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ABSTRACT 
Filling short gaps (a few hours) in hourly 

energy use and weather data can be usehl for (i) 
retrofit savings analysis and calculation, and for (ii) 
diagnostic purposes. The paper evaluates four 
methods for rehabilitating short periods of missing 
data. Single variable regression, polynomial models, 
Lagrange interpolation, and linear interpolation 
models are developed, demonstrated, and used to fill 
1-6 hour gaps in weather data, heating data and 
cooling data for commercial buildings. The 
methodology for comparing the performance of the 
four different methods for filling data gaps uses 11 
one-year data sets to develop different models and 
fi l l  over 50,000 "pseudo-gaps" which are created by 
assuming data is missing and then comparing the 
"filled" values with the measured values. 
Comparisons are made using six statistical 
parameters including mean bias error, coefficient of 
determination, and coefficient of variation of the 
root-mean-square-error. 

For filling 1-6 missing hours of cooling data, 
heating data or weather data, a linear interpolation 
model or a polynomial model with hour-of-day 
(HOD) as the independent variable both provide a 
mean bias error of less than 0.087 % (0.005 F). The 
Lagrange model exhibits mean bias errors of 0.175 % 
(-0.010 F) which is better than the SVR model with 
temperature as the independent variable, which 
exhibits mean bias errors up to 0.909 % (0.062 F). 

Based on these findings, the polynomial model 
with hour-of-day as the independent variable and the 
linear interpolation model are recommended for 
filling data gaps of six hours or less in cooling, 
heating and weather data. 
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INTRODUCTION 
A successful building retrofit monitoring and 

analysis program depends on the collection of 
monitored building energy use data (at the daily and 
hourly level), screening data, determining retrofit 
savings and should include optimization of building 
energy use by improving operation and maintenance 
practices. There are large quantities of missing data or 
bad data in both the LoanSTAR database and the NWS 
weather database due to data processing problems or 
instrumentation and monitoring hardware problems. 
According to the statistical data from 1,020 channels 
of building energy data examined in 1993, roughly 2% 
of the data in the database cannot be restored and are 
noted as missing data. 6% of the data points have 
required some sort of correction after they were 
collected. Most of corrections involve the flow meter 
corrections (Haberl et al. 1993). The 1-6 hour data 
gaps cover all missing NWS temperature and dew 
point data, and 50-70% of total missing LoanSTAR 
temperature and humidity data, and 50-70% of total 
missing LoanSTAR energy use such as cooling, 
heating, motor control use and electricity data. 
Metered data analysis is a crucial aspect of any energy 
conservation program. However, it is hard to 
determine retrofit savings when there is insufficient 
monitored data (energy use or weather data) or there 
are large amounts of bad data. Failure to measure 
retrofit savings will hinder the adoption of efficiency 
measures in buildings. Filling in missing data in 
commercial buildings can be useful for: (i) retrofit 
savings analysis and calculations, (ii) diagnostic 
purposes, and (iii) acquiring physical insight into the 
operating pattern of buildings. Lots of missing (or bad) 
energy use and weather data is common in determining 
energy savings of retrofitting building and causes 
problem with the result of energy analysis (Claridge, et 
a]., 1990a; Claridge, et al., 1990b). 
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The objectives of this research project was to: 
1) check energy use and weather data quality and 
examine the missing data distributions, 2) 
demonstrate the effectiveness of selected methods for 
filling in missing data, 3) develop various modeling 
procedures using different approaches, 4) compare 
the results (the measured and predicted data in the 
same data sets) by means of statistical parameters, 
and 5) identify the criteria which is used to evaluate 
the methods. The purpose of this thesis is to identi@ 
simple and convenient method to rehabilitate missing 
data (energy use and weather data) for commercial 
building energy use evaluation. 

A number of studies have been made on energy 
use data and weather data to determine statistical 
parameters of interest for thermal environmental 
engineering applications. Attempts at Fourier series 
modeling of hourly energy use in commercial 
buildings are relatively few, the most important being 
perhaps that by Steven and Raymond (1996) who 
chose a week as the maximum period of the Fourier 
series. The regression fit was poor, however, partly 
because of the choice of the maximum period. Dhar 
et al. (1995) suggested that the primary day-types be 
determined by using the calendar method and 
presented a generalized Fourier series approach 
which, while ensuring a wider range of applicability, 
also yields superior regression fits partly because of 
the care taken to separate the days of the year during 
which commercial buildings are operated differently, 
and partly because of the rational functional form of 
the regression model. Climatic data (i.e., solar 
radiation and outdoor temperature) are periodic and 
have been analyzed and simulated using the Fourier 
series by several researchers (Hittle and Pederson, 
198 1; Hokol, et al., 1990; McCutchan, 1979; Philios, 
1984;). The shape of diurnal curves in the ambient air 
has been modeled in a variety of ways. These 
methods include simple curve fitting models based on 
sine curves (Allen, 1976; de Wit, 1978; Johnson and 
Fitzpatrick, 1977a, b) or Fourier analysis (Hokoi, et 
al., 1990; McCutchan, 1979) and more complex 
energy budget models (Floyd and Braddock, 1984; 
Akbari, et al, 1988). Since observed diurnal 
temperature curves are a combination of periodic sine 
and exponential decay curves, they are not readily 
represented by a few terms of a Fourier series. The 
sine-exponential model is used for a daily cycle of air 
temperature (Padit and Wu, 1983; Wann et al., 1985). 
The sine-exponential model uses a truncated sine 
hnction for the daytime and an exponential hnction 
at night. The sinusoidal model uses a cosine function 
to describe variation for the period fiom the time of 
minimum temperature to the time of maximum 
temperature and another cosine function for the 

period fiom the time of maximum temperature to the 
time of the minimum temperature in the next day. 

A linear model assumes linear changes in 
temperature with respect to time from one extremum 
to the next. The mean time (with respect to sunrise) 
of minimum temperature and the mean time of 
maximum temperature are required parameters. This 
linear model was used to generate four years of 
hourly temperature using as input the daily highs and 
lows recorded by the National Weather Service at the 
Minneapolis-St. Paul International Airport for the 
years 1970, 1971, 1973 and 1974. The output from 
the model was compared with the actual hourly 
values recorded at the same site. Residual sums and 
standard errors computed for the model, both as 
functions of time of day and month of the year, 
showed that the model was more accurate in summer 
than in winter. Another linear model is used to 
calculate missing daily temperature data within 
stations in northern and central Idaho (Kemp, et al., 
1983). The model uses the average of within station 
values recorded on the same day to replace a missing 
value, namely uses the data fiom the first day on 
either of the missing days. The moving average 
model (Kemp, et al., 1983) also belongs to the linear 
model. The model also uses the average of within 
station values recorded on the same day to replace 
missing data, which is same as the above linear 
model, but the model uses the data from two days on 
either side. 

The Additive procedure (MDIF) model between 
stations uses the average of the estimates of the 
between station predictions to form a replacement 
value (Kemp et al., 1983). Kemp (1983) used a linear 
model as well as the Lagrangian polynomial model 
and a local spline to predict the temperature and 
geopotential height fields. The regression model used 
by Kemp et al. (1983) used weighted regression to 
determine replacement values where the replacement 
equations are the weighted sums of the between 
station regression equations. The model generated 
smaller errors when compared to the above linear 
methods. 

Depending on the number of sequential records 
of missing wet bulb temperature data, DOE-2 either 
linearly interpolates between two available web bulb 
temperatures or fills in the last wet bulb temperature 
value in all subsequent records until the next record 
with data called the last data value. If the data gap is 
less than 24 data points, DOE-2 linearly interpolates, 
but if the missing data number is 24 points or greater, 
DOE-2 fills in the records with the last data. The 
DOE-2 weather packer also used the saturated 
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ambient condition method (Bronson, 1992). The 
DOE-2 weather packer compensates for the missing 
records by linear interpolation so that no abrupt 
changes result on the weather tape. The linearly 
interpolation and psychometric relationships are 
mainly used to fill in data gaps in TMY2 and DOE-2. 
Of course, these two methods are related to this paper 
and can be used as the interesting methods. Problem 
is hard to use psychometric relationships to 
rehabilitate energy data gap. General speaking, 
energy use data can not be simply represented by 
means of the relationships between some 
psychometric variables, but weather data are easy to 
make good use of the psychometric relationships. 

In the literature of above meteorological and 
oceanic methods, most of these methods use a 
weather model (such as Fourier series model) to 
predict a whole weather temperature profile or solar 
profile based on monthly, seasonal or yearly 
averages. Other methods are used to predict some 
weather data by using interpolation between two 
weather stations. These methods fail to be precise 
enough for use where there are significant short-term 
interactions between the weather data. Some 
investigators have used the finite Fourier series 
approximation to model energy use or weather data. 
Some Fourier series models are based on the calendar 
method (data-type such as weekdays) and most of 
models involve multiple variables such as dry-bulb 
temperature, specific humidity, etc. This paper 
emphasizes the filling of short gaps in hourly data 
and the "neighborhood relation" between hourly 
adjacent available data and missing data. Hourly 
energy use and weather data do not have the smooth 
periodic patterns due to its periodic oscillation. 
Therefore, the Fourier series approach is not 
considered to be one of simple and convenient 
methods studied in this thesis. 

The development of regression techniques and 
numerical modeling (linear and Lagrange 
interpolation) approaches with a single variable were 
identified as the topics of current interest. These 
approaches are paid great attention because the 
objectives of the research are to adapt a simple and 
convenient method to rehabilitate missing data, and 
these two methodologies have the potential to offer 
high prediction accuracy. They also take less time 
and require less detailed information than a calibrated 
deterministic approach, the Fourier series approaches 
and the multi-variable regression models. The multi- 
variable models have slightly higher accuracy than 
the single variable models; however, single variable 
models are much more popular than multi-variable 
models because it is often very difficult to obtain 

solar and dew point temperature data (Kissock, 
1993). Furthermore, the neighborhood relation 
between adjacent available data and missing data is 
very useful information which contains missing data' 
value and pattern. Various models with single 
variable (either temperature or HOD) can make good 
use of the neighborhood relation to deal with data 
gaps. Therefore, only single variable models (single 
variable regression, polynomial, linear and Lagrange 
interpolation) are investigated in this study. 

This paper presents a review of each model 
considered and evaluates four simple and convenient 
methods, which can be used to replace missing 
energy use and weather data for the LoanSTAR 
database. The methods examined are single variable 
regression, polynomial interpolation, linear 
interpolation, and Lagrange interpolation. These 
methods are examined with temperature and with 
hour-of-day as the independent variable and the 
accuracy of these models is compared. The measured 
data, which are adjacent to each side of a short data 
gap, are used to develop each model based on the 
assumption that this measured data contains adequate 
information on the data pattern of the missing data. 
The different methods for filling data gaps will be 
compared using the same statistical parameters 
(MBE, RMSE, CV-SAE and SSE) to evaluate the 
prediction error of each model (polynomial, 
Lagrange, linear interpolation and single variable 
regression). 

METHODOLOGY 
1. Method for Developing Various Models 

The datasets examined are all time series 
records of weather or energy use data. Measured data 
are available for the time series records adjacent to 
the gaps of 1-6 hours investigated. Observation 
shows that these adjacent measured data points are 
directly related to or contain important information 
about the missing data pattern. The methods 
investigated will utilize the adjacent measured data 
points, namely use the neighborhood relation 
between adjacent measured data and data gap, to 
develop different models and then predict some 
missing data. 

The methods to be described are evaluated for 
data gaps of 1-6 consecutive hours. The gaps 
evaluated are created by assuming a gap starting with 
the 13th hour of a one-year data set, filling in the data 
performed the evaluation; it is then assumed the gap 
begins with the 14th hour of the data set, the gap is 
filled, etc. Thus hours 13 to 13+n-1 are assumed 
missing for a gap of length n. The data gap is then 
filled using the method being evaluated. 
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These gaps will be called pseudo-missing 
hourly data gaps to denote their method of creation. 
Each of the models except the linear interpolation 
model and the Lagrange model use the 12 data points 
on each side of the pseudo-missing data (24 total 
points) to create a model and fill the gap. The linear 
interpolation model is based on a single measured 
point on either side of the data gap, and the Lagrange 
model is based on four measured data values on 
either side of the data gaps. The different models 
developed are based on the same 24 hourly-measured 
data set (12 hourly measured data points on either 
side of data gap) 

2. Criteria Used to Evaluate the Methods 
The criteria used to evaluate methods for filling 

data gaps will consist of two parts: model accuracy 
and model simplicity. Procedures, which are easy to 
understand and implement, are preferable. 

The various models are evaluated and 
compared by statistical parameters. These parameters 
are the mean bias error (MBE), the coefficient of 
variation of the root mean square error (CV-RMSE), 
the coefficient of variation of the ratio of the sum of 
the absolute errors to the sum of measured data points 
(CV-SAE) and the coefficient of multiple 
determination (R'). These statistical parameters are 
defmed by the following equations, respectively: 

The Coefficient of Variation of the Root Mean 
Square Error (CV-RMSE) is a nondimensional 
measure that is found by dividing RMSE by the mean 
value of y. 

CV - RMSE 

The CV-SAE is a non-dimensional measure of 
the average deviation (in percentage) from the model. 

The normalized Mean Bias Error for energy use 
is the following equation: 

and for weather data MBE is defined by equation: 

7 

This parameter Coefficient of Determination (R ) is 
defined as follows: 

where 

ji is the ith predicted dependent variable 
value for the same set of independent 
variables, 

yi is ith data value of the dependent variable 
(actual measured data), 

- 
y is the mean value of the dependent variable 

in the data set and 
n is the number of data points in the dataset. 

DIFFERENT MODELS 
1. Polynomial Model 

A one variable polynomial model is defined as 
follows: 

where y represents the dependent variable and x the 
independent variable. The highest exponent, or 
power, of x used in the model is known as the degree 
of the model, and it is customary for a model of 
degree rn to include all terms with the lower power of 
the independent variable. The least square method is 
used to estimate of the parameters ao. a l ,  a2 ..., a, 
that minimize the sum of the squared differences 
between the actual approximating y values and the 

values y predicted by equation (Steven, and 
Raymond, 1996; Erwin, 1983). 
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The optimum polynomial regression model 
based on actual measured data points is not just the 
polynomial model for which mathematical 
convergence of the model is achieved; in addition the 
optimum regression should not oscillate wildly. Since 
the actual measured weather and energy use data 
points have a physical basis in the diurnal cycle or 
diurnal operating schedule due to solar variation, the 
optimum polynomial model should be of the most 
suitable order or power and should be based on a 
suitable number of data points. The polynomial 
theory shows that the most suitable power of the 
polynomial model is determined by a smallest value 
of SSEs, but in real polynomial applications on actual 
data gaps, the most suitable power of the polynomial 
model is 8 for energy data and 10 for dry bulb 
temperature data and dew point. The determination of 
the best polynomial order was made by the following 
procedures: 

The optimum polynomial order was determined 
for all pseudo-gaps (the nine chilled water and 
hot water data sets analyzed in the paper; this 
progress was repeated for data gaps of 1-6 hours. 
The optimal order was averaged over all gaps of 
a given length for CW and HW, and averages of 
the model fitting errors (SAE, MAE, R', 
CV(ICMSE), MBE, StdErr, CV-SAE and SSE) 
were calculated. 
Similar calculations were performed for eight 
years of weather. 

In order to reduce the residuals or errors, the 
most suitable number of measured data points for use 
in model development needs to be determined. The 
performance of models with five points, six points, 
eight points, and 10 points, respectively, on either 
side of the data gaps, is compared with the 
performance of models with 12 points on either side 
of the data gaps. Each set of comparisons are 
performed by creating approximately 100,000 data 
gaps using the 11 years of energy data and creating 
and filling pseudo-gaps corresponding to all of the 
data points in each data set which have enough points 
on both sides of the pseudo-gap to create the model. 
The filled data is then compared with the actual data 
and averaged over each month and the monthly 
averages are then averaged to perform the 
comparisons. The eight comparisons shown for each 
model type are the mean bias error (MBE) in percent, 
root-mean-square-error (RMSE) in MMBtulhr, sum 
of the squared errors (SSE) in ~ ~ ~ t u ~ / h r ' ,  the 
coefficient of variation of the RMSE (CV) in percent, 
the sum of the absolute error (SAE), and the percent 
of the filled data points which are within 5%, lo%, 
and 15% of the actual values, respectively. 

Careful examination of the data shows that the 
models with 12 points on either side generally show 
much better statistical performance than the models 
with 5, 8 or 10 points on either side, except for mean 
bias error. The models with 12 data points on either 
side are chosen due to the known diurnal cycle in 
ambient temperature and building schedules. The 
most suitable number of measured data points for the 
polynomial model development is around 24 
measured points for cooling, heating data and NWS 
temperature data. 

2. Numerical Approach 
Numerical analysis provides a convenient 

method for obtaining an approximation for filling 
missing data. The accuracy of error in the computed 
result depends upon approximate data or approximate 
methods or both. These data of function f(x) may be 
spaced either evenly or unevenly along time x. This 
requires a method for fmding the missing data of f(x) 
between the tabulated points (interpolation) or 
outside the range in time x of the tabulated points 
(extrapolation). Interpolation is the process of 
estimating a value of the hnction for any 
intermediate value of the variable by a procedure 
other than the law which is given by the function 
itself but rather than with the help of certain given 
values of the function correcting to a number of 
variable values, while extrapolation is the estimation 
for some such values which lie outside the given 
values. 

For various numerical or experimental reasons 
it is often convenient or possible to use Lagrange 
interpolation at both equal and unequal intervals 
(Steven, C.C. and Raymond, P.C., 1996; Erwin K., 
1983). The Lagrange interpolating polynomial can be 
represented concisely as 

x - x j  
where Pj (x ,7 ) = { n - , k = j ,O ,  k # j )  

(8) 
If a function f(x) is known only on the interval 

a l x l b ,  but values of f(x) are needed for x<a or 
x>b, then extrapolation is required. Even under the 
best of circumstances, extrapolation contains a strong 
element of uncertainty. 

The linear interpolation model proposed for 
data gaps is of the following form: 
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The linear interpolation used assumes linear 
changes in energy use and weather data with respect 
to time from one extreme to the next. Unlike 
interpolation, where the function is firmly anchored 
on both sides of the point where a value is to be 
obtained, in extrapolation the function is fixed on 
only one side and is relatively free to wander on the 
other side. 

3. Single Variable Regression Models 
The outside air dry-bulb temperature is taken to 

be the only regression variable. The model for 
weather independent use is one-parameter (I-P), and 
those for weather dependent use include two 
parameter (2-P) (Kissock, 1993), three parameter (3- 
P) (Fels, 1986), four parameter (4-P) (Ruch and 
Claridge, 1992; Kissock et a]., 1992) and five 
parameter (5-P) (Reddy et al., 1997) models. The 
modeling techniques can be adapted to model hourly 
data. The functional forms of these models are as 
follows: 

1-P model: E = B, (10) 

2-P model: E = B, + B,(T) (1 1) 

+ 
3-P model: E, = B, + B,(B, - T ) 

for heating 
+ 

Ec=Bo +B, (T-B , )  
for cooling (12) 

+ + 
4-P model: E, = B, + B,(B, - T ) - B,(T - B, ) 

for heating (13) 

+ + 
4-P model: Ec = B, - BI(B, - T ) + B2(T - B, ) 

for cooling (14) 

+ + 
5-P model: E = B, + B,(B, - T ) + B,(T - B, ) 

for heating and cooling (15) 

+ 
In these equations, the symbol ( ) indicates that 
these quantities are set to zero when negative. B, is 
the mean energy consumption, or the energy 
consumption at the change point temperatures, B,, 
B,, B,, B, and B, are the temperature slopes. 

The applicable parameters as slope andor 
consumption at change points for cooling and heating 
energy consumption. These linear and change point 
linear models have physical significance to the actual 
heat losslgain mechanisms. A one-P mean model for 
each hour of the day may be used to model weather 
independent energy use, for example, lighting and 
equipment loads in commercial buildings. The 3-P 
models are appropriate for modeling envelope-driven 
energy consumption in buildings without simultaneous 
heating and cooling, such as multi-family housing and 
small commercial buildings. The 4-P models are 
appropriate for modeling heating and cooling energy 
use in variable-air-volume (VAV) systems andor in 
buildings with high latent loads. These models are also 
appropriate for describing heating and cooling energy 
use caused by some hot deck reset schedules and 
economizer cycles, but other models are sometimes 
more suitable for these cases. The 5-P models are 
appropriate for modeling energy consumption data 
which includes both heating and cooling, such as whole- 
building electricity data from buildings with electric 
heat pumps or both electric chillers and resistance 
heating. These models are also appropriate for modeling 
fan electricity consumption in variable-air-volume 
systems. The basic difference between a 4-P and a 5-P 
model is that the former has only one change-point 
temperature while a 5-P model has two. Physically, one 
would expect a residence not to use either heatmg or 
cooling over a certain outdoor temperature range, and 
this behavior is well captured by the 5-P model (Reddy, 
et al., 1997). 

The research on the effect of independent 
variables to building energy use indicates that the 
multiple regression provide some significant insights 
on building energy use (Haberl and Claridge, 1987; 
Katipamula et al, 1994; Katipamula et al, 1995; 
Kissock, 1993; Leslie et a1 1986). Multiple regression 
can be used both for individual buildings and to study 
characteristics that lead to differences in energy 
consumption between buildings. These methods are 
important for advancing analysis approaches for 
commercial buildings and may be used to predict 
missing energy use. However, the multiple regression 
models need more both weather related and other 
factors (such as internal load, etc.) which normally 
are hard to obtain, so the multiple regression models 
are not applied to energy data gap rehabilitation as 
the simple and convenient method in this paper. 1 

COMPARISON OF DIFFERENT MODELS 
This part puts all selected models together and 

compares their predicted accuracy using the same 
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measured data sets. It then presents the most accurate 
model that is closest to the actual measured data. 

1. Comparison of Polynomial Energy Use Models 
with Hour-of-Day (HOD) or Temperature as 
Independent Variables 
In order to ascertain whether temperature or 

HOD is the prefered independent variable in a 
polynomial model to be used for filling in missing 
data, this investigation only applies to gaps in energy 
use data, since gaps in temperature data cannot be 
filled using temperature as the independent variable, 
and gaps in humidity data are often coincident with 
gaps in temperature data. Comparison will be made 
between the performance of polynomial models using 
temperature or HOD as the independent variable first 
with two short datasets selected to illustrate the 
ability of the two approaches to fill data gaps and 
then comparison is made with results from filling 
over 50,000 pseudo-gaps created in 11 one-year data 
sets. 

Two kinds of polynomial models, which are 
based on the same short datasets, are developed and 
used to fill in 6 hourly consecutive pseudo-missing 
peak values and bottom values of cooling data. The 
short datasets used are the 48 hours of cooling data 
for July 21, 1992 - July 22, 1992 from the Zachry 
Building. For each 6-hour pseudo-missing period 
(peak and bottom), both kinds of polynomial models 
are used to produce the various error parameter 
values for the cooling data gap. Figure 1-2 show that 
the statistical parameters such as CV-RMSE and CV- 
SAE of the polynomial model with HOD as the 
independent variable are always lower than the ones 
of the polynomial model with temperature as the 
independent variable whether the data gap is a set of 
peak values or not. The total gap-filling errors of the 
polynomial models with temperature as the 
independent variable are likewise higher than the 
errors of the polynomial models with HOD as the 
independent variable. 

Figure 3 shows the different graphs for filling in 
6 consecutive hourly peak and bottom cooling data 
gaps for the Zachry Building. The polynomial model 
with HOD as the independent variable fits peak and 
bottom data gaps shown for cooling datasets better 
than the polynomial model with temperature as the 
independent variable. 

While the short datasets show that HOD is 
clearly the preferred independent variable for the 
specific gaps evaluated, and strongly suggest that 
HOD is the preferred variable for general use, the 

comparison is now extended to use over 50,000 
pseudo-gaps created in 1 1 one-year datasets. 

1 tZ? CVWO/.) S A E ( ~ )  CV(RMK)(%) j 
I 

Figure 1 Comparison of Polynomial Model 
Parameters Based on One 6 Peak Gap 

I 

Figure 2 Comparison of Error Parameters Based on 
Different Polynomial Models 

The following long cooling datasets are used to 
evaluate the cooling polynomial models: 

Two one-year chilled water datasets for the 
Zachry Building at Texas A&M during the 
periods from 9/l4/ l989-9/14/1990 and 
12/20/1991-12/20/1992. 
Two one-year chilled water datasets for Taylor 
Hall at UT Austin during the periods from 
6/22/1996-6/22/1997 and 711 711 997-711 711 998. 
One-year of chilled water data for the Geology 
Building at UT Austin during the periods from 
21111996-2/1/1997. 
One-year of chilled water data for the Main 
Building at UT Austin during the periods from 
4/64 993-41611 994. 

The following long heating datasets are used to - - 
evaluate the heating polynomial~odels: 

Two one-year hot water datasets for the Zachry 
Building at Texas A&M during the periods from 
911411989-9/14/1990 and 12/2011991- 
1212011992. 
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I I 
Figure 3 Comparison of Different Polynomial Models for Filling Peak and Bottom Data Gap 

Two one-year hot water datasets for Taylor Hall 
at UT Austin during the periods from 612211996- 
6/22/1997 and 7/17/1997-7/17/1998. 
One-year of hot water data for the Geology 
Building at UT Austin during the periods from 
2/1/1996-2/1/1997. 

Table 1 summarizes a comparison of relative 
error between different model errors for filling 
missing cooling and heating data gaps based on the 
average monthly statistical errors for the cooling and 
heating datasets listed above. This comparison of 
relative error is based on the error from the 

polynomial model with temperature as an 
independent variable and with HOD as an 
independent variable. The model 2 superior to model 
1 if relative error is over than zero. The relative error 
quantity comparison presents that the error statistics 
for the HOD models, in the great majority of 
individual comparisons, are lower than for the 
temperature-base models. 

2. The Comparison of Four Kinds of Different 
Methods 

(1). Hourly Average Errors Based on Short Period 
Datasets 

Table 1 Comparison of Relative Error for HOD vs Temp. Models (>500,000 Data Gaps) 

For the comparison of different methods for 
filling in data gaps, the predicted yearly accuracy 
(one-year dataset) of each model is important. 
However, it is also valuable to compare the different 
models using the same short hourly datasets to show 
the behavior of the models in filling a specific gap. 
The development of the different models for the gap 
treated is based on the same measured short dataset. 
The polynomial and regression models used 12 
hourly measured data points on each side of data gap 
while the linear interpolation development is based 

on the 1 measured datum on each side of data gap 
and the Lagrange interpolation model development is 
based on the 4 measured data points on each side of 
the data gap. 

Relative Error 
Formula 

~ . P O ' Y ~ O ~ P ~ ~ Y ~ ~ ~ ~ / .  
EkO~poly 

Figures 4-5 show an example of the results 
when the different models are used to fill a gap 
consisting of 6 consecutive hourly peak cooling 
values of the Zachry Building (21:OO on Aug. 9 , ;  
1998-2:00 on Aug. 11, 1998). Figure 4 shows how, 
each model fills the gap with hour-of-day as the 1 

independent variable, and Figure 5 shows how each 

Heating Error 

G~~ 
1 
2 
3 
4 
5 
6 

MBE 
(%I 

-25 
5 7 
15 
73 
148 
312 

CV-SAE 

-6 
6 
10 
14 
16 
18 

Cooling Error 
RMSE 
W) 

-13 
3 
8 
14 
16 
19 

SAE 

-14 
1 
4 
12 
12 
14 

MBE 
(96) 

165 
154 
36 
354 
191 
92 

RMSE 
(%) 

69 
5 0 
5 1 
5 9 
5 5 
54 

CV- 
SAE 
(%I 
62 
72 
75 
77 
77 
77 

SAE 
(%I 

86 
82 
82 
85 
82 
8 1 
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model fills the gap with temperature as the 
independent variable. The 30 measured cooling data 
points (1 2 measured data on each side of the data gap 
are used to develop different models, and the 6 
consecutive peak values are assumed to be missing 
data) are also shown in each graph for comparing 
measured data with the "filled" values. The line with 
the black rhombus represents the measured chilled 
water data and other lines represent the predicted 
missing peak data points, using different models as 
indicated in the legend. These different models 
selected are: 

Regression with temperature as the independent 
variable (Reg-Temp); 
The polynomial with temperature as the 
independent variable and the model's order is 8, 
the average optimal polynomial order, Poly- 
Temp (8); 
Lagrange with HOD as the independent variable 
(Lag-HOD); 
Linear interpolation with HOD as the 
independent variable (Linear). 

Table 2 summarizes the accuracy of the 
different models for filling in 6 consecutive missing 
peak data points (21:OO on Aug. 9, 1998-2:00 on 
Aug. 1 1, 1998) for the Zachry Building. It is easy to 
see the difference between these predictions using the 
error parameters. For the linear interpolation model, 
all the individual errors for filling the data gap have 
an error of less than 5% and its MBE and RMSE 
values are -2.36% and 0.09 MMBtu separately, the 
lowest values among the four models. The 
polynomial model with HOD as the independent 
variable, Poly-HOD@), fills one datapoint (or 17% of 
the points) with an error of less than 5% and every 
point (100%) is filled with an error of less than 10% 
relative error range. The MBE and RMSE values of 
the polynomial model are separately 6.77% and 0.25 
MMBtu, the second lowest values among the four 
models. 

Figures 4-5 also show that the linear 
interpolation model has the smallest errors (MBE, 
RMSE, etc.) for filling 6 missing consecutive peak 
values among the four different models. The 
polynomial model with HOD as the independent 
variable (Poly-HOD (8)) is the next best model for 
filling this data gap. The data patterns show that the 
Lagrange model and the regression model badly miss 
the peak values in Figures 4-5. The Lagrange method 
seems to assume a shorter periodicity in the data, 
while regression with temperature as the independent 
variable follows the other side of the hysteresis curve. 
Hence, both of these models do not come close to the 
actual data pattern. 

The behavior of the models for filling this gap 
suggests that the regression with temperature as the 
independent variable and the Lagrange method have 
serious deficiences for filling gaps as long as 6 hours, 
and are unlikely to be suitable. On the other hand, 
linear interpolation and the 8" order polynomial both 
show considerable promise. 

Table 2 Comparison of the Predictive Ability of 
Different Models Based on Measured Cooling Data 
on Each Side of Data Gap (9:OO on Aug. 10 - 14:OO 

on Aug. 10, 1998) for the Zachry Building 

I 1 -+PoIY-MOIO ( 
I I 8  . 
1 

+@ od' 8 P 8 +@ ,. ,e@ +@ o* I 
H O D W  

Figure 4 Chilled Water vs HOD grouped by Different 
Polynomial Models for Predicting 6 Consecutive 

Peak Cooling Values of the Zachry Building (2 1 :00 
on Aug. 9, 1998-2:00 on Aug. 1 1, 1998) 

Figure 5 Chilled Water vs Temperature grouped by 
Different Polynomial Models for Predicting 6 

Consecutive Peak Cooling Values of the Zachry 
Building (21 :00 on Aug. 9, 1998-2:00 on Aug. 1 1, 

1998) 
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(2). The Comparison of Average Errors Based on 
Different One-year Datasets 

Several models were applied to different one- 
year datasets that were measured in selected 
LoanSTAR buildings. The main objective of this 
analytical phase was to confirm the error range when 
rehabilitating missing hourly data with different 
interpolation models. The energy types, building 
names and data periods of the measured datasets for 
different comparisons are as follows: 

The cooling data of the Zachry Building 
(911411989-911411990 and 1212011991- 
1212011992); 

The heating data of the Zachry Building 
(911411 989-911411990 and 1997); 

The cooling data of the Main Building 
(41611 993-41611994); 

The cooling data of the Geology Building 
(21111996-21111997); 

The heating data of the Geology Building 
(21111996-21111997); 

The cooling data of Taylor Hall from 
612211 996-61221 1997; 

The heating data of Taylor Hall from 
612211 996-61221 1997; 

The cooling data of Taylor Hall from 
711711997-711711998; 

The heating data of Taylor Hall from 
711711997-711711998. 

I 
Table 3 shows a comparison of relative e d r  

between different model errors for filling missing 
energy gaps, which is based on the monthly average 
statistical parameters from the polynomial model. 
The RMSE and SAE relative error ranges between 
the linear interpolation error and the polynomial error 
are separately around -2.36%--12.4 1% and -4.32%- 
-13.94% for filling 1-6 missing cooling data points, 
and around -2.28%-12.12% and -3.26%-12.40% for 
filling 1-6 missing heating data points. The positive 
values in RMSE and SAE columns and negative 
values in Error % columns mean the polynomial 
model is better than the comparison model and vice 
versa. These RMSE and SAE relative error quantity 
comparison presents that the linear interpolation 
model is better than the polynomial model for filling 
1-6 missing cooling data points, and the polynomial 
model is better than the linear interpolation model for 
filling 1-6 missing heating data points. For the 
Lagrange model and SVR model, their relative error 
ranges are far larger than ones of the linear 
interpolation model. With the increase (from 1 to 6) 
of data gap number, the Lagrange model become 
more worse for filling energy use data gap. I 

Table 3 Comparison of Relative Error between Different Model Errors for Filling Missing Energy Data Gap 

I Data Type I I Cooling Relative Error I Heating Relative Error I 

points with less than the specified errors are' 
The average statistical parameters for filling averaged from the following monthly statistical 

gaps in dry-bulb temperature data and dew-point parameters (errors) obtained when using the' 
temperature data based on the averages of 5 Polynomial, Lagrange, regression and linear 
years of monthly values are also calculated. interpolation methods to fill in 1-6 hour data ' 
These average MBE, RMSE, SAE and percent of gaps: 
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The temperature of the LoanSTAR Houston 
weather data during 1995; 
The temperature and dew point of the NWS 
weather data in Minneapolis from 41111996- 
4/1/1997; 
The temperature and dew point of the NWS 
weather data in College Station during 1998; 
The temperature and dew point of the NWS 
weather data in Washington DC during 1997; 
The temperature and dew point of the NWS 
weather data in EL Paso during 1997. 

Table 4 summarizes a comparison of relative 
error between different model errors for filling 
missing weather data gaps. This comparison of 
relative error is based on the monthly average 
statistical parameters of 5-year temperature data and 
4-year dew point data from the polynomial model. 
The temperature and dew point temperature RMSE 

relative error ranges between the linear interpolation 
error and the polynomial error are separately around 
-5.35 % - +0.24 % for filling 1-6 missing 
temperature and -34.32 % - -12.24 % for filling 1-6 
missing dew point temperature data points. The 
negative values in RMSE and SAE columns and 
positive values in Error % columns mean the 
polynomial model is not better than the comparison 
model. The relative error quantity comparison 
presents that the linear interpolation model is not 
only better than the polynomial model for filling 1-6 
missing temperature data points, but also better than 
the polynomial interpolation model for filling 1-6 
missing dew point temperature data points. The 
relative errors in Table 4 also presents that the 
Lagrange model and SVR model are not better than 
the polynomial model for filling missing weather data 
gaps. 

Table 4 Comparison of Relative Error between Different Model Errors for Filling Missing Weather 
Data Gap 

CONCLUSIONS 
The comparison of relative error between 

different models for filling missing energy and 
weather gaps shows the difference between 
models most clearly. The linear interpolation 
model is the simplest and most convenient 
method, and is superior for filling missing 
cooling and heating data and missing weather 
data. The polynomial is a simple yet powerful 
approach to interpolate missing weather data as 
well as missing cooling and heating data and 
provides slightly better RMSE values than linear 
interpolation for heating data. The polynomial 
model with HOD as an independent variable is 
better than the polynomial model with 
temperature as an independent variable on filling 

in 6 missing cooling and heating data. The linear 
interpolation model is a little better than the 
polynomial model for filling both missing 
weather data gaps and the missing cooling data 
gaps. According to the quantitative average error 
comparison, the polynomial model and the linear 
interpolation model are comparable and more 
accurate than other models. The least accurate is 
the Lagrange model, particularly for larger data 
gaps. The regression method (SVR) can not deal 
with missing weather data due to weather data's 
pattern. 

Based on these findings, the linear 
interpolation model and the polynomial model 
with HOD as an independent variable are 
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recommended for filling 1-6 hour gaps in 
cooling, heating and weather data. 
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