.29- Droplet size distribution at φφφφ = 0.7 and 5 gpt emulsifier concentration. 

Fig.  4.30- Droplet size distribution at φφφφ = 0.7 and 10 gpt emulsifier concentration. 
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Fig.  4.31- Viscosity as function of standard deviation and shear rate at 25 

o
C. 
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Fig.  4.32- Viscosity as a function of standard deviation and shear rate at 70 

o
C. 
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4.2.5. Effect of Acid Volume Fraction on Apparent Viscosity 

The apparent viscosity of water-in-oil emulsions increases strongly with 

increasing its water volume ratio. Extensive work has been done on the effect of solid 

volume fraction on suspensions. One of the earliest works is due to Einstein who 

theoretically developed a thermodynamic model to relate the relative viscosity to the 

volume fraction of the dispersed phase (φ). He developed the following equation and 

applied it to an aqueous sugar solution: 

φµ 5.21+=r        (4.12) 

µr is the relative viscosity defined previously in Eq. 4.8. Taylor (1932) developed an 

equation that relates the relative viscosity to the volume fraction for low concentration 

emulsions. 
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Farah et al. (2005) proposed an equation that correlates the viscosity to the temperature 

and the water volume fraction for water-in-oil emulsions.  

Figs. 4.33, 4.34 and 4.35 show the effect of acid volume fraction on the viscosity 

of emulsified acid at 1, 5 and 10 gpt emulsifier concentrations and at different 

temperatures. The results are presented at shear rate of 500 s-1. Fig. 4.33 shows that at 

low temperatures and for acid volume fractions less than or equal 0.6, the viscosity 
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increases linearly with acid volume fraction. As temperature increases above 50 oC, the 

relationship does not follow the linearity suggested by Einstein model. Fig. 4.34 shows 

the effect of acid volume fraction on viscosity at emulsifier concentration of 5 gpt. The 

viscosity increases with acid volume fraction for all temperatures, but only for acid 

volume fractions of 0.5 and greater. Fig. 4.35 shows the effect of acid volume fraction 

on viscosity at emulsifier concentration of 10 gpt. The viscosity increases linearly with 

acid volume fraction especially for low temperatures. At 60 and 70 oC the relationships 

starts to deviate from linearity.  
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Fig.  4.33- Effect of acid volume fraction on viscosity at 1 gpt. 
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Fig.  4.34- Effect of acid volume fraction on viscosity at  5 gpt. 
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Fig.  4.35- Effect of acid volume fraction on viscosity at 10 gpt. 
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4.3. Conclusions 

This section examined the impact of the droplet size and acid volume fraction on 

the apparent viscosity of emulsified acid. The following conclusions were obtained:  

1. The viscosity of emulsified acid decreases with increasing droplet size of the 

emulsion system. Fine emulsions have higher viscosity than coarse ones. 

2. The viscosity decreases with widening the size distribution of the emulsion. 

3. The viscosity of emulsified acid was found to increase as the acid volume 

fraction increases at high emulsifier concentration (10 gpt). For low 

concentrations (1 gpt), it increases as the acid volume fraction is increased from 

0.4 to 0.6. 

Although some conclusions were proven by previous researchers to apply for the 

water-in-oil emulsions in general, we should emphasize that our conclusions are specific 

to the mentioned conditions. 
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5. REACTIVITY OF EMULSIFIED ACID 

5.1. Introduction 

Unlike other acid systems such as gelled and viscoelastic surfactant-based (VES) 

acids, where the mobility of hydrogen ion controls the overall rate of the reaction, 

emulsified acid/calcite reaction involves the transport of acid droplets in the diesel to the 

rock surface, breaking of acid droplets, and then the actual reaction on the surface. A 

limited number of papers have been published on the reaction kinetics of emulsified 

acid. However, none of the published work considered the effect of acid droplet size on 

the reaction of emulsified acid. The objective of this work is to examine the effect of 

acid droplet size on the reaction rate of emulsified acid with calcite. 

 The acid was 15 wt% HCl emulsified in diesel with 70 to 30 acid to diesel 

volume ratio.  Emulsifier concentration was varied from 1 to 10 gpt. All emulsions were 

characterized by measuring the droplet size distribution, viscosity and thermal stability.  

Diffusivities were measured using the rotating disk device. Experiments were carried out 

at 25, 50 and 85 oC, under 1,000 psi pressure, and disk rotational speeds from 100 to 

1,000 rpm. Samples of the reacting acid were collected and analyzed for calcium 

concentration.  

 The effects of droplet size on the overall reaction rate were significant. Diffusion 

rate of acid droplets to the surface of the disk were found to decrease with increasing 

emulsifier concentration because of higher viscosities and smaller droplet sizes. 

Effective diffusion coefficient of emulsified acid was found to increase linearly with the 
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average droplet size of the acid. Emulsions with low emulsifier concentrations (1 gpt) 

have average droplet sizes of nearly 13 µm. These emulsions were found to have high 

effective diffusion coefficients (5.093
901 −×  cm2/s) and low retardation. On the other 

hand, emulsions with high emulsifier concentrations (10 gpt) have smaller average 

droplet sizes (nearly 6 µm) and found to have low effective diffusion coefficients 

(4.905
1101 −×  cm2/s) and high retardations.  

The new sets of data can be used to determine the optimum emulsified acid 

formulation to yield deeper acid penetration in the formation. It is suggested that droplet 

size can be adjusted to produce the desired diffusion rate coefficients for acid fracturing 

treatments. 

5.2. Review of Emulsified Acid Reaction and Diffusion Rates 

Acid fracturing is widely used for stimulating limestone and dolomite 

formations. The HCl retarded acids such as gelled and VES acids are used in such 

treatments because they reduce the mobility of the reacting hydrogen ion to the surface 

of the reaction. The surface reaction between HCl acid and calcite is very rapid and the 

diffusion rate of the hydrogen ion to the surface of the rock controls the overall rate of 

reaction in such systems. Emulsified acid is also a retarded acid that is widely used in 

acid fracturing treatments. In the emulsified acid system, a continuous liquid phase 

which is diesel surrounds droplets of hydrochloric acid forming acid-in-diesel emulsion. 

It is the practice of petroleum industry to use a concentrated (15-28 wt%) hydrochloric 

acid. The emulsified acid system is stabilized by adding an emulsifier. Because 
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emulsions are unstable and thus do not form spontaneously, an emulsifier is needed to 

reduce the interfacial tension between the acid and the diesel to a value that allows the 

two phases to mix and form one mixture. Once formed, the emulsified acid system 

should remain stable for a minimum time that allows it to be pumped to the formation. 

The reaction rate of emulsified acid is also controlled by diffusion. Contrary to diffusion 

of hydrogen ions in the gelled and VES acids, the diffusion of acid droplets to the 

surface of the rock controls the overall reaction rate of emulsified acids. 

 Because of constrained mobility, the reaction rate of emulsified acid is about 8.5 

times less than that of straight acid (Navarrete et al. 1998). This retardation effect allows 

for more penetration inside the carbonate formation. Additionally, the presence of diesel 

as the external phase reduces the corrosion problems and minimizes the need for high 

corrosion inhibitor loadings. Another major advantage of using emulsified acid is its 

viscous effect that helps in fluid loss control. Buijse and van Domelen (1998) listed 

several other advantages of the emulsified acid. 

In order to design the acid fracturing treatment, acid fracturing models require 

the input of the diffusion rate coefficients. Modeling of the acid transport to the surface 

of the rock and measurement of the diffusion coefficients have been the subject of many 

important studies in the acid fracturing (Nierode and Williams 1971; Roberts and Guin 

1974; Williams and Nierode 1972; Lund et al. 1975; Roberts and Guin 1975; Nierode 

and Kruk 1973). Several other studies have used the rotating disk apparatus to measure 

the diffusivity of straight hydrochloric acid during acid fracturing and matrix acidizing 

in limestone formations (Taylor et al. 2006; Taylor et al. 2004). A few published papers 
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such as that of Nierode and Kruk (1973) have reported some effective diffusion 

coefficient measurements for the emulsified acid. Li et al. (1993) reviewed the methods 

used for determining the effective diffusion coefficients and used rotating disk procedure 

to measure diffusion coefficients of emulsified acid. de Rozieres et al. (1994) compared 

the diffusion coefficients of straight, gelled and emulsified acid using diaphragm and 

rotating disk procedures. Conway et al. (1999) measured the diffusion coefficients of 

emulsified acid under the influence of Ca2+ and Mg2+ ions and at different temperatures. 

Recently, Kasza et al. (2006) have done measurements on the diffusion rate of 

emulsified acid. 

  The aforementioned studies assume that the calculation of the diffusion 

coefficient is for the hydrogen ion. However, for emulsified acid, the continuous phase is 

diesel and there is no true mobility of the hydrogen ion in the diesel. Instead, the droplets 

of the acid diffuse from the bulk of emulsified system to the surface of the rock (Buijse 

and van Domelen 1998). Therefore, the droplet size plays a major role in the diffusivity 

of emulsified acid. It has been shown previously that fine and coarse emulsions have 

different retardation effects (Buijse and van Domelen 1998; Navarrete et al. 1998). 

  The objective of this section is to study the influence of droplet size of the 

emulsified acid on its effective diffusion coefficient using calcite marbles and Indiana 

limestone rocks. In the absence of any theoretical studies that relate the droplet size to 

mass transfer parameters, our approach was to use the rotating disk standard procedure 

to measure the diffusion coefficients then correlate the results with droplet size 

measurements.  
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The reaction equation between the hydrochloric acid and calcite is:  

 

CaCO3 + 2 HCl  → CaCl2 + CO2 + H2O                                (5.1) 

  

For plain HCl acid, this heterogeneous reaction has three basic steps: (1) 

diffusion of the hydrogen ion to the surface of the rock, (2) the reaction on the surface, 

and (3) the diffusion of the calcium ions back to the solution. The exchange reaction on 

the surface is very rapid compared to the transfer of the ions between the surface and 

bulk solution. Therefore, the system is called mass transfer controlled. For emulsified 

acid, the hydrogen ion does not diffuse in the oily continuous phase. Therefore, the 

reaction process will additionally involve (1) the diffusion of acid droplets inside the 

continuous diesel phase; and (2) the breakup of the droplets before they react with the 

calcite surface. The surface reaction rate for Eq. (5.1) is given by: 

 

α
sH

kCR =+        (5.2) 

 

where +
H

R is the surface reaction rate (moles/cm2.s), k  is the reaction rate constant 

(cm2/s), sC is the concentration of H+ on the reactive surface (mole/cm3), and α  is the 

order of the reaction. The dependence of reaction rate constant on temperature can be 

represented by Arrhenius equation: 
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where ko is the frequency factor for the reaction (cm2/s), R is the universal gas constant 

(8.314472 J/(mole-oK)), T is the absolute temperature (oK) and Ea is the reaction 

activation energy (J/mole). The mass transfer step is represented by the diffusion rate as 

in Eq. (5.4): 

 

)( sbmtH
CCkJ −=+        (5.4) 

 

where +
H

J is the mass transfer rate of H+ from the liquid to the disk (moles/cm2.s), kmt is 

the mass transfer coefficient (cm/s) and bC  is the concentration of H+ in the solution 

(mole/cm3). At equilibrium, all the mentioned steps must proceed at the same rate. The 

concentration of the hydrogen ion on the surface of the rock is negligible compared to 

the bulk concentration under the assumption of very rapid reaction on the surface 

( sb CC >> ). Therefore, Eq. (5.4) reduces to: 

 

bmtH
CkJ =+         (5.5) 

 

From the above analysis, one can notice that the diffusion rate parameters are 

sufficient (under these assumptions) for estimating the overall reaction rate. The rotating 

disk apparatus is widely used for measuring these diffusion parameters for the acid 
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fracturing treatments design. Li et al. (1993) detailed the procedure for using the rotating 

disk apparatus to determine the effective diffusion coefficients for power-law fluids such 

as the emulsified acid. Same procedure was later followed by other researchers to 

measure the diffusion coefficients of gelled acid (de Rozieres et al. 1994; Conway et al. 

1999; Nasr-El-Din et al. 2006b) and viscoelastic surfactant-based (VES) acids (Al-

Mohammad et al. 2006; Nasr-El-Din et al. 2007). The solution was originally derived by 

Hansford and Litt (1968) by solving the continuity and convective diffusion equations 

for the power-law fluids. The model was represented by de Rozieres et al. (1994) as: 
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= ω
ρ

φ      (5.6) 

 

where a is the disk radius in cm, n is the dimensionless power-law index, K is the power-

law consistency index in g/(cm-s2-n), ρ is the fluid density in g/cm3, ω is the disk 

rotational speed in rad/s, )(nφ  is an empirical function, and D is the diffusion coefficient 

in cm2/s. 

  Eq. (5.6) is strictly the solution for mass transfer from the surface of the rotating 

disk into the power-law liquids as stated by Hansford and Litt (1968). This ignores the 

presence of the reaction on the surface. One of the major observations about this 

equation is that it is the average of the mass transfer of each point on the surface of the 

disk. In other words, Hansford and Litt (1968) found that accessibility of the fluid to the 
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surface of the disk is not uniform but is dependent on the radial position. Therefore, the 

surface area implied by the disk radius must remain constant. 

  The key assumption for modeling the flow dynamics and mass transfer from an 

acidic solution to the rotating disk is that the disk is sufficiently large so that the edge 

effect is negligible. That means the disk radius must be much larger than the boundary-

layer thickness and the flow in the system must be laminar (Levich 1962). For 

Newtonian fluids the vessel diameter should be at least twice the disk diameter (Gregory 

and Riddiford 1656). Boomer et al. (1972) detailed the design of the rotating disk 

apparatus for the use in corrosive liquid environments.  

  Hansford and Litt (1968) noticed that the mass transfer curves for all the systems 

that they studied, both reacting and non-reacting, have the same general shape. Their 

argument was that the chemical reaction only increases the concentration driving force 

for the mass transfer. Based on the above discussion, one can conclude the following 

limitations once it comes to using this procedure for the emulsified acid:  

− Eq. (5.6) was derived for the mass transfer of ions in the solution, which cannot 

represent the diffusion of the acid droplets. Also, the hydrogen ion does not diffuse 

in the hydrocarbon phase. 

− Eq. (5.6) includes the solution of diffusivity equation without chemical reaction. A 

complete solution for the problem should include the chemical reaction, which is 

important for the emulsified acid/ calcite system.  

− There is two-way flow of ions to and from the surface in the emulsified acid/calcite 

system. Eq. (5.6) was solved for a one component flowing in one direction. 



   

 

111 

This model for rotating disk is the only available one for power-law fluids 

despite the above limitations. In this work this procedure is followed because of the 

absence of theoretical studies that consider the above limitations. However, the 

measurements of the diffusion coefficient were done at different droplet sizes. In order 

to use Eq. 5.6, the concentration of the hydrogen ion is needed. Alternatively, since the 

flux of H+ ions to the surface of the disk is twice the flux of the Ca2+ ions away from the 

surface of the disk (at equilibrium), one can instead use the calcium concentration. 

Therefore, 

+++ =
CaH

JJ 2                                      (5.7) 

where ++
Ca

J is the mass transfer rate of Ca++ from the disk into the liquid (moles/cm2.s). 

Combining Eqs. 5.5, 5.6 and 5.7 yields Eq. 5.8: 
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Eq. 5.8 can be written as: 
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Eq. 5.9 shows that plotting F vs. ω1/(1+n)  results in a straight line, and the slope of 

the line is the effective diffusion coefficient raised to the 2/3 power.  
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5.3. Experimental Studies 

5.3.1. Materials 

Calcite marble (CaCO3) from Italy with a trade name of “Acqua Bianca” was 

obtained as a white, fine-grained rock. Purity was determined by XRD (X-Ray Powder 

Diffraction) and elemental analysis. Elemental analysis showed that the calcite marble 

contained more than 99 wt% calcium carbonate.  Trace amounts of albite, quartz and 

chlorite were identified by XRD analysis.  Only the disks with purity above 99 wt% 

calcium carbonate were used. The calcite marble was in the form of pure white tiles 30 

cm (11.8 in.) by 60 cm (23.6 in.) by 2.8 cm (1.10 in.) thick.  Each tile was highly 

polished on one side. Disks with a diameter of 1.5 in. and a thickness of 0.6 in (1.52 cm) 

were cut from the marble tiles using a drill press machine. Disks with flaws or 

discoloration were discarded. 

Indian limestone rocks were obtained from a local supplier and were cut to the 

specifications described in Fig. 5.1. An 8-inch cubic block of Indian limestone was 

cored using 1.5-inch bit. Sixteen 8-inch long core plugs were produced from the block. 

Then each plug was cut into 10 disks that were 0.6 inch thick. Therefore, each disk was 

1.5 inches in diameter and 0.6 inch thick as shown in Fig. 5.1. This procedure minimized 

the heterogeneity between the samples as all samples were cut from the same block and 

in the same direction. The rock samples were analyzed using XRD/XRF and found to be 

mainly calcium carbonate (nearly 97 wt%). Table 5.1 summaries XRD/XRF results. The 

Indiana limestone rocks had average porosity of 17 % and average permeability of 4.5 

md (see Table 5.2). 
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Fig.  5.1- Dimensions of Indiana limestone disks used for the experiments. 

 

 

 

TABLE  5.1- ELEMENTAL COMPOSITION OF INDIANA LIMESTONE 

Element Content 

Ca 38.8 wt. % 

Mg 0.1 wt. % 

Fe 900 mg/kg 

Al 700 mg/kg 

Sr < 500 mg/kg 

S < 500 mg/kg 

Si < 500 mg/kg 

 

 

1.5” 

0.6” 
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TABLE  5.2- PERMEABILITY AND POROSITY OF INDIANA LIMESTONE ROCK 

Sample. No. 1 2 3 4 5 6 

Dry Weight, gram 42.72 41.66 39.43 42.1 42.21 41.16 

Length, inch 0.67 0.66 0.63 0.65 0.68 0.65 

Diameter, inch 1.49 1.49 1.49 1.49 1.49 1.49 

Pore Volume, cm3 3.19 3.27 3.23 2.83 3.69 3.19 

Grain Volume, cm3 15.96 15.59 14.77 15.74 15.74 15.38 

Bulk Volume, cm3 19.15 18.86 18 18.57 19.43 18.57 

Grain Density, g/cm3 2.678 2.672 2.67 2.674 2.682 2.676 

Porosity, % 16.66 17.34 17.94 15.24 18.99 17.18 

Pressure, inch H2O 39.9 39.9 39.9 39.9 39.9 39.9 

Time, min 1.12 1.3 0.92 0.82 0.82 0.79 

Permeability, md 3.8 3.2 4.3 5 5.2 5.2 

 

  

  In all emulsion preparations, the same source of low-sulfur diesel was used. It 

had sulfur and water contents of less than 1.0 wt% and 0.05 vol.%, respectively. 

Hydrochloric acid (ACS grade) was obtained from a local supplier. The acid 

concentration was determined by acid-base titration and found to be 37.8 wt%. The 

corrosion inhibitor and the emulsifier (cationic) were obtained from a local service 

company. The emulsifier was amine-based surfactant dissolved in an organic solvent. 
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5.3.2. Preparation of Emulsions 

Several emulsified acid systems with varying emulsifier concentrations were 

prepared in a systematic way to ensure the reproducibility of the results. A concentrated 

hydrochloric acid (37.8 wt%) was diluted to 15 wt% by adding distilled water. Then, a 

corrosion inhibitor at 5 gpt was added to the acid. The emulsifier (at varying 

concentrations) was added to 180 ml of diesel in a Waring blender. The emulsifier was 

given enough time to thoroughly mix in diesel. 

  Using a separatory funnel, 420 ml of HCl acid was slowly added to the 

emulsified diesel. It is important to add the acid droplet-wise and uniformly through out 

the blending. The emulsion was blended for two minutes at a constant speed after the 

last drop of acid was added in order to generate a uniform emulsion. The final volume of 

the emulsion was 600 ml with 70 to 30 acid to diesel volume ratio. It is important to note 

that the rate of the addition of the acid to the diesel and the speed of mixing are critical 

to the produced emulsion. Therefore, the rate of adding the acid to the diesel and the 

speed of the blender was fixed for all of the emulsions. 

  The produced emulsions are characterized by acid-to-diesel volume ratio, 

emulsifier concentration in the diesel phase, corrosion inhibitor in the acid, acid 

concentration, and droplet size and size distribution. An emulsion produced by this 

unique characterization will have reproducible properties.  

5.3.3. Droplet Size Measurement 

The droplet size distribution was measured using Fritsch’s Laser Particle Sizer 

“Analysette 22: Economy type”. The measuring range of this instrument is 0.1 to 600 
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µm. This instrument uses the principle of diffraction of electromagnetic waves to 

determine the particle size distribution in suspensions and emulsions. The light of a 

parallel laser beam is deflected by the particles. The angle of deflection is determined by 

the diameter and the optical properties of the particles. The conventional design includes 

a convex lens focusing the scattered light to form a ring on the focal plane, where a 

detector measures the Fourier spectrum. The particle size distribution is then calculated 

with advanced mathematical methods on the basis of the Fraunhofer or Lorenz-Mie 

theory. More details about the droplet size measurement and characterization were given 

in section 1. 

5.3.4. Viscosity Measurement 

A Brookfield viscometer (Model PVS) was used to measure the apparent 

viscosity of emulsified acids at different conditions. The wetted-area of this viscometer 

is made of Hastelloy C for acid resistance.  The PVS viscometer uses bob/cup set # B1, 

which requires a sample volume of 30 cm3. The temperature sensor was mounted on the 

stator/bob. Viscosity measurements were conducted at 25˚C, 50˚C, and 85˚C, over shear 

rates from 10 to 750 s-1. A pressure of 300 psi was applied to minimize evaporation of 

the sample, especially at high temperatures.  

5.3.5. The Rotating Disk Apparatus and Procedure 

The rotating disk apparatus used in this work was the RDA-100 manufactured by 

CoreLab Instruments Ltd.  All acid-wetted surfaces were manufactured from Hastelloy 

B-2 or Hastelloy C-276 alloy for corrosion resistance.  The apparatus consists of an acid 
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reservoir, reaction vessel, magnetic drive assembly, gas booster system, heating 

circulation bath, and associated pressure regulator, valves, temperature and pressure 

sensors and displays. Detailed description of the design of this system is given by 

Boomer et al. (1972). 

 Disk preparation was identical for all experiments and the procedure of Fredd 

(1998) and Taylor et al. (2006) was followed. Disks were soaked in 0.1 N HCl for 30 to 

35 minutes, thoroughly rinsed with deionized water, and then weighed before mounting 

them in the rotating disk instrument. According to Fredd (1998), this procedure greatly 

increases the reproducibility of dissolution rate data with the rotating disk instrument. 

The calcite disk was mounted on a spindle using heat-shrink Teflon tubing, so 

that only one face of the disk was exposed to acid.  A new disk was used for each 

experiment. The reservoir was filled (600 ml) with the emulsified acid. The system was 

pressurized to 1,000 psi with nitrogen and the temperature was adjusted to the desired 

temperatures (25, 50 or 85 oC) using a heating circulation bath. After stabilizing pressure 

and temperature, the disk rotation was started and the acid was allowed to flow from the 

reservoir to the reaction vessel. Time was recorded immediately with starting the transfer 

and when the reaction vessel was full the valve between the reservoir and the reaction 

vessel was closed. Reaction vessel is full when the acid comes out from the back 

pressure valve. During the experiment, small samples (about 2 ml) were collected 

periodically from reaction vessel through the sampling valve. Samples were collected 

every 2 minutes for a period of 20 minutes at 25 and 50 oC and every one minute for a 

period of 10 minutes at 85 oC. The samples were collected in pre-weighed plastic test 
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tubes. The plastic tubes were weighed again and the samples were left to separate. After 

separation, the aqueous phase in the bottom was drawn using syringes and emptied to 

new glass test tubes. Caution was taken to use different syringe for every sample to 

prevent contamination of the samples.  

  At the end of the experiment, the reaction vessel was drained to a one-liter glass 

bottle and the amounts of separated phases were recorded. Acid concentration and 

density of the aqueous phase were measured. Then, the pressure was released, the disk 

was taken out and the system was flushed with distilled water. The disk was then soaked 

in acetone to remove remaining diesel and heated for one hour at 100 oC in order to dry. 

  All experiments were performed in the laminar flow regime. The Reynolds 

number, Re, was calculated using Eq. (5.11).   

 

Re = (a2.ω 2-n)/N      (5.11) 

Where,  

K = power-law consistency index, g/(cm-s2-n) 

n = Power-law index, - 

N = K/ρ, g/(cm-s2-n)/(g/cm3) 

a = Radius of the disk, cm  

ω = Disk rotational speed, rad/s 

The highest Reynolds number at 1,000 RPM was found to be 510.7. Similarly, all 

calculated Reynolds numbers for all sets of experiments were found to be less than 104 

indicating the flow regime was laminar (Fredd and Fogler 1998). 
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5.3.6. Analytical Techniques 

The concentrations of calcium and magnesium ions present in the samples were 

measured by Inductively Coupled Plasma (ICP). The density of samples was measured 

using a Paar densitometer, model DMA-35. The pH of all solutions was measured using 

a Thermo Orion pH meter model 250A. The acid concentration was measured before 

and after experiments by the titration of a known volume of the acid with 1 N NaOH 

solutions to an endpoint of 4.2. 

5.4. Results and Discussion 

5.4.1. Properties of the Emulsified Acid 

The objective of this work is to study the effect of the droplet size on the 

effective diffusion coefficient. Therefore, the approach here was to systematically adjust 

the emulsifier concentration to generate different average droplet sizes that can help 

achieve this purpose. Table 5.3 gives detailed information for the properties of 

emulsified acid for each experiment. More details about each system were given in 

sections 2 and 4. In the first three sets of experiments, the emulsifier concentrations of 1, 

5 and 10 gpt were used to generate average droplet sizes of 12.354, 8.375 and 5.955 µm, 

respectively. The specific gravity of all emulsions was found to be 0.994. The power-law 

parameters are also listed in Table 5.3. Fig. 5.2 shows that viscosity of emulsified acid 

follows the power-law model and these data were used to extract the n and k values 

given in Table 5.3. 
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   Additionally, Table 5.3 gives the chemical composition and the experimental 

conditions for each experiment. The sampling time and rotational speeds were reduced 

in the last experiment because of the high reaction rate that could dissolve the calcite 

disk totally and affect the surface area of the reaction. 

 

TABLE  5.3- SUMMARY OF EXPERIMENTS FOR CALCITE MARBLES 

 Set 1 Set 2 Set 3 Set 4 Set 5 

Rock Calcite Calcite Calcite Calcite Calcite 

Temperature, oC 25 25 25 50 85 

Acid volume fraction, - 0.7 0.7 0.7 0.7 0.7 

Corrosion concentration, gpt 5 5 5 5 5 

Emulsifier concentration,  gpt 1 5 10 10 10 

Droplet size, µm 12.354 8.375 5.955 5.955 5.955 

Power-law index, - 0.7319 0.6832 0.6473 0.6557 0.5878 

Power-law consistency index, g/(cm-
n-2

1.145 3.129 3.347 2.363 1.030 

Density of the fluid, g/cm3 0.994 0.994 0.994 0.994 0.994 

Sampling time, minutes 20 20 20 20 10 

Disk Rotational Speed, rpm 

200 
400 
600 
800 
1000 

200 
400 
600 
800 
1000 

200 
400 
600 
800 
1000 

200 
400 
600 
800 

100 
200 
400 
500 
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Fig.  5.2- Viscosity for emulsions showing that they follow power-law model. 

5.4.2. Weight Loss Analysis 

The weight loss of the calcite disk was measured as a function of the emulsifier 

concentration. The weight loss for each calcite disk was calculated using Eq. (5.12): 

 

100 ×
−

=
B

AB

W

WW
LossWeight     (5.12) 

 

AW  is recorded weight of the calcite disk before the reaction and BW  is weight of the 

calcite disk at the end of the reaction after it was washed and dried. Fig. 5.3 shows that 

the weight loss decreased with increasing the emulsifier concentration. This indicates 

that the overall reaction rate decreased with increasing emulsifier concentration. It 
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should be realized that the surface reaction rate was not changing since parameters 

affecting it were not modified. The data in Fig. 5.3 always involves the reaction of 15 wt 

% HCl with calcite at room temperature. The only variable that changed was the 

emulsifier concentration. If this argument was valid, the surface reaction rate would be 

constant and the decrease of the overall rate of reaction was caused by the decrease of 

the diffusion rate. 

 Diffusion rate is significantly reduced because the more viscous emulsion 

introduced by higher emulsifier concentration impedes the mobility of acid droplets. The 

disk lost 45 % of its original weight when it reacted with the emulsified acid that has 1 

gpt of emulsifier concentration for 20 minutes of contact time, Fig. 5.3. Clearly, the 

weight loss of the disk that reacted with an emulsified acid that has 15 gpt of emulsifier 

was immaterial. There are two reasons to interpret this observation: (1) the medium 

became too viscous to transport the acid droplets; and (2) the droplets were too small so 

that the transported acid droplets did not have sufficient acid for the reaction. Another 

interesting observation from Fig. 5.3 is the continuous and smooth decrease of weight 

loss as the emulsifier concentration was increased. 

 These data serve as preliminary indications of what would be the trend of the 

diffusion rate coefficient. They also quantitatively demonstrate the emulsifier 

concentration at which the overall rate of reaction was totally impaired by the viscous 

effects. This indicates that at a concentration of 15 gpt the disk did not react. This 

primary observation helps to constrain the experiments to 10 gpt as the change from 10 
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to 15 gpt was not significant. As will be shown later, these results match with the 

measured diffusion coefficients. 

  Rotating disk experiments are used to minimize mass transfer limitations on the 

overall reaction rate. Fig. 5.4 clearly shows that as the rotational speed of the disk was 

increased, the weight loss increased indicating higher reaction rates. As the rotational 

speed was increased, the transport of the acid droplets to the surface of the disk was 

enhanced leading to faster overall reaction rate, hence, higher weight loss values. 

  The increase is dominant at low emulsifier concentration (larger droplet sizes) as 

in Set # 1 and higher temperatures as in Sets # 4 & 5. Higher emulsifier concentration as 

in Set # 3 shows that the reaction was totally blocked even at high disk rotational speeds. 

High rotational speeds did not eliminate the mass transfer effects at this case. 
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Fig.  5.3- Weight loss of calcite disks at 1000 RPM and 25 
o
C after 20 minutes. 
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The response of reaction rate to rotational speed was significant at higher 

temperatures. Fig. 5.4 shows that weight loss reached 75 percent at 50 oC and 800 RPM 

(Set # 4). The test was not done for 1000 RPM because of excessive weight loss and 

significant change of the surface area of the calcite disk. In Sets # 1 to 4 the disks were 

rotated for 20 minutes before ending sampling and draining the acid. At even higher 

temperature (85 oC in Set # 5), the rotational speed was reduced to 500 RPM and 10 

minutes contact time. Weight loss data for Set # 5 indicates that excessive reaction rate 

was taking place. The test time was reduced to only 10 minutes because the disk would 

totally dissolve in the acid if the contact time was 20 minutes. 
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Fig.  5.4- Weight loss of calcite disks at the end of each experiment. 
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It should be mentioned that reducing the contact time did not affect the final 

calculations of the diffusion rate since samples are taking with time and dissolution rate 

was calculated as the slope of the calcium concentration with time. The sampling time 

was only the time of stopping sampling and getting the disk out from the reaction vessel 

which obviously did not affect the dissolution rate.   

5.4.3. Calcium Ion Concentration 

Figs. 5.5 to 5.9 present the calcium ion concentration data for each experiment. 

Shown in each figure is the concentration of calcium in mg/L as a function of sampling 

time. Sampling time for Sets # 1 to 4 was 20 minutes with two minutes increment while 

it was 10 minutes for Set # 5 with one minute increment. This reduction in sampling 

time was to avoid the fast reaction rate at 85 oC. Fig. 5.5 shows the calcium ion 

concentrations for Set # 1. The emulsifier concentration for this set of experiments was 1 

gpt and the experiments were done at 25 oC. Because of the large average droplet size 

and the relatively less viscous fluid, the range of the calcium ion concentrations reached 

30,000 mg/L at a rotational speed of 1000 RPM. The calcium ion concentration 

decreased as the rotational speed was reduced to 200 RPM. 

In Fig. 5.6, the emulsifier concentration was increased to 5 gpt. The average 

droplet size of this emulsion decreased and the viscosity increased. The acid is thus 

retarded more and the calcium concentrations reduced to 11,000 mg/L at 1000 RPM. 

Fig. 5.6 also shows a decreasing calcium concentration with lowering the rotational 

speed of the calcite disk. In Fig. 5.7, the emulsifier concentration was increased to 10 

gpt. The average droplet size of this emulsion was further decreased to very small 
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numbers and the viscosity was very high. The combinations of these two effects caused 

the reaction rate to drop to very low values. The maximum value of calcium 

concentration was in the range of 1500 mg/L. The concentration of calcium ion showed 

non-linear trends. This might be due to the formation of a viscous layer on the face of 

the disk. 

Figs. 5.8 and 5.9 show the dissolution of the calcium at 50 and 85 oC, 

respectively. Fig. 5.8 shows the calcium concentrations of Set # 4. The emulsifier 

concentration was 10 gpt. The viscosity was less than that of the same concentration at 

25 oC because of the higher temperature. This experiment was run for 20 minutes. The 

data showed a non-linear after 10 minutes because of the significant change of the 

surface area of the disk. In Fig. 5.9, the experiment was run for only 10 minutes at 85 oC. 

The dissolution values appeared less than the ones at 50 oC. However, careful analysis 

and comparing values at similar sampling times and rotational speeds showed that 

dissolution at 85 oC is higher than that of 50 oC.   

5.4.4. Dissolution Rate 

The first few points at each rotational speed in Figs. 5.5 to 5.9 are fitted to a 

straight line. The slope for each line then was taken to be the dissolution rate (in 

mg/L.min). Care was taken when constructing the straight line because surface area 

tends to change with excessive contact times and give unrealistic dissolution rates. The 

slopes of the lines for each set of experiments were calculated and reported in Tables 5.5 

to 5.9. The dissolution rates were converted to mole/L.s then divided by the initial 

surface area of the disk. Using the stochiometric relationship in Eq. (5.7), the dissolution 
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rates of hydrogen ion were calculated and reported in Tables 5.5 to 5.9. The F-function 

was calculated using density and viscosity data from Table 5.3 and φ(n) from Table 5.4. 

 

TABLE  5.4- VALUES FOR THE FUNCTION φφφφ(n) 

 n φ(n)* 

Sets # 1 and 6 0.7319 0.628853 

Sets # 2 and 7 0.6832 0.635352 

Sets # 3 and 8 0.6473 0.640378 

Sets # 4 and 9 0.6557 0.639202 

Sets # 5 and 10 0.5878 0.647976 

     * Interpolated from Table (1) of de Rozieres et al. (1994) 
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Fig.  5.5- Dissolution data for SET # 1. 
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Fig.  5.6- Dissolution data for SET # 2. 
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Fig.  5.7- Dissolution data for SET # 3. 
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Fig.  5.8- Dissolution data for SET # 4. 
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Fig.  5.9- Dissolution data for SET # 5. 

 



   

 

130 

TABLE  5.5- SUMMARY OF CALCULATIONS FOR SET # 1 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 3.05E-04 20.944 5.791 5.3409E-05 1.920E-05 62.01 

400 4.09E-04 41.888 8.642 7.1642E-05 2.575E-05 153.76 

600 5.48E-04 62.832 10.921 9.6048E-05 3.453E-05 261.53 

800 5.62E-04 83.776 12.895 9.8513E-05 3.541E-05 381.24 

1000 5.81E-04 104.720 14.668 1.0180E-04 3.660E-05 510.68 

 

 

TABLE  5.6- SUMMARY OF CALCULATIONS FOR SET # 2 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 9.81E-05 20.944 6.043 1.7198E-05 7.419E-06 62.01 

400 1.54E-04 41.888 9.104 2.7009E-05 1.165E-05 153.76 

600 1.00E-04 62.832 11.571 1.7577E-05 7.583E-06 261.53 

800 1.46E-04 83.776 13.717 2.5583E-05 1.104E-05 381.24 

1000 1.90E-04 104.720 15.652 3.3269E-05 1.435E-05 510.68 

 

 

TABLE  5.7- SUMMARY OF CALCULATIONS FOR SET # 3 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 6.09E-05 20.944 6.338 1.0683E-05 4.632E-06 62.01 

400 2.29E-07 41.888 9.654 4.0105E-08 1.739E-08 153.76 

600 3.16E-06 62.832 12.348 5.5418E-07 2.403E-07 261.53 

1000 1.26E-05 104.720 16.837 2.2167E-06 9.612E-07 510.68 
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TABLE  5.8- SUMMARY OF CALCULATIONS FOR SET # 4 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 1.02E-03 20.944 6.279 1.7904E-04 7.252E-05 62.01 

400 1.25E-03 41.888 9.543 2.1861E-04 8.855E-05 153.76 

600 1.82E-03 62.832 12.191 3.1906E-04 1.292E-04 261.53 

800 1.66E-03 83.776 14.505 2.9046E-04 1.177E-04 381.24 

 

 

TABLE  5.9- SUMMARY OF CALCULATIONS FOR SET # 5 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

100 3.15E-04 10.472 4.390 5.5294E-05 1.849E-05 25.01 

200 4.83E-04 20.944 6.792 8.4760E-05 2.835E-05 62.01 

400 9.78E-04 41.888 10.510 1.7147E-04 5.734E-05 153.76 

500 1.35E-03 52.360 12.096 2.3665E-04 7.914E-05 205.97 

 

 

In Figs. 5.10 and 5.11, the F-function values were plotted against the rotational 

speed of the disk for each set of experiments. Fig. 5.10 shows the effect of changing 

emulsifier concentration whereas Fig. 5.11 shows the effect of rising the temperature. 

The effective diffusion coefficient was calculated from each slope of plotting F-function 

with ω1/(1+n). As per Eq. (5.9), the diffusion coefficient is the slope raised to the power of 

1.5. 
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Fig.  5.10- Dissolution as a function of rotational speed at 25 

o
C. 
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Fig.  5.11- Dissolution as a function of rotational speed at 10 gpt. 
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5.4.5. Effective Diffusion Coefficient 

Fig. 5.10 shows the slopes of the first three sets of experiments (Sets # 1 to 3). 

The diffusion coefficient of each experiment was calculated by raising each slope to a 

power of 1.5. The diffusion coefficients are reported in Table 5.10. The main parameter 

varied in these experiments was the emulsifier concentration. The slopes of sets # 1, 2 

and 3 were found to be 2.96 601 −× , 1.63 601 −×  and 1.34 701 −× , respectively. When these 

slopes were raised to the power of 1.5, the effective diffusion rates were found to be 

5.093 901 −× , 2.081 901 −×  and 4.905 1101 −×  cm2/s for sets # 1, 2 and 3, respectively. In sets # 

1 to 3, the emulsifier concentration was increased from 1 to 10. Fig. 5.12 shows the 

effect of emulsifier concentration on the effective diffusion coefficient. At low 

emulsifier concentration (1 gpt), the viscosity was low and the average droplet size was 

large. At this emulsifier concentration, the effective diffusion coefficient was 

5.093 901 −× cm2/s. When the emulsifier concentration was increased to 10 gpt, the acid 

became very viscous and the average droplet size was small. In this case, the mobility of 

the acid droplets was retarded and a low diffusion coefficient of 4.905 1101 −×  cm2/s was 

observed. These data are close to the ones reported by de Rozieres et al. (1994). They 

reported an effective diffusion coefficient of 2.64 801 −×  cm2/s for the emulsified acid at 

83 oF (28.3 oC). The difference is due to difference in the temperature and the average 

droplet size. 
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TABLE  5.10- SUMMARY OF RESULTS 

 
Temperature 

 oC 

Emulsifier  
Concentration 

gpt 

Slope 
(cm2/s)2/3 

D 
cm2/s 

Set # 1 25 1 2.96E-06 5.093 E-09 

Set # 2 25 5 1.63E-06 2.081 E-09 

Set # 3 25 10 1.34E-07 4.905E-11 

Set # 4 50 10 5.52E-06 1.297E-08 

Set # 5 85 10 9.26E-06 2.818E-08 

 

It is interesting to note that the drop in the effective diffusion coefficient matched 

the drop in the weight loss when the emulsifier concentration was increased. For 

example, the weight loss dropped by 60 % when the emulsifier concentration was 

increased from 1 to 5 gpt. Similarly, the effective diffusion coefficient dropped by 62 % 

when the emulsifier concentration was increased from 1 to 5 gpt. This interesting 

observation suggests that weight loss data can be used as a faster qualitative approach 

for planning the experiments. 

  Fig. 5.13 shows the effect of the average droplet size on the effective diffusion 

coefficient. Shown in the figure also is the size distributions of the tested emulsions. 

Emulsion of Set #1 shows a wide size distribution with standard deviation of 12.472 µm 

and an average droplet size 12.354 µm. Emulsion of Set #2 shows a size distribution 

with standard deviation of 8.785 µm and an average droplet size 8.375 µm. Emulsion of 

Set #3 shows a narrow size distribution with standard deviation of 3.744 µm and an 

average droplet size 5.955 µm. The effective diffusion coefficient of emulsified acid 

increased linearly with increasing the average droplet size of its internal phase. For this 
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specific system, it was found that the diffusion coefficient is related to the droplet size 

according to Eq. (5.13): 

 

 910 10575.410851.7 −− ×−×= dD     (5.13) 

 

where D is the effective diffusion coefficient in cm2/s and d  is the average droplet size 

of the emulsified acid in µm. This correlation shows that the emulsified acid can be 

designed to optimize acid fracturing treatments. The design engineer can plan the desired 

diffusion coefficient and then prepare the emulsion with the average droplet size that 

gives that desired diffusion coefficient.  
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Fig.  5.12- Diffusion coefficient as a function of emulsifier concentration at 25 

o
C. 
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Fig.  5.13- Effective diffusion coefficient as a function of average droplet size at 25 

o
C. 

 

 

In a previous research, de Rozieres et al. (1994) made an attempt to compare 

their measured diffusion coefficients to that of Brownian diffusion. Their findings were 

that diffusion coefficients of emulsified acid were in the range of the Brownian diffusion 

coefficient of the particles. However, the radii of the droplets calculated using the 

Brownian diffusion equation were at least three orders of magnitude smaller than the 

actual measured radii for emulsified acid droplets. The Brownian diffusion coefficient is 

given by Stokes-Einstein equation: 

 

r

RT
DB

πη6
=        (5.14) 
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where, R is the universal gas constant (8.314472 J/(mole-oK)), T is the absolute 

temperature (oK), η is the viscosity of the continuous phase (g/cm.s), and r is the radius 

of the diffusing particle (cm). Eq. (14) suggests that diffusion coefficient is inversely 

proportional to the radius of the particle in Brownian motions. Our findings, as in Eq. 13, 

show that the diffusion coefficient is directly proportional to the size of the droplet. 

Explanation of this controversy is that (1) size of macroemulsion is too large for 

significant Brownian motion to occur; and (2) dense emulsion exhibits droplet-droplet 

interactions that prevent significant Brownian motion. In addition, the flow in the 

rotating disk system is centrifugal and induced by a forced convection. 

In section 4, we showed that the viscosity of emulsified acid increases as its 

average droplet size decreases. This association between the viscosity and the droplet 

size makes it difficult to isolate the effect of either one on the effective diffusion 

coefficient. An effort was made in Fig. 5.14 to phase out the viscosity effect by running 

simple sensitivity analysis. The strategy was to use different viscosity parameters for the 

data of Set # 1 and inspect the change of the results. It turned out that viscosity has not 

notably impacted the diffusion coefficient. This agrees with Hoefner and Fogler (1985) 

statement that only small part of the decrease in the diffusivity of acid microemulsion is 

a viscosity effect. An equivalent and more realistic approach is to use gelled acid with 

various viscosities which is beyond the scope of this work. 

Fig. 5.11 shows the effect of temperature on the slopes of F-function. 

Experiments are done at 25, 50 and 85 oC for Sets # 3, 4 and 5, respectively. The slope 

increased with increasing the temperature indicating higher effective diffusion 
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coefficient. The slopes of sets # 3, 4 and 5 are 1.34 701 −× , 5.52 601 −×  and 9.26 601 −×  

(cm2/s)2/3, respectively. When these slopes are raised to the power of 1.5, the effective 

diffusion rates are found to be 4.905 1101 −× , 1.297 801 −×  and 2.818 801 −×  cm2/s for sets # 3, 

4 and 5, respectively. Clearly, effective diffusion coefficient increases with temperature. 
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Fig.  5.14- Sensitivity of effective diffusion coefficient to viscosity. 

 

 

It is widely accepted that the effect of temperature on the diffusion coefficient follows 

the Arrhenius equation: 

  









−=

RT

E
DD a

o exp       (5.15) 
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where Do is the maximum diffusion coefficient (at infinite temperature), R is the 

universal gas constant (8.314472 J/(mole-oK)), T is the absolute temperature (oK) and Ea 

is the diffusion activation energy (J/mole). As shown in Fig. 5.15, our data donot follow 

an Arrhenius relationship. A comparison with previous reported data (de Rozieres et al. 

1994; Kasza et al. 2006) is given in the same figure. At 50 and 85 oC, all data fall within 

the same order of magnitude. However, our data showed less diffusion rate at 25 oC.  Eq. 

(5.15) is valid for self-diffusion without chemical reaction. When chemical reaction is 

involved, the diffusion coefficient increase exponentially to values closer to the reaction 

rate coefficient and thus the temperature has a combined effect on both coefficients. 
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Fig.  5.15- Effective diffusion coefficient as function of temperature.  
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5.4.6. Sample Calculation 

In this section, we describe in details the procedure for obtaining effective 

diffusion coefficients. Data for Set # 1 is used as an example. The first step is to plot the 

calcium concentration data against sampling time as in Fig. 5.5. The data are plotted for 

each rotational speed. Then, the first few points of each rotational speed are fitted to a 

straight line. The slope for each line then is the dissolution rate (in mg/L.min). Care must 

be taken when constructing the straight line because surface area tends to change with 

excessive contact times and give unrealistic dissolution rates. The slopes of the lines in 

Fig. 5.5 were found to be 732.45, 982.5, 1,317.2, 1351.0 and 1,396.1 mg/L.min for 200, 

400, 600, 800 and 1000 rpm, respectively. The dissolution rates are converted from 

mg/L.min to mole/L.s as follows: 

 

sL

Ca mole
013.05

s 60

min 1

Ca g 40.08

Ca mole 1.0

Ca mg 1,000

Ca g 1.0

minL

Ca mg
732.5 4

⋅
×=×××

⋅

++
−

++

++

++

++++

  

 

This is the value shown in column 2 (Table 5.5). The rest of the values in the 

same column are calculated in the same manner. Column 1 shows the motor rotational 

speed in round per minute (rpm). The first value in Table 5.5 is 200 rpm. This value is 

converted to angular velocity (ω) in column 3 as follows: 

 

 
s

1
 944.20

60

2
rpm 200ω =×=

π
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In column 4, the term ω1/(1+n) is calculated. We can obtain the power law index n 

from the viscosity measurements in Fig. 5.2. Also, values of n for all experiments are 

listed in Table 5.3. Therefore, 

 

ω1/(1+n)  = 20.9441/(1+0.7319) = 5.79 rad/s 

 

The molar flux of calcium (Jca
++) is calculated by dividing the dissolution rate by 

the surface area of the disk (11.4 cm2). 

 

2

524

Ca cmsL

Ca mole
0167.2cm /11.4

sL

Ca mole
013.05J

⋅⋅
×=

⋅
×=

++
−

++
−

++     

 

Since JH
+  = 2 Jca

++, we can calculate the molar flux of the hydrogen ion as 

follows (column 5): 

 

2

55

CH cmsL

H mole
0134.5)0167.2(2J2J

⋅⋅
×=××==

+
−−

+++
a

   

 

The final required step is to calculate the F Function. For this, we need the power 

law index (n = 0.7319), the consistency index (k = 1.145 g/(cm-sn-2)), the density (ρ = 

0.994 g/cm3), the disk radius (a = 1.905 cm) and the original bulk concentration (Cb). Cb 

can be calculated as follows: 
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The density of 15 wt% HCl is 1.07 g/cm3. Therefore; 

 

....
HCl mole 1.0

H mole 1.00

HCl g 36.5

HCl mole 1.0

Solution HCl g

HCl g
0.15

Solution HCl cm

Solution HCl g
1.07

3

+

×××  

L

H mole
397.4

L 1.0

cm 1000
....

3 +

=×  

 

Now, we calculate the F function as follows: 
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5100744.1 −×=  

 

The final task is to plot the values of the F-Function against ω1/(1+n) and use the 

slope to calculate the effective diffusion coefficient as follows: 

 

Slope = D2/3 
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5.4.7.  Indian Limestone Experiments 

Similar set of experiments were replicated with Indiana limestone rocks instead 

of calcite marbles. The major distinctions between the two are the high porosity and 

permeability of Indiana limestone. The diffusion coefficient is a property of the 

emulsified acid and both types of rocks are expected to produce similar results. Indiana 

limestone experiments were done with identical emulsified acids of that used for calcite 

marbles and were carried out at identical experimental conditions. Table 5.11 gives 

details for the properties of emulsified acid for each experiment. 

 

 

    TABLE  5.11- SUMMARY OF EXPERIMENTS FOR ILS* 

 Set 6 Set 7 Set 8 Set 9 Set 10 

Rock ILS ILS ILS ILS ILS 

Temperature, oC 25 25 25 50 85 

Acid volume fraction, - 0.7 0.7 0.7 0.7 0.7 

Corrosion concentration, gpt 5 5 5 5 5 

Emulsifier concentration,  gpt 1 5 10 10 10 

Droplet size, µm 12.354 8.375 5.955 5.955 5.955 

Power-law index, - 0.7319 0.6832 0.6473 0.6557 0.5878 

Power-law consistency index, g/(cm-sn-

2) 
1.145 3.129 3.347 2.363 1.030 

Density of the fluid, g/cm3 0.994 0.994 0.994 0.994 0.994 

Sampling time, minutes 20 20 20 20 10 

Disk Rotational Speed, rpm 

200 
400 
600 
800 
1000 

200 
400 
600 
800 
1000 

200 
400 
600 
800 
1000 

200 
400 
600 
800 

100 
200 
400 
500 

   * ILS: Indiana Limestone 
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The weight loss analysis of Indiana limestone experiments showed similar trends 

to that of the calcite marbles. Fig. 5.16 shows that the weight loss of both calcite marbles 

and Indiana limestone rocks decreased with increasing the emulsifier concentration. As 

we mentioned earlier in this section, this indicates that the overall reaction rate decreased 

with increasing emulsifier concentration. Also, we mentioned that the decrease in the 

overall rate of reaction was caused by the decrease of the diffusion rate not the surface 

reaction rate.  That is because the parameters affecting the surface reaction rate were not 

modified. The experiments in Fig. 5.16 always involve the reaction of 15 wt % HCl with 

calcite at room temperature. The only variable that changed was the emulsifier 

concentration. 
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Fig.  5.16- Weight loss of calcite and ILS disks at 1000 RPM after 20 minutes. 
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In general, the porous and permeable Indiana limestone exhibited more weight 

loss. However, at high emulsifier concentration (9 gpt) diffusion rate is significantly 

reduced in both rocks because the more viscous emulsion impedes the mobility of acid 

droplets. There are two main reasons for the higher weight loss in the Indiana limestone 

rocks. First, the emulsified acid may penetrate inside the porous rock and have more 

contact area in the case of Indiana limestone so causes more weight loss. Second, same 

amount of rock is lost from both rocks because the emulsified acid has the same 

dissolving power in the two cases. But Indiana limestone exhibited more weight loss 

(percent wise) because the original weight in Indiana limestone is less due to porosity. 

The effect of the second reason can be easily quantified. The ratio of the weight 

loss due to this effect is 1.2 (1/(1-φ)). Where φ is the porosity. However, the ratio of the 

weight loss in Fig. 5.16 was nearly 1.9 indicating other factors existed. 

Figs. 5.17 to 5.21 present the calcium concentration data for each experiment. 

Fig. 5.17 shows the calcium concentrations for Set # 6. The emulsifier concentration for 

this set of experiments was 1 gpt and the experiments were done at 25 oC. Because of the 

large average droplet size and the relatively less viscous fluid, the range of the calcium 

concentrations reached as high as 57,000 mg/L at a rotational speed of 1000 RPM. The 

calcium concentration decreased as the rotational speed was reduced to 200 RPM. The 

calcium concentration was about 1.9 more than the one observed with calcite marbles. 

Fig. 5.18 shows the calcium concentrations for Set # 7. The emulsifier 

concentration was increased to 5 gpt. The average droplet size of this emulsion 

decreased and the viscosity increased. The acid is thus retarded more and the calcium 
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concentrations reduced to 20,000 mg/L at 1000 RPM. Fig. 5.18 also shows a decreasing 

calcium concentration with lowering the rotational speed of the calcite disk. The ratio is 

about 1.9 if compared with the calcite marble experiments (set # 2). 

Fig. 5.19 shows the calcium concentrations for Set # 8. The emulsifier 

concentration was increased to 10 gpt. The average droplet size of this emulsion was 

further decreased to very small numbers and the viscosity was very high. The 

combinations of these two effects caused the reaction rate to drop to very low values. 

The maximum value of calcium concentration was in the range of 1600 mg/L. The 

calcium concentrations of calcite marbles and Indiana limestone are similar for this acid. 

The emulsion did not penetrate inside the Indiana limestone because of its high 

viscosity.   

Fig. 5.20 shows the calcium concentrations of Set # 9. The temperature was 

raised to 50 oC. The emulsifier concentration was 10 gpt. The viscosity was less than that 

of the same concentration at 25 oC because of the higher temperature. Fig. 5.21 shows 

the calcium concentrations for Set # 10. The experiment was run for only 10 minutes at 

85 oC. The dissolution values appeared less than the ones at 50 oC. However, careful 

analysis and comparing values at similar sampling times and rotational speeds showed 

that dissolution at 85 oC is higher than that of 50 oC. The calcium concentrations for 

these sets are comparable to those for the calcite marbles because high viscosity 

prevented the emulsion from penetrating through the rock. 
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Fig.  5.17- Dissolution data for SET # 6. 
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Fig.  5.18- Dissolution data for SET # 7. 
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Fig.  5.19- Dissolution data for SET # 8. 
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Fig.  5.20- Dissolution data for SET # 9. 
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Fig.  5.21- Dissolution data for SET # 10. 

 

 

 

The detailed procedure for calculating the dissolution rates and effective 

diffusion coefficients were described earlier for the calcite marbles. The same procedure 

was used for the Indiana limestone rocks. First few points at each rotational speed in 

Figs. 5.17 to 5.21 were fitted to a straight line. The slope for each line then was taken to 

be the dissolution rate. The slopes of the lines for each set of experiments were 

calculated and reported in Tables 5.12 to 5.16. The F-function for each rotational speed 

was calculated using Eq. (5.10). 
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TABLE  5.12- SUMMARY OF CALCULATIONS FOR SET # 6 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 2.65E-04 20.944 5.791 4.6420E-05 1.669E-05 149.14 

400 4.97E-04 41.888 8.642 8.7174E-05 3.134E-05 359.20 

600 6.63E-04 62.832 10.921 1.1629E-04 4.180E-05 600.68 

800 9.87E-04 83.776 12.895 1.7311E-04 6.223E-05 865.12 

1000 1.19E-03 104.720 14.668 2.0873E-04 7.503E-05 1148.0

 

 

TABLE  5.13- SUMMARY OF CALCULATIONS FOR SET # 7 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 3.15E-05 20.944 6.043 5.5236E-06 2.408E-06 63.29 

400 8.83E-05 41.888 9.104 1.5477E-05 6.746E-06 157.67 

600 1.40E-04 62.832 11.571 2.4519E-05 1.069E-05 268.91 

800 2.16E-04 83.776 13.717 3.7881E-05 1.651E-05 392.77 

1000 3.85E-04 104.720 15.652 6.7559E-05 2.945E-05 526.92 

 

 

TABLE  5.14- SUMMARY OF CALCULATIONS FOR SET # 8 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 1.37E-05 20.944 6.338 2.4063E-06 1.063E-06 66.00 

400 1.50E-05 41.888 9.654 2.6251E-06 1.159E-06 168.56 

800 1.75E-05 62.832 12.348 3.0626E-06 1.352E-06 430.48 

1000 2.45E-05 104.720 16.837 4.3022E-06 1.900E-06 582.16 
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TABLE  5.15- SUMMARY OF CALCULATIONS FOR SET # 9 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

200 4.06E-04 20.944 6.279 7.1132E-05 2.881E-05 91.12 

400 3.94E-05 41.888 9.543 6.9127E-06 2.800E-06 231.37 

600 1.28E-03 62.832 12.191 2.2427E-04 9.084E-05 399.05 

800 1.44E-03 83.776 14.505 2.5303E-04 1.025E-04 587.46 

 

 

TABLE  5.16- SUMMARY OF CALCULATIONS FOR SET # 10 

rpm 
slope 

mole/L-s 
ω 

rad/s 
ω1/(1+n) 

 
JH

+ 

(mole/cm2-s) 
F 

 

Re 
 

100 1.52E-04 10.472 4.390 2.6586E-05 8.891E-06 96.57 

200 4.58E-04 20.944 6.792 8.0283E-05 2.685E-05 257.00 

400 1.28E-03 41.888 10.510 2.2429E-04 7.501E-05 683.99 

500 1.35E-03 52.360 12.096 2.3649E-04 7.909E-05 937.37 

 

 

In Figs. 5.22 and 5.23, the F-function values were plotted against the rotational 

speed of the disk for each set of experiments. Fig. 5.22 shows the effect of changing 

emulsifier concentration whereas Fig. 5.23 shows the effect of rising the temperature. 

The effective diffusion coefficient was calculated from each slope of plotting F-function 

with ω1/(1+n). As per Eq. (5.9), the diffusion coefficient is the slope raised to the power of 

1.5. 
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The slopes of the best lines and the diffusion coefficients are reported in Table 5.17. The 

main parameter varied in the first three experiments was the emulsifier concentration. 

The slopes of sets # 6, 7 and 8 were found to be 4.91 601 −× , 1.77 601 −×  and 3.49 801 −× , 

respectively. When these slopes were raised to the power of 1.5, the effective diffusion 

rates were found to be 1.088 801 −× , 2.355 901 −×  and 6.520 1201 −×  cm2/s for sets # 6, 7 

and 8, respectively. 

 

 

TABLE  5.17- SUMMARY OF RESULTS FOR INDIANA LIMESTONE 

 
Temperature 

 oC 

Emulsifier  
Concentration 

gpt 

Slope 
(cm2/s)2/3 

D 
cm2/s 

Set # 6 25 1 4.91E-06 1.088 E-08 

Set # 7 25 5 1.77E-06 2.355 E-09 

Set # 8 25 10 3.49E-08 6.520 E-12 

Set # 9 50 10 8.96E-06 2.682 E-08 

Set # 10 85 10 1.10E-05 3.648 E-08 

 

 

Fig. 5.23 shows the effect of temperature on the slopes of F-function. 

Experiments are done at 25, 50 and 85 oC for Sets # 8, 9 and 10, respectively. The slope 

increased with increasing the temperature indicating higher effective diffusion 

coefficient. The slopes of sets # 8, 9 and 10 are 3.49 801 −× , 8.96 601 −×  and 1.10 501 −×  

(cm2/s)2/3, respectively. The effective diffusion coefficients were found to be 

6.520 1201 −× , 2.682 801 −×  and 3.648 801 −×  cm2/s for sets # 8, 9 and 10, respectively. The 

effective diffusion coefficient increases with temperature. 
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Fig.  5.22- Dissolution as a function of rotational speed at 25 

o
C. 
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Fig.  5.23- Dissolution as a function of rotational speed at 10 gpt. 
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Fig. 5.24 shows the effect of emulsifier concentration on the effective diffusion 

coefficient. Similar to the results obtained with the calcite marble experiments, the 

effective diffusion coefficient decreases when the emulsifier concentration increases. At 

very high emulsifier concentration, the mobility of the acid droplets was retarded and 

causes low diffusion coefficient in both cases. 
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Fig.  5.24- Diffusion coefficient as a function of emulsifier concentration at 25 

o
C. 

 

 

Fig. 5.25 shows the effect of the average droplet size on the effective diffusion 

coefficient. The effective diffusion coefficient of emulsified acid increased with 

increasing the average droplet size of its internal phase. One major observation from Fig. 

5.25 is the very low effective diffusion coefficient at the small droplet sizes. This 
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indicates that fine emulsions have very high retardation even in the porous and 

permeable rocks. This interesting finding suggests that fine emulsion will have excellent 

sweep through the formation before breaking and reacting. Similar finding for the 

microemulsions was reached by Hoefner et al. (1987). Fig. 5.25 suggests that the design 

engineer can plan the fracturing or matrix acidizing treatment by preparing the emulsion 

with the average droplet size that gives that desired diffusion coefficient for that 

treatment. 
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Fig.  5.25- Diffusion coefficient as a function of average droplet size at 25 

o
C. 
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TABLE  5.18- COMPARING CALCITE TO INDIANA LIMESTONE 

Temperature 
 oC 

Emulsifier  
Concentration 

gpt 

CALCITE 
cm2/s 

INDIANA 
LIMESTONE 

cm2/s 
RATIO 

25 1 5.093 E-09 1.088 E-08 0.47 

25 5 2.081 E-09 2.355 E-09 0.88 

25 10 4.905 E-11 6.520 E-12 7.52 

50 10 1.297 E-08 2.682 E-08 0.48 

85 10 2.818 E-08 3.648 E-08 0.77 

 

In summary, there is no major difference between calculating the effective 

diffusion coefficient using calcite marbles and Indiana limestone rocks. Both types of 

rock gave reasonable results considering the accuracy of the rotating disk procedure 

itself. Table 5.18 shows that calcite marbles could give a maximum of 7.5 times faster 

diffusion than the Indiana limestone rock. But, this happened at very low diffusion rates 

only. Fig. 5.26 shows this point is not visible if we consider the complete scale of the 

diffusion coefficient. A very legitimate way to test the effect of the difference is to test 

its impact during a simulation of real acid fracturing case. At relatively high diffusion 

coefficients, the ratio of the two coefficients ranged from 0.5 to 0.9. Although the 

difference seems small, its impact on the real acid fracturing treatment might be 

significant at these values. 

 The major impact of these findings is that expensive formation rock can be 

substituted with the despicable calcite marbles with no major consequence on the final 

results when the purpose is to determine the effective diffusion coefficient. However, the 

formation rock should have very high calcite content. 
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Fig.  5.26- Comparing diffusion coefficents of calcite marbles and ILS. 

 

 

5.5. Conclusions 

The effective diffusion coefficient of emulsified acid with calcite and Indiana 

limestone was determined using the rotating disk apparatus. Based on the results 

obtained, the following conclusions can be drawn: 

(1) Diffusion rate of acid droplets to the surface of the disk decreased with increasing 

emulsifier concentration because of higher viscosities and smaller droplet sizes. 

(2) Effective diffusion coefficient of emulsified acid was found to increase linearly 

with the average droplet size of emulsified acid. 
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(3) Weight loss results can assist in predicting the effective diffusion coefficient. 

(4) Brownian diffusion cannot be used to explain the diffusion rate of emulsified acid.  

(5) The effect of temperature on diffusion coefficient did not follow the Arrhenius law. 

(6) The difference between using calcite marbles and Indiana limestone rocks was 

large at low diffusion coefficients and small at high diffusion coefficients.  

It is suggested that droplet size of emulsified acids can be adjusted to produce the 

desired diffusion rate coefficients for acid fracturing treatments. 
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6. CONDUCTIVITY OF INDIANA LIMESTONE ROCK AFTER 

ACIDIZING WITH EMULSIFIED ACID 

 None uniform acid etching of the face of the fracture is the primary cause of 

fracture conductivity in acid fracturing. The retained conductivity of the fracture after 

the acidizing depends, however, on many factors some pertaining to the rock texture, 

some to the acidizing conditions and others to the treating fluids. Previous research 

focused on the texture of rock and acidizing conditions such as flowrates, temperature 

and contact times. These parameters along with the type of acid used proved to affect the 

fracture conductivity as was shown in previous research. This section focus on the 

fracture conductivity after acidizing it with the emulsified acids. The objective of this 

work is to study the effect of droplet size, acid volume fraction and emulsifier 

concentration of the emulsified acid on the fracture conductivity. 

Indiana limestone rocks were acidizid with different recipes of the emulsified 

acid. A 15 wt% HCl in diesel emulsion with 0.5, 0.6 and 0.7 acid volume fractions and 

with emulsifier concentrations of 1, 5 and 10 gpt were used in the tests. The tests were 

run using a modified API conductivity cell. The acidiziation tests were done at 200 oF 

and 1,000 psi. Each test was run for 30 minutes at a flow rate of 1 Litter per minute. The 

experimental setup at these conditions provided close approximation to the field 

conditions when scaled using dimensionless groups. The standard fracture conductivity 

measurements were done after acidizing with each acid recipe. The etched fracture 

surfaces were characterized after acidizing using a laser profilometer. 
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The results of the experiments showed that channeling and large-scale features 

on the etched surface are the dominant factors for fracture conductivity for the course 

emulsions. Higher acid volume fractions cause more weakening of the rock and cause 

the fracture to loss its conductivities faster at high closure pressures. When emulsions 

with smaller droplet sizes are used, the emulsion penetrated deeper inside the rock and 

caused small-scale features on the surface rather than channeling. This feature formed a 

mesh-like surface that is conductive even at high closure pressures. These new findings 

can be used to optimize the use of emulsified acid in the field. 

6.1. Introduction 

The purpose of acid fracturing treatment is to create a deep highly conductive 

fracture for the oil and gas to flow easily from the formation into the well. The process 

involves pumping a viscous fluids at high rates and pressures that create and extend a 

fracture inside the formation. The acid is used as part of this process to etch the fracture 

face and leave a conductive pathway for the oil and gas to flow through it. After the 

fracture is created, acid is injected and as it contacts the fracture walls, it reacts with the 

rock face, creating uneven surfaces which should result in a conductive pathway when 

the fracture is closed.  

The final conductivity of the fracture is dependent on (1) factors that create the 

conductive path and (2) factors that retain the conductive path after fracture closure. The 

primary goal of first group is the differential etching of fracture surface. Differential 

etching depends on fluid properties such as acid reaction time, fluid efficiency, acid 

type, contact time, temperature; and rock properties such as physical and chemical 
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composition of the rock, variances in crystal size, porosity and permeability and 

heterogeneity of the rock (Broaddus 1968, Nierode and Kruk 1973, Anderson and 

Fredrickson 1989). 

The second group of factors deals with factors that destroy the conductive path 

when the fracture closes. The primary reason for losing the conductivity is the closure 

stress trying to close the fracture. Acting against closure stress is the strength of the rock. 

Higher conductivities will be created when the contact points in the face of fracture are 

strong enough to keep the fracture open. When the rock is soft the contact points if any 

will be crushed and the fracture will loss its conductivity at high closure pressures. The 

acid also might soften and weaken the rock and cause it to lose conductivity. For 

example, Broaddus (1968) stated that large quantities of acid and long contact times may 

soften the fracture face and cause crushing of the support points that hold the fracture 

conductive. Chalk formations are a typical example for the etched surfaces to be crushed 

and the fracture to be closed because of their soft nature (Anderson and Fredrickson 

1989). 

The weakening of the rock by the acid has been the subject of several research 

studies. Nasr-El-Din et al. (2006b) reported that the emulsified acid caused the least 

softening when compared with straight and gelled acids. One interesting observation of 

their work was the less decline rate of wells treated with emulsified acid compared with 

other acid systems which was believed to be a result of less softening. They also found 

that the effects of strength reduction are more significant on limestone than on dolomite. 

Abass et al. (2006) have performed experimental studies to investigate the effect of 
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creeping on fracture conductivity. They recognized that acid weakens the contact points, 

causing creeping. From their findings, they suggested that the presence of strong contact 

points that transfer the creeping force would be more likely to retain conductivity under 

high closure stresses than weaker points. 

On the lab scale, there are different mechanisms proposed for creating the 

conductivities. The prime mechanism can be the uneven reaction of the acid with the 

rock due to the heterogeneity when smooth-walled rock is used (Broaddus 1968). Or, the 

conductivity might be a result of smoothing of peaks and valleys on the rough fracture 

faces when rough core surfaces are used (Nierode and Kruk 1973). Usually, these studies 

can not predict the fractured formation conductivities but they work as excellent tools for 

selecting and comparing acids and treating conditions for different formations. In the 

field, Crowe and Miller (1974) stated that creation of non-uniform fracture etching is 

primarily the result of (1) selective erosion of the fracture face resulting from acid 

reaction, and (2) the heterogeneous nature of most of carbonate formations. 

There were some efforts to extrapolate the experimental work to the actual field 

conditions such that of Nierode and Kruk (1973) and Gong et al. (1999). This work does 

not attempt to find a new correlation, however, Nierode and Kruk model was used to 

estimate the conductivity of our experiments. Nierode and Kruk correlation (N-K model) 

of acid fracture conductivity is based on experimental results relating the conductivity to 

the amount of the rock dissolved during acid injection, the hardness of the rock in terms 

of embedment strength, and the formation closure pressure, Eq. (6.1): 
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cC

f eCwk
σ2

1

−=       (6.1) 

  

where kfw is fracture conductivity (md-ft) and σc is closure stress (psi). C1 and C2 are 

given as follows: 
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In Eq. (6.3), the constant 13.9 is the corrected value from the original equation 

which presents a typographical error as 19.9. Srock is rock embedment strength (psi) and 

wi is the fracture ideal width (in). The fracture ideal width is calculated from the amount 

of dissolved rock. In this work, the volume of rock dissolved was estimated from the 

profilometer device used to scan the surfaces of the rocks.  

The N-K model takes to consideration only the closure stress, the rock 

embedment strength and the amount of rock dissolved. The amount of rock dissolved 

increases with contact time and acid concentration; thus this model suggests that 

conductivity increases with contact time and acid concentration. The N-K model 

involves the rock strength but dose not account for the change of rock strength with 

acidizing. Beg et al. (1996) found that increasing contact time may not always increase 

the fracture conductivity, as suggested by the N-K model. Also, Navarrete et al. (2000) 
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observed that more etched volume did not always result in higher conductivities as 

suggested by the N-K model. The model of Gong et al. (1999) is based on deformation 

of surface asperities.  
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where ( )
of wk  is initial fracture conductivity at zero stress (md-ft), Yσ  is the rock yield 

stress (psi), γ  is a parameter for the shape of distribution function curve of the asperities 

and c is the stress correction factor. This model although more accurate is not practical 

for the many variables that should be supplied and the need to estimate the initial 

fracture conductivity. 

More utilization of the acid etching data and resulting fracture conductivities 

might be for the selection of one acid over the other for a certain formation (Broaddus 

1968, Nierode and Kruk 1973, Anderson and Fredrickson 1989, Malagon et al. 2006, 

Pournik et al. 2007). They can be used to study conductivities of different acid pumping 

rates, contact times (Melendez et al. 2007, Pournik et al. 2007) or temperatures (Pournik 

et al. 2007). 

For example, acid etching experiments showed that regular HCl acid produces 

higher fracture conductivities than retarded acids at low temperatures and lower fracture 

conductivities at higher temperatures (Broaddus 1968). Anderson and Fredrickson 

(1989) showed how it was possible to use the acid etching experiments to select the 
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acids for cold dolomites, chalks, low-solubility formations and uniform carbonates. 

Pournik et al. (2007) studied the effects of the acid type, acid contact time, temperature, 

and rock type on fracture conductivities. Melendez et al. (2007) studied the effects of the 

contact time and weakening of the rock on the fracture conductivity. 

Navarrete et al. (2000) gave a through comparison between straight and 

emulsified acids at high temperatures. They found that emulsified acid causes less 

etching of the rock surface compared with straight acid. They noticed that straight acid 

was mostly consumed in the entrance whereas the emulsified acid etched the surface 

more uniformly. They also noticed that emulsified acid wormholed faster with smaller 

diameters and more population. They found that the weight loss from the rock after 

acidizing was very small with emulsified acid compared to straight acid. 

Another interesting finding of Navarrete et al. (2000) is that fracture conductivity 

is very sensitive to the closure stress in the case of the straight acid and relatively 

insensitive to the closure stress in the case of the emulsified acid. They reasoned that to 

the fact that straight acid attacks the contact points and removes the support against 

closure. 

Our objective is to test fracture conductivity of Indiana limestone rock after 

acidizing with emulsified acids that have different droplet sizes and size distributions. 
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6.2. Experimental Studies 

6.2.1. Materials 

Indian limestone rocks were obtained from local supplier and are cut to the 

specifications described below in section 6.2.3. The rock samples were analyzed using 

XRD/XRF and found to be mainly calcium carbonate (about 97 wt%). Table 6.1 

summaries XRD/XRF results of Indiana limestone rock. The Indiana limestone rocks 

had average porosity of 17 % and average permeability of 4.5 md (see Table 6.2). 

 

 

 

TABLE  6.1- ELEMENTAL ANALYSIS OF INDIANA LIMESTONE ROCK 

Element Content 

Ca 38.8 wt. % 

Mg 0.1 wt. % 

Fe 900 mg/kg 

Al 700 mg/kg 

Sr < 500 mg/kg 

S < 500 mg/kg 

Si < 500 mg/kg 
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TABLE  6.2- POROSITY AND PERMEABILITY OF INDIANA LIMESTONE ROCK 

Sample. No. 1 2 3 4 5 6 

Dry Weight, gram 42.72 41.66 39.43 42.1 42.21 41.16 

Length, inch 0.67 0.66 0.63 0.65 0.68 0.65 

Diameter, inch 1.49 1.49 1.49 1.49 1.49 1.49 

Pore Volume, cm3 3.19 3.27 3.23 2.83 3.69 3.19 

Grain Volume, cm3 15.96 15.59 14.77 15.74 15.74 15.38 

Bulk Volume, cm3 19.15 18.86 18 18.57 19.43 18.57 

Grain Density, g/cm3 2.678 2.672 2.67 2.674 2.682 2.676 

Porosity, % 16.66 17.34 17.94 15.24 18.99 17.18 

Pressure, inch H2O 39.9 39.9 39.9 39.9 39.9 39.9 

Time, min 1.12 1.3 0.92 0.82 0.82 0.79 

Permeability, md 3.8 3.2 4.3 5 5.2 5.2 

 

 

 In all emulsion preparations, the same source of low-sulfur diesel was used. It 

has sulfur and water contents of less than 1.0 wt% and 0.05 vol.%, respectively. 

Hydrochloric acid (ACS grade) was obtained from a local supplier. The acid 

concentration was determined by acid-base titration and found to be 37.8 wt%. The 

corrosion inhibitor and the emulsifier (cationic) were obtained from a local service 

company. The emulsifier was amine-based surfactant dissolved in an organic solvent. 
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6.2.2. Preparation of Emulsions 

Several emulsified acid systems with varying emulsifier concentrations and acid 

volume fractions were prepared in a systematic way to ensure the reproducibility of the 

results. A concentrated hydrochloric acid (37.8 wt%) was diluted to 15 wt% by adding 

tap water. Then, a corrosion inhibitor at 5 gpt was added to the acid. The emulsifier (at 

varying concentrations) was added to diesel in the mixing tank. The mixing tank is a 55-

gallon drum placed on a large magnetic stirrer.  The agitation of emulsion is provided by 

a heavy stir bar immersed in the mixing tank. The emulsifier was agitated for enough 

time to thoroughly mix in diesel before adding the acid. 

 The required volume of the prepared 15 wt% HCl acid was slowly added to the 

emulsified diesel in the mixing tank. The acid was added slowly such that the whole 

volume of acid is added in about 20 minutes. The spin rate of the stir bar and the opening 

of the valve choke of the acid tank were kept the same in all preparations except when 

coarse or fine emulsions were desired. The coarse emulsion was prepared by adding the 

acid in a faster rate and with slow agitation. The fine emulsion was prepared by adding 

the acid in very slow rate and with very high agitation. The fine emulsion took five hours 

to add the whole volume of the acid to the diesel while it took only about 10 minutes to 

add the total acid volume for the coarse emulsion.  

The emulsion was blended for five minutes at a constant speed after the all the 

acid was added in order to generate a uniform emulsion. The final volume of the 

emulsion was 45 liter. We needed 30 liter of the emulsion to pump at the desired flow 

rate of 1 L/min for the required contact time of 30 minutes. The dead volume of the 
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mixing tank is 10 liters and 3 liters more were added for unexpected operational 

problems such as the high intakes of the pump. Table 6.3 details the prepared emulsions 

with their acid, diesel and emulsifier concentrations. 

 

 

 

TABLE  6.3- COMPOSITION OF THE PREPARED EMULSIONS. 

 
Mixing 
Time 

φ 
Corrosion 
Inhibitor 

Emulsifier 
Concentration 

Emulsified Acid 1 20 0.5 5 5 

Emulsified Acid 2 20 0.6 5 5 

Emulsified Acid 3 20 0.7 5 1 

Emulsified Acid 4 20 0.7 5 5 

Emulsified Acid 5 20 0.7 5 10 

Emulsified Acid 6 5 hr 0.7 5 5 

Emulsified Acid 7 10 0.7 5 5 

 

 
 

6.2.3. Preparation of Core Samples  

The original rock samples were supplied as rectangular blocks with round 

borders with a length of 7 inches, a width of 1.7 inches, and a height of 6 inches. Each 

block is then cut in half with an electric cutter machine. The direction in which the cores 

were cut was labeled and was considered as the flow direction for the rest of the 
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experiments. This procedure minimized the heterogeneity between the samples as the 

two halves were cut from the same block and in the same direction. The core samples 

were sealed with a high temperature RTV silicone-based rubber. The final sample is a 

perfect fit for the dimensions of the acidiziing and conductivity cells. See Zou (2006) 

and Melendez (2007) for detailed procedure of core sample preparations.  

6.2.4. Surface Characterization 

A surface laser profilometer apparatus was used to characterize the surface of the 

rock. A profilometer is a precise vertical distance measurement device that was built-in-

house (Malagon 2006; Malagon et al. 2006) to measure small surface variations in 

vertical surface topography as a function of position on the surface. The results of 

profilometer can be analyzed to quantify the amount of rock dissolved in each scan 

providing valuable information to given experimental conditions. 

The profilometer uses a laser displacement sensor while the sample is moved 

along its length on a moving table. The measurements are repeated several times over 

the width of the sample to cover the entire surface area. The scanning of the surface is 

performed before and after acidizing the surface of the rock. 

The accuracy of the distance measurement is +/- 50.8 µm over a range of 25.4 

mm (one inch). The resolution on the vertical measurement is 0.002 inches while in the 

horizontal direction, the transducer resolutions are 0.00008 inches. The stepping motor 

does hot have such a small X and Y resolution; so a typical scan uses a 0.05 inches 

measurement interval in the x and y directions.  
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6.2.5. Hardness Measurements 

The method of Howard and Fast (1970) was used to measure the rock 

embedment strength (RES). In this method, the rock embedment pressure is calculated 

from the applied load required to indent a steel ball inside the rock to a distance equal to 

half of the ball radius, Eq. (6.5). 

2

4

i

RE
d

W
S

π
=                         (6.5) 

The steel ball was 0.0625 inch in diameter, resulting in a required indentation 

distance of 0.016 inch. W is the load applied (lbf) and di is the diameter of the projected 

area of the indentation (inch). Therefore, the rock embedment pressure is measured in 

psi.  

The hardness measurement apparatus is described in detail by Melendez (2007) 

and Melendez et al. (2007). It has two different gauges, the top gauge is for the pressure 

reading and the bottom gauge measures the indentation distance. We first calculated the 

pressure to indent the steel ball the required distance from which we calculate the load 

applied to the area of the piston of the machine. The piston has a diameter of 0.992 inch, 

and a cross sectional area of 0.773 in2. On each fracture surface, we measured the rock 

embedment strength at 28 points before acidizing. The rock embedment strength for the 

seven rock samples are reported in Table 6.4. 
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TABLE  6.4- ROCK EMBEDMENT STRENGTH (RES) 

 A B 

ILS 1 35,331 39,952 

ILS 2 31,454 31,186 

ILS 3 36,495 37,833 

ILS 4 35,482 36,134 

ILS 5 47,961 51,139 

ILS 6 43,596 32,909 

ILS 7 39,731 44,690 

 

6.2.6. Acid Etching Cell and Procedure  

The laboratory setup for acid fracturing experiments was designed by Zou (2005) 

with a goal to perform etching of the faces of a rock sample placed together simulating a 

hydraulic fracture under specific experimental conditions. The laboratory used in this 

study provides appropriate scaling to represent the field conditions experimentally. 

The test cell is made of Hastelloy material, corrosion resistant, with a cylindrical 

internal structure able to accommodate core samples 7 inches long, 1.7 inches high, and 

3 inches in thickness. The test cell is a modified API RP-61 conductivity cell (API 

1989). 

The core samples used in this study have a rectangular shape with rounded edges 

to provide the best fit of the core inside the cell. The cores are covered with a sealant 

material to provide a perfect fit inside the cell. Side pistons with o-rings on its edges are 

used to keep the cores in place, and connectors in the bottom and upper surface of the 

cell attach the cell to the flow lines. Additionally, shims are used to achieve the desired 
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fracture width setting before assembling the flow inserts at both ends. For all the tests a 

fracture width setting of 0.12 inch was used. 

The test cell is placed in a vertical position in order to avoid gravity effects.  

There are two containers in the inlet of the flow line; one provides tap water during pre-

flush and post flush, and the other container is for acid injection. Injection rates can be as 

high as 1 lit/min and the flow can be controlled to be injected from 10-100% of its 

capacity. Ceramic heaters are used to heat the fluids until the desired experimental 

conditions. Temperatures up to 300°F are feasible in this set up. 

The cell pressure is kept constant at 1,000 psi controlled with the use of a 

backpressure regulator, with the goal of maintaining the CO2 generated from the acid 

reaction in solution. The leakoff fluid is controlled through the use of a backpressure 

regulator in the leakoff line. A fracture differential between the leakoff port and the cell 

pressure was maintained constant at approximately 0.5 psi for all experiments. 

Three different pressure transducers are used to monitor the experimental 

conditions throughout each test. One pressure transducer is used to monitor the pressure 

drop across the fracture, which allows us to evaluate if the fracture is open during acid 

injection.  Another pressure transducer is used to monitor the cell pressure, and the third 

pressure transducer measures the pressure drop across the leakoff line. 

An acid fracture etching experiment involves many different steps, including 

preparation of the acid solution, placing the cores in the cell, flushing and heating the 

lines to the desired temperature using tap water flow and then the actual acidizing 
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process followed by a post-flush with water to clean the cores and lines of the acid 

solution. 

Cores were fitted in the cell and a fracture gap of about 0.12 inch was kept using 

metallic shims to achieve the desired width. The cell was placed in a vertical direction 

such that fluid flows upwards through the fracture to prevent gravity effects on the 

etching of the core faces. After ensuring that the pistons were in place and the fracture 

width was maintained at the desired value, a pre-flush of tap water was injected. After 

achieving the desired cell pressure, leak off rate, and temperature, acid injection was 

started. During acid injection, temperature recordings were taken several times and leak 

off volume and leak off differential pressure were monitored to ensure appropriate leak 

off rates. Finally, after the desired time period of acid injection was met, fresh water was 

injected to clean the cores and the lines from acid solution to prevent corrosion and to 

minimize risks while handling core samples. Afterwards, the cores were extracted from 

the cell. The etched surfaces of cores were photographed and scanned using the 

profilometer as described later, and then fracture conductivity was measured. This 

procedure is described in detail by Zou (2005), Malagon et al. (2006), Pournik et al. 

(2007) and Melendez (2007). 

6.2.7. Conductivity Cell and Procedure  

Conductivity is measured by flowing nitrogen through the closed acidized 

fracture, and measuring the pressure drop across the fracture under different closure 

stresses. The fracture conductivity apparatus and measurements are described in details 

by Zou (2005), Malagon et al. (2006), Pournik et al. (2007) and Melendez (2007).  
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The conductivity cell has the same dimensions as the acidizing cell, but is made 

of stainless steel instead of Hastelloy material. The cell is placed horizontally in the load 

frame. The load frame is a compression tester that can apply up to 25,000 psi closure 

stress on the fracture faces, and has a ram area of 125 in2. Since the core samples have a 

ram area of 12.47 in2, an equivalent of 10 times the force applied to the load frame is 

actually being applied to the core samples (Zou 2005). Closure stresses from 0 psi in 

increases of 1,000 psi are applied to measure the pressure drop across the fracture face 

which is recorded under five different flowrates for each closure stress. The recorded 

pressure drop values are used in the Forcheimer’s equation to calculate the fracture 

conductivity.  A nitrogen mass flow regulator is used to control the nitrogen flow 

through the fracture and to vary the flowrates for which the data is recorded. 

Forcheimer’s equation is given by: 
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In Eq. (6.6), M is the molecular mass of nitrogen, 0.028 kg/kg-mol, h is height of 

fracture face, 1.61 inches, Z is the compressibility factor (unity), R is the gas universal 

constant, 8.32 J/mol K, L is the length of fracture over which pressure drop is measured, 

5.25 inches, µ is the viscosity of nitrogen at standard conditions, 1.747E-05 Pa.s, and ρ 

is the density of nitrogen at standard conditions, 1.16085 kg/m3. Eq. (6.6) shows that the 

Forcheimer’s equation can be arranged as a straight line equation in which the intercept 

is the inverse of the conductivity. 
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6.3. Results and Discussion 

 The objective of this work is to study the effect of the droplet size of the 

emulsified acid on fracture conductivity of the carbonate rock after acidizing. The 

change of the droplet size was achieved with changing (1) the acid volume fraction, (2) 

emulsifier concentration and (3) mixing rate. Detailed analysis for the effect of these 

parameters on the droplet size and size distribution was given in section 2. 

Table 6.5 gives detailed information for the properties of emulsified acid for 

each test. In the first three tests, the emulsifier concentration was 5 gpt but the acid 

volume fraction was reduced from 0.7 to 0.5. In the fourth and fifth tests, the 

concentrations of the emulsifier were 1 and 10, respectively. These two tests were 

compared with test # 1 where it has similar acid volume fraction but different emulsifier 

concentration. In the last two tests, only the time of preparing the acid and rate of mixing 

were modified. They are compared with the first test where they have the same acid 

volume fraction and the same emulsifier concentration but different mixing rate. 

Additionally, Table 6.5 gives the chemical composition and the experimental 

conditions for each test. The contact time and operating temperature were kept fixed at 

30 minutes and 200 oF, respectively. Reported in the table also is etched volume of the 

core sample caused by each emulsified acid preparation. 
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TABLE  6.5- SUMMARY OF EXPERIMENTAL CONDITIONS 

 

Test 
No. 

Contact 
Time 
(min) 

Acidizing 
Temperature 

oF 

Emulsifier 
Concentration 

gpt 

Acid 
Volume 
fraction 

Etched 
Volume 

(in3) 
1 30 200 5 0.7 4.801 
2 30 200 5 0.6 2.279 
3 30 200 5 0.5 0.225 
4 30 200 1 0.7 4.266 
5 30 200 10 0.7 2.127 
6 30 200 5 0.7 2.229 
7 30 200 5 0.7 1.861 

 

6.3.1. Effect of Acid Volume Fraction 

The actual surfaces of the Indiana Limestone core samples after acidizing with an 

emulsified acid having 0.5, 0.6 and 0.7 acid volume fractions are pictured in Fig. 6.1. All 

emulsified acids used an emulsifier concentration of 5 gpt and a contact time of 30 

minutes. The three experiments were performed at the same experimental conditions. 

Prominent feature of these surfaces is the deeply eroded region on the inlet side of the 

rock samples. The number of wormholes that have formed because of acid leak-off 

decreases with decreasing the acid volume fraction. 

A more detailed picture of the surface texture after acidization was obtained with 

the surface laser profilometer. The 3-D images of the surfaces of Fig. 6.1 are given in 

Fig. 6.2. Again, Fig. 6.2 shows the large amount of dissolution at the fracture inlet. It 

shows also that these inlet effects are gradually decreasing away from the inlet. Fig. 6.3 

reveals more information about the depth of acid removal of the rock. It shows that, 

except at the inlets, emulsified acid with 0.5 acid volume fraction removed less than 

0.025 inches of the rock surface, the emulsified acid with 0.6 acid volume fraction 
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removed nearly 0.12 inches, and the emulsified acid with 0.7 acid volume fraction 

removed down to 0.2 inches. It was shown previously (Malagon et al. 2006) that the 

effects of the acid etching on Indiana limestone rocks are divided into large scale effects 

and smaller scale roughness features and that the fracture conductivity is primarily 

caused by the large effects. 
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Fig.  6.1- Photos of the samples with different acid volume fractions. 
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Fig.  6.2- 3D image of etched surface with different acid volume fractions. 
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Fig.  6.3- Lateral cross sections with different acid volume fractions. 
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Fig. 6.4 shows the volume of removed rock. Larger acid volume fractions 

resulted in larger etched rock volumes as was expected. These volumes were used to 

calculate the ideal fracture widths, Fig. 6.5. It was expected that fracture conductivity 

increases with increasing the acid volume fraction because the fracture width increases 

with increasing the acid volume fraction. However, the opposite happened as will be 

discussed below. 

The predictions of the effect of acid volume fraction on the fracture conductivity 

using N-K equation are given in Fig. 6.6. The N-K equation shows that all conductivities 

are in parallel because all used Indiana limestone rocks have similar original rock 

embedment strength. This leads to similar slopes or C2 values of the N-K model. 

However, because different acid volume fractions removed different rock volumes, the 

ideal lengths changed resulting in different C1 values and produced parallel lines. 

The measured fracture conductivities are given in Fig. 6.7. Contrary to what was 

expected from the N-K equation, the fracture conductivities were of different slopes (C2 

values). The slopes are affected by the rock strength. Therefore, the change of the slopes 

means that the rock strength has changed after acidizing.  The acid volume fraction 

played a major role in softening the rock. When the acid volume fraction was 0.7, the 

rock embedment strength decreased causing much softening and much accelerated 

decrease in the fracture conductivity. For 0.5 acid volume fraction, the softening effects 

were the least causing a slower decrease in fracture conductivity. The 0.6 acid volume 

fraction exhibited an intermediate effect. This goes well with Navarrete et al. (2000) 

observations that fracture conductivity is more sensitive to the closure stress when 
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straight acid is used. Increasing acid volume fraction provides more straight acid and 

thus makes the conductivity more sensitive to the closure stress. 

The fracture conductivity in Indiana limestone is primarily caused by the large 

scale features of the surface after acidizing (Malagon et al. 2006). Large scale etched 

channels, trenches and ditches are created by the acid. With more acid contact as in the 

case of 0.7 acid volume fractions, these features are deeper but softer; therefore, the rate 

of decrease in conductivity was higher. With less acid contact as in the case of 0.5 acid 

volume fraction, these large scale features are shallow but stronger leading to a lasting 

conductivity against the high closure pressures. This phenomenon was explained by 

Gong et al. (1999). They stated that acidizing reduces the rock compressive strength 

causing the surfaces asperities to easily deform under closure stresses. 
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Fig.  6.4- Etched volume with different acid volume fractions. 
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Fig.  6.5- Fracture ideal width with different acid volume fractions. 
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Fig.  6.6- N-K predictions of fracture conductivity with different acid volume fractions. 
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Fig.  6.7- Measured fracture conductivity with different acid volume fractions. 
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6.3.2. Effect of Emulsifier Concentration 

The surfaces of the Indiana Limestone core samples after acidizing with an 

emulsified acid having 1, 5 and 10 gpt of emulsifier concentration are given in Fig. 6.8. 

All the three emulsified acids used 0.7 acid volume fraction and a contact time of 30 

minutes. The three acidizing experiments were performed at the same experimental 

conditions. The emulsified acid with 5 gpt emulsifier concentration created a surface 

with numerous wormholes and deeply eroded region on the inlet. The wormholes are 

less and surface is rougher for the 1 gpt case. The 10 gpt emulsified acid created a 

uniform rough surface. The wormholes are less and narrower than with the 5 gpt. 

The 3-D images of the surfaces of Fig. 6.8 are given in Fig. 6.9. Again, Fig. 6.9 

shows the large amount of dissolution at the fracture inlet. It shows also that these inlet 

effects are gradually decreasing away from the inlet. The concentrated dissolutions at the 

inlets are clearly shown by the lateral cross sections of Fig. 6.10. Fig. 6.10 shows more 

dissolution at the inlet when an emulsion having 1 gpt emulsifier concentration was 

used, slightly lesser dissolution at the inlet when 5 gpt emulsifier concentration was 

used, and approximately minimal dissolution at the inlet when 10 gpt emulsifier 

concentration was used. 

Fig. 6.8 reveals more information about the depth and amount of acid removal of 

the rock. It shows that emulsified acid with low emulsifier concentration (1 gpt) 

removed more rock. This could be seen clearly from the waviness and front views in 

Fig. 6.10. The emulsified acid that has high emulsifier concentration (10 gpt) removed 

small amount of the rock and the etching was uniform. It removed less than half the 
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amount removed by the emulsified acid that had 1 gpt emulsifier concentration. This 

should be the result of retarding the acid reaction with increasing emulsifier 

concentration. Increasing emulsifier concentration increases the viscosity and decreases 

the droplet size of the emulsified acid which reduces its overall reaction rate. 

Fig. 6.11 shows the volume of removed rock when the emulsifier concentration 

was changed. As mentioned above, the etched volume increased with decreasing the 

emulsifier concentration. The emulsified acid that has 10 gpt emulsifier concentration 

removed 2 in3. However, the difference between the 1 and 5 gpt is not understandable, 

both removed about 4.5 in3. This might be due to different heterogeneity of the rocks. 
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Fig.  6.8- Photos of the samples with different emulsifier concentrations. 
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Fig.  6.9- 3D image of etched surface with different emulsifier concentrations. 
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Fig.  6.10- Lateral cross sections with different emulsifier concentrations. 
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The itched volumes were used to calculate the ideal fracture width for N-K 

model. The ideal fracture width of the 10 gpt emulsifier concentration was 0.18 inches 

and it was around 0.4 inches for the 1 and 5 gpt emulsifier concentrations as shown in 

Fig. 6.12. Fig. 6.13 shows the predictions of the fracture conductivity by N-K 

model. First, the N-K model overestimated the fracture conductivities. Secondly, the 

conductivity lines were shown in parallel because the N-K model used the same rock 

embedment strength (the only variable that changes the slope). Parallel lines indicated 

that the rates of the decrease in conductivities as a result of changing the closure stress 

are the same. A third observation from the N-K model is that there is no appreciable 

difference in conductivity between using the 1 and 5 gpt emulsifier concentrations. As 

we mentioned earlier, the initial conductivity (the intercept C1) in the N-K model 

depends on the fracture ideal width. Therefore, the 1 and 5 gpt lines are shown to 

overlap because they have closely similar ideal fracture widths. The 10 gpt line was 

predicted to have a lower conductivity because it had smaller ideal fracture width. 

The measured fracture conductivities showed, however, different results, Fig. 

6.14. First, the measured conductivities were two orders of magnitude less than what 

were predicted by the N-K model. Second, the rates of the decrease in conductivity with 

closure stress are not the same between all the lines as was predicted by the N-K model. 

The 1 gpt emulsifier concentration showed a more lasting conductivity, followed by the 

10 gpt and then by the 5 gpt emulsifier concentration. Since the trend is not systematic 

with increasing the emulsifier concentration, i.e. the slopes of conductivity lines did not 

decrease with the emulsifier concentration, this means there were two different 
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mechanisms for the created conductivity between low and the high emulsifier 

concentrations. Third, the initial conductivities for the three emulsions were close to 

each other opposite to what was predicted by the N-K model. The 1 gpt emulsifier 

concentration showed slightly more initial conductivity, followed by the 10 gpt then by 

the 5 gpt emulsifier concentrations. 

6.3.3. Effect of Droplet Size 

The surfaces of the Indiana Limestone core samples after acidizing with fine, 

medium and coarse emulsified acids are given in Fig. 6.15. All the three emulsified acids 

used 0.7 acid volume fraction, 5 gpt emulsifier concentration and a contact time of 30 

minutes.  
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Fig.  6.11- Etched volume with different emulsifier concentrations. 
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Fig.  6.12- Fracture ideal width with different emulsifier concentrations. 
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Fig.  6.13- N-K predictions of conductivity with different emulsifier concentrations. 
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Fig.  6.14- Measured fracture conductivity with different emulsifier concentrations. 
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The three acidizing experiments were performed at the same experimental 

conditions. The medium emulsified acid created a surface with numerous and wide 

wormholes and deeply eroded region on the inlet. Fine emulsion had less and narrower 

wormholes and created a uniform rough surface. Wormholes are rare and invisible with 

coarse emulsion. The small number of wormholes with using the coarse emulsion is 

because that the large droplet size of the acid cannot penetrate through the pores and 

only eroded the surface. 

The 3-D images of the surfaces of Fig. 6.15 are given in Fig. 6.16. Again, Fig. 

6.16 shows the large amount of dissolution at the fracture inlet. It shows also that these 

inlet effects are gradually decreasing away from the inlet. The concentrated dissolutions 

at the inlets are clearly shown by the lateral cross sections of Fig. 6.17. Fig. 6.17 shows 

more dissolution at the inlet when a medium emulsified acid was used and lesser 

dissolutions at the inlet when fine and coarse emulsions were used. 

Fig. 6.16 reveals more information about the depth and amount of acid removal 

of the rock. It shows medium emulsified acid removed more rock. This could be seen 

clearly from the waviness and front views in Fig. 6.17. The fine and coarse emulsified 

acids removed small and similar amounts of the rock and had a uniform etching pattern. 

Each removed less than half the amount removed by the medium emulsified acid. Fig. 

6.18 shows the volume of removed rock when the droplet size was changed. The itched 

volumes were used to calculate the ideal fracture width for N-K model. The ideal 

fracture width of the fine and coarse emulsions was 0.18 inches and it was around 0.4 

inches for the medium emulsion as shown in Fig. 6.19. 
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Fig. 6.20 shows the predictions of the fracture conductivity by N-K model. The 

N-K model overestimated the fracture conductivities by two orders of magnitude when 

compared by the measured conductivities in Fig. 6.21. In Fig. 6.20, the conductivity 

lines were shown in parallel which indicated that the rates of the decrease in 

conductivities are the same. However, the measured conductivities shows that the rates 

of the decrease in conductivities with closure stress are not the same between all the 

lines as was predicted by the N-K model. The coarse emulsion showed a more lasting 

conductivity, followed by the fine emulsion and then by the medium emulsion. Because 

the etched volumes were the same for the coarse and fine emulsions, the N-K model 

showed that there is no major difference in their predicted conductivities. 
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Fig.  6.15- Photos of the samples with different droplet sizes. 
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Fig.  6.16- 3D image of etched surface with different droplet sizes. 
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Fig.  6.17- Lateral cross sections with different acid droplet sizes. 
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Fig.  6.18- Etched volume with different droplet sizes. 
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Fig.  6.19- Fracture ideal width with different droplet sizes. 
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Fig.  6.20- N-K predictions of fracture conductivity with different droplet sizes. 
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Fig.  6.21- Measured fracture conductivity with different droplet sizes. 
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Because of the fact that the change of emulsifier concentration causes the droplet 

size to change, the same trend that was noticed with changing the droplet size was 

similar to that of changing the emulsifier concentration. The 1 gpt which has a coarse 

droplets and the best conductivity then the 10 gpt which is equivalent to the fine 

emulsion and then the 5 gpt which is the medium emulsion. This supports the tow-

mechanisms theory for the created conductivity between low and the high emulsifier 

concentrations or droplet sizes. 

6.3.4. Approach to Modeling 

The discussion above is based on the observations of the final results of complex 

process of acidizing and the created fractures. All available techniques give details of the 

system before and after the tests. There is no technology that allows for this process to 

be monitored while it is taking place. There are questions that are still to be answered for 

the acidizing process especially when considering the emulsified acids. The modeling of 

the process using discrete phase technique can describe the flow of emulsion. 

In this section, we discuss one of the available modeling techniques that can 

describe flow of emulsions. We do not intend to run any simulation tests using the 

recommended CFD software. However, this section is a starting point for other 

researchers to explore this area. Our results can be used to validate the produced models.      

The discrete phase modeling calculates the trajectories of the droplets using a 

Lagrangian formulation that includes the discrete phase inertia, hydrodynamic drag, and 

the force of gravity, for both steady and unsteady flows. It can predict the effects of 
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turbulence on the dispersion of particles due to turbulent eddies present in the continuous 

phase. It could also account for the heating and cooling of the discrete phase. 

 FLUENT is a CFD software package that can handle the discrete 

phase problems.  Most of this section is reproduced from the FLUENT manual. The 

discrete phase model requires defining the initial position, velocity, size, and 

temperature of individual droplets in the system. These initial conditions, along with the 

inputted physical properties of the discrete phase, are used to initiate trajectory and 

heat/mass transfer calculations. The trajectory and heat/mass transfer calculations are 

based on the force balance on the particle and on the convective/radiative heat and mass 

transfer from the droplet, using the local continuous phase conditions as the droplet 

moves through the flow. 

FLUENT allows predictions of the discrete phase patterns based on a fixed 

continuous phase flow field (uncoupled), or based on a dynamic continuous phase 

(coupled). In the coupled mode, the continuous phase flow pattern is impacted by the 

discrete phase (and vice versa). 

An essential input to the discrete phase model is the determination of boundary 

conditions. We propose modifying the default boundary conditions of the FLUENT 

package to include the following: 

(1) Reflect (Fig. 6.22): this boundary condition represents the phenomenon when 

the droplet hits the fracture surface and bounces back to the main stream either 

on the same velocity or with different velocity depending on the normal and 

tangential coefficients of restitution. 
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(2) Trap (Fig. 6.23): the trap condition provides the case when the acid droplets hit 

the rock surface then reacts. Acid reaction model should be added to this 

boundary condition. 

(3) Escape (Fig. 6.24): the escape condition provides the case when the droplets hit 

the surface and wormholes through the pores. This process has a combination 

of reaction and leak-off.   

Based on the predicted trajectories, the discrete phase model can predict the 

number of the droplets that will hit the surface (Phit). Once the droplet hits the surface, it 

has to follow one of the three boundary conditions: reflect, trap or escape.  

 The total number of the droplets that either are trapped on the surface or escaped 

though the pores (Ptrap + Pescape) could be found from the difference in the dry weight of 

the cores before and after acidizing. The number of the droplets that are only trapped on 

the surface (Ptrap) can be found from the weight of the rock that is removed from the 

surface. The amount of the rock that is removed from the surface can be found using the 

profilometer results. Then, we can go back and calculate (Pescape). We can calculate the 

number of the droplets that bounced back (Preflect) when we subtract (Ptrap + Pescape) from 

(Phit). 

Phit    =    Preflect    +    Ptrap   +    Pescape 
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Fig.  6.22- The reflect mode of acid droplet. 

 

 

 

 

 

 

Fig.  6.23- The trap mode of acid droplet. 
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Fig.  6.24- The escape mode of acid droplet. 

 

 

6.4. Conclusions 

In this section, we acidized Indiana limestone rocks with various preparations of 

emulsified acids and observed rock’s responses to the acid. We kept all testing 

conditions fixed and only changed the parameters that affect the droplet sizes of the 

emulsified acids. Our findings are: 

(1) Different droplet size produced different rock surfaces roughness and 

wormholing characteristics. 
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(2) Acidizing Indiana limestone with emulsified acid that have different 

average droplet sizes produced different fracture conductivities. 

(3) The sensitivity of fracture conductivity to the closure stress was 

found to increase with increasing acid volume fractions. 

(4) The response of the fracture conductivity was found to be equivalent 

when changing the droplet size either using emulsifier concentration 

or mixing rate. 

(5) The N-K model failed to predict the conductivity of the fracture in 

our experiments. 

This section was concluded with an approach to modeling the process of acid 

fracturing using the emulsified acid. The use of discrete phase modeling to approach this 

problem is recommended. The different boundary conditions that are required for 

solving the problem were identified.  
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7. CONCLUSIONS AND RECOMMENDATIONS 

The objective of this work was to study the effect of the droplet size and size 

distribution on various properties of emulsified acids. In section 1, we described the 

emulsified acid system and reviewed all previous work available in the literature. We 

stated the problem and defined our objectives.  

In section 2, we measured the droplet sizes of emulsified acids and studied the 

effect of various acid preparations on the droplet size and size distribution of emulsified 

acids. We found that the mode and rate of adding and the speed of mixing significantly 

affect the droplet size and the size distribution of the emulsified acid. High mixing 

produces fine emulsions, while low mixing produces coarse emulsions. We also studied 

the effect of changing the acid volume fraction and the emulsifier concentration on the 

droplet size and the size distribution of emulsified acid. We found that increasing the 

acid volume fraction increases the droplet size, whereas increasing the emulsifier 

concentration decreases the average droplet size. We also discussed some methods of 

representing the size distribution data and found a way to normalize the data. 

We monitored the stability of the tested emulsified acids and showed the results 

in section 3. The fine emulsions were found to be more stable than the coarse emulsions. 

Most of the tested emulsified acids were found to be stable during the course of testing. 

The emulsified acids that have acid volume fraction of 0.7 were found to be the most 

stable emulsions. Other acid volume fractions did not withstand the gravity effects and 

exhibited creaming mechanism. However, all emulsions stayed in their emulsion form 
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even after creaming. Stability of some emulsions were monitored during repeated 

shearing in a rotational viscometer and proved to be stable for 15 hours. 

The effect of average droplet size and size distribution on the apparent viscosity 

of the emulsified acids was discussed in details in section 4. We found that the apparent 

viscosity decreases with increasing the average droplet size. Fine emulsions have higher 

viscosity than coarse ones. Also, we found that the apparent viscosity decreases with 

widening the size distribution of the emulsion. We mentioned that similar results were 

reported by other researchers for the water-in-oil emulsions. The viscosity of emulsified 

acid was found to increase as the acid volume fraction increases at high emulsifier 

concentration. Although some conclusions were proven by previous researchers to apply 

for the water-in-oil emulsions in general, we emphasized that our conclusions are 

specific to the mentioned conditions. 

In section 5, we discussed the effect of the average droplet size on the diffusion 

coefficient of the emulsified acid. Although we showed our disagreement to the usual 

method of measuring the mass transfer parameters of the hydrogen ion in the emulsified 

acid system, we used this standard procedure and then correlated its output to the 

measured droplet sizes. 

We stated that the diffusion process in the emulsified acid/calcite system 

involves the diffusion of the acid droplets as well as the hydrogen ion. We found that 

diffusion rate of acid droplets to the surface of the disk decreased with increasing 

emulsifier concentration because of higher viscosities and smaller droplet sizes. The 
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effective diffusion coefficient of emulsified acid was found to increase linearly with the 

average droplet size of emulsified acid. 

We were able to use the weight loss results to assist in predicting the effective 

diffusion coefficient. We discussed the Brownian diffusion and found that it cannot be 

used to explain the diffusion rate of emulsified acids. The effect of temperature on 

diffusion coefficient was studied and found that it did not follow the Arrhenius law. 

At the end of section 5, we made a comparison between using the calcite marbles 

and Indiana limestone rocks for measuring the effective diffusion coefficient. We found 

that the difference between using calcite marbles and Indiana limestone rocks was large 

at low diffusion coefficients and small at high diffusion coefficients. 

Section 6 dealt with actual simulation of the acid fracturing process. We acidized 

Indiana limestone rocks with various preparations of emulsified acids and observed 

rock’s responses to the acid. We kept all testing conditions fixed and only changed the 

parameters that affected the droplet sizes of the emulsified acids. 

We found that different droplet sizes produced different rock surfaces roughness 

and wormholing characteristics. The sensitivity of fracture conductivity to the closure 

stress was found to increase with increasing acid volume fractions. The response of the 

fracture conductivity was found to be equivalent when changing the droplet size either 

using emulsifier concentration or mixing rate. 

We concluded our work with an approach to modeling the process of acid 

fracturing using the emulsified acid. We recommended the use of discrete phase 
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modeling to approach this problem. Also, we identify the different boundary conditions 

that are required for solving the problem. 

Having studied the drastic effect of the droplet size on the emulsified acid, we 

recommend the following: 

(1) During field application, stimulation engineer should have the properties for 

the emulsified acid that is prepared in the field and not the properties of the lab 

samples. These two samples have a significant difference because of the way 

they were prepared and mixed. 

(2) We recommend using a systematic procedure with well-studied properties for 

preparing the emulsified acid in the field. This systematic procedure could be 

followed as a caliper when the measurements are difficult in the field. 

(3) The droplet size of emulsified acids can be adjusted to produce the desired 

diffusion rate coefficients for acid fracturing treatments. 

(4) For those who are working on the rotating disk apparatus, we think that the 

weight loss data of the rock disks are valuable quick measure to optimize the 

number of tests and samples. 

The following list provides some topics for future research: 

(1) We studied the effects of mode and rate of adding, speed of mixing, acid 

volume fraction and emulsifier concentration on the droplet size and size 

distribution. Future work could find a correlation that can predict the droplet 

size and size distribution using these parameters. 
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(2) We also studied the effect of the droplet size and size distribution on the 

apparent viscosity of the emulsified acid. Future work could find a correlation 

that can predict the apparent viscosity using the droplet size and the size 

distribution. 

(3) We fixed the corrosion inhibitor concentration throughout our study. Future 

work can consider the effect of changing the corrosion inhibitor concentration. 

Also, the effect of the droplet size of the emulsified acid on the corrosion rate 

can be tested. 

(4) We believe existing models can not explain the behavior of emulsified acid. 

Therefore, we provided an approach to the modeling of the emulsified acid 

during acid fracturing treatments. This topic is worth research efforts and can 

clarify a lot of emulsified acid issues. 
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