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ABSTRACT

Products of Representations of the Symmetric Group

and Non-Commutative Versions. (May 2008)

Rivera Walter Moreira Rodriguez, B.S., Universidad de la República;

M.S., Universidad de la República

Chair of Advisory Committee: Dr. Marcelo Aguiar

We construct a new operation among representations of the symmetric group that

interpolates between the classical internal and external products, which are defined in

terms of tensor product and induction of representations. Following Malvenuto and

Reutenauer, we pass from symmetric functions to non-commutative symmetric func-

tions and from there to the algebra of permutations in order to relate the internal and

external products to the composition and convolution of linear endomorphisms of the

tensor algebra. The new product we construct corresponds to the Heisenberg prod-

uct of endomorphisms of the tensor algebra. For symmetric functions, the Heisenberg

product is given by a construction which combines induction and restriction of rep-

resentations. For non-commutative symmetric functions, the structure constants of

the Heisenberg product are given by an explicit combinatorial rule which extends a

well-known result of Garsia, Remmel, Reutenauer, and Solomon for the descent al-

gebra. We describe the dual operation among quasi-symmetric functions in terms of

alphabets.
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1. INTRODUCTION

The space of representations of the symmetric group and the closely related space of

symmetric functions are important objects in the field of Algebraic Combinatorics.

They have an extremely rich structure. In this work we concentrate on algebra struc-

tures in these spaces. Both spaces carry two classical products: the external product

and the Kronecker, or internal, product. Our goal is to introduce a new product

which interpolates between these classical structures. We call this new operation the

Heisenberg product. The reason for the name will be explained in Section 5.

To best understand this new operation we consider not only symmetric functions

but other objects, including non-commutative symmetric functions, related by the

diagram shown in Figure 1.

The objects in Figure 1 can be divided into three groups, marked with different

kind of boxes. We call the first group, marked with square boxes, the commutative

context. The second group, marked with rounded boxes, is the non-commutative

context. And finally, the third group has only one element, unframed in Figure 1,

which is the space of quasi-symmetric functions. It is important to note that the

adjectives “commutative” and “non-commutative” refer only to the external product.

The internal product is always non-commutative, as well as the new product we

introduce. Each context requires a different and independent construction of the

Heisenberg product.

In the commutative context, we start our construction in the category of species.

The theory of species was introduced by Joyal [16] in 1980. It provides a general

This dissertation follows the style of Journal of the American Mathematical

Society.
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Fig. 1. The spaces where the Heisenberg product is introduced.

context to work with labeled and unlabeled combinatorial structures. Although a

species carries essentially the same information as a sequence of representations, over

a field of characteristic 0, of the symmetric groups Sn for n ≥ 0, the language of

species is considerably easier than the language of representations, as it is shown in

sections 2 and 3.

The equivalence between species and sequences of representations of the symmet-

ric groups is worked out on Section 3. We translate, via this equivalence, the classical

and the Heisenberg products to representations of Sn, and we give expressions in

terms of restriction and induction of representations.

The relation between representations of Sn and the space of symmetric polyno-

mials in n variables is a classical well-known subject, which involves the Grothendieck

group and the Frobenius characteristic. We deal with this passage in Section 4. This
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is the double arrow in Figure 1. The application of this classical theory to sequences

of representations take us to the completion of the space of symmetric functions.

This space contains the space of symmetric functions, and the internal and external

products restrict to this space. We show that the same holds for the new operation.

The Heisenberg product has a nice combinatorial expression in some basis of

symmetric functions, which generalizes combinatorial rules for the external and in-

ternal products. These combinatorial formulas are the key to relate the commutative

and non-commutative contexts, which are a priori unrelated. That is symbolized in

Figure 1 by a boldface rectangle around symmetric functions.

In the non-commutative context, we consider the space of endomorphisms of a

graded Hopf algebra. In this space there are several well-known products. One way

to look at the space of endomorphisms of a finite-dimensional Hopf algebra H , which

emphasizes a relation with the semi-direct product of groups, is to consider the object

H ⊗ H∗. We are interested in an operation which, when defined on H ⊗ H∗, gives

this space the name Heisenberg double, and is denoted by H#H∗. This is treated on

Section 5.

At this point, our main goal is to restrict the Heisenberg product to the space

of non-commutative symmetric functions, which can be embedded into the endomor-

phisms of the tensor algebra of vector space. We follow two different paths, each

of them of particular interest. On one side, we define in Section 5 the notion of

Garsia-Reutenauer endomorphisms for an arbitrary Hopf algebra, and we restrict the

Heisenberg product to such subspace. When the Hopf algebra is the tensor algebra

of a vector space V , then the subspace of Garsia-Reutenauer endomorphisms which

are fixed under the action of the group GL(V ) coincide with the non-commutative

symmetric functions. We treat this in Section 7. This is the most powerful method

to construct the Heisenberg product of non-commutative symmetric functions, since
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it can be applied to other products and to other subspaces of endomorphisms, as we

mention briefly in Section 10. The other path we follow, in Section 6, is to use Schur-

Weyl duality to embed the space of permutations into the space of endomorphisms

of the tensor algebra. The space of non-commutative symmetric functions can be

viewed as a subspace of the space of permutations. We show that the Heisenberg

product restricts to such subspace. This construction has the advantage of produc-

ing an explicit combinatorial formula for the Heisenberg product of non-commutative

symmetric functions. Using this formula it is possible to show that the projection

from non-commutative symmetric functions to commutative symmetric functions is

a morphism of algebras.

The third group in Figure 1 consists of the space of quasi-symmetric functions.

We view this space as the dual of the space of non-commutative symmetric functions.

As such, we define in Section 9 a new coproduct of quasi-symmetric functions, dual to

the Heisenberg product, which extends the classical internal and external coproducts.

Such construction can also be restricted from quasi-symmetric functions to symmet-

ric functions. In this last space we obtain, then, the Heisenberg product and the

Heisenberg coproduct, although they are not compatible.

In Section 8 we discuss further connections between the classical and the new

structure. In addition, we also study the compatibility of the Heisenberg product

with the coproduct in the spaces of commutative and non-commutative symmetric

functions. Dually, we consider the compatibility of the Heisenberg coproduct with the

usual product in quasi-symmetric functions. This gives new Hopf algebra structures

on these spaces.

This thesis is based in a joint work with Marcelo Aguiar and Walter Ferrer [2].

I am grateful to them for allowing me to include such work.
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1.1. Terminology

In all the spaces we consider there are at least two well-known products. Although

they are closely related by the inclusions, projections, and isomorphisms in Figure 1,

unfortunately various different names and notations are used in the literature. Table 1

shows some of the commonly used names.

We call the new product we introduce, in every space, the Heisenberg product,

and we denote it with the symbol #.

Table 1. Standard terminology and notation for the classical products.

Species Representations
Symmetric

functions

Non-

commutative

symmetric

functions

Permutations

Endomorphisms

of graded Hopf

algebras

internal

product

Hadamard
(×)

Kronecker
(∗)

internal
(∗)

Solomon
(∗)

composition
(◦)

composition
(◦)

external

product

Cauchy
(·)

induction
(·)

external
(·)

external
(·)

Malvenuto-
Reutenauer

(⋆)

convolution
(⋆)
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2. SPECIES

2.1. Classical monoidal structures in species

The theory of species was introduced by Joyal in [16]. In this section we present the

definition, some examples, and the classical monoidal structures in the category of

species. We follow the notation and terminology of [1] and [6].

Let Set× be the category whose objects are finite sets and whose morphisms are

bijections among the sets. Let us fixed a field k and let Vect be the category of

vector spaces over this field.

Definition 2.1.1. A species p with values in the category Vect is a functor p :

Set× → Vect. A morphism between two species p and q is a natural transformation

between the functors p and q.

We denote the category of species and its morphisms by Sp. The evaluation of

the functor p on a set I is denoted by p[I], and the evaluation of p on a bijection f

is denoted by p[f ]. The image of the set [n] = {1, 2, . . . , n} is written, for simplicity,

p[n] instead of p
[
[n]
]
. By definition, [0] = ∅.

For each n, the vector space p[n] has a structure of Sn-module. Indeed, given

a permutation σ : [n] → [n], the application of the functor p yields a linear map

p[σ] : p[n] → p[n]. The functoriality of p ensures that the operation of Sn on p[n]

defined by

σ · x = p[σ](x),

for σ ∈ Sn and x ∈ [n], is a left Sn-module structure on p[n]. Indeed, since σ is a

bijection, then p[σ] is an automorphism in the vector space p[n]; and, since p is a

functor, (τσ) · x = p[τσ](x) = p[τ ]
(
p[σ](x)

)
= τ · (σ · x).
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Example 2.1.2. We give some examples and we set the notation for some species

we will use later.

(a) The exponential species e is defined by e[I] = k{∗} for every finite set I. For

f : I → J , the linear map e[f ] : e[I] → e[J ] is the unique automorphism of the

vector space k{∗} which fixes the element ∗.

(b) The species 1 is defined by

1[I] =





k{∗}, if I is empty

0, otherwise.

(2.1)

We define 1[f ], for a bijection f : I → J , as the unique linear map between 1[I]

and 1[J ] which fixes the element ∗ when I and J are empty, or the null map

otherwise.

(c) Let A a functor defined as follows: for a finite set I, the vector space A[I] has

a basis consisting on all the simple graphs with vertex set I. For a bijection

f : I → J , the linear map A[f ] is defined on the basis of A[I] by relabeling the

vertices of the graphs according to the bijection f .

(d) The linear order species ℓ is defined, for a finite set I, as the vector space ℓ[I]

spanned by the set of linear orders on the set I. The functor ℓ is defined on

morphisms by relabeling the elements, as in Example (c).

To speak of products of species, the proper context is the notion of monoidal

categories. The following definition can be found in [17].

Definition 2.1.3. A monoidal structure in a category C is a functor � : C×C→ C

which is associative and has a unit element e, up to natural isomorphisms,

αa,b,c : a� (b� c) ∼= (a� b) � c, λa : e� a ∼= a, ρa : a� e ∼= a.
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Moreover, these isomorphisms must satisfy the commutative diagrams:

(
(a� b) � c

)
� d

(a� b) � (c� d)

a�
(
b� (c� d)

)

a�
(
(b� c) � d

) (
a� (b� c)

)
� d

H
αa�b,c,d

##H
HH

HH
HH

HH
H

v

αa,b,c�d

;;vvvvvvvvvv

)

1�αb,c,d

��
))

))
))

))
))

)

_
αa,b�c,d

//

�

αa,b,c�1



��
��
��
��
��
��

a� (e� c)
αa,e,c

//

1�λc

��
66

66
66

66
66

66
6

(a� e) � c

ρa�1

����
��

��
��

��
��

�

a� c

,

As a basic example of monoidal category, we mention the category of vector

spaces over a field k, with the tensor product ⊗. The unit e is the base field k.

In the category Sp of species there are several monoidal structures. The first

structure we define is the sum of species, which is defined pointwise as the direct sum

of vector spaces:

(p⊕ q)[I] = p[I]⊕ q[I]. (2.2)

The unit for this operation is clearly the species given by 0[I] = 0 for every finite set

I. We will use this operation in Section 4.1.

In what follows, we use the notation I = S ⊔ T to mean that the set I is

decomposed into the disjoint subsets S and T of I.

We concentrate now in two other monoidal structures: the Cauchy and Hadamard

products. These are well-known associative products (see [16, 6]). They are defined,

respectively, by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T ], (2.3)

(p× q)[I] = p[I]⊗ q[I]. (2.4)

Note that in the definition of the Cauchy product (·) the direct sum ranges over all
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the disjoint decompositions of the set I into two subsets.

At the level of morphisms it is easy to see that given two finite sets I and J , and

a bijection f : I → J , we obtain a bijection (S, T ) 7→
(
f(S), f(T )

)
between pairs of

sets (S, T ) with I = S⊔T , and sets (S ′, T ′) with J = S ′⊔T ′. Then, the map (p ·q)[f ]

is induced by the maps

p[f|S ]⊗ q[f|T ] : p[S]⊗ q[T ]→ p[S ′]⊗ q[T ′],

where f|S is the bijection f|S : S → f(S). A similar argument applies to the Hadamard

product.

The species 1 is the unit of · and the species e is the unit of ×. The natural maps

α, λ, and ρ are induced from the natural linear isomorphisms (associativity and left

and right units) of the usual tensor product of vector spaces.

2.2. The Heisenberg product of species

The Heisenberg product of species introduced here is a simple generalization of the

Cauchy and Hadamard products, which exhibits a kind of “interpolation” property

between these two classical products. The origin of the name for the new product

will be explained in Section 5.

Definition 2.2.1. The Heisenberg product of species is the functor # : Sp×Sp→ Sp

given by

(p # q)[I] =
⊕

I=S∪T

p[S]⊗ q[T ]. (2.5)

The map (p # q)[f ] is defined in the same way as for the Cauchy and Hadamard

products. Note that the direct sum runs over all the possible decompositions of I

into two subsets (compare with the Cauchy product in (2.3)).

This definition contains as extreme cases the classical products, in the following
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sense. Decompose the expression (2.5) into

(p # q)[I] = p[I]⊗ q[I] +
⊕

I=S∪T
∅6=S∩T 6=I

p[S]⊗ q[T ] +
⊕

I=S⊔T

p[S]⊗ q[T ]

= (p× q)[I] +
⊕

I=S∪T
∅6=S∩T 6=I

p[S]⊗ q[T ] + (p · q)[I], (2.6)

and we see that the extreme cases where both subsets S and T are equal to I, or S

and T are disjoint subsets, give rise to Hadamard and Cauchy products, respectively.

The pairs (Sp, ·) and (Sp,×) are monoidal categories. The same is true for the

pair (Sp,#), and the proof follows the same path as the one for the Cauchy product.

Theorem 2.2.2. The functor # : Sp × Sp → Sp gives a monoidal structure to the

category Sp, with unit object 1 defined in (2.1).

Proof. Let p, q, and r be three species. We prove the associativity property:
(
(p #

q) # r
)
[I] =

(
p # (q # r)

)
[I] for all finite sets I.

We have

(
(p # q) # r

)
[I] =

⊕

I=S∪T

(p # q)[S]⊗ r[T ]

=
⊕

I=S∪T

⊕

S=U∪V

p[U ]⊗ q[V ]⊗ r[T ], (2.7)

(
p # (q # r)

)
[I] =

⊕

I=S′∪T ′

p[S ′]⊗ (q # r)[T ′]

=
⊕

I=S′∪T ′

⊕

T ′=U ′∪V ′

p[S ′]⊗ q[U ′]⊗ r[V ′]. (2.8)

The tuples (U, V, T ) and (S ′, U ′, V ′) are in bijection by the map (U, V, T ) 7→ (T, U, V ),

hence equations (2.7) and (2.8) coincide. From Definition (2.5) it is clear that p#1 =

1 # p = p.

In addition to the relation via interpolation of the three products: Cauchy,
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Hadamard, and Heisenberg, there is also another relation through the following propo-

sition.

Proposition 2.2.3. For any species p and q, we have the isomorphism

(p · e)× (q · e) ∼= (p # q) · e, (2.9)

where e is the exponential species, defined in Example 2.1.2(a).

Proof. To prove Equation (2.9) we evaluate each side on a finite set I. Then, we get

(
(p · e)× (q · e)

)
[I] =

( ⊕

I=S⊔T

p[S]⊗ k

)
⊗

( ⊕

I=S′⊔T ′

q[S ′]⊗ k

)

∼=
⊕

S,S′⊆I

p[S]⊗ q[S ′] (2.10)

(
(p # q) · e

)
[I] =

⊕

I=J⊔K

(p # q)[J ]⊗ e[K] =
⊕

J⊆I

( ⊕

J=S∪S′

p[S]⊗ q[S ′]

)
⊗ k

∼=
⊕

J⊆I

⊕

J=S⊔S′

p[S]⊗ q[S ′], (2.11)

and clearly (2.10) and (2.11) coincide, and the isomorphisms are natural.

2.3. Generating series

In this section we assume that every species is finite-dimensional, meaning that the

vector spaces p[n] are finite-dimensional for each n ≥ 0.

Definition 2.3.1. The generating series associated to a species p is the formal series

Fp(x) =
∑

n≥0

dimk p[n]
xn

n!
.

Example 2.3.2. The following examples are immediate:

(a) The generating series associated to the exponential species e[I] = k for every

finite set I is Fe(x) = ex.
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(b) The unit of the Cauchy and Heisenberg products has generating series F1(x) = 1.

(c) The species of linear orders has generating series

Fℓ(x) =
1

(1− x)
.

The generating series associated to the Cauchy product p · q of two species is

the usual (Cauchy) product of the power series Fp and Fq. Similarly, the generating

series of p× q is the Hadamard product of the generating series of p and q. In other

words, if Fp(x) =
∑

n≥0 anx
n/n! and Fq(x) =

∑
n≥0 bnx

n/n!, then

Fp·q(x) =
∑

n≥0

(∑

i+j=n

(
n

i

)
aibj

)
xn

n!
and Fp×q(x) =

∑

n≥0

anbn
xn

n!
. (2.12)

The interpolation property of Equation (2.6) translates into a formula for the gener-

ating series of the Heisenberg product of species which contains the cases (2.12).

Theorem 2.3.3. Let Fp(x) =
∑

n≥0 anx
n/n! and Fq(x) =

∑
n≥0 bnx

n/n! be the gen-

erating series of two species p and q. Then, the generating series of the Heisenberg

product p # q is

Fp#q(x) =
∑

n≥0

(
∑

i,j≤n
n≤i+j

(
n

n− i, n− j, i+ j − n

)
aibj

)
xn

n!
.

Proof. Recall Definition (2.5) of the Heisenberg product of two species. Let n ≥ 0,

we count the number of terms in the direct sum

(p # q)[n] =
⊕

[n]=S∪T

p[S]⊗ q[T ]
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by establishing a bijection between the following two sets:

A =
{
(S, T ) such that [n] = S ∪ T , and #S = i and #T = j

}

B =
{
(U, V,W ) such that [n] = U ⊔ V ⊔W , and

#U + #W = i and #V + #W = j
}

Indeed, just take U = S \ T , V = T \ S, and W = S ∩ T . Clearly, we obtain

#U = n − i, #V = n − j, and #W = i + j − n. The multinomial coefficient in

the formula of Fp#q stands precisely for the number of possible ways to choose the

decomposition (U, V,W ), while the coefficients ai and bj are the dimensions of p[S]

and q[T ], respectively.
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3. REPRESENTATIONS OF THE SYMMETRIC GROUP

3.1. Classical products of representations

The language of species and the more classical language of representations of the

symmetric group are essentially the same. In this section we recall the equivalence of

these categories and we translate the products defined in Section 2 to the vocabulary

of representations.

The translations of the Cauchy and Hadamard products under this equivalence

yield two well-known products of representations: the induction product and the

Kronecker product. Sometimes they are also called external and internal product,

respectively.

Let us fix a field k of characteristic zero. Let Rep(Sn) be the category whose

objects are finite-dimensional representations of Sn over the field k, and whose mor-

phisms are Sn-module homomorphisms. We consider the category

R =
∏

n≥0

Rep(Sn). (3.1)

Recall that if p is a species, each vector space p[n] is an Sn-module with the action

defined by σ · x = p[σ](x), for σ ∈ Sn and x ∈ p[n]. If V is an object in R, we denote

its n-th coordinate by Vn, which is a representation of Sn.

Theorem 3.1.1. The functor F : Sp→ R given by

F(p) =
(
p[0], p[1], . . . , p[n], . . .

)

is an equivalence of categories.

Proof. Consider the skeleton of the category Set× whose objects are the natural
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intervals [n], and let C be the category of functors from this skeleton to Vect. The

category C is clearly equivalent to Sp. An object in C is, then, just a sequence of Sn-

modules (p[0], p[1], . . . ). A map in C comes from a natural transformation between

two species, hence it preserves the action of Sn in each coordinate. Thus, the category

C coincides with R, and the functor F gives the required equivalence.

We now give the classical definition of the induction and Kronecker products

of representations and in the next section we prove that they correspond under the

functor F to the Cauchy and Hadamard product of species. In these definitions we

follow the notation of [22].

Let p and q be non-negative integers. Given permutations σ ∈ Sp and τ ∈ Sq,

let σ × τ ∈ Sp+q be the permutation

(σ × τ)(i) =





σ(i) if 1 ≤ i ≤ p,

τ(i− p) + p if p+ 1 ≤ i ≤ p + q.

(3.2)

This operation gives an embedding of Sp × Sq into Sp+q, which we call the standard

parabolic embedding. This is a particular case of Equation (4.1).

Definition 3.1.2. Let V and W be two objects in R. The induction product of V

and W is the object whose n-th coordinate is the representation of Sn given by

(V ·W )n =
⊕

p+q=n

Ind
Sp+q

Sp×Sq
(Vp ⊗Wq), (3.3)

where Sp × Sq →֒ Sp+q is the standard parabolic embedding. The group Sp × Sq acts

on the space Vp ⊗Wq by (σ, τ) · (v ⊗ w) = (σ · v) ⊗ (τ · w), for σ ∈ Sp, τ ∈ Sq, and

v ⊗ w ∈ Vp ⊗Wq.

The Kronecker product of V and W is the object whose n-th coordinate is the
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representation of Sn given by

(V ∗W )n = Vn ⊗Wn. (3.4)

Here the group Sn acts on Vn⊗Wn diagonally, that is, σ · (v⊗w) = (σ · v)⊗ (σ ·w),

for σ ∈ Sn and v ⊗ w ∈ Vn ⊗Wn.

Observe that all the operations involved in the definition of both products: in-

duction of representations, direct sum, and tensor product, are functorial. Hence we

obtain two functors: ·, ∗ : R×R→ R.

It is known that these functors give monoidal structures on R. We will give a

proof of this fact for the Heisenberg product in the next section, which contains, as

particular cases, the proof for the classical products.

The units for the induction product and for the Kronecker product are the objects

defined, respectively, by

1 = (k, 0, 0, . . .), E = (k, k, k, . . .).

where Sn acts trivially in k.

3.2. The Heisenberg product of representations

To define the Heisenberg product of representations we first need to introduce an

embedding similar to the parabolic embedding (3.2).

Let p and q be two non-negative integers, and let n be an integer satisfying

max(p, q) ≤ n ≤ p+ q. Define the group

Sp ×n Sq = Sn−q × Sp+q−n × Sn−p,
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and consider the embeddings

Sp ×n Sq →֒ Sn, (σ, ρ, τ) 7→ σ × ρ× τ, (3.5)

Sp ×n Sq →֒ Sp × Sq, (σ, ρ, τ) 7→ (σ × ρ, ρ× τ). (3.6)

In the next definition we use the induction of representations along (3.5) and the

restriction of representations along (3.6).

Definition 3.2.1. The Heisenberg product of representations is the functor

# : R×R→ R

defined for V and W in R as the object whose n-th coordinate is the representation

(V #W )n =
⊕

0≤p,q
max(p,q)≤n≤p+q

IndSn

Sp×nSq
Res

Sp×Sq

Sp×nSq
(Vp ⊗Wq). (3.7)

Note that for each n-th coordinate of V # W there are finitely many non-negative

numbers p and q such that max(p, q) ≤ n ≤ p + q and each term of the sum is

finite-dimensional, hence the result V #W is a well-defined object in R.

The interpolation property of the Heisenberg product, analogous to the one

in (2.6) for the case of species, takes the following form. In each coordinate n,

consider the terms with p + q = n. In this case, the embedding (3.6) is the identity

and (3.5) is the standard parabolic embedding Sp × Sq →֒ Sp+q. On the other hand,

when p and q are both equal to n, the embedding (3.5) is the identity and (3.6) is

the diagonal embedding Sn →֒ Sn × Sn. Thus, we can write

(V #W )n = ResSn×Sn

Sn
(Vn ⊗Wn)⊕ · · · ⊕

⊕

n=p+q

IndSn

Sp×Sq
(Vp ⊗Wq)

= (V ∗W )n ⊕ · · · ⊕ (V ·W )n. (3.8)
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The Heisenberg product of two representations of Sp and Sq contains terms of

intermediate degrees between max(p, q) to p+q; in this sense it “interpolates” between

the Kronecker and induction products. It is a remarkable fact that, as the Kronecker

and induction products, the Heisenberg product is associative, and can be lifted

to other settings (non-commutative symmetric functions, permutations, and dually,

quasi-symmetric functions) as will be shown later in this work, starting in Section 7.

The next theorem proves that the operation defined in (3.7) is the translation of

the Heisenberg product in species defined in (2.5). Note that although the functor F

is an equivalence of categories, the language of species is considerably cleaner than

the language of representations. The lengthy verifications in Theorem 3.2.2 illustrate

this claim.

Note that Theorem 3.2.2 also shows that the unit of the Heisenberg product is

the object 1 = (k, 0, 0, . . .), image of the species 1 under F .

Theorem 3.2.2. The Heisenberg product of representations makes (R,#) a monoidal

category, and the functor F given in Theorem 3.1.1 preserves the monoidal structures

of Sp and R:

F(p # q) = F(p) # F(p) (3.9)

for any species p and q. The unit of (R,#) is the image under F of the species

1 (2.1):

F(1) = (k, 0, 0, . . .)

where Sn acts trivially on k.

Proof. It is enough to verify that the Heisenberg product of representations defined

by (3.7) satisfies Equation (3.9), since F is already an equivalence of categories and

Sp is a monoidal category with the Heisenberg product.

Fix i, j, and n, three non-negative integers such that max(i, j) ≤ n ≤ i+ j. We
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claim that we have an isomorphism in R:

⊕

[n]=S∪T
#S=i
#T=j

p[S]⊗ q[T ] ∼= IndSn

Si×nSj
Res

Si×Sj

Si×nSj

(
p[i]⊗ q[j]

)
. (3.10)

Once this isomorphism is established, taking the direct sum over i and j, we obtain

the n-th coordinate of F(p # q) on the left hand side, and the n-th coordinate of the

product F(p) # F(q) on R on the right hand side.

The following fact is clear. Let A and B be finite totally ordered sets. Given

ordered decompositions A = A1 ⊔ · · · ⊔An and B = B1 ⊔ · · · ⊔Bn, with #Ai = #Bi

for i = 1, . . . , n, there is a unique bijection f : A → B such that f(Ai) = Bi and

fi = f|Ai
: Ai → Bi is increasing, for all i = 1, . . . , n. We call f the canonical bijection

between A and B induced by the ordered partitions.

To define the isomorphism consider the following definitions. Given S and T

such that [n] = S∪T , let S ′ = S \T and T ′ = T \S. If #S = i and #T = j, then let

fS,T : [n]→ [n] be the canonical bijection induced by the following partitions of [n]:

S ′ ⊔ (S ∩ T ) ⊔ T ′ and [n− j] ⊔ [n− j + 1, i] ⊔ [i+ 1, n]

and let fS′, fS∩T , and fT ′, be the restriction to the corresponding subsets. From the

monotonicity conditions for fS,T , we get that f−1
S,T belongs to Si ×n Sj .

We consider the standard identification of the induction module IndGH(V ) with

the tensor product kG⊗kH V . Let u ∈ p[S] and v ∈ q[T ], and define the map

p[S]⊗ q[T ]
ψ
−→ IndSn

Si×nSj
Res

Si×Sj

Si×nSj

(
p[i]⊗ q[j]

)

u⊗ v 7−→ f−1
S,T ⊗

(
p[fS′ ⊔ fS∩T ](u)⊗ q[fS∩T ⊔ fT ′](v)

) (3.11)

and extend it to the direct sum in (3.10).
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For a permutation σ ∈ Sn, the action of σ in u⊗v is, according to Theorem 3.1.1,

σ · (u⊗ v) = p[σ|S ](u)⊗ q[σ|T ](v). (3.12)

Observe that σ · (u× v) ∈ p
[
σ(S)

]
⊗ q
[
σ(T )

]
. The application of the map ψ yields

ψ
(
σ · (u⊗ v)

)
= fσ(S),σ(T ) ⊗

(
α(u)⊗ β(v)

)
(3.13)

where α = p[fσ(S′) ⊔ fσ(S)∩σ(T )]p[σ|S ] and β = q[fσ(S)∩σ(T ) ⊔ fσ(T ′)]q[σ|T ]. Since we can

decompose σ|S into σ|′S ⊔ σ|S∩T
, then by the functoriality of p we get that

α = p
[
(fσ(S′)σ|S′ ) ⊔ (fσ(S∩T )σ|S∩T

)
]
.

Let σ̃S′ and σ̃S∩T be the only bijections such that the following diagrams commute

S ′
fS′

//

σ|
S′

��

[i]

σ̃S′

��

σ(S ′)
fσ(S′)

// [i]

S ∩ T
fS∩T //

σ|S∩T

��

[n− j + 1, i]]

σ̃S∩T

��

σ(S ∩ T )
fσ(S∩T )

// [n− j + 1, i]

(3.14)

We conclude that α can be rewritten as

α = p
[
(σ̃S′ ⊔ σ̃S∩T )(fS′ ⊔ fS∩T )

]
= p[σ̃S′ ⊔ σ̃S∩T ] p[fS′ ⊔ fS∩T )].

We can do the same with respect to β. We deduce, according to the action (3.12),

that

α(u)⊗ β(v) = (σ̃S′ ⊔ σ̃S∩T ⊔ σ̃T ′) ·
(
p[fS′ ⊔ fS∩T ](u)⊗ q[fS∩T ⊔ fT ′](v)

)
.

Note that the permutation σ̃S′ ⊔ σ̃S∩T ⊔ σ̃T ′ clearly belongs to Si ×n Sj . Consider

Equation (3.13). Since the tensor product of f−1
σ(S),σ(T ) with α(u) ⊗ β(v) is done

over this subgroup, then we can move the permutation to the left factor where we get

f−1
σS,σT (σ̃S′⊔ σ̃S∩T ⊔ σ̃T ′) = σf−1

S,T . This equality results again from the diagrams (3.14).
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This is precisely the definition of the action of σ on the image of the map ψ.

The map ψ is invertible, since for any element σ ⊗ (x ⊗ y), we decompose σ =

ξ(α× β × γ), where α× β × γ ∈ Sn−j × Si+j−n× Sn−i = Si ×n Sj and ξ is increasing

in the intervals [n− j], [n− j + 1, i], and [i+ 1, n]. Define the disjoint sets

A = ξ
(
[n− j]

)
, B = ξ

(
[n− j + 1, i]

)
, C = ξ

(
[i+ 1, n]

)
.

Then, let S = A⊔B and T = B ⊔C. It is straightforward to find u⊗ v in p[S]⊗q[T ]

such that ψ(u ⊗ v) = σ ⊗ (x ⊗ y). Similarly, this process applied to the image of ψ

in (3.11) yields back u⊗ v.

Remark 3.2.3. It is clear directly from Definition (2.2) that the sum of species

corresponds to the direct sum of Sn-modules in each coordinate, under the functor F :

F(p⊕ q)n = F(p)n ⊕ F(q)n. (3.15)

3.3. The Grothendieck ring of R

Now we define the Heisenberg product in the Grothendieck group of R. This step will

help us in Section 4 to construct the Heisenberg product in the space of symmetric

functions.

Let K̂ be the Grothendieck group of the category R. The group K̂ can be

expressed in terms of the Grothendieck groups of the representations of Sn as follows.

Let K(Sn) be the Grothendieck group of the category of finitely generated projective

kSn-modules. In our situation, in which the field k has characteristic 0, any finite-

dimensional kSn-module is finitely generated projective (and conversely). Then, we

have the relation

K̂ =
∏

n≥0

K(Sn).
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Given an object V of R (respectively, V ∈ Rep(Sn)), we denote by [V ] the corre-

sponding image in the Grothendieck group K̂ (respectively, K(Sn)).

Our goal is to define an associative product on K̂, induced from the Heisenberg

product of representations.

Theorem 3.3.1. There is an associative product # : K̂× K̂→ K̂ which makes K̂ an

unital ring and such that

[V ] # [W ] = [V #W ]

for all V,W ∈ R.

Proof. The Grothendieck group K(Sn) can be described explicitly as follows. Let F (n)

be the free abelian group generated by the isomorphism classes of representations of

Sn, which we denote with the symbol (V ), where V ∈ Rep(Sn). The Grothendieck

group K(Sn) is the quotient F (n)/F
(n)
0 , where F

(n)
0 is the subgroup of F (n) generated

by the expressions

(V ⊕W )− (V )− (W ), (3.16)

for V and W representations of Sn. For a representation V of Sn, the element [V ] is

the projection of (V ) onto F (n)/F
(n)
0 .

It is clear, due to the functoriality of the operations involved in the definition of

the Heisenberg product of representations (3.7), that V #V ′ ∼= U#U ′ whenever V ∼=

V ′ and U ∼= U ′, for any representations U,U ′ ∈ Rep(Sp) and V, V ′ ∈ Rep(Sq). Then,

the Heisenberg product of representations induces an operation # : F (p)×F (q) → K̂.

We need to check that the operation # descends to the quotient by F
(n)
0 in each

coordinate, and therefore, this operation can be defined on K̂. To verify this we can

use the language of species, which again proves to be more convenient than that of

representations. Let p, q, and r be three species. Recalling the definition of sum of
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species (Equation (2.2)) and Remark 3.2.3 we have

(
(p⊕ q) # r

)
[I] =

⊕

I=S∪T

(p⊕ q)[S]⊗ r[T ] =
⊕

I=S∪T

(
p[S]⊕ q[S]

)
⊗ r[T ]

∼=

( ⊕

I=S∪T

p[S]⊗ r[T ]

)
⊕

( ⊕

I=S∪T

q[S]⊗ r[T ]

)

=
(
(p # r)⊕ (q # r)

)
[I],

and the isomorphism is natural. The same holds for the left multiplication.

The previous discussion shows that the product induced from the Heisenberg

product of species is a well defined associative operation:

# : K̂× K̂→ K̂.

The unit of this product is
(
[k], 0, 0, . . .

)
, with Sn acting trivially on k. The asso-

ciativity and unitality follow from the same properties for representations or species

(Theorem 3.2.2).

We call K̂ the Grothendieck ring with the Heisenberg product. Inside K̂ we have

the subgroup K defined by

K =
⊕

n≥0

K(Sn) ⊆ K̂,

which is clearly a subring of K̂ since the definition of the Heisenberg product involves

only a finite number of summands. In Section 4 we recall the relation between K and

the space of symmetric functions.

It is convenient to extend the scalars of K to the field k. For this, we consider

the vector space

Kk = K⊗Z k.

Any operation on K can be trivially extended to Kk, in particular we can extend the
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Heisenberg product as:

(v ⊗Z x) # (w ⊗Z y) = (v # w)⊗Z (xy).

This extension makes Kk a k-algebra with the Heisenberg product, while K is just a

ring.
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4. SYMMETRIC FUNCTIONS

4.1. From species to symmetric functions

Representations of the symmetric group and symmetric functions are closely related.

We recall here the connection and we transport the Heisenberg product of represen-

tations along this construction, to obtain a product in symmetric functions.

Let us recall the definition of the space of symmetric functions and its relation

with the Grothendieck group K, defined in Subsection 3.3.

Consider the ring of polynomials k[x1, . . . , xn] in n variables. The symmetric

group Sn acts on it by permuting the variables. Then, let Λk
n be the subring consisting

of the homogeneous polynomials of degree k which are invariant under the action of

Sn. When m ≥ n, we can project Λk
m onto Λk

n via a homomorphism ρkm,n : Λk
m → Λk

n

which maps the variables xi with i ≤ n to themselves, and the variables xi with i > n

to 0. We define Λk as the inverse limit

Λk = lim←−
n

Λk
n

with respect to the homomorphisms ρkm,n. The space of symmetric functions and its

completion, respectively, are defined as (see [18]):

Λ =
⊕

k≥0

Λk, Λ̂ =
∏

k≥0

Λk,

The Frobenius characteristic map is the linear map

ch : Kk → Λ, ch
(
[V ]
)

=
1

n!

∑

σ∈Sn

χV(σ)pcycle(σ),

where V is a representation of Sn, the coefficient χV(σ) is the character associated to

the representation V evaluated at σ, and pcycle(σ) is the power sum (4.5) associated
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to the cycle-type of σ. The Frobenius characteristic map is an isomorphism [18,

Proposition 7.3].

Through the composition of the Grothendieck group of representations of the

symmetric group followed by the Frobenius characteristic we obtain an associative

product on symmetric functions, which we call Heisenberg product of symmetric func-

tions. That is, if f = ch(v) and g = ch(w) for v, w ∈ Kk, then

f # g = ch(v # w).

We give more explicit formulae for the Heisenberg product in the space of symmetric

functions in Section 4.3.

In summary, we have introduced the Heisenberg product in the objects:

Sp
∼=
−→ R =⇒ K̂ ⊃ K

⊗Zk

−→ Kk

∼=
−→ Λ.

where the double arrow means the application of the Grothendieck group functor.

4.2. Classical products of symmetric functions

The space of symmetric functions Λ and its completion Λ̂ are subrings of k[x1, x2, . . .]

and kJx1, x2, . . .K, respectively, where the product in the latter spaces is the usual

product of polynomials and power series. We call this operation the external product

of symmetric functions.

With the external product in Λ, the Frobenius characteristic map is an isomor-

phism when we consider the product in Kk which comes from the induction prod-

uct (3.3) in representations [18].

Observe that the external product of symmetric functions is commutative, though

at the level of species and representations we only have an isomorphism p · q ∼= q · p.
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The internal product of symmetric functions is defined usually as the image under

the Frobenius characteristic map of the Kronecker product of representations (3.4).

More explicitly, if f = ch
(
[V ]
)

and g = ch
(
[W ]

)
, where V and W are representations

of Sn, then the internal product of f and g is

f ∗ g = ch
(
[V ∗W ]

)
.

This gives and associative product on Λ. Note, however, that it has no unit in Λ.

The unit for the internal product in K̂ is the image of the object (k, k, . . .) under the

Grothendieck group functor, which does not lie in K.

Let us define some of the well-known linear basis of the space of symmetric

functions Λ. We first recall the definition of the objects used to index these bases.

A weak composition of a non-negative integer n is a finite sequence of non-negative

integers α = (a1, a2, . . . , ar) such that

n∑

i=1

ai = n.

The numbers ai are called parts of the weak composition α. When all the parts ai

are positive, we say that α is a composition of n. A partition of n is a composition

α = (a1, a2, . . . , ar) of n whose parts are ordered non-increasingly:

a1 ≥ a2 ≥ · · · ≥ ar.

In addition to these basic terms, we define two operators on compositions, which

will be used later in relation with the Heisenberg product of symmetric and non-

commutative symmetric functions. Given a composition α of n, we denote by α̃ the

partition of n resulting from reordering the parts of α in a non-increasing way. If α is

a weak composition of n, we let α̂ be the composition of n which results from deleting

the parts equal to 0 from α.
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Let α = (a1, . . . , ar) be a weak composition of n and let

Sα = Sa1 × · · · × Sar . (4.1)

We view Sα as a subgroup of Sn by iterating (3.2). These are called standard parabolic

subgroups of Sn. Let hα denote the permutation representation of Sn corresponding

to the action by multiplication on the quotient Sn/Sα. By reordering the parts of the

composition α we obtain a subgroup conjugate to Sα. Hence, the isomorphism class

of hα does not depend on the order of the parts of α, and thus we will consider the

representations hα for α running over the partitions of n.

If we denote the trivial kSα-module by 1 (we omit the dependence on α for

simplicity), then the representation hα can also be expressed as

hα = IndSn

Sα
(1). (4.2)

The symmetric functions associated to the representations hα are called complete

homogeneous symmetric functions. We use the same symbol for the representation

and for the symmetric function. More explicitly, the symmetric function h(n) can be

written

h(n)(x) =
∑

xλ1
i1
xλ2
i2
· · ·xλk

ik
, (4.3)

where (λ1, . . . , λk) runs over all the compositions of n, and the indices (i1, i2, . . . , ik)

run over all k-tuples of positive integers. We also define h(0) = 1. For a weak

composition α = (a1, . . . , an) we have hα = h(a1) · · ·h(an). The family of functions

{hα} with α ranging over the partitions of n form a linear basis of the space Λn; and

the family of functions {hα}, with α a partition, is a basis of Λ.

The external product has a simple expression in the basis of complete homo-

geneous functions. Given two partitions α and β, denote by αβ the concatenation
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and reordering of α and β. For example, if α = (3, 2, 1, 1) and β = (2, 2, 1), then

αβ = (3, 2, 2, 2, 1, 1, 1). Then, the external product of hα and hβ is

hα · hβ = hαβ . (4.4)

The internal product also has a nice combinatorial description. We will recall

this rule in Remark 4.3.2, as a particular case of the rule for the Heisenberg product

in the basis of complete homogeneous symmetric functions.

Another well-known basis for Λ are the symmetric power sums. Let k be a

positive integer. We write

pk =
∑

i≥1

xki .

Let α = (a1, a2, . . . , ar) be a partition of n. The symmetric power sum associated to

the partition α is

pα = pa1pa2 · · · par . (4.5)

The family of functions {pα} is a linear basis of Λ.

The multiplication rules are particularly easy in this basis. The external product

of power sums is computed by concatenation: pα · pβ = pαβ. The internal product is

computed by

pα ∗ pβ =





z(α)pα, if α = β;

0, otherwise;

(4.6)

where z(α) is the order of the stabilizer of the conjugacy class of a permutation of

cycle-type α. Explicitly, z(α) has the expression

z(α) =
∏

r

rmrmr!, (4.7)

where mr is the number of times r occurs in α. We agree that z(α) = 1 when α is

the empty partition.
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Another important basis of Λ are the Schur functions. We will not work on this

basis, but we make some comments in Section 4.6.

4.3. The Heisenberg product of symmetric functions

As we saw in Section 4.1, the Heisenberg product of species corresponds to a product

# : Λ̂ × Λ̂ → Λ̂ which restricts to a product # : Λ × Λ → Λ. The interpolation

property (3.8) translates to an analogous property of symmetric functions:

f # g = f ∗ g + · · ·+ f · g

for f, g ∈ Λ̂. We will give the expression of the Heisenberg product on some of the

bases of Λ and we will show an explicit form for this interpolation.

The first basis we consider is the basis of complete homogeneous functions. In

order to express the coefficients of the Heisenberg product of two complete homoge-

neous symmetric functions, we need to define a particular set of plane partitions as

follows. Let α = (a1, . . . , ar) � p and β = (b1, . . . , bs) � q be two compositions, and n

an integer with max(p, q) ≤ n ≤ p + q. Let a0 = n − p, b0 = n − q, and let Mn
α,β be

the set of all (s+ 1)× (r + 1)-matrices

M = (mij) 0≤i≤s
0≤j≤r

with non-negative integer entries and such that

• the sequence of column sums is (a0, a1, . . . , ar),

• the sequence of row sums is (b0, b1, . . . , bs),

• the first entry is m00 = 0.
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We illustrate these conditions as follows:

0 m01 · · · m0r n− q

m10 m11 · · · m1r b1
...

...
. . .

...
...

ms0 ms1 · · · msr bs

n− p a1 · · · ar

(4.8)

Let p(M) be the partition of n whose parts are the non-zero entries mij of the ma-

trix M .

The next theorem gives an explicit formula for the Heisenberg product in the lin-

ear basis of Λ formed by the complete homogeneous symmetric functions. In addition

to be a combinatorial rule useful for computations, this formula allow us to make the

connection with the Heisenberg product of non-commutative symmetric functions in

Section 8.1.

Theorem 4.3.1. There is an associative product # in Λ, interpolating between the

internal and external products, which can be expressed in the basis {hα} of complete

homogeneous functions as

hα # hβ =

p+q∑

n=max(p,q)

∑

M∈Mn
α,β

hp(M), (4.9)

where α is a partition of p and β is a partition of q.

For example, using Theorem 4.3.1 we get

h(2,1) # h(3) = h(2,1) + h(1,1,1,1) + h(2,1,1) + h(2,2,1) + h(2,1,1,1) + h(3,2,1).

where the external product is recognized in the last term:

h(2,1) · h(3) = h(3,2,1)
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and the internal product in the first one:

h(2,1) ∗ h(3) = h(2,1),

since h(3) is the identity for the internal product in Λ3, together with additional terms

of degrees four and five.

Remark 4.3.2. We can deduce from Theorem 4.3.1 a well-known formula for the

internal product of hα and hβ, where α and β are partitions of n, by considering

only the term at degree n in the sum (4.9). Indeed, suppose that p = q = n. In

this case, the top row and leftmost column of (4.8), which add up to n− p = 0 and

n − q = 0, should have entries 0. The remaining part of the matrix is precisely the

rule for computing the internal product of symmetric functions in the basis hα:

hα ∗ hβ =
∑

M

hp(M), (4.10)

where M ranges over the set of matrices of dimension n×n with non-negative entries

such that its columns add up to α and its rows add up to β. This rule can be found

in [26, Exercise 7.84].

On the other hand, consider in Formula (4.9) the case n = p+q. In that situation,

the only way to fill the matrix (4.8) is by placing zeroes in the entries mij , with i 6= 0

and j 6= 0, and by placing the partition α as the top row and the partition β as the

leftmost column. Hence, we have the classical formula hα · hβ = hαβ (4.4).

We show other more interesting examples of the rule for the Heisenberg product

in the context of non-commutative symmetric functions in Section 7.2.

The existence of this operation poses the problem of finding an explicit descrip-

tion for its structure constants on the basis of Schur functions. The answer would

contain as extreme cases the Littlewood-Richardson rule and (a still unknown) rule
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for the Kronecker coefficients (see some comments on Section 4.6).

Proof of Theorem 4.3.1. We prove that the following formula holds in the category R:

hα # hβ =

p+q⊕

n=max(p,q)

⊕

M∈Mn
α,β

hp(M),

where the representations hα are the induced representations defined in (4.2). An

application of the Grothendieck group functor and the Frobenius characteristic im-

mediately yields (4.9).

We fix n in the range max(p, q) ≤ n ≤ p + q. The n-summand of hα # hβ is,

according to (3.7),

(hα#hβ)n = IndSn

Sp×nSq
Res

Sp×Sq

Sp×nSq
(hα⊗hβ) = IndSn

Sp×nSq
Res

Sp×Sq

Sp×nSq
Ind

Sp×Sq

Sα×Sβ
(1). (4.11)

Consider the composition of the first two functors Res
Sp×Sq

Sp×nSq
Ind

Sp×Sq

Sα×Sβ
in the right

hand side of (3.7). We use Mackey’s formula to interchange them (see [28]), as follows.

Let Υ ⊂ Sp×Sq be a set of representatives of the family of double cosets (Sp×n

Sq) \ (Sp × Sq) / (Sα × Sβ). For each v ∈ Υ, define

υ(Sα × Sβ) = υ−1(Sα × Sβ)υ and Sα ×
υ
n Sβ = (Sp ×n Sq) ∩

υ(Sα × Sβ). (4.12)

The following diagram illustrates the relative position of these groups and subgroups

Sn Sp × Sq

Sp ×n Sq
ee

eeKKKKK 66
66mmmmm

Sα × Sβ
hh

hhPPPPP

Sα ×
υ
n Sβ

hh
hhQQQQQ 66

66nnnnn

In this situation Mackey’s formula reads as the equality

Res
Sp×Sq

Sp×nSq
Ind

Sp×Sq

Sα×Sβ
(1) =

⊕

υ∈Υ

Ind
Sp×nSq

Sα×υ
nSβ

Res
Sα×Sβ

Sα×υ
nSβ

.
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Using the transitivity of the induction functor and the property that it commutes

with coproducts we deduce that (4.11) can be written as

(hα # hβ)n = IndSn

Sp×nSq
Res

Sp×Sq

Sp×nSq
(hα ⊗ hβ) =

⊕

υ∈Υ

IndSn

Sα×υ
nSβ

(1). (4.13)

In Lemma 4.3.3 we construct a bijection υ 7→ Mυ between Υ and Mn
α,β with the

property that Sp(Mυ) = Sα ×
υ
n Sβ. Then (4.13) becomes

(hα # hβ)n =
⊕

υ∈Υ

IndSn

Sα×υ
nSβ

(1) =
⊕

υ∈Υ

IndSn

Sp(Mυ)
(1) =

⊕

M∈Mn
α,β

Mp(M),

proving the theorem.

Lemma 4.3.3. In the notations of Theorem 4.3.1, there is a bijection υ 7→ Mυ

between Υ and Mn
α,β such that Sp(Mυ) = Sα ×

υ
n Sβ.

Proof. To define the bijection Υ→Mn
α,β, we start by splitting the intervals [1, p] and

[1, q] as below:

E1 = [1, a1], F1 = [1, b1],

E2 = [a1 + 1, a1 + a2], F2 = [b1 + 1, b1 + b2],

...
...

Ek = [a1 + · · ·+ ak−1 + 1, p], Fs = [b1 + · · ·+ bs−1 + 1, q],

where α = (a1, . . . , ak) and β = (b1, . . . , bs). Given an element v = σ×τ ∈ Sp×Sq we

consider the shuffles ζα(σ) ∈ Sh(α) and ζβ(τ) ∈ Sh(β) characterized by the equations

σ = ζα(σ)u, τ = ζβ(τ)v, (4.14)

with u ∈ Sα and v ∈ Sβ. To simplify the notation, we write ζα = ζα(σ) and ζβ = ζβ(τ).
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We further split each interval Ei and Fj as below:

Ei = E ′
i ⊔E

′′
i , Fj = F ′

j ⊔ F
′′
j ,

such that

ζα(E
′
i) ⊆ [1, n− q], ζβ(F

′
j) ⊆ [1, p+ q − n],

ζα(E
′′
i ) ⊆ [n− q + 1, p], ζβ(F

′′
j ) ⊆ [p+ q − n + 1, q],

for i = 1, . . . , k and j = 1, . . . , s. Observe that with these definitions we have the

decomposition of the interval [1, n] into

[1, n− q] =
k⊔

i=1

ζα(E
′
i), (4.15)

[n− q + 1, p] =
k⊔

i=1

ζα(E
′′
i ) =

s⊔

j=1

(
n− q + ζβ(F

′
j)
)
, (4.16)

[p+ 1, n] =

s⊔

j=1

(
n− q + ζβ(F

′′
j )
)
. (4.17)

Define the matrix Mσ×τ of dimension (k + 1)× (s+ 1) whose entries are

m00 = 0,

mi0 = #E ′
i, for i = 1, . . . , k,

m0j = #F ′′
j , for j = 1, . . . , s,

mij = #
[
ζα(E

′′
i ) ∩

(
n− q + ζβ(F

′
j)
)]

otherwise.

The matrix Mσ×τ belongs to Mn
α,β. Assume that i 6= 0. Since ζα(E

′′
i ) ⊆ [n− q +
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1, p] ⊆
⊔s

j=1

(
n− q + ζβ(F

′′
j )
)
, we get

s∑

j=0

mij = #E ′
i +

s∑

j=1

#
[
ζα(E

′′
i ) ∩

(
n− q + ζβ(F

′
j)
)]

= #E ′
i + #

[
ζα(E

′′
i ) ∩

s⊔

j=1

(
n− q + ζβ(F

′
j)
)]

= #E ′
i + #

(
ζα(E

′′
i )
)

= #Ei = ai.

On the other hand, if i = 0, then, by (4.17), the sum of m0j for j = 0, . . . , s, coincides

with #[p + 1, n] = n− p.

Next we show that the matrix Mσ×τ does not depend on the choice of represen-

tative of the coset (Sp ×n Sq)v. Let x ∈ Sn−q, y ∈ Sp+q−n, and z ∈ Sn−p, so that

x× y × z ∈ Sp ×n Sq. Consider the representative v′ = σ′ × τ ′ where

σ′ = (x× y)σ and τ ′ = (y × z)τ.

Let ζ ′α and ζ ′β the shuffles associate to v′. As ζα(E
′
i) ⊆ [1, n−q], then (x×y)

(
ζα(E

′
i)
)

=

x
(
ζα(E

′
i)
)
. But we also have x

(
ζα(E

′
i)
)

= ζ ′α(Ei) = ζ ′α(Ẽ
′
i) ⊔ ζ

′
α(Ẽ

′′
i ), where Ei =

Ẽ ′
i ⊔ Ẽ

′′
i is the decomposition of Ei corresponding to the shuffle ζ ′α, that satisfies

ζ ′α(Ẽ
′
i) ⊆ [1, n − q] and ζ ′α(Ẽ

′′
i ) ⊆ [n − q + 1, p]. In summary, x

(
ζα(E

′
i)
)
⊆ ζ ′α(Ẽ

′
i).

Interchanging the roles of ζα and ζ ′α we obtain an equality, which implies that mi0 =

#E ′
i = # Ẽ ′

i = m′
i0, where m′

ij are the entries of the matrix Mv′ . This proves the

equality of the first row of the matrices. The argument for the other rows is similar.

The matrix Mv does not depend on the choice of representative of v(Sα × Sβ),

since the shuffles satisfying (4.14) are the same for all the elements on this coset. In

conclusion, the matrix Mv depends only on the double cosets (Sp ×n Sq)v(Sα × Sβ).

Next we show that the parabolic subgroup Sp(Mv) is Sα ×
υ
n Sβ. An element of
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Sα ×
υ
n Sβ can be written as x× y × z where

x× y = ζα(σa1 × · · · × σak
)ζ−1
α ,

y × z = ζβ(τb1 × · · · × τbs)ζ
−1
β .

Evaluating at ζα(E
′
i) we deduce that ζασai

(E ′
i) = x(E ′

i) and conclude that σai
(E ′

i) =

E ′
i. Proceeding in a similar manner with the other decompositions we obtain

σai
(E ′

i) = E ′
i, τbj (F

′
j) = F ′

j , (4.18)

σai
(E ′′

i ) = E ′′
i , τbj (F

′′
j ) = F ′′

j , (4.19)

for all i = 1, . . . , k and j = 1, . . . , s.

This decomposition can be further refined. Evaluating as above at the subsets

Xij = ζα(E
′′
i ) ∩ ζβ(F

′
j), we obtain the equality

ζασai

(
ζ−1
α (Xij)

)
= y(Xij) = ζβτbj

(
ζ−1
β (Xij)

)
.

Now, ζασai

(
ζ−1
α (Xij)

)
⊆ ζα(E

′′
i ) and also ζβτbj

(
ζ−1
β (Xij)

)
⊆ ζβ(F

′
j). From the above

equality we conclude that ζασai

(
ζ−1
α (Xij)

)
⊆ ζα(E

′′
i )∩ ζβ(F

′
j), and so σai

(
ζ−1
α (Xij)

)
⊆

ζ−1
α (Xij). This inclusion is actually an equality, since both sets have the same cardi-

nality. Therefore, we get the following refinement of (4.18)

σai
(E ′

i) = E ′
i, σai

(
ζ−1
α (Xij)

)
= ζ−1

α (Xij),

τbj (F
′′
j ) = F ′′

j , τbj
(
ζ−1
β (Xij)

)
= ζ−1

β (Xij).

Note that #Xij = mij , and thus the previous decomposition shows that x × y × z

belongs to Sp(M).

The map υ 7→ Mυ is invertible, since from the entries of the matrix Mυ we can

recover the shuffles ζα and ζβ, which are in the same double coset as υ.
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4.4. The Heisenberg product in terms of the classical products

The Heisenberg product of symmetric functions can be expressed in terms of the

classical products and the coproduct of symmetric functions. This fact was brought

to our attention by A. Zelevinsky.

We remark that this relation is specific to symmetric functions and does not

hold true for the Heisenberg product of non-commutative symmetric functions or of

permutations. These are discussed in Sections 6.2 and 7.2 (see also remark after

Theorem 7.2.3).

The space Λ of symmetric functions has a coproduct which is dual to the external

product with respect to the pairing

〈sλ, sµ〉 = δλµ,

where sλ is the Schur function associated to the partition λ (see Section 4.6). In

the basis of complete homogeneous symmetric functions hα, this coproduct has the

expression

∆(ha) =
∑

i+j=a

hi ⊗ hj , ∆(h(a1,...,an)) = ∆(ha1) · · ·∆(han). (4.20)

Theorem 4.4.1. The Heisenberg product of two symmetric functions f and g can be

written in terms of the classical products as

f # g =
∑

f1 · (f2 ∗ g1) · g2, (4.21)

where we use Sweedler notation: ∆(f) =
∑
f1 ⊗ f2 and ∆(g) =

∑
g1 ⊗ g2.

Proof. Let p and q be non-negative integers. Let α = (a1, . . . , ar) and β = (b1, . . . , bs)

be partitions of p and q, respectively. We prove Identity (4.21) by computing hα#hβ

using Formula (4.9).
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Note that ∆(hα) can be computed, from Equation (4.20), as

∆(hα) =
∑

h
(a

(1)
1 ,...,a

(1)
r )
⊗ h

(a
(2)
1 ,...,a

(2)
r )

(4.22)

where a
(k)
i ≥ 0 and a

(1)
i +a

(2)
i = ai for k = 1, 2 and i = 1, . . . , r. Recall the convention

that h(0) = 1. Let

α1 = (a
(1)
1 , . . . , a(1)

r ),

α2 = (a
(2)
1 , . . . , a(2)

r ),

β1 = (b
(1)
1 , . . . , b(1)s ),

β2 = (b
(2)
1 , . . . , b(2)s ),

so that hα1 ⊗ hα2 is a term of ∆(hα) and hβ1 ⊗ hβ2 is a term of ∆(hβ).

Now we compute hα1 · (hα2 ∗ hβ1) · hβ2 by using formulas (4.10) and (4.4). We

can assume that α2 and β1 are weak compositions of the same integer, otherwise the

product hα1 ∗ hα2 is 0. Then

hα1 · (hα2 ∗ hβ1) · hβ2 =
∑

M

hα1 · hp(M) · hβ2 =
∑

M

hα1p(M)β2 , (4.23)

where M = (mij) ranges over the matrices r × s which fill the diagram

m11 · · · m1r b
(1)
1

...
. . .

...
...

ms1 · · · msr b
(1)
s

a
(2)
1 · · · a

(2)
r

The index α1p(M)β2 of the functions h in (4.23) can be identified with p(M ′) where
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M ′ is the matrix

0 a
(1)
1 · · · a

(1)
r

b
(2)
1 m11 · · · m1r b

(1)
1 + b

(2)
1 = b1

...
...

. . .
...

...

b
(2)
s ms1 · · · msr b

(1)
s + b

(2)
s = bs

a
(1)
1 + a

(2)
1

= a1

· · · a(1)
r + a(2)

r

= ar

(4.24)

It is clear that M ′ fits into Diagram (4.8) and, thus, hα1p(M)β2 = hp(M ′) is a term of

the sum (4.9).

Conversely, given a matrix in Mn
α,β for some n satisfying max(p, q) ≤ n ≤ p+ q,

we can recover the weak compositions α1, α2, β1, and β2, from Diagram (4.24). This

shows that both expressions in (4.21) coincide.

4.5. The Heisenberg product of symmetric power sums

The Heisenberg product also has a nice combinatorial expression in the basis of Λ

formed by the symmetric power sums (4.5).

Theorem 4.5.1. The Heisenberg product in the basis of power sums can be expressed

as

pλ # pµ =
∑

αδ=λ
βδ=µ

z(δ) pαδβ , (4.25)

where z(δ) is the order of the stabilizer of the conjugacy class of a permutation of

cycle-type δ (recall Equation (4.7)).

Proof. The coproduct on the basis of power sums is determined by requiring the

functions pn, with n a non-negative integer, to be primitive elements: ∆(pn) = 1 ⊗
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pn + pn ⊗ 1. More explicitly,

∆(pλ) =
∑

αβ=λ

pα ⊗ pβ.

Then, formula (4.21) reads

pλ # pµ =
∑

α1α2=λ
β1β2=µ

pα1 · (pα2 ∗ pβ1) · pβ2.

But pα2 ∗ pβ1 = z(α2)δα2β1. Since the external product of power sums is done by

concatenating the partitions, we obtain the result of the theorem.

As a particular case, assume that λ and µ are partitions of n. Note that there is

a term in degree n only when λ = µ, otherwise δ would never be the empty partition

and the degree of pαδβ would be strictly greater than n. Therefore, the only term in

degree n is 



z(λ) pλ, if λ = µ;

0, otherwise;

which is the expression of the internal product in the basis of power sums (4.6).

On the other hand for any partitions λ and µ, when δ is the empty partition, we

obtain the term of largest degree, namely pαβ , since z(δ) = 1 in this case. This gives

the external product pλ · pµ = pλµ.

Note that the coefficients of Formula (4.25) in the basis of power sums are not

necessarily the numbers z(δ). Indeed, the partition λ may be decomposed, in general,

in more than one way as λ = αδ, since the operation of concatenation of partitions

involves a reordering of the final result. For example, let (1n) be the partitions with

n parts equal to 1. Then,

p(1u) # p(1v) =
u+v∑

n=max(u,v)

(
u

n− v

)(
v

n− u

)
(u+ v − n)! p(1n). (4.26)
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In this case, the partitions of Formula (4.25) are α = (1n−v), β = (1n−u), and δ =

(1u+v−n). The number of possible decompositions of (1u) into two partitions of length

n−v and u+v−n is
(
u

n−v

)
, and the same argument for (1v) yields the second binomial

coefficient. The remaining factor of the coefficient is z(δ) = z
(
(1u+v−n)

)
= (u+v−n)!,

according to Formula (4.7).

From the explicit expression (4.3) for the complete homogeneous symmetric func-

tions, it is clear that h(1u) = p(1u). Hence, Formula (4.26) can also be deduced from

Theorem (4.3.1). We use this method in Example 4 of Section 7, in the context of

non-commutative symmetric functions.

4.6. The Heisenberg product of Schur functions

Let λ be a partition of n. The Schur function sλ is the Frobenius characteristic of the

irreducible representation of the symmetric group indexed by the partition λ. The

Schur functions sλ, with λ varying over all the partitions, form another linear basis

of Λ.

The external product of Schur functions has a well-known combinatorial ex-

pression via the Littlewood-Richardson rule (see [18, Proposition I.9.2] or [26, Sec-

tion A1.3]).

Question. For the internal product of Schur functions, on the other hand, a com-

binatorial rule is yet unknown. This problem has been the object of intense study.

There are a lot of partial results for particular cases of partitions λ and µ (see, for

example, [27, 5]).

Given that the Heisenberg product contains the classical products, a combina-

torial rule for this product would yield a rule for the internal product, as well as

containing as a special case the Littlewood-Richardson rule. Since the Schur func-
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tions correspond to the irreducible representations of the symmetric group, then the

coefficients of sλ # sµ in the basis of Schur functions are non-negative. Indeed, since

the product can be expressed as a representation (3.7), it can be expanded into the

irreducible representations with the adequate multiplicities. Thus, it makes sense

to look for a combinatorial rule for the coefficients of the Heisenberg product which

will contain the combinatorial rule for the Kronecker product. We do not tackle this

problem in this work.

We show some examples of Heisenberg products of Schur functions. They are

computed using the combinatorial rule (4.9) in the basis of complete homogeneous

functions, and using a linear change of basis. The summands are grouped in rows

according to their degrees. In the following example, the degree 3 terms (in the first

row) constitute the internal product s(2,1) ∗ s(2,1), and the degree 6 terms constitute

the external product s(2,1) · s(2,1).

s(2,1) # s(2,1) = s(2,1) + s(3) + s(1,1,1)

+ 6s(3,1) + 2s(1,1,1,1) + 6s(2,1,1) + 4s(2,2) + 2s(4)

+ s(5) + 4s(2,1,1,1) + 5s(2,2,1) + 4s(4,1) + 5s(3,2) + 6s(3,1,1) + s(1,1,1,1,1)

+ s(2,2,1,1) + s(3,3) + 2s(3,2,1) + s(4,1,1) + s(3,1,1,1) + s(2,2,2) + s(4,2),

In the next example, the partitions indexing the Schur functions are of different

integers, and hence there is no internal product involved:

s(2,1) # s(4) = s(1,3) + s(2,1,1) + s(2,2)

+ s(5) + 2s(2,2,1) + s(2,1,1,1) + 3s(4,1) + 3s(3,2) + 3s(3,1,1)

+ s(3,3) + 3s(5,1) + 2s(3,2,1) + 3s(4,1,1) + s(3,1,1,1) + s(6) + 3s(2,4)

+ s(3,1) + s(5,2) + s(4,2,1) + s(5,1,1).
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5. ENDOMORPHISMS OF HOPF ALGEBRAS

5.1. The algebra of endomorphisms of a Hopf algebra

In this part we start looking at the spaces marked with an oval box in Diagram 1. The

theory in this context is independent of the one developed in the previous sections.

In Section 8 we make the connection between both parts.

Let (H,m,∆, ι, ε, S) be an arbitrary Hopf algebra, where m : H ⊗ H → H is

the product, ∆ : H → H ⊗ H is the coproduct, ι : k → H is the unit, ε : H → k

is the counit, and S : H → H is the antipode. We consider the space End(H) of

linear endomorphisms of H , consisting of the linear maps from H to itself. Observe

that we do not require the maps in End(H) to preserve the Hopf algebra structure of

H . The space End(H) carries several associative products. Let f, g ∈ End(H). The

composition g ◦ f and convolution f ⋆ g of endomorphisms are respectively defined by

the diagrams

H
g

  A
AA

AA
AA

AA

H

f

>>}}}}}}}}}

g◦f
// H

H ⊗H
f⊗g

// H ⊗H

m

��

H

∆

OO

f⋆g
// H

(5.1)

The unit of the composition product is the identity function, and the unit of the

convolution product is the map ιε. We do not show the usual proofs of associativity

here, but we do it for the Heisenberg product in Section 5.2. Observe that the

composition of f and g is written g ◦ f , which has the factors in the opposite order

of f ⋆ g.

These products are often defined in a different setting [21] as follows. Given a

Hopf algebra H , let H∗ be its linear dual with the algebra structure given by the
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product

(f ∗ g)(h) =
∑

f(h1)g(h2),

for f, g ∈ H∗, h ∈ H , and where we use Sweedler’s notation for the coproduct:

∆(h) =
∑
h1 ⊗ h2.

Consider the space H∗ ⊗H . There is a canonical inclusion H∗ ⊗H →֒ End(H)

sending the element f ⊗ h to the endomorphism x 7→ f(x)h. When H is finite-

dimensional this inclusion is an isomorphism. Note, however, that we do not make

any finite-dimensional assumption of H for what follows.

With this notation, the composition and convolution products restricted to the

space H∗ ⊗H are defined, respectively, by

(g ⊗ ℓ) ◦ (f ⊗ k) = g(k)(f ⊗ ℓ), (f ⊗ k) ⋆ (g ⊗ ℓ) = (f ∗ g)⊗ kℓ.

Observe that neither product of endomorphisms is commutative.

5.2. The Heisenberg product of endomorphisms

The Heisenberg product is an extension of the diagrams in (5.1).

Definition 5.2.1. Let f, g ∈ End(H). The Heisenberg product of endomorphisms

f # g is defined by the diagram

H⊗3
cyclic

// H⊗3

1⊗m

  A
AA

AA
AA

AA

H⊗2

∆⊗1

>>}}}}}}}}}

H⊗2

1⊗g

��

H⊗2

f⊗1

OO

H⊗2

m
~~}}

}}
}}

}}
}

H

∆

``AAAAAAAAA

f#g
// H

(5.2)
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where the map cyclic : H⊗3 → H⊗3 is x ⊗ y ⊗ z 7→ y ⊗ z ⊗ x. The unit of the

Heisenberg product is the map ιε.

The Heisenberg product can be expressed in the setting described in Section 5.1

as follows. The algebra H acts on the left on H∗ by translation as

(h · f)(k) = f(kh).

Then, the Heisenberg product is the operation on H∗ ⊗H defined by

(a⊗ h) # (b⊗ k) =
∑

a(h1 · b)⊗ h2k. (5.3)

The space H∗ ⊗H with the Heisenberg product is usually called Heisenberg double.

From now on, we use the expression (5.2) for the Heisenberg product in the space

End(H).

We consider some subspaces of End(H) for a particular kind of Hopf algebra H .

This will allow us to make the connection to permutations in Section 6.

Assume that H is a graded connected Hopf algebra, that is: H =
⊕

n≥0Hn

with H0
∼= k. Moreover, assume that m and ∆ are degree-preserving maps. We are

interested in the subspace of End(H) consisting of linear endomorphisms of H which

preserve the grading and are zero except on finitely many components:

end(H) =
⊕

n≥0

End(Hn).

The following proposition shows that end(H) is a subalgebra of End(H) with

respect to the Heisenberg product.

Proposition 5.2.2. Let H be a graded connected Hopf algebra. The composition,

convolution, and Heisenberg products of End(H) restrict to end(H). Moreover, if
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f ∈ End(Hp) and g ∈ End(Hq) then

f # g ∈

p+q⊕

n=max(p,q)

End(Hn) (5.4)

and the top and bottom components of f # g are

(f # g)p+q = f ⋆ g and, if p = q, (f # g)p = g ◦ f. (5.5)

Proof. Let h ∈ Hn. The coproduct of h is

∆(h) =
∑

a+b=n

ha ⊗ hb,

with ha ∈ Ha and hb ∈ Hb. We evaluate Diagram (5.2) at h to get an explicit form

for the Heisenberg product of f and g:

(f # g)(h) =
∑

a+b=n

f(ha)2g
(
hbf(ha)1

)
. (5.6)

Suppose that f and g belong to end(H). The computation of the degree of every

term in the sum yields

deg
[
f(ha)2g

(
hbf(ha)1

)]
= deg

(
f(ha)2

)
+ deg

[
g
(
hbf(ha)1

)]

= deg
(
f(ha)2

)
+ deg

(
hbf(ha)1

)

= deg
(
f(ha)2

)
+ deg(hb) + deg

(
f(ha)1

)

= deg
(
f(ha)

)
+ deg(hb)

= a+ b = n,

proving that f # g is in end(H).

We can refine the previous analysis as follows. Assume that f ∈ End(Hp) and
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g ∈ End(Hq). Then, Expression (5.6) is zero unless

a = p and b+ deg
(
f(ha)1

)
= q. (5.7)

Adding these two equations we get that n = a + b ≤ p + q. On the other hand,

p = a ≤ a + b = n and q = b + deg
(
f(ha)1

)
≤ b+ a = n, hence max(p, q) ≤ n. This

proves (5.4).

If we set n = p + q in (5.7) then we get deg
(
f(ha)1

)
= 0, and (5.6) reduces to

convolution diagram in (5.1). If we set n = p = q, then deg(hb) = deg
(
f(ha)2

)
= 0,

and (5.6) reduces to g
(
f(h)

)
= (g ◦ f)(h), which is the composition product.

Thus, the Heisenberg product interpolates between the composition and convo-

lution products. The analogous interpolation property at all other non-commutative

levels (permutations and non-commutative symmetric functions) is a consequence of

this general result.

5.3. Garsia-Reutenauer endomorphisms

In this section we show that the Heisenberg product of endomorphisms of a Hopf

algebra H can be restricted to the subspace of Garsia-Reutenauer endomorphisms.

These endomorphisms are characterized in terms of their action on products of primi-

tive elements of H . When H is the tensor algebra of a vector space, a result of Garsia

and Reutenauer relates this subspace with the space of non-commutative symmetric

functions via Schur-Weyl duality (Lemma 6.1.1 and Theorem 7.2.1).

Definition 5.3.1. Let H be an arbitrary Hopf algebra. If h1, . . . , hn ∈ H , define

G(h1, . . . , hn) = Span(hσ(1) · · ·hσ(n) | σ ∈ Sn),

that is, G(h1, . . . , hn) is the linear span of the products of the elements hσ(1), . . . , hσ(n)
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with σ varying over all the permutations in Sn.

Let Prim(H) be the subspace of primitive elements of H , that is, those elements

h ∈ H such that

∆(h) = 1⊗ h + h⊗ 1.

The following lemma lists some basic properties of the subspaces G(h1, . . . , hn) which

we will need in the next theorem. For a concise expression of the coproduct in the

next lemma we consider the set of (p, q)-shuffles, defined for non-negative integers p

and q as the set Sh(p, q) consisting of all the permutations ξ ∈ Sp+q which satisfy

ξ(1) < · · · < ξ(p) and ξ(p+ 1) < · · · < ξ(p+ q). (5.8)

In other words, the permutations in Sh(p, q) are those permutations of Sp+q which

have no descents except perhaps at position p.

Lemma 5.3.2. For any h1, . . . , hn ∈ H we have:

(i) If a ∈ G(h1, . . . , hk) and b ∈ G(hk+1, . . . , hn), then ab ∈ G(h1, . . . hn).

(ii) If a ∈ G(h1, . . . , hn) and h1, . . . , hn ∈ Prim(H), then

∆(a) =
∑

k+ℓ=n
ξ∈Sh(k,ℓ)

a
(1)
ξ ⊗ a

(2)
ξ ,

where a
(1)
ξ ∈ G(hξ(1), . . . , hξ(k)) and a

(2)
ξ ∈ G(hξ(k+1), . . . , hξ(n)).

Proof. Let a = hσ(1) · · ·hσ(k) ∈ G(h1, . . . , hk) for some permutation σ ∈ Sk, and

b = hτ(1) · · ·hτ(k) ∈ G(hk+1, . . . , hn) for some permutation τ ∈ Sn−k. Then, the

product ab is the product of the elements hi sorted via the permutation σ × τ ∈ Sn,

which belongs to G(h1, . . . , hn). By bilinearity of the product we conclude (i).
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To prove (ii), note that if h1, . . . , hn are primitive elements of H , then we have

∆(h1 · · ·hn) = ∆(h1) · · ·∆(hn) = (1⊗ h1 + h1 ⊗ 1) · · · (1⊗ hn + hn ⊗ 1)

=
∑

k+ℓ=n
ξ∈Sh(k,ℓ)

hξ(1) · · ·hξ(k) ⊗ hξ(k+1) · · ·hξ(n), (5.9)

where the k left terms of the tensor in the sum come from the election of k second

terms of 1⊗ hi + hi ⊗ 1, and similarly with ℓ and the first terms of 1⊗ hi + hi ⊗ 1.

If we compute ∆(hσ(1) · · ·hσ(n)) instead, for a permutation σ ∈ Sn, we get as

first factors in the tensors in (5.9) the expression hσ(ξ(1)) · · ·hσ(ξ(k)), which clearly

belongs to G(h1, . . . , hk). The same argument applies to the second factors of the

terms in (5.9).

Definition 5.3.3. Let H be an arbitrary Hopf algebra. The space Σ(H) of Garsia-

Reutenauer endomorphisms of H consists of those endomorphisms T ∈ End(H)

which leave each space G(h1, . . . , hn) invariant, for any finite set of primitive ele-

ments h1, . . . , hn of H . Thus,

Σ(H) =
{
T ∈ End(H)

∣∣ T
(
G(h1, . . . , hn)

)
⊆ G(h1, . . . , hn)

for all h1, . . . , hn ∈ Prim(H)
}
.

The following theorem is the key result of this section for the interpretation of

the Heisenberg product in the space of non-commutative symmetric functions.

Theorem 5.3.4. If H is a Hopf algebra, the space Σ(H) of Garsia-Reutenauer en-

domorphisms is a subalgebra of End(H) with respect to the Heisenberg product.

Proof. Given a primitive element h, we have µε(h) = 0, hence the unit of the Heisen-

berg product is in Σ(H).

Take two endomorphisms f and g in Σ(H), and let h1, . . . , hn ∈ Prim(H). Then,
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we have by definition (5.2)

(f # g)(h1 · · ·hn) =
∑

k+ℓ=n
ξ∈Sh(k,ℓ)

(
f(hξ(1) · · ·hξ(k))

)
2
g
(
hξ(k+1) · · ·hξ(n)

(
f(hξ(1) · · ·hξ(k))

)
1

)
.

(5.10)

As f(hξ(1) · · ·hξ(k)) ∈ G(hξ(1) · · ·hξ(k)), it follows from part (ii) of Lemma 5.3.2 that

∆
(
f(hξ(1) · · ·hξ(k))

)
=

∑

r+s=k
η∈Sh(r,s)

a(1)
η ⊗ a

(2)
η ,

with a
(1)
η ∈ G(hξη(1), . . . , hξη(r)) and a

(2)
η ∈ G(hξη(r+1), . . . , hξη(k)). Hence, we rewrite

Equation (5.10) as

(f # g)(h1 · · ·hn) =
∑

k+ℓ=n
ξ∈Sh(k,ℓ)

a(2)
η g(hξ(k+1) · · ·hξ(n) a

(1)
η ).

But the argument of g belongs to G(hξ(k+1), . . . , hξ(n), hξη(1), . . . , hξη(r)). Using that

g ∈ Σ(H) and using part (i) of Lemma 5.3.2 we obtain that

(f # g)(h1 · · ·hn) ∈ G(hξη(r+1), . . . , hξη(k), hξ(k+1), . . . , hξ(n), hξη(1), . . . , hξη(r))

⊆ G(h1, . . . , hn),

proving that f # g ∈ Σ(H).
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6. PERMUTATIONS

6.1. From endomorphisms to permutations

In order to translate the Heisenberg product from endomorphisms of Hopf algebras to

permutations we specialize the construction of Section 5.2 and we use the Schur-Weyl

duality theorem.

Let k be a field of characteristic zero. Consider

T (V ) =
⊕

n≥0

V ⊗n

be the tensor algebra of a vector space V over the field k. It is a graded connected

Hopf algebra with product defined by concatenation

(v1 ⊗ · · · ⊗ vk)(w1 ⊗ · · · ⊗ wℓ) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wℓ,

and with coproduct uniquely determined by

v 7→ 1⊗ v + v ⊗ 1 for v ∈ V . (6.1)

In other words, the elements of the vector space V are primitives. By definition of

the product, we can write v1 ⊗ · · · ⊗ vn = v1 · · · vn, hence we will omit the tensors

when writing elements of T (V ). Then, by Proposition 5.2.2 we get the Heisenberg

product in End
(
T (V )

)
and in end

(
T (V )

)
.

The general linear group GL(V ) acts on V and hence on each V ⊗n diagonally.

Schur-Weyl duality [24, 11] states that the only endomorphisms of T (V ) which com-

mute with the action of GL(V ) are linear combinations of permutations. Let

S =
⊕

n≥0

kSn
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be the direct sum of all symmetric group algebras. The product in S is determined,

in the basis of permutations, by σ ◦ τ (usual composition of permutations) when σ

and τ belong to the same homogeneous component of S, and is 0 in any other case.

In this section, to simplify the notation, we use juxtaposition for the composition of

permutations, that is, we write στ for the composition σ ◦ τ .

Lemma 6.1.1 (Schur-Weyl duality). Let V a infinite dimensional vector space over

the field k. Let Ψ be the map

Ψ : S→ endGL(V )

(
T (V )

)
,

defined by sending σ ∈ Sn to the endomorphism Ψ(σ) of T (V ), which in degree n is

given by the right action of σ on V ⊗n:

v1 · · · vn
Ψ(σ)
7−→ vσ(1) · · · vσ(n)

and is 0 in the other homogeneous components. Then, ψ is an isomorphism of vector

spaces.

6.2. The Heisenberg product of permutations

Malvenuto and Reutenauer [20] deduce from Lemma 6.1.1 that S is closed under the

convolution product. The same argument gives us:

Theorem 6.2.1. The space S is closed under the Heisenberg product of endomor-

phisms.

Proof. We need to prove that the maps involved in Definition 5.2.1, for the particular

case H = T (V ), commute with the action of GL(V ).

Let us consider first the map ∆ : T (V )→ T (V )⊗ T (V ). We need to check that

∆(a · x) = a ·∆(x) for all a ∈ GL(V ) and x ∈ T (V ). Since ∆ is a multiplicative map
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it is enough to take x ∈ V , and since the elements of V are primitive, we have

∆(a · x) = 1⊗ (a · x) + (a · x)⊗ 1

= a · (1⊗ x+ x⊗ 1) = a ·∆(x).

We used that GL(V ) acts diagonally on T (V )⊗T (V ) and that a ·1 = 1, since GL(V )

acts trivially on T 0(V ). This proves that the coproduct commutes with the action

of GL(V ).

Next we consider the product m : T (V ) ⊗ T (V ) → T (V ). Let v1, . . . , vn and

w1, . . . , wm vectors in V . We obtain

(
a · (v1 · · · vn)

)(
a · (w1 · · ·wn)

)
=
(
(a · v1) · · · (a · vn)

)(
(a · w1) · · · (a · wm)

)

= a · (v1 · · · vnw1 · · ·wm),

using again the diagonal action of GL(V ) on the tensors.

The map cyclic : T (V )⊗3 → T (V )⊗3 clearly commutes with the diagonal action

since it is just a permutation of the tensors. The remaining maps in Definition 5.2.1

are tensors of maps already commuting with the action of GL(V ). In conclusion, the

composition

f # g = m(1⊗ g)(1⊗m) cyclic(∆⊗ 1)(f ⊗ 1)∆

commutes with the action of GL(V ). The result follows from the application of

Lemma 6.1.1.

This conceptual argument is important because it can be applied to other duali-

ties than Schur-Weyl’s, i.e., to centralizer algebras of groups (or even Hopf algebras)

acting on the tensor algebra other than the general linear group. It can also be

applied to other products of endomorphisms, a remarkable case being that of Drin-

feld product. We mention some preliminary results about the Drinfeld product in
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Section 10.

Next we show an explicit formula for the Heisenberg product of two permutations.

Consider the set of shuffles, Sh(p, q), defined in (5.8). We denote by βp,q the shuffle

of maximal length in Sh(p, q), namely, the permutation

βp,q =




1 2 · · · p p+ 1 p+ 2 · · · p+ q

q + 1 q + 2 · · · q + p 1 2 · · · q


 .

The identity in Sn is denoted by Idn.

Theorem 6.2.2. Let σ ∈ Sp and τ ∈ Sq. Then, the Heisenberg product of permuta-

tions can be expressed as

σ # τ =

p+q∑

n=max(p,q)

∑

ξ∈Sh(p,n−p)
η∈Sh(p+q−n,n−q)

ξ
(
(ση)× Idn−p

)
β2n−p−q,p+q−n(Idn−q × τ). (6.2)

This formula includes, as always, the Malvenuto-Reutenauer product of permu-

tations as defined by Malvenuto-Reutenauer [19, 20] and studied in detail in [4], when

n = p + q,

σ ⋆ τ =
∑

ξ∈Sh(p,q)

ξ(σ × τ).

When n = p = q, the sets of shuffles in (6.2) contain just the identity, and the maximal

shuffle β0,n is also the identity. Hence, (6.2) reduces to the composition product στ .

Proof. First we give an expression for the coproduct defined in (6.1). Since the

elements vi ∈ V are primitive elements, Formula (5.9) gives:

∆(v1 · · · vn) =
∑

p+q=n
ξ∈Sh(p,q)

vξ(1) · · · vξ(p) ⊗ vξ(p+1) · · · vξ(n). (6.3)

Then, using (5.2) for the particular Hopf algebra H = T (V ) and for the endomor-

phisms Ψ(σ) and Ψ(τ) induced by the permutations σ ∈ Sp and τ ∈ Sq, respectively,
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we obtain

(
Ψ(σ) # Ψ(τ)

)
(v1 · · · vn)

=
∑

r+s=n
ξ∈Sh(r,s)

(
Ψ(σ)(vξ(1) · · · vξ(r))

)
2

Ψ(τ)
(
vξr+1 · · · vξn

(
Ψ(σ)(vξ(1) · · · vξ(r))

)
1

)
.

The only non-zero terms occur when r = p, since Ψ(σ) and Ψ(τ) are degree preserving

endomorphisms. Hence

(
Ψ(σ) # Ψ(τ)

)
(v1 · · · vn)

=
∑

ξ∈Sh(p,n−p)

(
Ψ(σ)(vξ(1) · · · vξ(p))

)
2

Ψ(τ)
(
vξ(p+1) · · · vξ(n)

(
Ψ(σ)(vξ(1) · · · vξ(p))

)
1

)

=
∑

ξ∈Sh(p,n−p)
u+v=p
η∈Sh(u,v)

vξση(u+1) · · · vξση(p)Ψ(τ)(vξ(p+1) · · · vξ(n)vξση(1) · · · vξση(u))

=
∑

ξ∈Sh(p,n−p)
η∈Sh(p+q−n,n−q)

vξση(p+q−n+1) · · · vξση(p)vξτ(p+1) · · · vξτ(n)vξσητ(1) · · · vξσητ(p+q−n)

=
∑

ξ∈Sh(p,n−p)
η∈Sh(p+q−n,n−q)

Ψ
[
ξ
(
(ση)× Idn−p

)
β2n−p−q,p+q−n(Idn−q × τ)

]
(v1 · · · vn),

which proves the theorem.

For instance, writing the permutations in word format:

12 # 132 = 132 + 231 + 321

+ 1234 + 1243 + 1324 + 2134 + 2143 + 2314

+ 3124 + 3142 + 3214 + 4123 + 4132 + 4213

+ 12354 + 13254 + 14253 + 15243 + 23154

+ 24153 + 25143 + 34152 + 35142 + 45132,
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where the degree of the permutations in the result varies from max(2, 3) = 3 to

2 + 3 = 5. There is no permutation corresponding to the composition of 12 and 132

since the operation 12 ◦ 132 in S is 0.
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7. NON-COMMUTATIVE SYMMETRIC FUNCTIONS

7.1. Classical products of non-commutative symmetric functions

In this section we define the space of descents of permutations and two classical

products.

The descent set of a permutation σ ∈ Sn is the subset of [n− 1] defined by

Des(σ) =
{
i ∈ [n− 1] | σ(i) > σ(i+ 1)

}
. (7.1)

Given J ⊆ [n−1], define BJ as the set of permutations σ ∈ Sn with Des(σ) ⊆ J , and

consider the following elements of kSn:

XJ =
∑

σ∈BJ

σ. (7.2)

It is convenient to index the elements XJ by compositions of n by means of the

bijection

(a1, a2, . . . , ar)←→ {a1, a1 + a2, . . . , a1 + · · ·+ ar−1}. (7.3)

For instance, if n = 9, then X(1,2,4,2) = X{1,3,7}.

Let Σn be the subspace of kSn linearly spanned by the elements Xα as α runs

over all compositions of n and define

Σ =
⊕

n≥0

Σn.

A fundamental result of Solomon [25] states that Σn is a subalgebra of the sym-

metric group algebra kSn with the composition product of permutations. This is

Solomon’s descent algebra. We denote the composition product in this space with

the symbol ∗. The rule for multiplying two elements in the linear basis of elements
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XI is similar to the rule for multiplying complete homogeneous functions in Λ (The-

orem 4.3.1). We will deduce it as a particular case of the rule for the Heisenberg

product in Section 7.3.

It is also well-known that Σ is closed under the external product of permuta-

tions [14, 15, 20]. The notation for the external product in this space is XI ·XJ . In

fact, we have

X(a1,...,ar) ·X(b1,...,bs) = X(a1,...,ar ,b1,...,bs). (7.4)

The space Σ with the external product is the algebra of non-commutative symmetric

functions.

There is another basis of Σ which we will use in one of the theorems of this

section. Given a set J ⊆ [n− 1], define DJ =
{
σ ∈ Sn | Des(σ) = J

}
(compare with

the definition of BJ). Then, the elements

YJ =
∑

σ∈DJ

σ (7.5)

when J runs over the subsets of [n− 1] are a basis of the space Σn.

7.2. The Heisenberg product of non-commutative symmetric functions

An important result of Garsia and Reutenauer characterizes the elements of S that

belong to Σ in terms of their action on the tensor algebra.

Let V be an infinite dimensional vector space over a field of characteristic zero.

Recall Definition 5.3.3 of the space of Garsia-Reutenauer endomorphisms, Σ(H), of

an arbitrary Hopf algebra H . The next theorem states that the elements of Σ are

precisely those Garsia-Reutenauer endomorphisms of the Hopf algebra T (V ) (in the

sense of Definition 5.3.3) which commute with the action of GL(V ).

Theorem 7.2.1 (Garsia and Reutenauer [13]). Let V be an infinite-dimensional
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vector space. We have

Ψ(Σ) = Σ(T (V )) ∩ endGL(V )(T (V )),

where Ψ : S → endGL(V )

(
T (V )

)
is the isomorphism of Lemma 6.1.1 (Schur-Weyl

duality) and Σ(T (V )) is the space of Garsia-Reutenauer endomorphisms of T (V ).

The following theorem introduces the Heisenberg product in Σ as the restriction

of the Heisenberg product of permutations. In view of the interpolation property of

the Heisenberg product, we obtain the the classical products as particular cases.

Theorem 7.2.2. The space Σ ⊆ S is closed under the Heisenberg product.

Proof. This a straightforward result from Theorem 7.2.1, from the general result

about Garsia-Reutenauer endomorphisms (Theorem 5.3.4), and from Schur-Weyl du-

ality (Lemma 6.1.1).

The proof of this theorem is valid in other situations where there are generaliza-

tions of Schur-Weyl duality (see Section 10 for more details).

In this work we present two more proofs for the fact that the Heisenberg product

restricts to the space Σ. The first proof gives a combinatorial rule for the Heisenberg

product in the linear basis {XI}. Such rule contains the classical rule of Solomon,

which we will mention in the examples in Section 7.3. The second proof is a bijective

proof which generalizes a proof of Schocker [23] for the composition product.

Yet another proof of Theorem 7.2.2, which we do not show here, can be done

by extending the Heisenberg product to the Coxeter complex of the symmetric group

(that is, the faces of the permutahedron). This makes a connection with recent work

of Brown, Mahajan, Schocker, and others on this aspect of the theory of descent

algebras [9, 3, 23].
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The structure coefficients of the Heisenberg product on the basis (Xα) are ex-

pressed in terms of the matrices Mn
α,β defined in Section 4.3. Recall that α and β are

compositions, so that the order of the entries is significative. For a matrix M ∈Mn
α,β,

denote by c(M) the composition of n whose parts are the non-zero entries of M , read

from left to right and from top to bottom.

Theorem 7.2.3. Let α � p and β � q be two compositions. Then

Xα #Xβ =

p+q∑

n=max(p,q)

∑

M∈Mn
α,β

Xc(M). (7.6)

In particular, we obtain that Σ is closed under the Heisenberg product.

Observe that even though this formula is similar to the one in symmetric func-

tions (4.9), the occurrence of the compositions as indices of the basis makes the

connection between the Heisenberg product and the external and Solomon products

considerably harder than in the commutative context. In particular, a formula such

as (4.21) expressing the Heisenberg product in terms of the external and internal

product, does not longer hold.

We present several applications of Formula (7.6) in the examples in Section 7.3.

This proof is important because it allows us to make the connection with the

Heisenberg product of representations of the symmetric group. This point is taken

up in Section 8.1

Proof of Theorem 7.2.3. Let us take a fixed integer n between max(p, q) and p + q.

To the compositions α = (a1, . . . , ar) and β = (b1, . . . , bs) we associate the following
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sets:

En
0 = [p+ 1, n], F n

0 = [1, n− q],

En
1 = [1, a1], F n

1 = n− q + [1, b1],

En
2 = [a1 + 1, a1 + a2], F n

2 = n− q + [b1 + 1, b1 + b2],

...
...

En
r = [a1 + · · ·+ ar−1 + 1, p], F n

s = n− q + [b1 + · · ·+ bs−1 + 1, q].

Observe that the family of intervals {En
j }j∈{0,...,r} and {F n

i }i∈{0,...,s} are partitions of

[1, n]. It is also clear that σ ∈ Bα if and only if σ × Idn−p is increasing in En
j for

all j ∈ {0, . . . , r}. Similarly, τ ∈ Bβ if and only if Idn−q × τ is increasing in F n
i

for all i ∈ {0, . . . , s}. Observe, also, that #En
j is the j-th coordinate of the weak

composition (n− p, a1, . . . , ar), and #F n
i is the i-th coordinate of (n− q, b1, . . . , bs).

Given η ∈ Sh(p+ q − n, n− q) and τ ∈ Bβ, call ϕη,τ = (η × Idn−p)β0(Idn−q × τ)

and define the matrix

Mη,τ =
{
#(F n

i ∩ ϕ
−1
η,τE

n
j )
}

0≤i≤s,
0≤j≤r

where we have abbreviated β2n−p−q,p+q−n = β0. In this situationMη,τ ∈Mn
α,β. Indeed,

if we call mij = #(F n
i ∩ ϕ

−1
η,τE

n
j ), for i = j = 0 we have that

ϕη,τ [1, n− q] = η[p+ q − n+ 1, p] ⊆ [1, p],

which shows that the intersection F n
0 ∩ϕ

−1
η,τE

n
0 is empty, and then m00 = 0. The sum

m0j + · · ·+msj equals the number of elements of En
j , which is, as noted before, the

j-th entry of the composition (n − p, a1, . . . , ar). The same argument applies to the

sum of the rows. In this manner, sending τ 7→ Mη,τ we define a map Bβ → Mn
α,β.
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Take M = {mij} ∈Mn
α,β and let B

η,n
β (M) the corresponding fiber of this map:

B
η,n
β (M) =

{
τ ∈ Bβ

∣∣ #(F n
i ∩ ϕ

−1
η,τE

n
j ) = mij for all j ∈ {0, . . . , r}, i ∈ {0, . . . , s}

}
.

Therefore, we have a partition of Bβ =
⋃
M∈Mn

α,β
B
η,n
β (M).

For ξ ∈ Sh(p, n − p) and η ∈ Sh(p + q − n, n − q), let us denote gnξ,η(σ, τ) =

ξ
(
(ση) × Idn−p

)
β0(Idn−q × τ), the n-term in the sum (6.2). The function gnξ,η is

bilinear, and we can write

Xα #Xβ =
∑

n

∑

ξ,η

gnξ,η(Xα, Xβ).

From now on as n is fixed we will omit it in the notations of the sets and the

functions. Next we show that

∑

ξ,η

gξ,η(Xα, Xβ) =
∑

M∈Mα,β

Xc(M).

For this, we write

∑

ξ,η

gξ,η(Xα, Xβ) =
∑

ξ,η

gξ,η

(∑

σ∈Bα

σ,
∑

M∈Mα,β

∑

τ∈B
η
β
(M)

τ

)

=
∑

M∈Mα,β

∑

ξ,η

∑

σ∈Bα

∑

τ∈B
η
β
(M)

gξ,η(σ, τ). (7.7)

If we denote by Sα,β(M) the set of elements (ξ, η, σ, τ) such that ξ ∈ Sh(p, n − p),

η ∈ Sh(p+ q−n, n− q), σ ∈ Bα and τ ∈ Bη
α(M); then the map ψ : Sα,β(M)→ Bc(M)

given by ψ(ξ, η, σ, τ) = gξ,η(σ, τ) is a bijection. We prove this fact in Lemma 7.2.5.

In this situation, if we group together the last three sums of (7.7) we obtain

∑

ξ,η

gξ,η(Xα, Xβ) =
∑

M∈Mα,β

Xc(M),

which concludes the proof of the theorem.
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In the following two lemmas we assume the notations of the previous theorem.

Lemma 7.2.4. For η ∈ Sh(p + q − n, n − q), τ ∈ Bβ and for all i = 0, . . . , s and

j = 0, . . . , r, the sets

Fi ∩ ϕ
−1
η,τEj

are disjoint intervals. Moreover, in each of these intervals the function ϕη,τ is in-

creasing and has image either contained in [1, p] or contained in [p+ 1, n].

Proof. As η and τ are fixed throughout this lemma, we write ϕ = ϕη,τ . Let x, y ∈

Fi ∩ ϕ
−1Ej with x < y. Consider z such that x < z < y. Therefore, x, y ∈ Fi and,

since Fi is an interval, we conclude that z ∈ Fi.

On the other hand ϕ(x), ϕ(y) ∈ Ej . Since τ ∈ Bβ, then Id × τ is increasing in

Fi:

(Id× τ)(x) < (Id× τ)(z) < (Id× τ)(y). (7.8)

In order to prove that ϕ(z) also belongs to Ej , we consider the following cases:

1. Assume that j = 0. Then, ϕ(x), ϕ(y) ∈ E0 = [p + 1, n]. Since (η × Id) is the

identity on that interval, this implies that β0(Id×τ)(x) and β0(Id×τ)(y) are in

[p+1, n]. But β−1
0 [p+1, n] = [n−q+1, 2n−p−q] and β0 is increasing in that set.

Therefore, the three terms in (7.8) belong to [n−q+1, 2n−p−q] and, applying

(η × Id)β0, which is increasing on this set, we obtain that ϕ(x) < ϕ(z) < ϕ(y).

2. Assume that j > 0. Consider the cases:

(a) Assume that i = 0. In this case we have x, z, y ∈ F0 = [1, n − q]. Then,

applying Id× τ |F0 = Id we continue in the same set. The permutation β0

sends increasingly [1, n−q] into [p+q−n+1, p]. In this last interval, η is also

increasing. Thus, the inequality (7.8) implies that ϕ(x) < ϕ(z) < ϕ(y).

(b) Assume that i > 0. We have that x, y, z ∈ Fj ⊂ [n − q + 1, n]. Applying
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Id×τ we have that the terms of (7.8) are also in [n−q+1, n]. If (Id×τ)(x) ∈

[n−q+1, 2n−p−q], then β0(Id×τ)(x) ∈ [p+1, n] and ϕ(x) ∈ [p+1, n] = E0,

which contradicts the assumption j > 0. Therefore, the terms in (7.8)

belong to [2n − p − q + 1, n]. The permutation β0 maps increasingly this

interval into [1, p+ q−n], and η is also increasing in that image. Thus, we

conclude that ϕ(x) < ϕ(z) < ϕ(y).

In all the cases we obtain that ϕ(x) < ϕ(z) < ϕ(y), and since ϕ(x) and ϕ(y) belong

to the interval Ej , we deduce that ϕ(z) ∈ Ej . This proves that Fi ∩ ϕ
−1Ej is an

interval.

Notice that along the way we also proved that ϕ is increasing in the intervals

Fi ∩ ϕ
−1Ej as well as the assertions concerning the images.

The fact that the intervals Fi ∩ ϕ
−1Ej are disjoint follows immediately from the

fact that the sets Ej , for j = 0, . . . , r, and the sets Fi, for i = 0, . . . , s, are disjoint.

This finishes the proof.

Lemma 7.2.5. For M ∈Mα,β, the map ψ : Sα,β(M)→ Bc(M), which sends (ξ, η, σ, τ)

to gξ,η(σ, τ), is a bijection.

Proof. For the matrix M = {mij}, denote by sij the sum of the entries mkℓ of

M for (k, ℓ) ≤ (i, j) with respect to the lexicographical order of pairs. We define

R00 = [1, s00] and Rij = [skℓ, sij] where sij covers skℓ. Observe that some of the

intervals Rij may be empty. Also note that #Rij = mij .

The sequence (R00, R01, . . . , Rsr) is a weak composition whose nonzero parts form

a partition of the interval [n] and γ ∈ Bc(M) if and only if γ is increasing in Rij for

all i ∈ {0, . . . , s} and j ∈ {0, . . . , r}.
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Since M ∈Mα,β and therefore,
∑

j #(Rij) =
∑

jmij = #Fi, it follows that

Fi =
⋃

j

Rij . (7.9)

Moreover, if η ∈ Sh(p + q − n, n− q) and τ ∈ B
η
β, then Fi ∩ ϕ

−1
η,τEj = Rij . This can

be seen from the fact both sets are intervals with the same cardinal and from the

following relation:
⋃

j

(Fi ∩ ϕ
−1
η,τEj) = Fi =

⋃

j

Rij .

In particular, we deduce that ϕη,τ is increasing in Rij.

Given (ξ, η, σ, τ) ∈ Sα,β(M), we will show that gξ,η(σ, τ) ∈ Bc(M). To prove this,

since ϕη,τ |Rij
is increasing and ϕη,τRij ⊆ Ej , we observe that

(σ × Id)(η × Id)β0(Id× τ)|Rij

is also increasing. According to Lemma 7.2.4, the images of Rij under the previous

permutation are in [1, p] or [p+1, n], where ξ is increasing. Therefore, left multiplying

by ξ we deduce that gξ,η(σ, τ) is increasing in Rij , which proves that it belongs to

Bc(M).

We prove now that ψ is bijective. Given γ ∈ Bw(M), we show that there exists a

unique quadruple (ξ, η, σ, τ) ∈ Sα,β(M) such that ψ(ξ, η, σ, τ) = γ.

Assume there exists such a quadruple. Using the fact that Ej =
⋃
i ϕη,τRij , we

deduce that

ξ(σ × Id)Ej = γ
(⋃

i

Rij

)
. (7.10)

This proves the uniqueness of the permutation ξ(σ×Id), in other words, it is the only

permutation which maps Ej increasingly into the set on the right side; and this implies

the uniqueness of ξ and σ. Therefore, we have that (η×Id)β0(Id×τ) = (σ×Id)−1ξ−1γ.

Thus, η is characterized by the image of [1, n−q] under the permutation on the right,
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which is η[p+ q − n+ 1, p]. The uniqueness of τ follows immediately.

Given γ ∈ Bc(M), to construct (ξ, η, σ, τ) we note that

#(Ej) =
∑

i

mij = #
(⋃

i

Rij

)
= #

(
γ
(⋃

i

Rij

))
, (7.11)

and, thus, we can construct a permutation µ such that (7.10) is verified, increasingly

mapping Ej into γ
(⋃

iRij

)
. This permutation can be written as µ = ξ(σ × µ′) with

ξ ∈ Sh(p, n − p), σ ∈ Sp and µ′ ∈ Sn−p. Since µ is increasing on E0 = [p + 1, n] we

conclude that µ′ = Idn−p, and from the monotony on Ej with j > 0 we deduce that

σ ∈ Bα. In the same way as before, we construct η by mapping the interval [1, n− q]

and for this, we will show that

(σ × Id)−1ξ−1γ is increasing in Fi for all i. (7.12)

In particular, for i = 0, we obtain the desired property to define η. We then consider

β−1
0 (η× Id)−1(σ× Id)−1γ, which equals Id× τ for some τ ∈ Sp. Using (7.12) for i > 0

we conclude that τ ∈ Bβ; and it follows from (7.11) that the constructed τ belongs

to B
η
β(M).

It remains to prove (7.12). Take x1, x2 ∈ Fi with x1 < x2. Then, x1 ∈ Rij1 and

x2 ∈ Rij2 for some j1 ≤ j2. Assume that j1 = j2, then γ(x1) < γ(x2). In this case,

we have γ(x1) = ξ(σ × Id)(e1) and γ(x2) = ξ(σ × Id)(e2) with e1, e2 ∈ Ej . Since σ is

increasing in Ej we obtain that e1 < e2 as desired.

On the other hand, if j1 < j2, then e1 ∈ Ej1 and e2 ∈ Ej2 and the conclusion

follows easily as all the elements of Ej1 are smaller than those of Ej2 .

Now we present a bijective proof of the part of Theorem 7.2.2 that guarantees the

stability of Σ under the Heisenberg product. Our method applied to the composition

product is similar to the one presented in [23].
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First we fix some basic notations that will be used in the rest of this section. If

σ, ν ∈ Sn, then we denote

ν ⊲ σ = σ−1νσ,

that is, ν ⊲ σ is the result of right conjugating nu by σ. The set of transpositions is

stable under conjugation. The transposition permuting the elements 1 ≤ i < j ≤ n

is written as αij and αii+1 is abbreviated as αi. The transpositions αi are called

elementary transpositions.

Definition 7.2.6. Given σ and τ in Sn, we say that σ, τ are descent related and

write σ ∼ τ if there exists a non-elementary transposition α such that:

(i) σ = τα;

(ii) α⊲ τ−1 is elementary.

In other words, for some i, j, k = 1, . . . , n with j and k non-consecutive, σ = αiτ and

σ = ταjk.

Hence, τ and σ are descent related if τ differs from σ only in that two consecutive

values that do not appear in consecutive positions have been swapped. For instance,

(3214) ∼ (4213) ∼ (4312).

It is well-known that a equivalence class under the transitive and reflexive closure

of the relation ∼ consists of those permutations with the same descent set, as defined

in (7.1) (see, for example, [7]).

Theorem 7.2.7 (Theorem 7.2.2). The subspace Σ ⊆ S is stable under the Heisenberg

product.

Proof. To simplify the writing along this proof we set the following notation for the
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Heisenberg product of σ ∈ Sp and τ ∈ Sq:

σ # τ =

p+q∑

n=max(p,q)

∑

ξ∈Sh(p,n−p)
η∈Sh(p+q−n,n−q)

fnσ,τ (ξ, η)

where fnσ,τ (ξ, η) = ξ
(
(ση) × Idn−p

)
β2n−p−q,p+q−n(Idn−q × τ). In what follows we will

omit the subindices from the permutation β2n−p−q,p+q−n and from the identities, writ-

ing just β and Id, respectively.

If (σ, τ) are as above and γ ∈ Sn, observe that there exists at most one pair of

shuffles (ξ, η) such that fnσ,τ (ξ, η) = γ. Indeed, if fnσ,τ (ξ, η) = fnσ,τ (ξ
′, η′), canceling the

rightmost factors in

ξ(ση × Id)β(Id× τ) = ξ′(ση′ × Id)β(Id× τ).

we deduce the equality ξ(ση × Id) = ξ′(ση′ × Id). The map Sh(p, q)× Sp × Sq → Sn

given by (ζ, ν, δ) 7→ ζ(ν × δ) is a bijection by definition of Sh(p, q), and we conclude

that ξ = ξ′ and η = η′.

Let us consider the linear basis {DJ} of Σn defined in (7.5). If I ⊂ [p − 1] and

J ⊂ [q − 1], we write

YI # YJ =

p+q∑

n=max(p,q)

∑

ρ∈Sn

#Dρ
I,J · ρ,

where the sets Dρ
I,J are defined as

Dρ
I,J =

{
(σ, τ) ∈ DI ×DJ | ρ = fnσ,τ (ξ, η) for some

ξ ∈ Sh(p, n− p) and η ∈ Sh(p+ q − n, n− q)
}

We prove that if ρ ∼ ρ′, then there exists a bijection between Dρ
I,J and Dρ′

I,J . Hence,

the number #Dρ
I,J only depends on the descent class of ρ. If we call dUI,J = #Dρ

I,J ,
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where U = Des(ρ), we obtain the formula

YI # YJ =

p+q∑

n=max(p,q)

∑

U⊂[n−1]

dUI,J YU

that proves the theorem.

Assume that ρ, ρ′ ∈ Sn are descent related, that is, ρ ∼ ρ′. This means that for

a non-elementary transposition α and an elementary transposition α′, we have that

ρ′ = ρα and ρ′ = α′ρ.

In order to construct the bijection ψρρ′ : Dρ
I,J → Dρ′

I,J we “move” step by step

the elementary transposition α′ from left to right, and in accordance with the result

of these successive movements, we define the values of ψρρ′(σ, τ).

Write

ρ′ = α′ξ(ση × Id)β(Id× τ), (7.13)

then we have the following excluding cases:

(A) Assume that α′ξ ∈ Sh(p, n− p), then define

ψρρ′(σ, τ) = (σ, τ).

(B) Assume that α′ξ 6∈ Sh(p, n − p). In accordance with Lemma 7.2.9, we have

α′
⊲ ξ = αi, where αi is an elementary transposition different from αp; i.e.,

α′ξ = ξαi. Write ρ′ = ξαi(ση × Id)β(Id× τ), and consider the following disjoint

cases:

(B1) Assume p < i. In this case ρ′ = ξ(ση × Id)αiβ(Id × τ). It follows from

Lemma 7.2.10 that αi ⊲ β is non elementary only when αi = αp+q−n. As

p + q − n ≤ p < i this cannot happen. Then, we can write ρ′ = ξ(ση ×

Id)βαℓ(Id×τ) for some elementary αℓ = αβ−1(i). In our hypothesis it follows

that ℓ ≥ n − q. Otherwise we commute αℓ and Id × τ in order to obtain
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the equality ρ′ = ραℓ that implies αℓ = α. This contradicts the fact that α

is non elementary. Moreover, it cannot happen that ℓ = n − q, since that

implies i = p which contradicts the assumption i < p. Hence, we can write

ρ′ = ξ(ση × Id)β(Id× αℓτ) (7.14)

and Des(αℓτ) = Des(τ). Indeed, if Des(αℓτ) 6= Des(τ), Lemma 7.2.8 would

imply that α = αℓ ⊲ τ is an elementary transposition. In this situation

define

ψρρ′(σ, τ) = (σ, αℓτ)

(B2) Assume i+ 1 < p and write

ρ′ = ξ(αiση × Id)β(Id× τ). (7.15)

Consider the following disjoint cases:

(B21) If Des(αiσ) = Des(σ) we define

ψρρ′(σ, τ) = (αiσ, τ).

(B22) If Des(αiσ) 6= Des(σ), we apply Lemma 7.2.8 in order to conclude

that αi ⊲ σ is an elementary transposition αm. Write

ρ′ = ξ
(
σ(αmη)× Id

)
β(Id× τ) (7.16)

and consider the following alternatives.

(B221) Assume that the permutation αmη ∈ Sh(p+ q − n, n− q). In

this case we define

ψρρ′(σ, τ) = (σ, τ).
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(B222) Assume that the permutation αmη 6∈ Sh(p+ q − n, n− q). In

this case αm ⊲ η is an elementary transposition that we call

αt, and by Lemma 7.2.9 we know that αt 6= αp+q−n. Then,

using Lemma 7.2.10, we conclude that αt ⊲ β is elementary.

Define αr = αt ⊲ β. Then r ≥ n − q, otherwise we prove

as before that α is elementary. Moreover, if r = n − q then

t = p, and this would imply that αi = αp, which contradicts

our assumptions. Hence, writing

ρ′ = ξ(ση × Id)β
(
Id× (αrτ)

)
, (7.17)

we have that Des(αrτ) = Des(τ). If Des(αrτ) 6= Des(τ),

applying as before Lemma 7.2.8, we conclude that α is ele-

mentary. In this situation we define

ψρρ′(σ, τ) = (σ, αrτ).

Observe that equations (7.13) to (7.17), together with the corresponding assump-

tions, show that ψρρ′(σ, τ) belongs to Dρ′

I,J .

The last step of the proof of the theorem, is the verification that ψρρ′ is bijective.

We prove that (ψρ′ρ ◦ ψρρ′)(σ, τ) = (σ, τ) for all (σ, τ) ∈ Dρ
I,J . This will follow from

the fact that, if for some pair of transpositions α, α′ with α non elementary and α′

elementary, we have that

ρ′ = ρα = α′ρ

then we also have that

ρ = ρ′α = α′ρ′.



73

For example, assume that we are in the alternative (B1), where

ρ′ = α′ξ(ση × Id)β(Id× τ)

and where α′ξ 6∈ Sh(p, n− p) and α′ξ = ξαi, with p < i. By successive conjugations

we move α′ to the far right and produce αℓ that verifies:

ρ′ = ξ(ση × Id)β
(
Id× (αℓτ)

)
.

Recall that in this case we defined ψρρ′(σ, τ) = (σ, αℓτ).

In order to compute ψρ′ρ(σ, αℓτ) we write

ρ = α′ρ′ = α′ξ(ση × Id)β(Id× αℓτ)

and perform the necessary conjugations. Clearly we are again in the situation (B1),

and when we “move” α′ we obtain again αℓ. Thus, ψρ′ρ(σ, αℓτ) = (σ, αℓαℓτ) = (σ, τ).

For the other cases the argument is similar.

The following lemmas were used in the previous theorem.

Lemma 7.2.8. Assume that σ, αi ∈ Sn and that αi is an elementary transposition.

The following assertions are equivalent:

(a) Des(αiσ) = Des(σ),

(b) αi ⊲ σ is a non-elementary transposition.

Proof. The fact that (b) implies (a) follows from the result mentioned before: the

equivalence classes associated to the relation ∼ are the sets of permutation with the

same descent set.

Conversely, assume that Des(αiσ) = Des(σ) and that αi ⊲ σ is the elementary

transposition αj. Then, σ−1αiσ = αj and Des(αiσ) = Des(σ). From the first equality
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we deduce that σ(j) = i and σ(j + 1) = i+ 1 or σ(j) = i+ 1 and σ(j + 1) = i. In the

first case j 6∈ Des(σ) but as αiσ(j) = i+ 1 and αiσ(j + 1) = i, j ∈ Des(αiσ). In the

other case one verifies that j ∈ Des(σ) and j 6∈ Des(αiσ).

Lemma 7.2.9. Assume that p + q = n and that ξ ∈ Sh(p, q). If αiξ 6∈ Sh(p, q) for

an elementary transposition αi, then αi ⊲ ξ is an elementary transposition. Moreover

αi ⊲ ξ 6= αp.

Proof. If αiξ 6∈ Sh(p, q), then Des(αiξ) 6= Des(ξ) and applying Lemma 7.2.8 we

conclude that αi ⊲ ξ is an elementary transposition. The last assertion of the lemma

can be proved as follows. If αi ⊲ ξ = αp, then ξ−1(i) = p and ξ−1(i + 1) = p + 1 or

ξ−1(i) = p+1 and ξ−1(i+1) = p. In the first case ξ(p) = i and ξ(p+1) = p+1 and then,

ξ does not have a descent at p and this implies that ξ = Id. Then, αiξ = αp ∈ Sh(p, q)

and this is a contradiction. In the second case, ξ(p) = i and ξ(p + 1) = i and this

implies that i = p, which means that ξ = αp. Again, this is impossible because then

we would have αiξ = Id ∈ Sh(p, q), contradicting the hypothesis.

Lemma 7.2.10. Assume that p + q = n, and let αi an elementary transposition.

Then, αi ⊲ βp,q is non elementary if and only if αi = αq.

Proof. Clearly αq⊲βp,q = αp+q,1 which is not elementary. Conversely, if αi⊲βp,q is not

elementary, it follows from Lemma 7.2.8 that Des(αiβp,q) = {p}. A direct inspection

shows that the composition αiβp,q does not introduce additional descents only when

αi = αq.

7.3. Applications

We present some examples of the combinatorial rule for the Heisenberg product,

including the rules for the classical products and some interesting identities.
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1. Internal product. Consider the case p = q = n, and let α = (a1, . . . , ar) and

β = (b1, . . . , bs) compositions of n. As observed in Section 7.2, the sum of terms

of degree n in Xα # Xβ is the Solomon’s product Xα ∗ Xβ. In this case, an

element of Mn
α,β has the shape described below:

0 m01 · · · m0r 0

m10 m11 · · · m1r b1
...

...
. . .

...
...

ms0 ms1 · · · msr bs

0 a1 · · · ar

and this implies that the first row and column have to be zero. Then Mn
α,β can

be identified with the set of matrices M such that its columns add up to α and

its rows add up to β. Denoting such set by M, We get

Xα ∗Xβ =
∑

M∈M

Xc(M).

This is Solomon’s rule for the internal product in the space Σ, which is a well-

known formula given in [12, 19].

2. External product. Assume p and q are arbitrary non-negative integers. Let

α = (a1, . . . , ar) a composition of p and β = (b1, . . . , bs) a composition of q.

Consider n = p + q. The sum of the terms of degree n in Xα # Xβ is the

convolution product Xα · Xβ. We have n − p = q and n − q = p, and the set

Mn
α,β is the set of matrices with non-negative integral entries which can fill the
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black dots in the following diagram:

0 • · · · • p

• • · · · • b1
...

...
. . .

...
...

• • · · · • bs

q a1 · · · ar

where the rightmost column and the lowest row indicate as usual the values of

the sum of the corresponding rows and columns, respectively. The only way

to fill this matrix is by placing (a1, . . . , ar) in the top row, (b1, . . . , bs) in the

leftmost column, and zeroes in the rest of the matrix. Call M the corresponding

matrix:

M =




0 a1 · · · ar

b1 0 · · · 0

...
...

. . .
...

bs 0 · · · 0




.

Then Mn
α,β = {M}, the weak composition c(M) is αβ (concatenation of both

compositions), and

Xα ·Xβ = X(a1,...,ar ,b1,...,bs),

which is Formula (7.4).

3. Product of identities. Consider the compositions α = (p) and β = (q). Let n

an integer satisfying max(p, q) ≤ n ≤ p+ q. Then, the matrix below is the only

way to fill in the associated framework for the Heisenberg product of X(p) and
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X(q):

0 n− q n− q

n− p p+ q − n q

n− p p

.

Then, we have that

X(p) #X(q) =

p+q∑

n=max(p,q)

X(n−q,n−p,p+q−n). (7.18)

Note that some of the entries of (n− q, n− p, p+ q− n) can be 0, in which case

we just remove such entry, according to the definition of c(M) in Section 7.2.

Under the bijection (7.3), the subset that corresponds to the composition (p) is

the empty set. As the only permutation with empty descent set is the identity,

we get

X(p) = Idp,

hence Formula (7.18) is actually the Heisenberg product of the identities of Sp

and Sq.

4. Products X(1p) # X(1q). For a non-negative integer p, we denote by (1p) the

composition of p given by (1, . . . , 1), that is, all its parts are 1. In order to

compute X(1p) #X(1q) we need to fill in all possible ways the following matrix

of size (q + 1)× (p+ 1):

0 • · · · • n− q

• • · · · • 1

...
...

. . .
...

...

• • · · · • 1

n− p 1 · · · 1
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In the first row, we can only put 1’s and 0’s, exactly n− q ones and the rest of

zeroes. Similarly for the first column with n−p ones and the rest of zeroes. All

in all we have exactly (
p

n− q

)
×

(
q

n− p

)

possibilities as choices for the first row and column. Observe that if one of the

elements of the first row is one, all the elements of the corresponding column

have to be zero and something similar happens with the first column. Hence, in

order to fill out the remaining spaces of the framework, we eliminate the rows

and columns whose “headings” have been filled with a one and all we have to

consider are

(
q − (n− p)

)
×
(
p− (n− q)

)
= (p + q − n)× (p+ q − n)

matrices, that must have exactly one 1 en each row and column. Thus, we have

to consider all the possible permutation square matrices of size p+ q−n, which

are as many as (p+ q − n)!. Then, the total number of possible matrices to fill

in the above framework is

(
p

n− q

)(
q

n− p

)
(p + q − n)!.

Moreover, it is clear that all the matrices M that can be fitted into the above

framework consists only of 1’s. Moreover, as in each of the matrices there are

exactly n ones, we have c(M) = (1n).

Hence, we obtain the following formula:

X(1p) #X(1q) =

p+q∑

n=max(p,q)

(
p

n− q

)(
q

n− p

)
(p+ q − n)!X(1n).

Compare this formula with Formula (4.26) for the Heisenberg product of sym-
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metric power functions. This same argument could have been used to prove

Formula (4.26), by invoking Theorem 4.3.1.

5. Powers of X(1). The Heisenberg product of X(1) by itself n times gives:

X
#(n)
(1) =

n∑

k=1

S(n, k)X(1k), (7.19)

where S(n, k) are the Stirling numbers of second kind (we used the symbol

#(n) as exponent to emphasize that the power is with respect to the Heisenberg

product). Equation (7.19) can be easily proved by induction on n. For n = 1

the result is trivial. Assume that (7.19) is true for n− 1 and compute

X
#(n)
(1) = X

#(n−1)
(1) #X(1) =

n−1∑

k=1

S(n− 1, k)X(1k) #X(1). (7.20)

The product X(1k) #X(1) only has terms of degree k and k+ 1. They are found

by filling the following 2× (k + 1) matrices

0 1 0 · · · 1 k − 1

0 0 1 · · · 0 1

0 1 1 · · · 1

,

0 1 · · · 1 k

1 0 · · · 0 1

1 1 · · · 1

.

There is k ways to fill the first matrix and all the possibilities yield the com-

position (1, . . . , 1) of k. And there is only one way to fill the second matrix,

which produces the composition (1, . . . , 1) of k + 1. Substituting in (7.20) and

reindexing the sums we obtain

X
#(n)
(1) =

n∑

k=1

[
kS(n− 1, k) + S(n− 1, k − 1)

]
X(1k) =

n∑

k=1

S(n, k)X(1k),

using a well-known recurrence formula for the Stirling numbers. This proves

Equation (7.19).
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8. HOPF ALGEBRAS WITH THE HEISENBERG PRODUCT

8.1. From non-commutative to commutative symmetric functions

In the previous sections we constructed the following commutative diagram of algebras

with respect to the Heisenberg product:

Σ
(
T (V )

)
// // end

(
T (V )

)

Σ // //
OO

OO

S

OO

The algebra (Σ, ·) of non-commutative symmetric functions and the algebra (S, ⋆)

of Malvenuto-Reutenauer are non-commutative. We want to extend the previous

diagram to the commutative algebra (Λ, ·) of symmetric functions, where we already

defined the Heisenberg structure in Section 4.

In this section we define a surjective linear map Σ ։ Λ and we show that it

preserves the Heisenberg structures in Λ and Σ, as constructed in Section 4.3 and

Section 7.2, respectively.

Let n ≥ 0 and define the linear map πn : Σn → Λn by mapping the basis {Xα}

of Σn onto the the basis of complete homogeneous symmetric functions {hα}:

πn(Xα) = hα̃, (8.1)

where α is a composition of n and α̃ is the partition of n obtained by reordering the

entries of α. Let us denote by π : Σ→ Λ the map induced in the direct sum.

It is known that the map π is a morphism of algebras with respect to the external

and internal products. We prove next that the same is true with respect to the

Heisenberg product. This connection is what motivates the name “Heisenberg” for
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the product of species, representations and symmetric functions.

Theorem 8.1.1. For any pair of compositions α and β it holds

π(Xα #Xβ) = hα̃ # hβ̃ .

Proof. Comparing equations (4.9) and (7.6), it is enough to construct a bijection

ψ : Mn
α,β →Mn

α̃,β̃
, for a fixed n, such that

p
(
ψ(M)

)
= c̃(M) (8.2)

for all M ∈Mn
α,β. Recall that c̃(M) is the reordering of the parts of the composition

c(M) to make it a partition.

Let σ and τ be two permutations which reorder the compositions α = (a1, . . . , ar)

and β = (b1, . . . , bs), respectively, into partitions. This means that

α̃ = (aσ(1), . . . , aσ(r)), β̃ = (bτ(1), . . . , bτ(r)),

are partitions. Define ψ(M) as the matrix obtained from M by permuting its columns

with the permutation Id1 × σ and its rows with the permutation Id1 × τ . The result

belongs to Mn

α̃,β̃
. By using the inverse permutations Id1 × σ

−1 and Id1 × τ
−1 we see

that this construction is a bijection. Moreover, since the entries of M and ψ(M) are

the same, we get Equation (8.2).

From this theorem we obtain following the diagram of algebras with the Heisen-
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berg product:

Σ
(
T (V )

)
// // end

(
T (V )

)

Σ // //
OO

OO

π

����

S

OO

Λ

We will see in the next sections that the spaces Σ and Λ are actually Hopf algebras

with the Heisenberg product.

8.2. Hopf structures on non-commutative and commutative symmetric

functions

The space Σ of non-commutative symmetric functions has a structure of coalgebra

given by the coproduct

∆(X(a1,...,ar)) =
∑

bi+ci=ai
0≤bi,ci

X(b1,...,br)b ⊗X(c1,...,cr)b , (8.3)

where b indicates that parts equal to zero are omitted.

Next we proved that ∆ is compatible with the Heisenberg product in Σ.

Theorem 8.2.1. The space (Σ,#,∆) is a cocommutative Hopf algebra.

Proof. It is enough to prove that ∆ is a morphism of algebras with respect to the

Heisenberg product. Let α and β compositions of p and q, respectively. We use

Formula (7.6) to compute

∆(Xα #Xβ) =
∑

n

∑

M∈Mn
α,β

∆(Xc(M)) =

p+q∑

n=p∨q

∑

M∈Mn
α,β

∑

γ+γ′=c(M)

Xγ ⊗Xγ′ . (8.4)
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On the other hand,

∆(Xα) # ∆(Xβ) =

( ∑

γ+γ′=α

Xγ ⊗Xγ′

)
#

( ∑

δ+δ′=β

Xδ ⊗Xδ′

)

=
∑

γ+γ′=α
δ+δ′=β

(Xγ #Xδ)⊗ (Xγ′ #Xδ′)

=
∑

γ+γ′=α
δ+δ′=β

∑

n,n′

∑

M∈Mn
δ,γ

M ′∈Mn′

δ′,γ′

Xc(M) ⊗Xc(M ′).

(8.5)

We show that the sums (8.4) and (8.5) are the same as follows: take an octuple of

indices corresponding to the sum (8.5): (γ, γ′, δ, δ′, n, n′,M,M ′) and construct the

quadruple
(
n+n′,M +M ′, c(M), c(M ′)

)
. Denote by col(M) the vector whose entries

are the sum of the columns of the matrix M , and similarly, row(M) to the sum of

rows. Since

col(M +M ′) = col(M) + col(M ′) =
(
n− |γ|

)
γ +

(
n′ − |γ′|

)
γ′ = (n+ n′ − p)α,

where |ζ | is the sum of the parts of a composition ζ , and similarly with row(M+M ′) =

(n+ n′− q)β, we see that M +M ′ ∈Mn
α,β. As c(M) + c(M ′) = c(M +M ′), if we set

(ñ, M̃, γ̃, γ̃′) =
(
n+ n′,M +M ′, c(M), c(M ′)

)

it is clear that (ñ, M̃ , γ̃, γ̃′) is a quadruple of indices appearing in the sum (8.4) and

that the corresponding summands of (8.4) and (8.5) are the same.

Moreover, it is clear that the above correspondence between the indices of the

sums is bijective.

Remark 8.2.2. The coproduct defined in (8.3) is the restriction to Σ of a coproduct
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in S which has the expression, for σ ∈ Sn,

∆(σ) =

n∑

p=0

σp ⊗ σ
′
n−p,

where σp ∈ Sp and σ′
n−p ∈ Sn−p are the only permutations such that σ = (σp ×

σ′
n−p)ξ

−1 with ξ ∈ Sh(p, n− p).

This coproduct is compatible with the convolution product in S, making (S, ⋆,∆)

a graded connected Hopf algebra. However, ∆ is not compatible with the composition

product in S [19], although they become compatible in the restriction to Σ and in

the projection to Λ. In particular, this means that the Heisenberg product is not

compatible with the coproduct in S.

The space Λ of symmetric functions also has a coproduct, that we already used

to relate the Heisenberg product to the external and internal products (4.20). Recall

from (4.22) that, in the linear basis of functions {hα}, the coproduct is expressed as

∆(h(a1,...,ar)) =
∑

bi+ci=ai
0≤bi,ci

h(b1,...,br) ⊗ h(c1,...,cr). (8.6)

Then, we have the following theorem.

Theorem 8.2.3. The space (Λ,#,∆) is a cocommutative Hopf algebra, and the map

π : Σ→ Λ defined in (8.1) is a morphism of Hopf algebras.

Proof. By Theorem 8.1.1 we know that π is multiplicative. Recall that π send Xα

into hα̃, which coincides with hα. By equations (8.6) and (8.3) it is immediate that

π also preserves the comultiplication:

∆
(
π(Xα)

)
= ∆(hα) =

∑
hα1 ⊗ hα2 =

∑
π(Xα1)⊗ π(Xα2) = (π ⊗ π)

(
∆(Xα)

)
.

And, since π(Xα # Xβ) = π(Xα) # π(Xβ), the compatibility of the coproduct and
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the Heisenberg product in the space Σ induces the compatibility ∆ and # in the

space Λ.

8.3. Isomorphisms between Heisenberg and classical structures

The Heisenberg product is related to the internal and external products not only

through interpolation, but also through certain isomorphisms. This statement must

be qualified as follows. The external and Heisenberg products are isomorphic, but

the isomorphism is not degree-preserving. The Heisenberg and internal products are

also isomorphic, once they are extended to the completion with respect to the grad-

ing. Both results hold for symmetric functions and for non-commutative symmetric

functions, as discussed next.

Theorem 8.3.1. The map ψ : (Σ, ·,∆)→ (Σ,#,∆) given by

ψ(X(a1,...,ar)) = X(a1) # · · ·#X(ar) (8.7)

is an isomorphism of Hopf algebras (which does not preserve gradings).

Proof. Since the Heisenberg product has the external product as the only term in the

upper degree, the matrix of the linear map ψ in the basis (Xα) is triangular with 1

in the diagonal. Hence, it is invertible. The map ψ is also multiplicative, since the

external product in the basis (Xα) is the concatenation of the compositions.

It remains to prove that ψ is comultiplicative, that is,

∆
(
ψ(Xα) # ψ(Xβ)

)
= (ψ ⊗ ψ)∆(Xα ·Xβ). (8.8)

Since it was already proved that ψ is multiplicative, it is enough to prove (8.8) on the
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algebra generators X(a) for a non-negative integer a. For the right hand side we have

∆(X(a1) ·X(a2)) = ∆(X(a1,a2)) =
∑

a+b=a1
a′+b′=a2

X(a,a′)b ⊗X(b,b′)b .

Applying the map ψ⊗ψ and using formula (7.6) to compute ψ(X(a,a′)) = X(a) #X(a′)

and ψ(X(b,b′)) = X(b) #X(b′) (note that we assume ψ(X(0)) to be the identity) we get

(ψ ⊗ ψ)∆(X(a1,a2)b) =
∑

a+b=a1
a′+b′=a2

∑

n,m

X(n−a′,n−a,a+a′−n)b ⊗X(m−b′,m−b,b+b′−m)b . (8.9)

On the other hand, taking into account that ψ(Xα) = Xα for partitions with only

one part, the left hand side is

∆
(
X(a1) #X(a2)

)
=
∑

k

∑

c1+c′1=k−a2
c2+c′2=k−a1

c3+c′3=a1+a2−k

X(c1,c2,c3)b ⊗X(c′1,c
′
2,c

′
3)

b , (8.10)

By collecting together the terms in (8.9) with n+m = k and interchanging the sums,

it is easy to see that (8.9) and (8.10) are the same expression.

Corollary 8.3.2. The map (Λ, ·,∆)→ (Λ,#,∆) given by

h(a1,...,ar) 7→ h(a1) # · · ·# h(ar) (8.11)

is an isomorphism of Hopf algebras (which does not preserve gradings).

The Heisenberg and internal products are also isomorphic at the level of Λ̂.

Theorem 8.3.3. The map (Λ̂,#)→ (Λ̂, ∗) given by

f 7→ f ·
∑

n≥0

h(n) (8.12)

is an isomorphism of algebras.

Proof. This isomorphism follows from isomorphism (2.9) in the category of species.
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Note that the species e corresponds to the object (10, 11, . . . ) in the category R,

where 1n is the trivial Sn-modules. Applying the Kronecker group construction and

then the Frobenius map ch we obtain that e corresponds to the element
∑

n≥0 h(n)

in Λ̂.

Remark 8.3.4. The isomorphism (Σ, ·) ∼= (Σ,#) of Theorem 8.3.1 does not extend

to an isomorphism between (Σ̂, ·) and (Σ̂,#). Indeed, consider the element

X(1) +X(1,1) +X(1,1,1) + · · ·

of Σ̂. This element would map to

X(1) +X(1) #X(1) +X(1) #X(1) #X(1) + · · · .

Each of the terms in this infinite sum contributes a term of degree 1 (namely, X(1));

therefore, this infinite sum is not a well-defined element of Σ̂.

Similarly, the isomorphism (Λ̂,#) ∼= (Λ̂, ∗) of Theorem 8.3.3 does not restrict

to an isomorphism between (Λ,#) and (Λ, ∗). Indeed, the element 1 ∈ Λ maps to

∑
n≥0 h(n) which is in Λ̂ but not in Λ.

Moreover, a natural question is whether a similar isomorphism to (8.12) holds in

Σ̂ =
∏

n≥0 Σn, that is, whether

ϕ : f 7→ f ·
∑

n≥0

X(n) or ψ : f 7→
∑

n≥0

X(n) · f

are isomorphisms between (Σ̂,#) and (Σ̂, ∗). The answer is no, and the following

counterexample shows that the maps are not multiplicative. Compute X(3) # X(3)

using the rule (7.6):

X(3) #X(3) = X(3) +X(1,1,2) +X(2,2,1) +X(3,3).
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Then, an application of ϕ yields

ϕ(X(3) #X(3)) =
∑

n≥0

X(3,n)b +
∑

n≥0

X(1,1,2,n)b +
∑

n≥0

X(2,2,1,n)b +
∑

n≥0

X(3,3,n)b . (8.13)

On the other hand, computing ϕ(X(3)) ◦ ϕ(X(3)) using Solomon’s rule, gives

ϕ(X(3)) ∗ ϕ(X(3)) =
∑

n,m

X(3,n)b ∗X(3,m)b =
∑

n

X(3,n)b ∗X(3,n)b

=
∑

n≥0

X(3,n)b +X(2,1,1,n)b +X(1,2,2,n)b +X(3,3,n)b . (8.14)

We can see that (8.13) and (8.14) are different since, for example, the term X(2,1,1,n)b

appears in (8.14) but there is no term in (8.13) whose index is a composition starting

with 2, 1, 1. A similar argument shows that ψ is not multiplicative, either.
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9. QUASI-SYMMETRIC FUNCTIONS

9.1. Classical coproducts of quasi-symmetric functions

To summarize the previous sections, we constructed the Heisenberg product in Σ and

Λ so that they are Hopf algebras. In this section we consider the quasi-symmetric

functions Q, dual to the non-commutative symmetric functions, and we introduce the

Heisenberg coproduct by dualization. The space Q will fill the following commutative

diagram of Hopf algebras, where Λ and Σ have the external product and the coproduct

defined in Section 8.2, and S has the Malvenuto-Reutenauer product:

Σ // //

����

S

F

����

Λ // i // Q

The diagram is self dual with respect to the antidiagonal. The maps F and i are the

dual of the inclusion of Σ in S and the projection of Σ onto Λ, respectively. The map

F is described in detail in [4] and we will not use it here. Note that the space S is

a Hopf algebra only with respect to the Malvenuto-Reutenauer product (as noted in

Remark 8.2.2).

Let X = {x1, x2, . . .} be a countable set, totally ordered by x1 < x2 < · · · . We

say that X is an alphabet. Let kJXK be the algebra of formal power series on X and

Q = Q(X) the subspace linearly spanned by the elements

Mα =
∑

i1<···<ir

xa1i1 · · ·x
ar

ir
(9.1)

as α = (a1, . . . , ar) runs over all compositions of n, for n ≥ 0. The space Q is a graded

subalgebra of kJXK known as the algebra of quasi-symmetric functions [15].
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In other words, an element f ∈ kJXK is a quasi-symmetric function if the

coefficients of xk11 · · ·x
kn
n and of yk11 · · · y

kn
n coincide whenever x1 < · · · < xn and

y1 < · · · < yn, and for any positive integers k1, . . . , kn. It is clear that any symmet-

ric function is quasi-symmetric, hence we have the inclusion of algebras i : Λ →֒ Q.

In [20] it is proved that this map is the dual of the projection π : Σ ։ Λ defined in

Section 8.1.

The duality between Σ and Q is realized by the following pairing between the

homogeneous components of degree n:

〈Mα, Xβ〉 = δα,β. (9.2)

It is known [14, 15, 20] that this pairing identifies the product of quasi-symmetric

functions with the coproduct (8.3) of Σ

〈fg, u〉 = 〈f ⊗ g,∆(u)〉,

for f, g ∈ Q and u ∈ Σ.

The algebra Q also carries two coproducts ∆i and ∆e which are defined via

evaluation of quasi-symmetric functions on alphabets. To express this evaluation we

first define some operations on alphabets.

Definition 9.1.1. Let X and Y be two alphabets. The sum X + Y is the disjoint

union X⊔Y together with a total order that extend the order in X and Y satisfying

x < y

for x ∈ X and y ∈ Y.

The product X×Y is the cartesian product of X and Y together with the reverse
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lexicographic order:

(x, y) ≤ (x′, y′) means y < y′ or (y = y′ and x < x′).

The coproducts internal and external coproducts in Q are defined by the formulas

∆i

(
f(X)

)
= f(X×Y) and ∆e

(
f(X)

)
= f(X + Y),

where we identify Q(X,Y) ∼= Q(X)⊗Q(X) to obtain maps ∆i,∆e : Q→ Q⊗Q. This

is usually called separation of variables.

The coproducts ∆i and ∆e in Q are dual through the pairing (9.2) to the internal

and external product in Σ, respectively. In other words,

〈∆∗f, u⊗ v〉 = 〈f, uv〉, 〈∆·f, u⊗ v〉 = 〈f, u · v〉,

for any f, g ∈ Q and u, v ∈ Σ. Here we set 〈f ⊗ g, u⊗ v〉 = 〈f, u〉〈g, v〉.

9.2. The Heisenberg coproduct of quasi-symmetric functions

Let ∆# be the coproduct of Q dual to the Heisenberg product of Σ, that is, ∆#

satisfies

〈∆#f, u⊗ v〉 = 〈f, u# v〉,

for all f ∈ Q and u, v ∈ Σ. We call ∆# the Heisenberg coproduct. Since the Heisen-

berg product is a sum of terms of various degrees (5.4), the Heisenberg coproduct is

a finite sum of the form

∆#(f) =
∑

i

fi ⊗ f
′
i

with 0 ≤ deg(fi) and deg(f ′
i) ≤ deg(f) ≤ deg(fi)+deg(f ′

i). The terms corresponding

to deg(f) = deg(fi) = deg(f ′
i) and to deg(f) = deg(fi) + deg(f ′

i) are the coproducts

∆i(f) and ∆e(f), respectively.
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We now give an expression of the Heisenberg coproduct as an evaluation over an

alphabet. Let 1 + X denote the alphabet X together with a new variable x0 smaller

than all the others and with the property xk0 = x0 for any natural k. Let

(1 + X)× (1 + Y)− 1

be the Cartesian product of the alphabets 1+X and 1+X with reverse lexicographic

ordering and with the variable (x0, y0) removed. We can suggestively denote (1 +

X)× (1+Y)−1 by X+Y+XY, although the order is given properly by the former

expression.

The following result was obtained in conversation with Arun Ram.

Theorem 9.2.1. For any f ∈ Q,

∆#

(
f(X)

)
= f(X + Y + XY).

Proof. We have to show that, with respect to the pairing (9.2),

〈Mγ(X + Y + XY), Xα ⊗Xβ〉 = 〈Mγ, Xα #Xβ〉 (9.3)

for all γ, α and β compositions of n, p and q, respectively. Let us fix a composition

γ of n and let k the length of γ. Denote the set of indices of Mγ(X + Y + XY) by

Y =
{(

(i1, j1), . . . , (ik, jk)
) ∣∣ (i1, j1) < · · · < (ik, jk)

}
.

Consider the set Aα,β =
{
M ∈Mn

α,β | w(M) = γ
}

and define the map

ψ : Y→
⋃

α,β

Aα,β

as follows: given (i1, j1) < · · · < (ik, jk), let M̃ = (m̃ij) be a matrix of zeroes big

enough to set m̃jℓiℓ = γℓ (as usual in these proofs, we start the indices in 0). Then,
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remove all zero rows and columns, except those with index 0; let us call M to the

result. Since (0, 0) is not a possible index, we have m00 = 0. Thus, M ∈ Mn
α,β

where α is the composition obtained by adding all the rows of M but the first, and

analogously with β and the rows of M .

The map ψ is surjective, since, given some M ∈ Aα,β, we can build a sequence of

indices in Y by reading the nonzero entries of M , say muv, and considering the pairs

(v, u) lexicographically ordered. Therefore, we can write

Mγ(X + Y + XY) =
∑

q∈Y

(xy)γq =
∑

α,β

∑

M∈Aα,β

∑

q∈ψ−1(M)

(xy)γq

where (xy)γq denotes the monomial (xi1yi1)
γ1 · · · (xikyik)

γk and q is the tuple of in-

dices
(
(i1, j1), . . . , (ik, jk)

)
. Collecting together the x’s and y’s establishes a bijec-

tion between the terms of the last sum indexed over ψ−1(M) and the terms of

Mα(X)Mβ(Y). Indeed, take a term from this product, given by indices ir1 < · · · < irk

and js1 < · · · < jsℓ
, and build the pairs (jsu, irv) such that mv,u 6= 0. We also have

to consider the pairs (0, irv) and (jsu , 0) according to nonzero entries in the first row

and column of M . Ordering these indices it is clear that they belong to ψ−1(M) and

this is the inverse process of grouping x’s and y’s.

Then, we can write

Mγ(X + Y + XY) =
∑

α,β

∑

M∈Aα,β

Mα(X)Mβ(Y) =
∑

α,β

# Aα,βMα(X)Mβ(Y).

which obviously implies Equation (9.3).

We can express the dual of the isomorphism in Theorem 8.3.1 in term of alphabets

in the full dual of Σ, which is Q̂ =
∏

n≥0 Qn. The pairing 〈, 〉 : Σ× Q̂ → k is defined

by

〈f, g〉 =
∑

n

〈fn, gn〉n
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where fn and gn are the restrictions of f and g to the homogeneous components of

degree n, and 〈, 〉n is the pairing defined in (9.2).

For this, given an alphabet X we define its exponential, e(X), by

e(X) = X + X(2) + X(3) + · · ·

where the divided power X(n) is the set

X(n) =
{
(xi1 , xi2 , . . . , xin) ∈ Xn

∣∣ xi1 < xi2 < · · · < xin
}
. (9.4)

We endow e(X) with the reverse lexicographic order. With this notations, the fol-

lowing equation holds:

e(X + Y) =
(
1 + e(X)

)(
1 + e(Y)

)
− 1

where the equality is considered as ordered sets. Indeed, denote by (x)k the monomial

xi1 · · ·xik with i1 < · · · < ik. Then, given (x)k(y)ℓ < (x′)k′(y
′)ℓ′ in e(X + Y), it is

immediate to see that either (y)ℓ < (y′)ℓ′ or (y)ℓ = (y′)ℓ′ and (x)k < (x′)k′, which is

the definition of the order in the left hand side. Clearly, the same argument applies

in the other direction.

Theorem 9.2.2. The dual of the isomorphism ψ from (Σ, ·,∆) to (Σ,#,∆) of The-

orem 8.3.1 with respect to the pairing 〈, 〉, is the isomorphism ψ∗ from (Q̂, ·,∆#) to

(Q̂, ·,∆) given by

ψ∗(f) = f
(
e(X)

)
.

Proof. We have to show that
〈
ψ(Xγ), f

〉
=
〈
Xγ, ψ

∗(f)
〉
. Observe that, from the

definition of the pairing, it is enough to prove this equation on each grade. Moreover,

it is enough to prove it for the generators of the algebra (Σ, ·) since, for g and g′
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generators

〈
ψ(g · g′), f

〉
=
〈
ψ(g) # ψ(g′), f

〉

=
〈
ψ(g)⊗ ψ(g′), f(X + Y + XY)

〉

=
∑

i

〈
ψ(g), fi(X)

〉 〈
ψ(g′), f ′

i(Y)
〉

=
∑

i

〈
g, fi

(
e(X)

)〉 〈
g′, f ′

i

(
e(Y)

)〉

=
〈
g ⊗ g′, f

(
e(X) + e(Y) + e(X) e(Y)

)〉

=
〈
g ⊗ g′, f

(
e(X + Y)

)〉

=
〈
g ⊗ g′,∆

(
f(e(X))

)〉

=
〈
g · g′, f

(
e(X)

)〉
.

Thus, it is enough to prove the duality for the set of generators given byX(n) for n ≥ 0,

and for f = Mα where α is a composition of n. In this case we have ψ(X(n)) = X(n)

and the equation
〈
X(n),Mα

〉
=
〈
X(n),Mα

(
e(X)

)〉
= δ(n),α is immediately verified.

9.3. The antipode of symmetric functions

Endowed with the coproduct ∆#, the algebra Q̂ is a connected Hopf algebra, in du-

ality with the graded connected Hopf algebra (Σ,#,∆). The Heisenberg coproduct

restricts to the subalgebra Λ̂ of Q̂, and then the completion of the space of sym-

metric functions becomes a Hopf algebra with the usual product and the Heisenberg

coproduct. In this section we express the antipode of this Hopf algebra in terms of

alphabets.

First, define the evaluation of quasi-symmetric functions on the the opposite of
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an alphabet X by the equation

Mα(−X) = (−1)r
∑

i1≥···≥ir

xa1i1 · · ·x
ar

ir
, (9.5)

for any composition α = (a1, . . . , ar) (compare with the definition of Mα in (9.1)).

Second, define the alphabet

X∗ = X + X2 + X3 + · · · (9.6)

as the disjoint union of the Cartesian powers Xn under reverse lexicographic order.

For instance (x3, x1, x2) < (x2, x2) < (x1, x3, x2).

Theorem 9.3.1. The antipode of the Hopf algebra Λ̂ endowed with the Heisenberg

coproduct is

S#(f) = f
(
(−X)∗

)
.

Proof. By Theorem 9.2.1, it is enough to prove that M(a)

(
X+(−X)∗ +X(−X)∗

)
= 0

for any alphabet X and for any positive integer a. Once this is established, we use

the multiplicativity and the infinite linearity of both the antipode and the evaluation

on alphabets to deduce the result.

By selecting variables from each of the three alphabets X, (−X)∗, and X(−X)∗,

we can write

M(a)

(
X + (−X)∗ + X(−X)∗

)

=
∑

xai +
∑

r

(−1)r
∑

(xi1 · · ·xir)
a +

∑

r

(−1)r
∑

xaj (xi1 · · ·xir)
a.

It is easy to see that the first sum cancel with the terms with r = 1 of the second

sum, while the remaining terms of the second sum cancel with the last sum. This

concludes the proof.

Question. An interesting question is whether the result of Theorem 9.2.1 can be
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generalized to give an expression of the antipode of the Hopf algebra Q̂ with the

Heisenberg coproduct.
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10. CONCLUSIONS AND FURTHER DIRECTIONS

In summary, we constructed a new product in the category of species (commutative

context) and in the space of endomorphisms of a Hopf algebra (non-commutative

context), which interpolates between two well-known classical products. The con-

struction is essentially different in both contexts. However, we showed that they

coincide when specialized and restricted to the space of symmetric functions. Apart

from the spaces of species and endomorphisms, we were able to define the new product

in several intermediate spaces.

As a final note, we mention three possible ways to extend and to apply the tools

we developed in this work.

Consider the space H∗⊗H where H is a cocommutative Hopf algebra, as we did

in Section 5. This space has, in addition to the Heisenberg product we considered,

another product which is called the Drinfeld product. The space is denoted with the

symbol H∗ ⊲⊳H and is called the Drinfeld double [21]. The definition is similar to the

definition (5.3) of the Heisenberg product, but instead of considering the action of H

on H∗ by translation, we consider the action of H on H∗ by conjugation:

(h · f)(k) =
∑

f
(
S(h1)(k)h2

)
,

where ∆(h) =
∑
h1 ⊗ h2 and S is the antipode of H . Then, the Drinfeld product is

defined by

(f ⊗ h) ⊲⊳ (g ⊗ k) =
∑

f(h1 · g)⊗ h2k. (10.1)

The Drinfeld product can also be defined in the space End(H) as

(f ⊲⊳ g)(h) =
∑

f(h1)3g
(
S
(
f(h1)1

)
h2f(h1)2

)
, (10.2)
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and Equation (10.1) results from applying the canonical embedding H∗ ⊗ H →֒

End(H).

Since the operations involved in the definition of the Drinfeld product commute

with the action of the group GL(V ) (recall Section 6.2), we can apply Schur-Weyl

duality (Lemma 6.1.1). Similarly, we can apply the general considerations on the

Garsia-Reutenauer endomorphisms, and we get the following theorem:

Theorem 10.0.2. The Drinfeld product of endomorphisms defined by Equation (10.2)

restricts to the space of permutations and to the space of non-commutative symmetric

functions.

The work still to be done is to carry the combinatorial proofs, as we did with

the Heisenberg product, to obtain an explicit combinatorial formula for the Drinfeld

product in the basis Xα of Σ. This would allow us to immediately project this product

to the space of symmetric functions.

Another interesting question with respect to the Drinfeld product is whether

there is a commutative analogue at the level of species and representations, and

hence in Λ, which coincides with the projection from Σ.

A different direction to explore consists in using other versions of the Schur-Weyl

duality to perform the constructions of sections 6 and 7. For example, let q be a non-

degenerate symmetric bilinear form on a finite-dimensional vector space V over a

field of characteristic zero, and consider the orthogonal group O(V, q) acting on V ⊗n.

Then, Schur-Weyl duality gives the isomorphism

Bn
∼= EndO(V,q)(V

⊗n),

where Bn is the Brauer algebra [8, 10, 11], and the isomorphism comes from extending

the action of Sn to an action of the Brauer algebra on V ⊗n. Then, we can define the



100

Heisenberg product on the Brauer algebra with the technique of Section 6. Similarly,

an interesting question is whether the application of the techniques of Section 7,

namely Theorem 7.2.1 for the orthogonal group, yields an object which is bigger than

the space of non-commutative symmetric functions.

Finally, we want to stress the interest of studying the Heisenberg product in the

basis of Schur functions, as a way of “continuously deforming” results from the usual

product to the Kronecker product of symmetric functions.
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