

Economic Implications of Farmer Storage of Surface Irrigation Water in Federal Projects: El Paso County, Texas

G.C. Cornforth R.D. Lacewell

Texas Water Resources Institute

Texas A&M University

RESEARCH PROJECT INTERIM REPORT

Project Number C-90080-C September 1, 1980 - December 31, 1982

Agreement Number 14-34-0001-0486

ECONOMIC IMPLICATIONS OF FARMER STORAGE OF SURFACE IRRIGATION WATER IN FEDERAL PROJECTS: EL PASO COUNTY, TEXAS

Gerald C. Cornforth Ronald D. Lacewell

The work on which this report is based was supported in part by funds provided by the Office of Water Research and Technology, Department of the Interior, Washington, D. C. (Project No. C-90080-C, Contract No. 14-34-0001-0486), and the Texas Agricultural Experiment Station.

Contents of the publication do not necessarily reflect the views and policies of the Office of Water Research and Technology, U.S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the U.S. Government.

Technical Report No. 118
Texas Water Resources Institute
Texas A&M University
December 1981

ABSTRACT

The Bureau of Reclamation has approved a program for farmer storage of surface irrigation water in Elephant Butte Reservoir, New Mexico. This program would allow individual farmers to store part of their annual surface water allotment in the reservoir subject to evaporation loss to be drawn at a future date upon request. The purpose of this study is to ascertain the economic implications of such a program for farmers in the El Paso County Water Improvement District No. 1.

The economic analysis was based on results from a linear programming model developed for crop production in El Paso County. The model was designed to maximize net farm revenue. Twelve crops were included in the analysis. The effects of soil type and salinity level of irrigation water on crop yields for all twelve crops were estimated. Input requirements by crop and yield level were identified. Input categories included seed, chemical, water, machinery, labor, harvest, other and fixed costs. Irrigation alternatives included both surface and ground sources. In addition, the water saving technology of laser leveling was incorporated into the model.

The model was restricted by acreage of a soil group with a specified level of salinity in the underlying groundwater. Also, the quantity of surface irrigation water available was limited.

This static linear programming model was applied for various surface irrigation water allocations ranging from zero to three acre feet per acre of cropland with groundwater assumed available. This procedure produced a schedule of net farm revenues for alternative

surface irrigation water allocations for use in conjunction with groundwater. The procedure was repeated with groundwater availability limited
to zero. These two schedules of net farm revenues were then used (1) to
form the basis of two temporal linear programming models which maximized
the real value in 1980 dollars of a stream of net farm revenues, and
(2) to evaluate a specified annual surface irrigation water use
scenario of two acre feet per acre per year.

The temporal models maximized the 1980 real value of net farm revenues. This revenue stream was generated by optimal temporal use of the actual annual surface irrigation water allotments for 1963 to 1980. This optimal use includes the opportunity to store water in Elephant Butte Reservoir subject to evaporation. Results were obtained both with and without groundwater pumping over three surface water use scenarios (actual, optimal temporal and two acre feet per year).

The results of this study indicated that, with the ability to store surface water, temporally optimizing surface water use would have increased the real value of net farm revenue \$0.84 per acre per year or 0.4 percent above the real value of net farm returns implied by the actual use rates for the groundwater pumping case. For the no groundwater pumping case, the real value of net farm returns increased by \$3.56 per acre per year or 2 percent above the net farm returns indicated by the actual use rates. Also, storing surface water for future use, or accumulation, tends to decrease the year to year variability of net farm revenues. Groundwater pumping is also known to decrease this variability.

The target surface water allocation of the project administrators

is three acre feet per year. The optimal temporal solutions tended to be between this three acre feet allocation and the two acre feet allocation as specified in the two acre feet per year scenario. An optimal temporal allotment of three acre feet appears too high while two acre feet appears too low. Without a system of farmer-held surface water storage, optimizing temporal use of surface irrigation water would not be possible. Thus, this water storage opportunity is an important irrigation management tool for individual farmers in the El Paso County Water Improvement District No. 1.

ACKNOWLEDGEMENTS

We express our deep thanks to Edd Fifer, Bill Riley, Bill Harris, Rufus Pepper, Jim Libbins, Gary Condra and James Richardson who gave willingly of their time and knowledge in enabling us to locate, gather and organize the data and information necessary to accomplish this study. Their suggestions and efforts lead to the multitude of gracious individuals whom were contacted during the course of this study. To these many people, some of whom are listed in the reference section, we are deeply grateful.

We are also most appreciative to Jack Runkles, Bob Whitson and Steve Fuller for their efforts and comments.

We would like to thank Dianne Miller and BeeGee Hart for the typing of the many earlier drafts of this study. Lastly, our thanks to Wanda Cornforth for her invaluable help with calculations and proof-reading.

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	1
	Study Area	3
	Objectives	8
	Literature Review	8
II.	THEORY	15
	Allocation of Variable Resources	15
	Resource	19
	Short-Run Allocation	19
	Temporal Analysis	21
	Marginal Analysis and Linear Programming	22
III.	INPUT DATA	25
	Crop Yields, Soil Types and Salinity	26
	Input Requirements	33
	Seed Inputs	36
	Chemical Inputs	36
	Water Inputs	45
	Machinery Inputs	51
	Labor Inputs	52
	Harvest Inputs	53
	Other Inputs	56
	Fixed Inputs	58
IV.	ANALYTICAL MODEL	61
	The Static Linear Programming Model	62
	Model Activities	62
	Prices	66
	The Temporal Linear Programming Model	74
v.	RESULTS	83
	Static Model	83
	Model Refinement	83
	Economic Implications	88
	Cropping Patterns	98
	Laser Leveling	100
	Temporal Model	103
	Annual Surface Water Use	103

TABLE OF CONTENTS (continued)

Chapter		Page
	Crop Production	109 115 115 120
VI.	CONCLUSIONS, IMPLICATIONS AND LIMITATIONS	125
	Conclusions Implications Limitations	126 128 129
	REFERENCES	133
	APPENDIX A Laser Leveling and Level-Basin Irrigation	141
	Laser Leveling and Level-Basin Irrigation Level-Basin Advantages Level-Basin Requirements	142 142 143
	APPENDIX B Costs and Characteristics of a Typical Irrigation Well in El Paso, Texas	145
	APPENDIX C Static Linear Programming Model Column and Row Names and Abbreviated Matrix	147
	APPENDIX D Evaporation from Elephant Butte Reservoir, New Mexico	185
	Evaporation from Elephant Butte Reservoir	186
	APPENDIX E The Two Acre Feet Per Acre Water Use Scenario	191
	The Two Acre Feet Per Acre Water Use Scenario .	192

LIST OF TABLES

Page		[able
6	Planted or Harvested Acres of Selected Crops Grown in El Paso County, 1968 to 1980	1.
7	Per Acre Yields of Selected Crops Grown in El Paso County, Texas, 1968 to 1979	2.
27	Soil Types, Percentages of Irrigated Land and Acreages for El Paso County, Texas	3.
29	Yields for Selected Crops by Irrigation Water Salinity Level and Soil Group for El Paso County, Texas	4.
30	Salinity Levels, Ranges and Values and Number and Percentages of Wells for El Paso County, Texas	5.
32	Cultivated Acreages by Salinity Level and Soil Group for El Paso County, Texas	6.
34	Planted and Harvested Acres and Percentages of Planted Acres Harvested for Lettuce and Onions, Dona Ana County, New Mexico, 1976 through 1980	7.
35	New Mexico State Production of Cottonseed, Cotton Lint and Their Relationship for 1976 through 1980	8.
37	Input Requirement for Twelve Selected Crops Grown in El Paso County, Texas	9.
40	Nitrogen and Phosphorus Requirements for Selected Upland and Pima Cotton Yields for El Paso County, Texas	10.
41	Nitrogen Requirements for Selected Wheat, Barley and Grain Sorghum Yields for El Paso County, Texas	11.
43	A Summary of the Calculations Necessary to Establish Nitrogen Requirements for Wheat and Barley	12.
46	Irrigation Requirements in Acre Inches and the Develop- ment Thereof for Twelve Selected Crops Grown in El Paso County, Texas	13.

LIST OF TABLES (continued)

[able		Page
14.	Weighted and Average Crop Yields and Their Implied Stress Coefficients for Six Selected Crops Grown in El Paso County, Texas	48
15.	Irrigation Well Inputs for Various Levels of Water Pumped by a Typical Well in El Paso County, Texas	50
16.	Yields and Associated Harvest Requirements for Upland and Pima Cotton Grown in El Paso County, Texas	54
17.	Yields and Associated Harvest Requirements for Alfalfa and Tomatoes Grown in El Paso County, Texas	55
18.	The Wednesday Quoted Prime Interest Rate for March 11, 1981 through April 29, 1981	59
19.	A Simplified Structure of the Static Linear Programming Model	63
20.	Crop Indexes, Crop Prices and the Same Crop Prices in 1980 Dollars for Eleven Crops Grown in El Paso County, Texas for 1976 through 1980	63
21.	Upland and Pima Cotton Prices and the Upland Price as a Percentage of the Pima Price for 1976 to 1980	70
22.	March 1981 Pima Cotton Prices and Percentages of 1980 Pima Cotton Production by Grades	22
23.	A Simplified Structure of the Temporal Linear Programming Model	76
24.	Total Water Allocation for the El Paso County Water Improvement District No. 1 in Acre Feet Per Vested Acre and the Annual Evaporation Rate for Elephant Butte Reservoir, New Mexico, 1951 to 1980	77
25.	The Annual Inflation Rate by Month, the Monthly Prime Interest Rate and the Estimated Monthly Real Interest Rate for February, 1980 through January 1981	80
26.	Selected Static Model Results With and Without a Fixed Machinery and Well Input Cost and With and Without	85

LIST OF TABLES (continued)

[able		Page
27.	Selected Static Model Results for Various Solutions with Yield Adjustments for Upland Cotton, Pima Cotton and Pecans	8 6
28.	Irrigation Water Use and Economic Implications for Alternative Surface Water Allocations with Groundwater Pumping	89
29.	Irrigation Water Use and Economic Implications for Alternative Surface Water Allocations in the Absence of Groundwater Pumping	91
30.	Crop Production Acreages for Upland and Pima Cotton, Alfalfa and Wheat by Selected Surface Water Alloca- tion with the Pumping of Groundwater Allowed	99
31.	Crop Production Acreages for Upland and Pima Cotton, Alfalfa, Wheat, Tomatoes, Lettuce, Onions and Green Chili at Alternative Surface Water Allocations Without the Pumping of Groundwater	101
32.	Crop Acreages Laser Leveled at Alternative Surface Water Allocations With and Without Groundwater Pumping	104
33.	Actual Surface Water Allocations, Optimal Temporal Surface Water Usage Rates With and Without Ground-water Pumping and the Two Acre Feet Usage Rates, 1963 to 1980	106
34.	Crop Production Levels for Upland and Pima Cotton, Alfalfa and Wheat for the Optimal Temporal Surface Water Allocation With Groundwater Pumping and Two Acre Feet Per Acre Scenarios, 1963-1980	113
35.	Crop Production Levels for Twelve Selected Crops for the Optimal Temporal Surface Water Allocation Without Groundwater Pumping Scenario, 1963 to 1980	114
36.	Crop Acreages for Upland and Pima Cotton, Alfalfa and Wheat for the Optimal Temporal Surface Water Allocation With Groundwater Pumping and the Two Acre Feet Per Acre Scenarios (1963-1980)	116

LIST OF TABLES (continued)

Cable		Page
37.	Crop Acreages for Twelve Selected Crops for the Optimal Temporal Surface Water Allocation Without Groundwater Pumping Scenario, 1963 to 1980	117
38.	Input Requirement Levels for Selected Surface Water Allocations With and Without Groundwater Pumping	118
39.	Annual Net Farm Revenue and 1980 Real Values for the Actual Surface Water Allocation and the Optimal Temporal and Two Acre Feet Per Acre Scenarios Both with Groundwater Pumping, 1963 to 1980	122
40.	Annual Net Farm Revenue and 1980 Real Values for the Actual Surface Water Allocation and the Optimal Temporal and Two Acre Feet Per Acre Scenarios Both Without Groundwater Pumping, 1963 to 1980	123
41.	Monthly and Annual Percentage Evaporation Rates for Elephant Butte Reservoir 1951 through 1980	1 89
42.	Development of the Two Acre Feet Per Acre Surface Water Use Scenario for the Years 1963 through 1980	193
43.	Revised Evaporation Rates for Elephant Butte Reservoir for the Two Acre Feet Per Acre Water Use	194

LIST OF FIGURES

Figure		Page
1.	Map of the General Study Area	4
2.	Demand for a Single Variable Resource, X	17
3.	Demand for a Variable Resource, X_1 , With Other Complementary Variable Resources Used in Production .	18
4.	Expansion Path, Pseudoscale Lines and Least Cost, Profit Maximizing Point for the Two Resources, X ₁ and X ₂ , Case	20
5.	Net Farm Revenue as a Function of Surface Water Allocation With (A) and Without (B) Groundwater Pumping	93
6.	Value of an Additional Acre Foot of Surface Water at Alternative Surface Water Allocations With (A) and Without (B) Groundwater Pumping	95
7.	Groundwater Pumped Per Acre at Alternative Surface Water Allocation Levels	96
8.	Total Ground and Surface Irrigation Water Applied Per Acre at Alternative Surface Water Allocation Levels	97
9.	Cumulative Total Water Allocated (A) by Year and the Cumulative Total Water for Two Acre Feet Per Year (B) by Year	108
10.	Optimal Temporal Surface Water Use With Groundwater Pumping (A) Against the Actual Pattern of Water Allocations (B)	110
11.	Optimal Temporal Surface Water Use Without Ground-water Pumping (A) Against the Actual Pattern of Water Allocations (B)	111
12.	The Two Acre Feet Per Acre Surface Water Use Scenario (A) Against the Actual Pattern of Water Allocations (B)	112

CHAPTER I

INTRODUCTION

Texas agriculture is heavily dependent upon irrigation. It is estimated that Texas uses 7.1 million acre feet of water annually from its groundwater reserves that are not recharged into those reserves (McNeely and Lacewell). A critical need exists to carefully manage the water resources of Texas, particularly the western section where rainfall is extremely limited.

The E1 Paso area of Texas is arid and has experienced significant water level declines in the underlying aquifer due to water mining (Texas Water Development Board). Meyer and Gordon show a 10 to 60 foot drop in water levels in the E1 Paso area during the period 1903 to 1969. Agriculture in the E1 Paso area has the potential to aid in countering the overdraft problem. More efficient use of surface water and improved usage of surface water allocations among years could decrease agriculture's need for groundwater. Groundwater may only be needed in years when the quantity of surface water is extremely limited.

As reported by Sonnen, Dendy and Lindstrom, the emphasis of President Carter's policy toward water in the western United States was one of seeking to increase conservation of irrigation water rather than development of additional sources. In their search for incentives for further irrigation water conservation by agricultural producers in

The style and format of this dissertation follows that of the American Journal of Agricultural Economics.

California and Texas, Sonnen, Dendy and Lindstrom found (a) due to their complete dependence on irrigation water, producers currently practice a very high degree of water conservation, (b) recent technological advances (i.e., level-basin irrigation¹) have resulted in substantial reductions in water use, and (c) possible government incentives for further conservation are likely to result in only meager reductions in water use.

The Sonnen, et al. study found that the El Paso County farmers of Texas would like to experiment with a system in which they would be allowed to store part or all of their annual allotment of Rio Grande River waters in Elephant Butte Reservoir, New Mexico for use upon their request in some future year. Under the current system, any unused water allotment remains in Elephant Butte Reservoir and is reallocated among all users in the following year. While a carry-over storage, or accumulation, program would not, over time, decrease water usage as was the aim of the Carter policy, it could allow farmers to store water for those years when their water allocation was low. This program would help stabilize agricultural output and farmer incomes and reduce some of the risk of farmers in the El Paso area.

The Department of the Interior has recently changed its regulations to allow the El Paso County Water Improvement District No. 1 to begin an accumulation program for its members. The El Paso County Water Improvement District No. 1 is the local agency charged with the proper disposition of Rio Grande River irrigation waters in El Paso County,

¹ See Appendix A.

Texas. Thus, the interviewed farmers mentioned above will be able to participate in this program.

The water use and economic implications of an accumulation program for El Paso County are not known. Issues include impact on actual water use efficiency, cropping patterns, producer profit and equity implications. This study will address these factors.

Study Area

This research will focus on that area in El Paso County, Texas which is contained in the El Paso County Water Improvement District No.

1. This area is roughly the flood plain of the Rio Grande River which lies within the county (Figure 1).

The Rio Grande flood plain is about 12 percent of the county area, or approximately 94,000 acres (U.S. Department of Agriculture, Soil Conservation Service). Of the 49,113 acres of total cropland reported for El Paso County (U.S. Department of Commerce), virtually all were in the Rio Grande flood plain. While 44,801 acres of this cropland were reported harvested, 45,045 acres were reported irrigated (U.S. Department of Commerce). With an annual rainfall of 7.77 inches per year (The Dallas Morning News), irrigation is absolutely necessary for the existence of economically viable crop production in the area.

The primary source of irrigation water to El Paso County farmers is from the Rio Grande River. The correct disposition of Rio Grande River waters, according to international treaty and federal law, is the responsibility of the Rio Grande Compact Commission. In dispatching its duty, the Rio Grande Compact Commission receives the

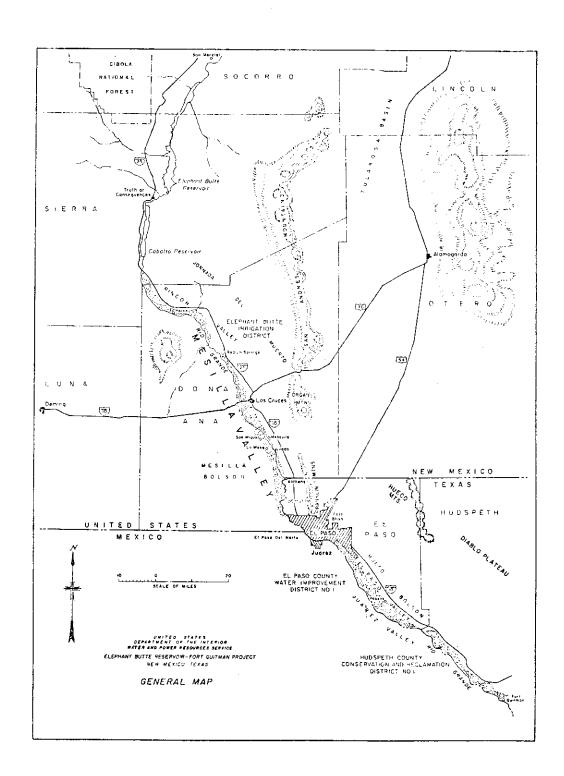


Figure 1. Map of the General Study Area

assistance and cooperation of the Office of the State Engineer of Colorado, the U.S. Bureau of Reclamation, the U.S. Geological Survey, the U.S. Army Corps of Engineers, and the United Pueblo Agency. The total irrigation project is called the Rio Grande Project.

Irrigation waters are gathered primarily in Elephant Butte
Reservoir, New Mexico (Figure 1), although a number of smaller water
storage reservoirs exist in the Rio Grande watershed above Elephant
Butte Reservoir in both the states of Colorado and New Mexico. Water
released from Elephant Butte for irrigation purposes is subsequently
delivered to the user by one of three irrigation districts. The first
is the Elephant Butte Irrigation District. This district is composed of
all irrigated lands in the state of New Mexico and in the Rio Grande
flood plain below Elephant Butte Reservoir and above the Texas state
line and the international boundary with Mexico (Figure 1).

The El Paso County Water Improvement District No. 1 oversees water deliveries to farmers in the Rio Grande flood plain of El Paso County, Texas. The Juarez Valley Irrigation District delivers up to 60,000 acre feet annually to agricultural producers in the Juarez Valley of the Republic of Mexico (Figure 1). Although it has no water rights, the Hudspeth County Conservation and Reclamation District No. 1 has contracted for residual water arriving at the Hudspeth County line.

Principal crops grown in the area are cotton, wheat, barley, grain sorghum, alfalfa, pecans and various vegetables. Table 1 gives the historical acreages of these crops. The historical yields of selected crops are given in Table 2.

In years of low allotments of Rio Grande River waters, farmers

Table 1. Planted or Harvested Acres of Selected Crops Grown in El Paso County, 1968 to 1980

			Pla	Planted Acres	70					
	Cotton	ion					H	Harvested Acres	es	Pecansa
Year	Upland	Pina	Alfalfa	Wheat	Barley	Grain Sorghum	Tomatoes	Lettuce	Onions	1000 lbs.
1980	009,9	17,400	7,300	8,000	q	3,000	q	160	q	2,500
1979	5,400	25,300	10,000	2,000	009	800	م	م	ф	3,575
1978	8,300	21,900	10,100	3,400	009	850	۵	Ф	ą	2,840
1977	10,100	18,100	13,200	8,100	2,400	Þ	Д	Ф	Ą	1,871
1976	6,500	6,200	16,600	19,600	1,900	6,300	ф	r	100	2,017
1975	5,300	17,400	16,700	8,500	1,800	3,700	٩	100	100	2,057
1974	12,800	21,000	15,300	ф	800	1,000	ą	100	200	1,400
1973	8,250	19,900	16,700	Φ	4,100	1,500	۵	ı	200	2,156
1972	9,800	21,650	15,500	Ф	2,300	009	Ą	100	200	1,592
1971	13,100	20,550	10,100	1	700	2,200	100	100	300	818
1970	19,600	15,300	11,100°	ι	4,500	6,100	100	100	200	830
1969	38,1	38,100 ^d	9,900°e	д	2,500	3,200	200	200	300	280
1968	39,4	39,400 ^d	9,500°	Д	1,650	4,300	200	200	300	380

Source: Texas Grop and Livestock Reporting Service, 1980a.

 $^{^{\}mathrm{a}}_{\mathrm{Pecans}}$ are measured in 1,000's of pounds of production,

bone producer.

cAll hay.

dAll cotton.

Table 2. Per Acre Yields of Selected Crops Grown in El Paso County, Texas, 1968 to 1979

	Cott	on				Grain
Year	Upland (1b.)	Pima (1b.)	Alfalfa (ton)	Wheat (bu.)	Barley (bu.)	Sorghum (bu.)
1979	596	371	6.1	48.7	52.0	67.9
1978	5 9 8	499	6.1	65.3	43.0	50.5
1977	730	772	6.4	62.1	59.3	а
1976	675	764	7.1	46.2	75.0	65.4
1975	435	219	6.2	82.4	42.1	33.0
1974	660	373	6.46		81.7	69.5
1973	653	345	6.53		72.6	49.8
1972	742	429	6.45		61.9	38.8
1971	758	467	4.0		50.0	45.3
1970	525	324			62.6	56.0
1969					61.0	67.8
1968					33.0	84.5
Average	637	426	6.15	63.0	57.9	16.3

Source: Texas Crop and Livestock Reporting Service, 1980a.

^aNo yield published for grain sorghum.

pump groundwater to supplement river water to grow these crops. This groundwater varies in salinity from 263 to 24,800 milligrams per liter dissolved solids (Meyer and Gordon). This use of saline groundwater affects yield, management and cultural practices, input usage and costs, soil condition and the quantity of irrigation water required.

Objectives

The overall objective of this study is to evaluate the effects of allocated irrigation water carry-over storage on farmers' crop production decisions in El Paso County, Texas and on agriculture in aggregate for the El Paso County Water Improvement District No. 1. Specific objectives are as follows:

- To evaluate the individual farmer's position relative to allocated irrigation water carry-over storage. Specific items to be addressed are
 - a. level basin irrigation,
 - b. use of groundwater,
 - c. selling of water, and
 - d. identification of limitations.
- 2. To provide estimates for the district of
 - a. production by crop,
 - b. input needs by category,
 - c. net farm income,
 - d. changes in cropping patterns, and
 - e. temporal implications on value of irrigation water.

Literature Review

With an average annual rainfall of 7.77 inches (The Dallas Morning News), El Paso County, Texas and the surrounding area are constantly concerned with adequate water supplies for agricultural, urban,

industrial and recreational uses. El Paso County, with an international border, a state border and a county border, must view its water problems on four levels: international, national, state and local as shown in Figure 1.

The major aquifer in El Paso County, the Hueco Bolson, extends into Mexico (Figure 1). The Rio Grande River forms the international boundary between El Paso County and the Republic of Mexico. Therefore, the use, quantity and quality of available water supplies whether groundwater or surface water are of international concern and subject to international discussion (Day; Hernandez, 1978).

The Rio Grande flows into El Paso County from the state of New Mexico (Figure 1). The Hueco Bolson also extends into New Mexico. Thus, the impact of water use, quantity and quality on the regional economy are of national (national, in that more than one state is concerned) interest. Regional studies have been conducted by the Center for Business Services, College of Business Administration and Economics, New Mexico State University and the Department of Interior, Water and Power Resources Service, Southwest Regional Office (1980). Rio Grande River water quality has been studied and recorded by Hernandez (1976) for locations from San Marcial, New Mexico to Fort Quitmand, Texas.

The State of Texas is, of course, extremely concerned with the use, quantity and quality of water in El Paso County. McDaniels includes the El Paso area in his bulletin on water use by various crops in different parts of the state of Texas. The El Paso area is included in the Texas Water Plan (Texas Water Development Board). Groundwater supplies for westernmost Texas were surveyed by Gates,

White, Stanley and Ackerman.

Groundwater development in the local El Paso area has been examined by Alvarez and Buckner as well as Meyer and Gordon. Alvarez and Buckner attempted to identify fresh groundwater for irrigation purposes. Meyer and Gordon provide a thorough examination of the development of groundwater in the study area for the period 1963 to 1970.

Water conservation is a prime concern in the El Paso area.

Lansford, Creel and Seipel evaluated alternative water management systems for the Mesilla Valley, New Mexico (the Rio Grande River Valley in New Mexico adjacent to the valley in Texas, Figure 1) which would reduce return flows to the Rio Grande. Similarly, selected El Paso County farmers were interviwed by Sonnen, et al. concerning current and future water conservation practices and incentives to further increase conservation efforts. These farmers indicated they would like to have the option to store part or all of their allocation of Rio Grande River water in Elephant Butte Reservoir, New Mexico, to be used at some future date upon request. This idea of irrigation water carry-over storage is sometimes referred to as "accumulation".

The quality of irrigation water and its effects on plant growth have been studied by several researchers. Shainberg and Oster relate the properties of irrigation water, the soil properties affecting water quality, crop growth and salinity to irrigation management for salt control. Maas and Hoffman discussed crop tolerances to salt. Ayers reviewed the limitations on use of irrigation water as imposed by the quality of the water. Longenecker and Lyerly explained the

concepts of salinity and salinity control for farmers, landowners, gardeners and townspeople.

To evaluate the benefits of salinity control on the Red River of Texas and Oklahoma, Laughlin, Lacewell and Moore used a recursive linear program where production parameters were identified for various crops by soil types. The concept of modelling a limited agricultural production area by soil types provides more reliable cropping patterns and average yields. It also provides a guide for studying water accumulation in El Paso County.

The concern for the stochastic nature of water available for agriculture and profits therefrom have inspired various research activities. Lane and Littlechild examined two irrigation water pricing schemes for the Texas High Plains. One was independent of weather. The other scheme considered the effects of weather on the capacities of reservoirs in Louisiana. This water from Louisiana would be transported to the Texas High Plains by canals. This study showed that farm profits would be increased by 10% annually if a weather-dependent pricing scheme was used rather than a nonweather-dependent one. Moore and Armstrong used probabilistic linear programming techniques and Bayesian statistics to assess the value of increased accuracy of water supply forecasts for irrigated agriculture to decision makers. study found that increased accuracy of water supply forecasts could increase return per acre by \$6.25 for Colorado irrigators. Ahmed, van Bavel and Hiler developed a dynamic simulation model of the soil-wateratmosphere-plant system to make optimal irrigation decisions under a stochastic weather regime and limited water supplies. Young and

Bredehoeft developed a simulation model for dealing with conjunctive ground and surface water use in a fifty-mile reach of the North Platte River in eastern Colorado where the surface waters are stochastic in supply.

Randall addresses the question of irrigation water in the southwestern United States. Surface irrigation water supplies are stochastically replenishing over time. Federal law allows only waters actually on hand to be allocated for irrigation. Therefore, the supply of surface irrigation water in each year is fixed at some level. Randall's discussion leads to an examination of the demand and supply relationships of surface water. Randall says there are two demands for water, agricultural and urban. But the flow of the Rio Grande within the Rio Grande Project by law can only be used for satisfying agricultural water demand. Citizens may buy lands which have water rights and obtain Rio Grande water, but only as if they were an agricultural producer. Also, a city's ability to be involved in this manner is limited by law. Howe has provided a much more useful examination of water resource systems. He relates the availability of surface water to probability distributions. In addition, he discusses reservoir inflow and withdrawal. Howe's discussion was used extensively to gain insight and guidance on this study as a whole.

Watson, Nuckton and Howitt examine crop production and water supply characteristics of Kern County, California. This study demonstrates the types of information needed to deal with irrigation water questions in a localized, well-defined agricultural production area. Libbins, et al. developed detailed crop budgets for Dona Ana

and Sierra counties of New Mexico. This study provides a detailed review of farming in the Rio Grande Valley just north of El Paso County, Texas. Richardson, et al. looked at farm size in El Paso County. They concluded that strict enforcement of the 160 acre limitation for farms irrigated by federal projects would have adverse economic effects on agriculture in El Paso County.

The importance of the judicious use of irrigation water in the southwestern United States is evidenced by the extensive literature concerning this topic and related issues. The above discussion is only an example of this literature. This literature is used in a variety of ways to ascertain the applicant theory set forth in the next chapter. It is also used to guide the collection of relevant input data in Chapter III. The development of the analytical models in Chapter IV are based on this literature. The analytical models produced results which are given in Chapter V. The results are interpreted by the conclusions, implications and limitations given in Chapter VI.

CHAPTER II

THEORY

The change in the regulation governing the use and storage of individual irrigation water allocations necessitates that agriculture producers of El Paso County re-examine their strategies for allocating resources and selecting cropping patterns. This requires the re-evaluation of resource allocation within a production period and the temporal allocation of a stochastically replenishable resource. The theory underlying these two allocation problems is reviewed in this chapter. Also, examined in this chapter is the theoretical relationship between marginal analysis and linear programming.

Allocation of Variable Resources

The demand for variable resources used in production by a firm can be explained by economic theory. If perfect competition is assumed in the product market and producers are characterized as profit maximizers, the marginal value product (MVP) curve of a resource gives the demand for that resource by the firm (Beattie). Under these assumptions the MVP $_{\rm x}$ equals the marginal physical product of the resource (X) times the price (P) of the product (Y) or MVP $_{\rm x}$ = MPP $_{\rm x}$ · P $_{\rm y}$. The demand for a resource given that there are no other variable resources used in

Activities of a single firm have no effect on the market in which its production is sold. Specifically, a change in the amount of resource X employed by the i^{th} firm will not affect the price P of output Y.

production can be given by the MVP curve. The MVP curve is simply a schedule which depicts the quantity of the resource demanded by the firm at various prices for the resource (Figure 2). Since the firm is assumed to be profit motivated, it would use that quantity of X such that the price of the resource, P_X , would just equal the MVP of the resource, or $P_X = \text{MVP}_X$.

An MVP curve is not an appropriate estimate as a firm's demand for a resource if the firm utilizes more than one variable resource in its production process. If there are i such variable resources used by the firm, then as the price of one variable resource, say X_1 , changes different quantities of complementary or competitive variable resources are demanded. This assumes that the prices of all other variable resources other than \mathbf{X}_1 are held constant. As the price of \mathbf{X}_1 , $\mathbf{P}_{\mathbf{X}_1^0}$, decreases to $P_{x_1}^1$, increased levels of the other complementary resources, X_2 , X_3 , ..., X_i , are employed because increased levels of X_1 are being employed. This changes the production relationships and causes the $ext{MPP}_{x_1}$ to change, thus shifting the MVP curve for x_1 from $ext{MVP}_{x_1}^{o}$ to $ext{MVP}_{x_1}^{1}$ (Figure 3). Thus, as P_{x_1} changes instead of moving along, MVP_{x_1} o the firm must search along $\mathtt{MVP}_{\mathbf{x}_1}^{\ 1}$ for a position in which the new price, $P_{x_1}^1$, equals the new MVP curve, MVP $_{x_1}^1$. The demand for X_1 in this circumstance then is along some schedule D drawn through points $\boldsymbol{X}_1^{\text{O}}$, $P_{x_1}^{O}$ and X_1^{I} , $P_{x_1}^{I}$. Now, if the other resources had been substitutes then the shift in the MVP curve would have been to the left with a move along it to the right to find the profit maximizing point. Thus, when dealing with production process involving several variable resources, a price change for one resource can cause adjustments in other variable resources.

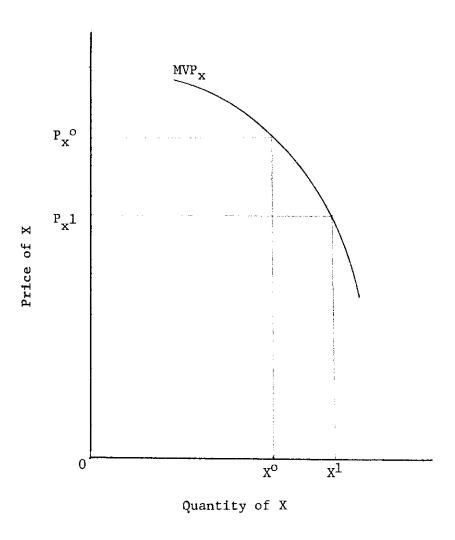


Figure 2. Demand for a Single Variable Resource, X.

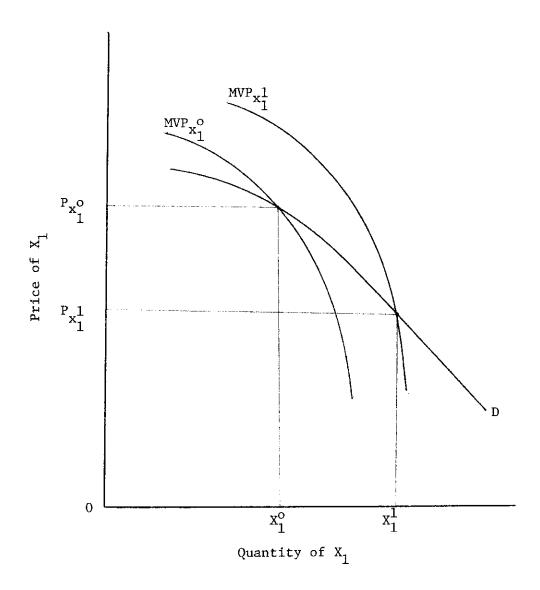
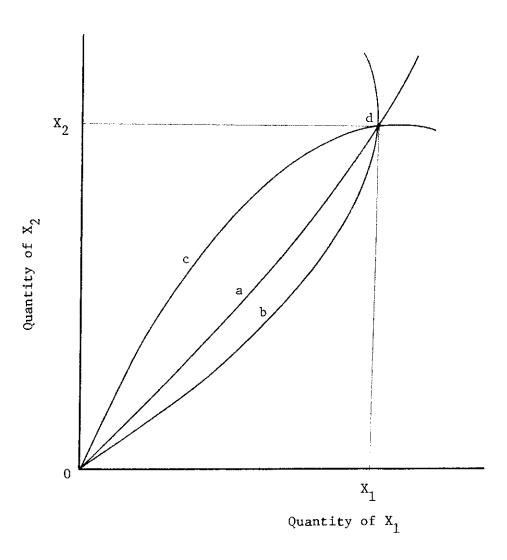


Figure 3. Demand for a Variable Resource, \mathbf{X}_1 , With Other Complementary Variable Resources Used in Production.


Profit maximizers are interested in the least-cost combinations of producing each possible level of output. If the MPP of resource X_1 relative to its price, P_{x_1} , was greater than the MPP of resource X_2 relative to its price, P_{x_2} , then utilizing more X_1 relative to X_2 would lower the total cost of producing some output level Y_0 . Thus, the least cost situation is where $MPP_{x_1}/P_{x_1} = MPP_{x_2}/P_{x_2}$. This condition over various output levels is called the expansion path and can also be given by $MVP_{x_1}/P_{x_1} = MVP_{x_2}/P_{x_2}$ because $MVP_{x_1} = MPP_{x_1} \cdot P_y$. To maximize profits, $MVP_{x_1} = P_{x_1}$ or $MVP_{x_1}/P_{x_1} = 1$. At $MVP_{x_1}/P_{x_1} = 1$, the MPP to resource price ratios of all resources are also equal. Thus, $MVP_{x_1}/P_{x_1} = 1$ gives the least-cost profit maximizing combination of resources and output level. This situation is shown for the two resource case in Figure 4 along with the expansion path and the pseudoscale lines for the two resources where the ratio of the MVP and price of a resource equal one.

Allocation of a Stochastically Replenishable Resource

Short-Run Allocation

A resource such as surface irrigation water in the El Paso County Water Improvement District is stochastic in that the pattern of water allocations to producers is not readily predictable or uniform. Renewable resources, such as timber, groundwater and fish are renewed at a determinable rate. Surface irrigation water is not replenished at a determinable rate, although it is replenished annually at some level.

As a producer approaches a production period, the annual amount of surface water (the stochastically replenishable resource) is fixed

Expansion Path, Pseudoscale Lines and Least Cost, Profit Maximizing Point for the Two Resources, X_1 and X_2 , Case.

a Expansion path, $\frac{\text{MPP}_{x_1}}{P_{x_1}} = \frac{\text{MPP}_{x_2}}{P_{x_2}}$.
b Pseudoscale line for X_1 , $\frac{\text{MVP}_{x_1}}{P_{x_1}} = 1$.

^c Pseudoscale line for X_2 , $\frac{MVP_{x_2}}{P_{x_2}} = 1$.

 $^{^{\}rm d}$ This point indicates the levels of X $_{1}$ and X $_{2}$ which yield the profit maximizing level of production.

to him by governmental agencies in keeping with international, national, state and local laws. Thus, to now a producer had to regard his surface water allocation as a fixed resource in any year. He either took his entire allocation in a given year or lost it. Thus, the least cost, profit maximizing combination of resources and output was determined subject to a fixed level of the surface irrigation water resource available and subject to all other variable resources.

Temporal Analysis

The real question of a stochastically replenishable resource is how much of this varying resource flow to use and when to use it.

Since irrigation reservoirs are replenished by probablistic physical processes, the availability of surface water can be described by a probability distribution (Howe). A Rippl diagram which employs cumulative inflow and withdrawal curves addresses this idea of a probability distribution of flows rather than a constant rate. The concept of the "storage-yield curves" says that ignoring evaporation losses, there is some uniform withdrawal rate which approaches the mean flow. This uniform withdrawal rate is maintained by storing all excess waters. Along with evaporation and transportation losses, these concepts define the resource dynamics of a surface irrigation water system. These resource dynamics affect the manner in which surface water is temporarily used.

How does one use a resource optimally over time? This depends on the objectives of those managing the resource. To determine an actual

The Rippl diagram was named after an engineer who first used it in reservoir design in 1882.

optimal temporal use schedule for a resource, a deterministic model may be developed which incorporates these management objectives and resource dynamics. One such model may utilize linear programming.

Marginal Analysis and Linear Programming

Optimal allocation of scarce resources in the production process is the primary concern of production economics. This is done by utilizing the marginal analysis techniques developed above. The application of economic theory is sometimes done by means of linear programming, as it will be done in this study. Linear programming optimizes a linear objective function given a set of constraints or limitations on the resources involved. In doing so, differences from marginal analysis do appear.

Marginal analysis is based on a continuous production function with a decreasing marginal rate of substitution. This production function is defined on the inputs used and, while it expresses the relationship of inputs to outputs, it does not specifically define each activity involved in the production process. Linear programming is based on specifically defined production activities with constant input-output ratios. Linear programming assumes that inputs and outputs are additive and divisible. Marginal analysis maximizes profit subject to the technical constraints of the production function. On the other hand, linear programming maximizes profit subject to the constraints of the specifically defined activities and input levels.

⁴The degree of scarcity of the resource is numerically specified.

With these differences, how is it that linear programming can be used for marginal analysis? Precisely, can the activities of linear programming define a production function? Each point on a production function has some ratio of inputs to output. Thus, each point could be described by a linear programming activity. But this is not necessary if there are portions of the production function which can be estimated by a linear segment. Any point between the end points of a line segment can be described as a linear combination of the activities specified by the end points. Thus, linear programming can reflect a production function and is, in fact, more readily adaptable to multi-product, multi-resources problems than attempting to estimate a production function.

CHAPTER III

INPUT DATA

The basic technique used to estimate the effects of establishing a water accumulation or storage system for the El Paso County Water Improvement District No. 1 was mathematical programming. A summarization of the steps followed to build the model was as follows:

- (a) Estimation of current (1980) irrigated crop yields for each of the study area soil types.
- (b) Estimation of reduced irrigated crop yields due to the use of saline groundwater for each of the study area soil types.
- (c) Development of input requirements for all crops grown on all soil types for irrigation with either surface water or ground-water and with and without laser land leveling technology.
- (d) Formulation of the above data into a linear programming model
 to determine cropping patterns and optimal resource allocations for a given annual level of surface irrigation water.
- (e) Development and application of a companion linear programming model to determine optimal temporal allocation of surface water.
- (f) Calculation of net present value of various net revenue streams which are determined by some specified scenario of temporal surface irrigation water use.

⁵See Appendix A.

Each of the steps above is discussed in greater detail beginning with crop yields and their input requirements. Next, the linear program utilized to allocate resources will be examined in Chapter IV.

Also, Chapter IV will deal with temporal surface water use scenarios.

Crop Yields, Soil Types and Salinity

Twelve crops were selected for the study because of their acreage or their potential or historical production. These crops are upland and pima cotton, alfalfa, wheat, barley, grain sorghum, pecans, tomatoes, lettuce, onions and green and red chili. Table 1 presents either the planted or harvested acreage of ten of the above crops. Chili was not given in the county statistics. The predominate crops are upland and pima cotton, alfalfa, wheat, grain sorghum and pecans. Cotton represents about 50 percent of total crop acreage. Barley and vegetables have been historically more important than at present. The vegetable crops — tomatoes, lettuce, onions, green chili and red chili — have potential for expansion (Peavy). Chili acreage has been on the increase and Peavy estimates that approximately 700 acres are grown in the county.

Yields may vary according to soil type and salinity of groundwater. Yields for all crops by soil type were first determined. The soils of the study area were obtained from the U.S. Department of Agriculture, Soil Conservation Service (Table 3). Madeland, the Agustin Association and the Bluepoint Association were deleted from consideration because each comprised less than one percent of irrigated land in the study area. The remaining fourteen soils were placed into six separate groups. Soils

Table 3. Soil Types, Percentages of Irrigated Land and Acreages for El Paso County, Texas

Soil Type	Percent of Irrigated Land ^a	Adjusted Percentage of Irrigated Land	Acreage
Glendale loam	1.3		
Glendale silty clay loam	5.4		
Harkey loam	16		
Harkey silty clay loam	22		
Total GH Soil Group	44.7	47.6	22,848
Gila fine sandy loam	3		
Gila loam	4		
Pajarito association, level	1.4b		
Total GP Soil Group	8.4	8.9	4,272
Saneli silty clay loam	9		
Anapra silty clay loam	6		
Total SA Soil Group	15	16.0	7,680
Saneli silty clay	3.3		
Tigua silty clay	8.5		
Glendale silty clay	9	-	
Total ST Soil Group	20.8	22.2	10,656
Vinton fine sandy loam	4	4.3	2,064
(VN Soil Group)			
Brazito loamy fine sand	1	1.1	528
(BR Soil Group)			
Made land, gila soil material	0		
Agustin association, undulating	<1		
Bluepoint association, rolling	<1		
Total Percentage	93.9	100.1	
Total Acres			48,048

 $^{^{\}rm a}{\rm Reported}$ by the U.S. Department of Agriculture, Soil Conservation Service.

 $^{^{\}rm b}{\rm Reported}$ as 1,000 acres. The percentage was calculated dividing this 1,000 acres by 69,010 acres of water right vested land.

with the same or very nearly the same crop yield estimates across all crops were placed in the same group. The groups closely followed the suggestions and comments of area soil and crop experts (McDonald, McMasters, Rives, Bauer, Peavy and Malstrom). Where more than one yield estimate was obtained for a crop on a given soil group, the mean of all estimates for that soil group was used as the group yield. The soil group yields were adjusted by .8 to reflect typical management. Laughlin has also adjusted yields in this manner. The yields developed as representative for the study area are given in Table 4 under salinity level 1.

Since the salinity levelof irrigation water also affects crop yield, the effect of pumping saline groundwater on crops was estimated. Meyer and Gordon give salinity levels of selected wells in the study area. From this information salinity ranges were established. The median of the range was used as the salinity value for the range with the exception that the salinity value for level 1 was set at 450 parts per million dissolved solids. This information is given in Table 5. The number of wells with salinity levels in specified ranges was used to determine the percentage of land with groundwater of a given salinity level. Two groups of wells from Meyer and Gordon were not considered. The first was all wells in New Mexico. The second group was those wells between the gap (El Paso de Norte) and the intersection of F.M. 75 and U.S. 80. These wells are primarily El Paso City water wells in the city area proper.

 $^{^6\}mathrm{Yield}$ estimates were made assuming high level management.

Table 4. Yields for Selected Crops by Irrigation Water Salinity Level and Soil Group for El Paso County, Texas

					Soil	Group C		
Crop	Salinity Level ^a	Yield Reduction ^b	GH	GP	SA	ST	VN	BR
Cotton, Upland (lbs.)	1-4	0	872	836	696	680	592	440
	5	5 .8	821	788	656	641	558	414
	6	24,2	661	634	528	515	449	334
Cotton, Pima (1bs.)	1-4	0	540	540	431	431	371	300
	5	5.8	509	509	406	406	349	283
	6	24.2	409	409	327	327	281	227
Alfalfa (tons)	1	0	6.4	6.4	4.8	4.4	4.0	3.6
,	2	2.0	6.3	6.3	4.7	4.3	3.9	3.5
	3	14.0	5.5	5.5	4.1	3.8	3.4	3.1
	4	28.3	4.6	4.6	3.4	3.2	2.9	2.6
	5	49.6	3.2	3.2	2.4	2.2	2.0	1.8
Wheat (bus.)	1-4	0	80	72	6 8	61	56	48
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	19.6	64	58	55	49	45	39
	6	44.6	44	40	38	34	31	27
Barley (bus.)	1-4	0	80	79	70	72	52	48
Barrey (Sast)	5	4.0	77	76	67	69	50	46
	6	21.3	63	62	55	57	41	38
Grain Sorghum (bus.)	1-3	0	77	69	64	57	51	47
Grain borgham (bast)	4	15.4	65	58	54	48	43	40
	5	36.0	49	44	41	36	33	30
Pecan (lbs.)	1-2	0	2000	1750	1250	1100	1500	1300
recan (155.)	3	5.3	1894	1657	1184	1042	1421	1231
	4	16.6	1668	1460	1043	917	1251	1084
	5	33.3	1334	1167	834	734	1001	867
Tomato (tons)	1-2	0	12.0	9.8	11.6	8.4	7.8	6.0
Total (Colla)	3	13.0	10.3	8.4	10.0	7.2	6.7	5.2
	4	32.9	8.1	6.6	7.8	5.6	5.2	4.0
Lettuce ^d (ctn ^e)	1	0	578	472	558	405	376	289
Lettuce (ctm)	2	11.8	510	417	492	357	331	255
	3	34.2	381	311	368	266	247	190
Onion ^d (sack ^f)	1	0	740	605	714	518	481	370
OHIOH- (Sack)	2	17.7	614	502	592	429	399	207
	3	42.7	424	347	409	297	276	212
Chili, green (tons)	1	0	8.0	6.5	7.7	5.6	5.2	4.0
CHILL, green (tons)	2	9.7	7.2	5.9	7.0	5.1	4.7	3.6
	3	32.9	5.4	4.4	5.2	3.8	3.5	2.7
at 17 ()					3378	2450	2275	1750
Chili, red (tons)	1	0	3500 3161	2860 2583	3050	2212	2054	1580
	2 3	9.7	2349	1919	2267	1644	1527	1174
	3	32.9	4349	エプエブ	4207	1044	1327	

 $^{^{\}rm a}{\rm Salinity}$ levels are defined in Table 5. Salinity levels which have the same yields are listed together.

byield reductions were calculated from information in Ayers.

^cSoil groups are defined in Table 3.

dyields adjusted for possibility of non-harvest.

e₅₀ pound carton.

f₅₀ pound sack.

Table 5. Salinity Levels, Ranges and Values and Number and Percentages of Wells for El Paso County, Texas

	Limits	its	Salinity		
Salinity Level	Lower PPM	Upper PPM	Level Value PPM	Number of Wells ^a	Percentage of Total Wells
	0	009	450	10	5.9
2	109	1300	950	48	28.7
3	1301	2000	1650	97	27.5
7	2001	3000	2500	33	19.7
5	3001	4500	3750	22	13.1
9	4501	0009	5250	∞	4.7

 $\ensuremath{a_{\mathrm{T}}}$ The number of wells by salinity level was determined from information in Meyer and Gordon.

Based on the El Paso County Soil Survey, all soils in the study area occur randomly throughout (U.S. Department of Agriculture, Soil Conservation Service). Salinity levels increase in the groundwater going from north to the south. With the random occurrence of each soil, each soil group acreage was divided into salinity level acreages based on the percentage of wells in a salinity range. These acreages are given in Table 6.

Using information given in Ayers and based on the salinity level value of Table 5, crop yield reductions for each salinity level were developed. The crop yield reduction and yield by salinity level is shown in Table 4. Pecans are an exception. Ayers did not provide any yield reduction for pecans. Malstrom suggested that the threshold salinity level, the highest level of salinity which does not cause a yield loss, may be about 1250 ppm. He also indicated that a 10 percent yield reduction was likely around 2000 ppm. Malstrom also said that a 40 percent yield reduction probably occurs near 5000 ppm. These were the relationships used to determine the percentage yield reductions for pecans in Table 4. Yields for crops irrigated with project water (surface water) was assumed to be the same as the yield for salinity level 1, Table 4.

While tomatoes and chili are grown under contract, lettuce and onions are not. In some years, even high yielding, excellent quality fields of lettuce and onions are simply plowed under due to lack of demand. Thus, the yields of both lettuce and onions were adjusted by a factor to reflect the possibility of not being harvested. Dona Ana County, New Mexico produces most of the vegetables in the general area. This adjustment factor was determined by dividing the reported harvested

Cultivated Acreages by Salinity Level and Soil Group for El Paso County, Texas Table 6.

Salinity	Percentages of Total			Soil Group ^b	qdn		
Leve1 ^a	Acreage	HS	GP	SA	ST	NN	BR
1	5.9	1,368	256	760	638	124	32
2	28.7	6,567	1,228	2,207	3,063	593	152
က	27.5	6,293	1,177	2,115	2,935	269	145
4	19.5	4,513	844	1,518	2,106	408	104
5	13,1	3,010	563	1,012	1,404	272	70
9	4.7	1,095	205	368	510	66	25
[ota]		22,848	4,272	7,680	10,656	2,064	528

^aSalinity levels are defined in Table 5.

bSoil groups are defined in Table 3.

acres of Dona Ana County by the reported planted acres for Dona Ana County for each crop for the years 1976 through 1980 (New Mexico Crop and Livestock Reporting Service). These acreages and adjustment factors are listed in Table 7. Yields for lettuce and onions were adjusted downward by 17.32 percent and 7.45 percent, respectively. The yields of lettuce and onions given in Table 4 represent the results of the adjustment.

The yield of cottonseed, not shown in Table 4, was set at 1.6 pounds per pound of cotton lint. A cottonseed yield of 1.6 pounds per pound of lint (Table 8) appears to be the relationship in Dona Ana County which lies adjacent to El Paso County. No measures of cotton-seed production were available for El Paso County.

Input Requirements

Crop input requirements were developed for a base situation. This involved one yield for each crop. These yields were those used by Libbin, et al. with the four exceptions of barley, pecans, lettuce and green chili. The barley yield was that used in 1979 "Texas Crop Budgets" for El Paso County (Extension Economists-Management). The pecan yield was that used by Gorman, Landrum and Hicks in the southern Rio Grande Valley of New Mexico. The lettuce yield was a weighted average of Libbins, et al.'s spring and fall yields. The green chili

⁷Spring was weighted 1/3 and fall 2/3 based on the historical acreages of these crops in Dona Ana County, New Mexico (New Mexico Crop and Livestock Reporting Service). Any single number used in this study relating to lettuce or lettuce production is a weighted average calculated in this manner unless otherwise stated.

Planted and Harvested Acres and Percentages of Planted Acres Harvested for Lettuce and Onions, Dona Ana County, New Mexico, 1976 through 1980 Table 7.

		Lettuce ^a			Onions	
	Ac	Acres	Percent of	Ac	Acres	Percent of
	Planted	Harvested	Planted Acres	Planted	Harvested	Planted Acres
Year			Harvested			Harvested
1980	3900	3500	89.74	4000	3900	97.50
1979	4420	3830	86.65	2830	2600	91.87
1978	5700	4650	81.58	3380	2930	86.69
1977	5500	3750	68.18	3500	3200	91.43
1976	4700	4100	87.23	4200	4000	95.24
Average			82.68			92.55

Source: New Mexico Crop and Livestock Reporting Service.

 $^{
m a}$ Total spring and fall lettuce.

Table 8. New Mexico State Production of Cottonseed, Cotton Lint and Their Relationship for 1976 through 1980

Year	Cottonseed 1,000 Tons	Cotton Lint 1,000 Bales	Cottonseed Divided by Cotton Lint 1b./1b.
1980	43	110.2	1.63
1979	44	111.5	1.64
1978	44	114	1.61
1977	68	173	1.64
1976	29	76.2	1.59

Source: New Mexico Crop and Livestock Reporting Service.

yield was that used by Libbins, et al. except the final harvest of low quantity red chili was converted to a green chili equivalent at the ratio of 5 pounds of green chili to 1 pound of red chili (New Mexico Crop and Livestock Reporting Service).

Input requirements were divided into the eight following areas:

(1) seed; (2) chemicals; (3) water; (4) machinery; (5) labor; (6) harvest; (7) other; and (8) fixed. Table 9 presents the base crop enterprise input requirements. Where no barley input requirements were available, the input requirements for wheat were used.

Seed Inputs

The quantities of seed indicated in Table 9 were taken from Libbins, et al., except for barley. The seed requirement for barley was taken from the 1979 "Texas Crop Budgets" (Extension Economists-Management). Seed and seedling costs for alfalfa and pecans are included in amoritized establishment cost under the fixed input section.

Chemical Inputs

Fertilizer requirements were established as a function of expected yields due to soil type or salinity level for upland and pima cotton, wheat, barley and grain sorghum. Constant fertilization rates were assumed for alfalfa and pecans due to the temporal nature of production of these crops. A lack of proper fertilization in one year could affect the yield in some future yield. Tomatoes, lettuce, onion and green and red chili were assumed to be fertilized at constant rates due to the high cost of production. When high levels of returns are required to offset high costs of production, it was assumed a producer

Table 9. Input Requirement for Twelve Selected Crops Grown in El Paso County, Texas

Item	Unit	Upland Cotton	Pima Cotton	Alfalfa	Wheat	Barley	Grain Sorghum
ield		650	650	8	33	85	71.4
Init		1b.	1b.	ton	bu.	bu.	bu.
inputs:							_
Seed	1b.	25	25		120	120	9
Chemicals							
Nitrogen	1Ъ.	а	a		ъ	Ъ	Ъ
Phosphorus	1Ъ.	a	a	80			
Potassium	1Ъ.						
Zinc	gal.						
Insecticide	\$	35	20	10	7	7	18
Herbicide	\$	18	18		5	5	12
Nematicide	\$						
Dust	\$						
Untor	Τ						
Required	ac/ft.	2.5	2.5	6.0	3.0	3.0	2.17
Well C	ac, 111			+		•	d
Machinery		d	d	d	ď	đ	a
Diesel	gal.	17.72	17.72	.95	7.04	7.04	11.71
	gal.	2.0	2.0	1.8	1.4	1.4	2.0
Gas	\$	5.70	5.70	.31	2.95	2.95	4.48
Oil and Lube		3.70	3.70	• 3 ±			
Repairs	\$						
Labor		6 70	6.79	.38	2.45	2,45	4.73
Machinery c.e	hr.	6.79		13.80	6.90	6,90	5.06
Irrigation '	hr.	5.75	5.75	13.00	0.50	0.70	2.00
Hoe _f							
Harvest			222		.36	.35	.336
Custom	\$.074	.080	0.75	.30	رد.	.550
Wire	1b.			8.75			
Bags	number						
Forklift	hr.			7			
Diesel	gal.	g	8	h			
Gas	gal.	g	g	h			
Oil and Lube	\$	g	g	h			
Repairs	\$	8	g	h			
Labor	hr.	g	g	h			
Other					-		
Crop Insurance	\$	20	20				
Laser Leveling		45	45		45	45	45
Farm Insurance	\$ \$ \$	4.30	4.30	4.30	4.30	4.30	4.30
Land Tax	Ś	7.83	7.83	7.83	7.83	7.83	7.83
Water District Tax	Š	21	21	21	21	21	21
Miscellaneous	\$	30	30	30	30	30	30
Interest on Operating	•						
Capital (6 mo.)	%	9.203	9.203	9.203	9.203	9,203	9.203
Fixed							
Establishment	\$			50.50			
Machinery	, \$	77.11	77.32	72.00	22.61	22.61	27.69
Well	\$	33.51	33.51	33.51	33.51	33.51	33.51

Table 9. (Continued)

Item	Unit	Pecans	Tomatoes	Lettuce	Onions	Green Chili	Red Chili
Yield		2000	12	467	700	825	280
Unit		1b.	ton	ctn.	sack	ton	280 1b.
Inputs:				00	Sack	COL	10.
Seed	1ъ.		2	~	,	F	0
Chemicals	10.		2	.6	4	5	8
Nitrogen	1b.	330	63	300	450	200	200
Phosphorus	1b.	110	180	200		300	200
Potassium	1b.	60	100	200	250	70	60
Zinc	gal.	3					
Insecticide		_	16	100		0.70	0.70
Herbicide	\$	16.84	15	100	41	9.70	9.70
Nematicide	\$		12	6.67	35	19	19
	\$					30	30
Dust Water	\$			11.67			
water Required ^c	ac/ft.	3.0	2.6	2 (2.0	2 (2 -
Well ^c	ac/IL.		-	2.6	2.6	2.6	2.6
Machinery		đ	đ	ď	d	đ	d
Diesel	1	13 70	20.50	00.00	05.00	22.27	
Gas	gal.	13.70	20.58	22.32	25.02	23.07	21.57
= 	gal.	1.8	2.0	2.0	2.0	2.0	2.0
Oil and Lube	\$	20.86	6.06	7.26	8.17	7.48	6.97
Repairs	\$	32.61	8.11	8.62	9.45	8.31	7 .9 7
Labor							
Machinery C.e	hr.	15.54	8.90	9.30	10.79	9.45	9.07
Irrigation ^{c,e}	hr.	6.90	5.98	5.98	5.98	5.98	5.98
Hoe f		20.21	37.00	160.00	120.00	93.00	93.00
narvest							
Custom	\$.18	8.75	2.5493	2.33	75.64	.1975
Wire	16.						
Bags	number				1.15		
Forklift	hr.					.99	.33
Diesel	gal.		h			7.83	2.61
Gas	gal.		h				
Oil and Lube	\$		h			.84	.28
Repairs	\$		h			1.82	.61
Labor	hr.		h			4.87	1.62
Other							
Crop Insurance	\$					40	40
Laser Leveling	\$		45	45	45	45	45
Farm Insurance	\$	4.30	4.30	4.30	4.30	4.30	4.30
Land Tax	\$	7.83	7.83	7.83	7.83	7.83	7.83
Water District Tax	\$ \$ \$ \$ \$ \$	21	21	21	21	21	21
Miscellaneous	\$	42	30	30	30	30	30
Interest on Operating							
Capital (6 mo.)	%	9.203	9.203	9.203	9.203	9.203	9,203
Fixed					_	_	
Establishment	\$	219.53					
Machinery	\$	101.14	67.22	53.82	57.92	61.07	51.79
Well	Ś	33.51	33.51	33.51	33.51	33.51	33.51

^aSee Table 10.

^bSee Table 11.

^cThese requirements increase by 20 percent when leaching is required.

^dSee Table 15.

eDoes not include labor to operate irrigation well.

 $^{^{\}rm f}\!\!$ All requirements for harvesting operations are on a per harvested unit basis except where indicated.

gSee Table 16.

 $^{^{}m h}$ See Table 17.

would not risk a yield reduction due to lack of a necessary input such as fertilizer.

The 1979 "Texas Crop Budgets" (Extension Economists-Management) were used to establish the base fertilizer requirements for upland and pima cotton, alfalfa, wheat, barley and grain sorghum. The fertilizer requirements for pecans were taken from Gorman, Landrum and Hicks. For tomatoes, lettuce, onions and green and red chili, the fertilizer requirement was taken from Libbins, et al. The fertilizer requirements at alternative yield levels for upland and pima cotton, wheat, barley and grain sorghum are listed in Tables 10 and 11.

To adjust fertilizer requirements as yield changes, information given by Welch, et al. was used. Welch, et al. report fertilization rates for various yields for various soil fertility levels for grain sorghum, cotton and wheat. The information for wheat was assumed suitable for barley. The soil productivity in the study area appears to have dropped in the last thirty years (McDonald; McMasters). The low fertility level from Welch, et al. was used for fertilizer requirements. But crop yields and total fertilizer applications for the study area exceeded the crop yields and total fertilizer applications given in Welch, et al. Therefore, Welch, et al. was used at a base to adjust those fertilizer requirements for the study area given in the 1979
"Texas Crop Budgets" (Extension Economists-Management).

Welch, et al. suggested a 20 pound application of nitrogen for each 240 pounds of cotton lint yield for the three yield levels reported. Therefore, the fertilizer-yield response was assumed linear. To determine this relationship the nitrogen fertilizer requirement

Table 10. Nitrogen and Phosphorus Requirements for Selected Upland and Pima Cotton Yields for El Paso County, Texas

	Upland Cotton			Pima Cotton	
Yield 1b/acre	Nitrogen Requirement 1b/acre	Phosphorus Requirement 1b/acre	Yield 1b/acre	Nitrogen Requirement 1b/acre	Phosphorus Requirement 1b/acre
872	126	63	540	120	09
836	121	61	509	113	57
821	119	09	431	96	87
788	114	57	409	91	94
969	101	51	406	06	45
089	66	50	371	82	41
199	96	48	349	78	39
929	95	48	327	73	37
641	93	47	300	29	34
634	92	94	283	63	32
592	98	43	281	62	31
558	81	. 41	227	20	25
528	7.7	39			
515	7.5	38			
677	65	33			
440	99	32			
414	09	30			
334	87	24			

Note: Nitrogen and phosphorus requirements were developed from Extension Economists-Management and Welch, et al.

Table 11. Nitrogen Requirements for Selected Wheat, Barley and Grain Sorghum Yields for El Paso County, Texas

,	Wheat	B	arley		n Sorghum
Yield bu/acre	Nitrogen Requirement lb/acre	Yield bu/acre	Nitrogen Requirement lb/acre	Yield bu/acre	Nitrogen Requirement 1b/acre
80	234	80	188	77	162
72	211	79	186	69	145
68	199	77	181	65	137
64	188	76	179	64	134
61	179	72	169	58	122
58	170	70	164	57	120
56	164	69	161	54	113
55	162	67	155	51	107
49	143	63	143	49	103
48	140	62	140	48	101
45	129	57	125	47	99
44	125	55	116	44	92
40	110	52	103	43	90
39	105	50	94	41	86
38	99	48	85	40	84
34	77	46	76	36	76
31	61	41	60	33	69
27	49	38	56	30	63

Note: Nitrogen and phosphorus requirements were developed from Extension Economists-Management and Welch, et al.

of 100 pounds (Extension Economists-Management) was divided by the expected yield of 690 pounds (Extension Economists-Management) for upland cotton. Likewise, 100 pounds of nitrogen was divided by 450 pounds of cotton lint for pima cotton. This gave a coefficient of 0.14493 pounds of nitrogen for each pound of upland cotton lint and 0.22222 pounds of nitrogen for each pound of pima cotton lint over the range of yields considered. These coefficients were then multiplied by each projected upland or pima cotton yield to determine the correct fertilizer requirement. The same linear relationship holds for phosphorus. The phosphorus rates for cotton (Welch, et al.) and the phosphorus base rate (Extension Economists-Management) were exactly one-half the corresponding nitrogen rates. No potassium requirements were indicated for any crop except pecans.

The situation for wheat and barley was more complex and a summary of the calculations is given in Table 12. Extension Economists-Management gave a 250 pound nitrogen requirement for an 85 bushel wheat yield. Welch, et al. reported an 80 pound requirement at a 50 bushel wheat yield. Welch's 80 pound nitrogen requirement was replaced by a 147 pound requirement. This adjustment was based on pounds of nitrogen per bushel of yield given 250 pounds of nitrogen at an 85 bushel yield. Welch, et al. indicate that 3/4 of the nitrogen required at a 50 bushel yield is required at a 40 bushel yield. Thus, the requirement at a 40 bushel yield was set at 3/4 of 147 pounds or 110 pounds. Likewise, 1/2 of the requirement at a 40 bushel yield is necessary at a 30 bushel yield. Thus, 1/2 of 110 pounds or 55 pounds was used as the nitrogen fertilizer requirement at a 30 bushel wheat

Table 12. A Summary of the Calculations Necessary to Establish Nitrogen Requirements for Wheat and Barley

Crop	Yield (bu)	Welch Nitrogen Requirement ^a (1b)	Extension Nitrogen Requirement ^b (1b)	Adjusted Nitrogen Requirement (1b)	Yield Difference (bu)	Nitrogen Requirement Difference (1b)	Difference Coefficient (1b/bu)
Wheat	30	30		55	30	55	1.8
	05	9		110	10	55	5.5
	50	80		147	10	37	3.7
	85		250		35	103	2.9
Barley	43	30		63	43	63	1,46512
	57	09		125	14	62	4,42857
	7.1	80		167	14	42	3
	85		250		14	33	2,35714

awelch, et al.

b Extension Economists-Management.

yield. Next, the differences between yield levels were calculated. Also, the associated change in the fertilizer requirement was determined. The change in fertilizer requirement was divided by the change in yield to determine a coefficient of change for each yield range. Thus, a coefficient was determined for each range, 0 to 30 bushels, 30 to 40 bushels, 40 to 50 bushels and above 50 bushels. A fertilizer requirement could then be found for a yield by: first, finding the range in which the yield falls; second, subtracting from the yield the low end of the range; third, multiplying this difference by the coefficient of the range; and fourth, adding this number to the fertilizer requirement for the yield at the low end of the range. This procedure was used to determine all the nitrogen fertilizer requirements for wheat. Extension Economists-Management do not have a phosphorus requirement for wheat.

The same procedure was used for barley except that the relation—ship of 60 bushels of wheat for 85 bushels of barley was first used to establish barley yield levels comparable to the wheat yields previously used. There was no phosphorus requirement for barley (Extension Economists-Management). Nitrogen fertilizer requirements for wheat and barley are given in Table 11.

The nitrogen fertilizer-yield response given in Welch, et al. for grain sorghum is also linear for the range of relevant yields. The coefficient used in this study was determined by dividing 150 pounds of nitrogen by 71.4 bushels (Extension Economists-Management) giving a coefficient of 2.10084 pounds of nitrogen for each bushel of grain sorghum. This coefficient was multiplied by all projected grain

sorghum yields to determine the fertilization rates. At the suggestion of Lindsay, the requirement for phosphorus fertilizer was dropped for grain sorghum. The nitrogen fertilizer requirements for grain sorghum are given in Table 11.

Pecan rosette, a nutritional disorder in pecans caused by zinc deficiency, does occur in the area. Therefore, following Gorman, Landrum and Hicks, three gallons of 5 percent zinc solution per acre per year were required on pecans (Table 9).

The per acre input requirements of insecticide, herbicide, nematicide and dust for lettuce were taken from Libbins, et al. for all crops except pecans. The insecticide requirement for pecans was taken from Gorman, Landrum and Hicks. These pesticide requirements are given in Table 9 and are specified in dollar cost per acre.

Water Inputs

The irrigation water requirement for each crop was calculated by subtracting from each monthly plant water requirement (Texas Board of Water Engineers) the monthly average rainfall. Since rainfall provides only a small portion of the plant water requirement, rainfall efficiency was disregarded. The remaining monthly irrigation requirements were totaled. These plant irrigation requirements are listed in Table 13. These requirements were then adjusted to reflect 80 percent in field irrigation distribution efficiency. Accumulation will require

⁸Gorman, Landrum and Hicks developed pecan budgets for 1979. Inputs specified in dollar terms were inflated to 1980 dollars by use of the annual indexes of prices paid by farmers for production items; interest, taxes and wage rates for 1979 and 1980 (U.S. Department of Agriculture, Statistical Reporting Service, 1981a). The 1979 value was multiplied by the 1980 index of 140 (1977=100) and that result divided by the 1979 index of 125. These adjusted figures were then used for those pecan input requirements specified in dollar terms in this study.

Irrigation Requirements in Acre Inches and the Development Thereof for Twelve Selected Crops Grown in El Paso County, Texas Table 13.

	Cotton	ton	116-16-	17.	1000	Grain	Досов	Tomotrope	Tottuce	Onfons	Ch111	11 Red
	Upland	Fima	Alraira	wnear	ваглеу	Sorgium		Tolliacocs	nerrace		OF CCIII	- 1
Plant Irrigation Requirements ^a	28.15	28,15	58,43	33,34	33,34	23,53	35.46	25.39	17.62	17.62	25,39	25.39
Total Irrigation Requirement (80% Efficiency)	35,19	35.19	73.03	41,68	41,68	29,41	44,33	31.74	22.03	22.03	22.03 31.74	31.74
Stress Coefficients ^b	.185	.128	-,104	.153	.229	.163						
Total Irrigation Adjusted for Stress	28.67	30.69		35,30	32,14	24,62						
Irrigation Level	30.00	30.00	72.00	36.00	36.00	26.00	36.00	31.2	31.2	31.2	31.2	31.2
Irrigation Level 20% Leaching	36.00	36,00	86.4	43.2	43.2	31.2	43.2	37.44	37.44	37.44	37.44 37.44 37.44	37.44

^aPlant irrigation requirements are the annual net of monthly plant requirements (Texas Board of Water Engineers) and the monthly average rainfall (The Dallas Morning News).

 $^{\mathrm{b}}\mathrm{Stress}$ coefficients are developed in Table 14.

the use of meters to determine actual water deliveries. With these meters in place, it is felt that 80 percent in field irrigation distribution efficiency can be attained. The total irrigation requirements in Table 13 reflect the irrigation efficiency adjustment.

The irrigation level for pecans was set at 36 acre inches, just above the plant irrigation requirement. This was based on the suggestion by Malstrom of an irrigation level for pecans of 36 to 40 inches. In a survey of farmers by Fifer, it appears that farmers irrigate all vegetables the same amount, 31.2 inches. This would tend to indicate that lettuce and onions are being over watered. But with a high cost vegetable crop, a yield loss due to water stress could be critical in determining profit or loss. Therefore, the irrigation level for vegetables was set at 31.2 acre inches.

For field crops, the problem of allowing water stress in the plant was considered. This problem is not considered in the plant water requirements established by the Texas Board of Water Engineers. To account for this stress, the percentage difference between the typical management weighted average yield developed in this study in Table 14 and the historical county yield (Texas Crop and Livestock Reporting Service, 1980a) in Table 2 were used. These stress coefficients are given in Table 13. The stress coefficient for alfalfa was negative. The total irrigation requirement was, therefore, adjusted to 72 inches and used as the irrigation level for alfalfa. Seventy-two inches was the irrigation level used in Extension Economists-Management data and by Richardson, et al., for alfalfa grown in the El Paso Valley.

Weighted and Average Crop Yields and Their Implied Stress Coefficients for Six Selected Crops Grown in El Paso County, Texas Table 14.

		,					
	Percent	Cotton	uo:				Grain
Soil Group ^a	of Area	Upland	Pima	Alfalfa	Wheat	Barley	Sorghum
HD	47.6	872	540	6. 4	80	80	7.7
GP	8.9	836	540	6.4	72	79	69
SA	16.0	969	431	4.8	89	7.0	79
ST	22.2	089	431	4.4	19	72	57
VN	4.3	592	371	4.0	99	52	51
BR	1.1	440	300	3.6	48	48	47
Weighted Average		782	687	5.57	17.9	75.0	68.3
El Paso County Average ^b		637	426	6.15	63.0	57.9	57.2
Percentage Difference (Stress Coefficient)		18.5	12.8	-10.4	15.3	22.9	16.3

aSoil groups are defined in Table 3.

bHistorical El Paso County averages are from Table 2.

Fifer's survey indicates that both upland and pima cotton are irrigated the same. Also, wheat and barley were indicated to be irrigated the same. Therefore, the irrigation levels for upland and pima cotton, wheat and barley and grain sorghum were set at 30, 36 and 26 inches, respectively. These levels are close to the irrigation requirements adjusted for stress in Table 13. They also agree with levels used by Extension Economists-Management, Libbins, et al., and Fifer's survey.

At groundwater salinity levels which caused yield reductions for a given crop (Table 4), the water requirement was increased by 20% to allow for leaching of salts (Runkles). These increased requirements are given in Table 13. Table 9 gives water requirements which have not been adjusted for leaching.

Since irrigation water is supplied by both project water and groundwater, irrigation well input requirements were established. The inputs associated with pumping the various levels of required water (Table 13) are given in Table 15. The input requirements were determined by establishing the characteristics of a typical irrigation well in the study area and then working through the irrigation cost program developed by Kletke, Harris and Mapp. Appendix B contains an irrigation cost input form completed for the typical well. The characteristics were supplied by North unless otherwise indicated. It should be noted that the acres irrigated per well may be less than 100. Tuck estimates 600 irrigation wells are in the study area. Thus, 69,010 water right acres gives an average of 115 acres per well. On the other hand, the assumption of this study of 48,050 acres of land in

Irrigation Well Inputs for Various Levels of Water Pumped by a Typical Well in El Paso County, Texas Table 15.

Water Pumped (in.)	26	30	31.2	36	37.44 4	43.2	72	86.4
Water Pumped (feet)	2.7	2,5	2.6	3.0	3.12	3.6	0.9	7.2
LP Gas Required (gal.)	41.42	47.80		57,36	59.65	68.83	114.71	137.65
Oil and Lube (\$)	86.	1.10	1.18	1.34	1,39	1.60	2.69	3.22
Repairs (\$)	1,10	1,28	1,33	1,53	1,60	1.84	3.06	3,68
Labor (hours)	•45	.52	.54	.62	. 65	.75	1,25	1.50

Note: This information was developed from the irrigation levels given in Table 13, the irrigation cost program developed by Kletke, Harris and Mapp and data supplied primarily by North which is given in Appendix B.

current production gives an average of 80 acres per well. Fifer's survey suggested that farmers prefer to have one well per 200 acres. Therefore, for purposes of well cost calculations the acres irrigated per well were set at 100 acres per well.

It was possible to calculate an oil requirement in gallons for irrigation well operation separate from the lubrication requirement. But, this requirement was multiplied by the price of oil and added to lubrication costs to be constant in measurement with other oil and lubrication input requirements. Labor hours were increased by 15 percent to reflect employee benefits.

Machinery Inputs

Input requirements in the machinery section do not consider irrigation or harvesting operations. These operations are reviewed elsewhere. The operations and machinery necessary to grow and produce the crops were assumed to be those specified by Libbins, et al. and by Gorman, Landrum and Hicks for pecans. These specified farming operations and machinery complements may not reflect each individual farmer's operations or machinery complement. However, it is felt that these operations and machinery complements adequately represent farming practices in El Paso County.

The following diesel consumption rates were suggested by Childers:

tractor, 40 hp - 1.752 gal/hr tractor, 80 hp - 3.504 gal/hr tractor, 125 hp - 5.474 gal/hr cotton picker - 6.5 gal/hr

Since most hay swathers have approximately 80 hp, the consumption rate of an 80 hp tractor of 3.504 gal/hr was used. These consumption rates are generalized from the Nebraska tractor tests and do not assume a

100 percent load. These consumption rates were used to determine all diesel requirements given in Table 9.

The gasoline requirement for upland and pima cotton, alfalfa, wheat, barley and grain sorghum were taken from Extension Economists-Management. The pecan requirement was assumed the same as alfalfa and vegetable requirements were assumed as the same as cotton. These gasoline requirements are given in Table 9.

The oil and lube input requirements were developed by subtracting from the fuel, oil and lubricant costs from Libbins, et al. and for pecans from Gorman, Landrum and Hicks, the cost of the quantities of diesel and gasoline as previously determined. This was done for required machinery operations. In making this calculation the prices of diesel and gasoline used by Libbins, et al. and Gorman, Landrum and Hicks were used. These input requirements in dollars per acre for each crop are given in Table 9.

Repair input requirements for crops were taken from Libbins, et al. and for pecans from Gorman, Landrum and Hicks. This was done by summing the repair input requirements for indicated machinery operations for each crop. These input requirements in dollars per acre are given in Table 9.

Labor Inputs

Machinery labor is all labor required for machinery operations and does not include labor necessary for irrigation, harvest or well operation. The labor requirements, down time (25 percent) and employee benefits (15 percent) were taken from Libbins, et al. Machinery labor for pecans was taken from Gorman, Landrum and Hicks. These labor

requirements are given in Table 9.

Irrigation labor was based on two hours of labor being necessary for each acre foot of applied water (Extension Economists-Management). This irrigation labor requirement was increased by 15 percent to account for employee benefits (Libbins, et al.). This irrigation labor requirement was increased by 20 percent when the water requirement was increased to allow for leaching of salts.

Custom hoeing was included for pecans following Gorman, Landrum and Hicks. Custom hoeing was also included for all vegetables (Libbins, et al.).

Harvest Inputs

The input requirements for harvesting for each crop are based on the yield of each crop. Harvest requirements were determined by taking the yield and harvest input requirements from Libbins, et al. and calculating proportional requirements for any given yield from Table 4. The harvest diesel requirement was calculated in the manner described above for the machinery diesel requirement. The harvest gasoline requirement was figured at a consumption rate of 2 gallons per hour for a pickup (Extension Economists-Management) in a like manner to the diesel calculation. Consumption rates were multiplied by time requirements of an activity given in Libbins, et al. Oil and lube, repairs and labor requirements were calculated in the same manner as machinery oil and lube, machinery repairs and labor requirements. The various crop yields and their associated harvest requirements are given in Table 16 for upland and pima cotton and Table 17 for alfalfa and tomatoes. The following harvest input requirements were established on a per unit

Table 16. Yields and Associated Harvest Requirements for Upland and Pima Cotton Grown in El Paso County, Texas

	Yield	Diesel	Gasoline	Oil and Lube	Repairs	Labor
Crop	(lbs. lint)	(gallons)	(gallons)	(\$)	(\$)	(hours)
Cotton Hallond	879	17 79	5 37	9 87	21.61	7.59
our com, optand	3.50	17.05	5 14	6.47	20.72	7.28
	821	16.75	5.05	9,30	20,35	7.15
	788	16.08	4.85	8.92	19.53	98.9
	969	14.20	4.28	7.88	17.25	90.9
	680	13.87	4.18	7.70	16.85	5.92
•	199	13.48	4.07	7.48	16.38	5.76
•	929	13,38	4 04	7.43	16.26	5,71
	641	13.08	3,94	7.26	15.87	5.58
	634	12.93	3,90	7.18	15.71	5.52
	592	12.08	3,64	6.70	14.67	5.15
	558	11,38	3,43	6.32	13.83	4.86
	528	10.77	3,25	5,98	13,09	4.60
	515	10,51	3.17	5,83	12,76	4.48
	644	9.16	2.76	5.08	11.13	3.91
	044	8.98	2,71	4.98	10.91	3,83
	414	8.45	2.55	69.4	10.26	3.60
	334	6.81	2.06	3.78	8.28	2.91
Corton. Pima	540	11.02	3,32	6.11	13,38	4.70
•	509	10.38	3,13	5.76	12,62	4.43
	431	8.79	2,65	4.88	10.68	3,75
	607	8.34	2,52	4.63	10.14	3,56
	905	8.28	2,50	4.60	10.06	3.54
	371	7.57	2,28	4.20	9,20	3,23
	349	7.12	2.15	3.95	8,65	3.04
	327	6.67	2.01	3.70	8.10	2.85
	300	6.12	1,85	3.40	7.44	2.61
	283	5.77	1.74	3,20	7.01	2,46
	281	5.73	1.73	3.18	69*9	2,45
	227	4.63	1.40	2.57	5,63	1,98

Note: Harvest requirements were obtained by multiplying the input to yield ratio determined from Libbins, et al., times the yields from Table 4.

Table 17. Yields and Associated Harvest Requirements for Alfalfa and Tomatoes Grown in El Paso County, Texas

Crop	Yield (tons)	Diesel (gallons	Oil and Lube (\$)	Repairs (\$)	Labor (hours)
Alfalfa	6.4	8,41	11.54	5.58	3.36
	6.3	8.28	11.36	5.50	3.31
	5.5	7.23	9.92	4.80	2.89
	4.8	6.31	8.66	4.19	2.52
	4.7	6.17	8.48	4.10	2.46
	4.6	6.04	8.30	4.01	2.42
	4.4	5.78	7.94	3.84	2.31
	4.3	5,65	7.76	3.75	2.26
	4.1	5.39	7.40	3.58	2.15
	4.0	5.26	7.22	3.49	2.10
	3.9	5.12	7.03	3.40	2.05
	3.8	4.99	6.85	3.32	2.00
	3.6	4.73	6.49	3.14	1.89
	3.5	4.60	6.31	3.05	1.84
	3.4	4.47	6,13	2.97	1.79
	3.2	4.20	5.77	2.79	1.68
	3.1	4.07	5.59	2.70	1.63
	2.9	3.81	5.23	2,53	1.52
	2.6	3,42	4.69	2.27	1.37
	2.4	3.15	4.33	2.09	1.26
	2.2	2.89	3.97	1.92	1.16
	2.0	2.63	3.61	1.75	1.05
	1.8	2.36	3.25	1.57	0.95
Comatoes	11.6	16.01	3.63	3.61	11.45
	10.3	14.21	3.23	4.98	10.16
	10.0	13.80	3.13	4.83	9.87
	9.8	13.52	3.07	4.74	9.67
	8.4	11.59	2.63	4.06	8.29
	8.1	11.18	2.54	3.92	7.99
	7.8	10.76	2.44	3.77	7.70
	7.2	9.94	2.26	3.48	7.10
	6.7	9.25	2.10	3.24	6.61
	6.6	9.11	2.07	3.19	6.51
	6.0	8,28	1.88	2.90	5,92
	5.6	7.73	1.75	2.71	5.53
	5.2	7.18	1.63	2.51	5.13
	4.0	5.52	1.25	1.93	3.95

Note: Harvest requirements were obtained by multiplying the input to yield ratio determined from Libbins, et al., times the yields from Table 4.

harvest basis:

Other Inputs

There are a variety of other inputs which do not fit into any category. As Libbins, et al. suggest, a crop insurance input was included of \$20.00 per acre for all cotton and \$40.00 per acre for all chili.

Fifer's survey indicated that farmers were receiving a 20 to 30 percent savings in labor, fertilizer and water from the laser leveling input. The median of 25 percent was chosen to reflect these savings due to laser leveling. Laser leveling was allowed for all crops except alfalfa and pecans which may or may not have been laser-leveled during establishment. Laser leveling was also restricted from two soil groups, ST and BR. The ST group is made up of tight clays with very slow permeability. Laser leveling would tend to drown out plants. The BR group is a sand with very rapid permeability. The advantage of laser leveling of uniform watering may be circumvented by rapid uptake of water near the turnout. The laser leveling input is a custom applied input and is given in Table 9 at its rate of \$45.00 per acre

(Libbins, et al.).

Three inputs were common to all crops at the same rate. The first was farm insurance. A generalization of \$4.30 per acre was taken from Libbins, et al. and Gorman, Landrum and Hicks. The second input was land taxes which were set at \$7.83 per acre. This is the tax rate for an unidentified producer selected by an El Paso County, Central Appraisal District employee as an example of the tax level. The third input was the water district tax of \$21.00 per acre.

Following Libbins, et al. a \$30.00 per acre cost was included to cover miscellaneous overhead items such as the farm share of the telephone, other utilities, buildings and accounting fees. For pecans, the expenditure items from Gorman, Landrum and Hicks of pruning, shaping and budding, repair and maintenance of ditches and roads, legal and accounting and miscellaneous were combined to create an analogous cost input. The costs of pruning, shaping and budding were averaged for the 14 years of full mature production yielding \$19.00 per year. This cost, when added to the other expenditures mentioned above, totaled \$37.41 per acre for pecans.

The interest rate on operating capital was taken to be one half of the yearly interest rate on credit lines established by farmers in the study area. This was done to reflect that money borrowed to plant and tend a crop is payed back at harvest time, generally six months after planting. According to Richardson, credit lines are usually established in March or April. Richardson also said that credit lines for 1980 are being extended at one percent above the current prime lending rate. Thus, to calculate an interest rate for operating capital, the quoted

Street Journal for eight consecutive Wednesdays beginning with March llth and ending with April 29th. These quoted rates and any median values are listed in Table 18. Adding one percent to the average prime rate from Table 18 of 17.40625 percent gives 18.40625 percent as the interest rate on a farmer's line of credit. Adjusting this rate to the six month borrowing period, yields an annual effective rate of 9.203 percent.

Fixed Inputs

Three fixed inputs were identified — establishment, machinery and irrigation well. The fixed establishment inputs for alfalfa and pecans had to be calculated. Libbins, et al.'s total cost from the alfalfa establishment budget was amortized over a five-year alfalfa production period (Lindsay). Likewise, net establishment costs from Gorman, Landrum and Hicks for the first eleven years of pecan orchard life were brought to constant dollars of the eleventh year and then totaled. This total was then amortized over the fourteen years of mature production (Gorman, Landrum and Hicks). The rate used for inflating or amortization was $7\sqrt[3]{8}$ percent which is the discount rate set for federal agencies in formulating and evaluating plans for water and related land resources for the period October 1, 1980 through September 30, 1981 (U.S. Water Resources Council).

The fixed machinery input was calculated by adding the machinery depreciation to the interest on equipment inventory from Libbins, et al. and for pecans from Gorman, Landrum and Hicks.

Fixed well inputs were determined by summing fixed costs per well from the irrigation cost program (Kletke, Harris and Mapp). This sum

Table 18. The Wednesday Quoted Prime Interest Rate for March 11, 1981 through April 29, 1981

Quoted Prime Interest Rate	Median Value Used for Calculation
18	18
17.5	17.5
17 to 17.5	17.25
17 to 17.5	17.25
17	17
17 to 17.5	17.25
17.5	17.5
17.5	17.5
	17.40625
	18 17.5 17 to 17.5 17 to 17.5 17 to 17.5 17 17 to 17.5

Source: The Wall Street Journal, Wednesday issues, March 11, 1981 through April 29, 1981.

was then multiplied by the total number of wells in the study, 600 (Tuck). The result was then divided by the cropland acreage assumed in this study, 48,050 acres. This procedure gave a fixed well input of \$33.51 and this value was applied to each acre for all crops. The input values in all categories discussed are presented in Table 9.

CHAPTER IV

ANALYTICAL MODEL

To determine the impact of a water carry-over storage option, two linear programming models were built. The first linear program was built to model crop production in the El Paso County Water Improvement District No. 1. This linear program maximized returns to land, management, risk and profit. This model was run parametrically over all possible surface water allocations (zero to three acre feet of water per vested water right acre). The resultant schedule of surface water allocations and net returns (objective function values) were used to build a second linear programming model. The second model maximized net returns over the eighteen years 1963 through 1980 subject to the real interest rate (time value of money), the annual evaporation from Elephant Butte Reservoir for those years and the actual surface water allocations available to El Paso County farmers for those years.

An additional surface water use scenario was developed. This scenario assumed that water users would set a limit, two acre feet, on surface water use. Any amount of an allocation greater than two acre feet would be stored for future use. In years of allocations below two acre feet, the difference between the allocation and two acre feet would be made up from stored water, if possible. This scenario also depleted stored water used in a given year by only the evaporation for the first six months of that year.

The Static Linear Programming Model

The model used to estimate optimum allocation of irrigation water within a year had to include many factors. The most important being the alternative crop production activities.

Model Activities

Crop activities were developed for each crop for each of six soil groups, for each of six salinity levels of groundwater, for either project water or groundwater, and for laser leveling and no laser leveling. Thus, the following number of activities were developed for the model:

```
cotton, upland - 120;

cotton, pima - 120;

alfalfa - 66;

wheat - 120;

barley - 120;

grain sorghum - 110;

pecans - 66;

tomatoes - 100;

lettuce - 90;

onions - 90;

chili, green - 90; and

chili, red - 90; or,

total - 1182.
```

These activities were developed from the yields given in Table 4 and the input requirements given in Table 9. A simplified structure of this static linear programming model is given in Table 19.

Table 19. A Simplified Structure of the Static Linear Programming Model

	Crop Production Surface Ground-	Production ce Ground-	Input Crop Harvest Well	Crop	Harvest	Well	Crop	Surface Water	Two Acre Feet	Two Acre Feet Third Acre Foot	Ground- water Naed	RHS
Item	water	water	Purchases	Sales	Costs	Costs	Acreages	Kequired	Costs Acreages Required Available			
			,	د	Ç	ē				&		
Objective Function		,	ed 1	٠.	ن ا	đ						0 =
Yield Transfer	70	70	ų	-								0 =
Input Transfer	Φ	Φ	-1	,	,							0
Harvest Costs				₩	7							
Land by Soil Group by												ν ν
Salinity Level	-	_					7					0 =
Crop Account	1	1					ĭ	ī				0 =
Surface Water Required	4							· •	-	7		0 =
Surface Water Available								•	ı 			,
Two Acre Feet Available									İ			
Third Acre Foot										7		, j
Available											-1	0 =
Groundwater Required		, يحد										0 =
Well Costs		-				í						

Anput prices. bCrop prices.

CHarvest Costs.

dyield coefficients.

eInput-yield coefficients.

fHarvest cost-yield coefficients.

Revel of land available.

bSurface water-yield coefficients.

¹Level of taxed surface water available.

 $^{\mathrm{J}}_{\mathrm{Level}}$ of purchased surface water available.

kGroundwater-yield coefficients.

Well costs-yield coefficients.

The linear programming model contains 1182 production activities and 100 buy, sell or transfer activities. The linear programming model contained 154 rows. Forty-six rows were restrictions while the remaining 104 were accounting or transfer rows and the objective function. A reduced matrix for this model is given in Appendix C. Appendix C also contains an explanation of the column and row names used.

The acreage restrictions for the soil groups were taken from The surface water restriction, for the first two acre feet allocated per acre, was 96,100 acre feet. If the allocation was less than two acre feet per acre, this restriction was decreased to reflect the lower allocation. For the third acre foot allocated per acre, the restriction was 48,050 acre feet at a three acre foot allotment. For a two or less acre foot allocation, this restriction was zero. When the allocation was between two and three acre feet, this restriction was linearly adjusted between zero and 48,050 acre feet. The per acre water district tax is \$21.00. allows the farmer to use up to 2 acre feet of water if it is allocated. An additional acre foot can be allocated and is currently being priced at \$8.00 per acre foot. Thus, for surface water input requirements in Table 9, there is a charge of \$8.00 per acre foot for any water requirement over 2.0 acre feet. The following crops were limited to no more than the following acres:

Alfalfa - 8,517 acres;

Pecan - 5,200 acres;

Tomatoes - 100 acres;

Lettuce - 200 acres;

Onions - 200 acres; and

All chili - 700 acres.

A minimum acreage was established for alfalfa and pecans which was 6,083 acres and 4,800 acres, respectively. The limits on alfalfa were determined by adding and subtracting one-sixth of the reported 1980 alfalfa acreage for El Paso County from Table 1. One-sixth was used because of the six year cycle assumed in alfalfa production from establishment to re-establishment. Malstrom estimated that there are 5,000 acres of pecans in El Paso County. The limits on pecan acreage were determined by adding and subtracting one twenty-fifth of this acreage. One twenty-fifth was used because of the twenty-five year cycle between establishment and re-establishment (Gorman, Landrum and Hicks). The limits on vegetables were set at levels suggested by Peavy.

The input items relating to irrigation labor, fertilizer and water were not changed when laser leveling was employed as compared to non-laser leveled land. Rather for each of these inputs a coefficient was adjusted in the linear program to reduce the quantity of each by 25 percent. This was done to facilitate the possibility of changing the percentage of this savings due to laser leveling as more is learned about this technology.

Operating capital needs were determined by summing the dollar value of all input requirements except the third acre foot of surface irrigation water, all harvest inputs except baling wire, the constant inputs (farm insurance, land tax and water district tax) and the fixed inputs. The cost associated with the third acre foot of surface water is assessed in December after the water has been used. Therefore, no interest was charged. Harvest costs can immediately be offset by sale of the crop. Thus, no interest was charged. Baling wire is sometimes purchased in quantity, months before it is This is the reason baling wire was charged the operating capital interest rate. Land and water district taxes are assessed at the end of the year, thus no interest was charged. Since farm insurance was included with these taxes in the linear programming model, it was not charged interest. The fixed inputs -- establishments, fixed machinery and fixed well -- were not charged interest because they reflect non-cash expenditures (depreciation) and an interest charge on an investment; no current cash outlays are necessary.

Prices

In building the model, an attempt was made to include as many of the output and input prices in the objective function as possible. This was done to generalize the model so that price could easily be changed parametrically. Output prices were determined by converting

the reported prices for each crop for 1976 to 1980 to equivalent prices in 1980 dollars and then taking an average. The 1980 index value, I_{1980} , was divided by the index value of, say, 1976, I_{1976} . This ratio was then multiplied by 1976 reported price, P_{1976} , yielding the 1976 price in 1980 dollars, P_{1976} .

$$\hat{P}_{1976} = P_{1976} (I_{1980}/I_{1976})$$

This procedure attempts to answer the question, what price would have been observed if 1976 had occurred with a 1980 price structure?

To convert the reported prices to 1980 dollars the following prices received indexes (U.S. Department of Agriculture, Statistical Reporting Service, 1980) were used for the indicated crops:

These indexes, the reported prices and the results of the above procedures are given in Table 20. New Mexico State prices were used for upland cotton, cottonseed, wheat, barley, grain sorghum, pecans, lettuce, onions, green chili and red chili (New Mexico Crop and Livestock Reporting Service). El Paso County lies closer to all of

Table 20. Crop Indexes, Crop Prices and the Same Crop Prices in 1980 Dollars for Eleven Crops Grown in El Paso County, Texas for 1976 through 1980

							Five
Item	Unit	1980	1979	Years 1978	1977	1976	Year Average
Cotton Index	7.	317	258	245	270	265	
Upland Cotton Price	\$/1b	.80	.685	.62	.53	.70	
Upland Cotton (1980 \$'s)	\$/1b	.80	.84	.80	.62	.84	.78
Oil Bearing Crops Index	7.	247	249	226	243	205	
Cottonseed Price	\$/ton	123	115	125	66	102	
Cottonseed Price (1980 \$'s)	\$/ton	123	114.08	136.62	67.00	122.90	112.74
Feed and Hay Index	%	240	207	184	181	218	
Alfalfa Price	\$/ton	79.50	69.00	64.00	57.50	63.50	
Alfalfa Price (1980 \$'s)	\$/ton	79.50	80.00	83.48	76.24	69.91	77.83
Food Grain Index	7.	257	229	191	156	201	
Wheat Price	\$/bu	4.24	3.42	2.60	2.15	3.53	
Wheat Price (1980 \$'s)	\$/bu	4.24	3.84	3.50	3.54	4.51	3.93
Feed Grain Index	*	235	204	181	174	214	
Barley Price	\$/bu	2.55	2.40	1.95	1.65	2.17	
Barley Price (1980 \$'s)	\$/ bu	2.55	2.76	2.53	2.23	2.38	2.49
Grain Sorghum Price	\$/bu	3.81	2.49	2.22	1.88	2.02	
Grain Sorghum Price (1980 \$'s)	\$/bu	3.81	28.7	2.88	2.54	2.22	2.86
Fruit Index	%	207	235	226	163	132	
Pecan Price	\$/1Ъ	- 85	.69	.75	.81	1.00	
Pecan Price (1980 \$'s)	\$/1b	.85	.61	.69	1.03	1.57	.95
Vegetable Index	%	198	194	188	176	161	
Tomato Price	\$/ton	82.50	140.00	75	75	75	
Tomato Price (1980 \$'s)	\$/ton	82.50	142.89	78.99	84.38	92.24	96.20
Lettuce Price	\$/ctn	4.42	4.44	5.18	4.26	6.39	
Lettuce Price (1980 \$'s)	\$/ctn	4.42	4.53	5.46	4.79	7.86	5.41
Onion Price	\$/sack		5.55	4.27	3.85	2.80	
Onion Price (1980 \$'s)	\$/sack	4.60	5.66	4.50	4.33	3.44	4.51
Green Chili Price	\$/ton	228.00	245.90	232.98	218.82	a	0.0.15
Green Chili Price (1980 \$'s)	\$/ton	228.00	250.97	245.37	246.17	a	242.63
Red Chili Price	\$/1Ъ	.421	.3945	.37	.3655	.394	
Red Chili Price (1980 \$'s)	\$/1b	.421	.4026	.3897	.4112	.4845	.4218

Note: Price indexas are from U.S. Department of Agriculture, Statistical Reporting Service, 1980. Prices are New Mexico State prices reported by the New Mexico Crop and Livestock Reporting Service.

 $^{^{\}mathrm{a}}$ The green chili price was not available for 1976.

the State of New Mexico geographically and climatically than to most of the State of Texas. Therefore, New Mexico State prices seemed much more appropriate. For several crops, a large portion of the New Mexico state production is from Dona Ana County. Fishburn indicated that although little data are available for tomatoes grown in New Mexico, most production does occur in Dona Ana County. Pedde and Farias provided the per unit value of tomatoes from the crop production reports for Elephant Butte Irrigation District, New Mexico for 1976 through 1980. The Elephant Butte Irrigation District is comprised of most or all of the farmland in Dona Ana County. Thus prices for the Elephant Butte District are as relevant as Dona Ana County prices.

The pima cotton price was not established by the procedure outlined above. It was noted that the relative price difference between upland and pima has been changing (Table 21). According to Cross this may be due to a decrease in demand. Some thread manufacturers may be switching to synthetics. The cotton index used above for upland cotton is based on the national cotton price. This national price is weighted by production. Over 95 percent of national cotton production is upland cotton. Therefore, the cotton index can be considered as a good index of upland cotton prices. But, since the price relationship between upland and pima cotton has been changing, the cotton index is inappropriate for adjusting the pima cotton price.

Table 21. Upland and Pima Cotton Prices and the Upland Price as a Percentage of the Pima Price for 1976 to 1980

Year	Upland Cotton Price	Pima Cotton Price	Upland as a Percent of Pima
		¢/1b	
1980	.80	1.11	.72
1979	.685	1.00	.685
1978	.62	.941	.659
1977	.53	.876	.605
1976	.70	1.17	.598

Note: Upland cotton prices are New Mexico state prices reported by the New Mexico Crop and Livestock Reporting Service. Pima cotton prices are Texas state prices reported by the Texas Crop and Livestock Reporting Service, 1980b. Cross has indicated that most of the 1981 pima cotton contracts were priced at the quotes given by the U.S. Department of Agriculture, Agricultural Marketing Service, Cotton Division (1981b). Cross suggested establishing a weighted price based on these quotes by grade. The weights were the percentage of 1980 El Paso area production by grades reported by the U.S. Department of Agriculture, Agricultural Marketing Service, Cotton Division (1981a). This information is given in Table 22. This weighted average price was \$1.0376 per pound of lint. This price was used for the pima cotton selling price throughout this study.

All input prices were established by using current 1980 or 1981 prices. On April 30, 1981, Fabens Delinting Plant was quoting most varieties of upland cottonseed at \$960 per ton or \$0.48 per pound, pima cottonseed at \$600 per ton or \$0.30 per pound, wheat seed at \$22 per cwt or \$0.22 per pound, barley seed at \$18 per cwt or \$0.18 per pound and grain sorghum seed at \$60 per cwt or \$0.60 per pound. Also, on the same day, Agricultural Products and Seed Company of Mesquite, New Mexico were quoting tomato seed at \$10 per pound, onion seed at \$16-\$18 per pound, lettuce seed at \$35 per pound and green and red chili seed at \$12 per pound.

Fertilizer prices are those quoted by the Fabens Delinting Plant for April 30, 1981. Liquid nitrogen (anhydrous ammonia) was quoted at \$240 per ton or \$0.12 per pound. Superphosphate was quoted at \$250 per ton or \$0.125 per pound. Potash (60 percent \$20) was quoted at \$160 per ton or \$0.08 per pound.

Table 22. March 1981 Pima Cotton Prices and Percentages of 1980 Pima Cotton Production by Grades

Grade	March 1981 Pima Cotton Price \$/1b.	Percentage of 1980 Production El Paso ^a
1	1.0810	
2	1.0760	1
3	1.0710	36
4	1.0610	46
5	.9331	14
6	.7978	2
7	.6666	1
8	.6021	b
9	.5808	Ъ

Source: U.S. Department of Agriculture, Agricultural Marketing Service, Cotton Division, 1981a and 1981b.

^aIncludes eastern Arizona, New Mexico and Texas.

 $^{^{\}mathrm{b}}\mathrm{Less}$ than 0.5 percent, therefore taken as zero.

Agricultural Products and Seed Company quoted zinc solution at \$5.00 per gallon on April 30, 1981. Dust for lettuce was priced at \$11.67 per acre (Libbins, et al.). This dust price is a composite of the spring and fall lettuce requirements.

LP gas for use in irrigation was quoted May 1, 1981 by Ikard and Newsom of Fabens at \$0.69 per gallon. The price of farm diesel used was the price quoted by Transmountain Oil Company on May 1, 1981 of \$1.063 per gallon. Transmountain Oil Company also quoted farm gasoline at \$1.242 per gallon.

The price of labor was set at the minimum wage of \$3.60 due to the abundance of semi-skilled and unskilled labor in the area. This price for labor was used for all four types of labor -- well, machinery, irrigation and harvest.

Custom harvest or ginning prices were obtained from Libbins, et al. and Gorman, Landrum and Hicks. These prices are given in Table 9. The Meyers Company was quoting baling wire at \$35.50 for a 100 pound roll when 11 to 100 rolls were purchased or \$0.355 per pound. Field bags for onion harvest were priced at \$0.10 each (Libbins, et al.). Forklifts for chili harvest rent for \$10 per hour (Libbins, et al.).

Custom laser leveling costs \$45 per acre (Libbins, et al.). The total price per acre of the constant inputs was \$32.83. The individual prices per acre of these inputs are given in Table 9.

A total price for all fixed well inputs was determined for all 600 irrigation wells in El Paso County. This total price, \$1,610,200.00,

was calculated by multiplying the fixed well inputs for the typical irrigation well times 600 wells.

This provides a discussion of the static linear programming model. This model was first solved with no limits on any crops. Then acreage limits were imposed. Adjustments were made to the coefficients of upland and pima cotton and pecan yields in the sell upland cotton lint, sell pima cotton lint, sell upland cototnseed, sell pima cottonseed and sell pecans activities. This was done so that the average yield indicated by the model for upland and pima cotton and pecans would be closer to the average historic yield (Table 2). Total cotton acreage was then restricted to a level of 28,000 acres which is close to the study area historical average acreage of total cotton (Table 1).

The quantity of surface water was parametrically adjusted from zero to three feet per acre under two assumptions. First, no groundwater was available and, second, groundwater was available. These two parametric runs constitute a catalog of all model solutions for any level of surface water allocation with or without groundwater supplementation.

The Temporal Linear Programming Model

With the series of solutions from the static model, a temporal linear programming model was built. This model maximized temporal net returns by choosing optimum temporal uses of annual water

allocations and an optimum carry-over storage scenario.

The static linear program produced a schedule of 83 surface water allocations and maximized net returns for the case when no groundwater was available. This schedule included a zero water allocation with a zero net return. The rest of the schedule ranged from 1.059 to 3.0 acre feet of surface water allocated per vested acre. Without groundwater, surface water allocation of less than 1.059 acre feet per vested acre would not provide enough total water to sustain established pecan orchards and alfalfa fields. When groundwater pumping is allowed, pecan orchards and alfalfa fields can be sustained by pumping wells. Therefore, when pumping was allowed, solutions were generated for 78 surface water allocations from zero to three acre feet. A simplified structure of this temporal linear programming model is given in Table 23.

The actual water allocations granted to the El Paso County
Water Improvement District No. 1 from Elephant Butte Reservoir for
1963 through 1980 were used as the temporal pattern of water
allocations. Table 24 gives total surface water allotments from
1951 through 1980. As late as 1962 allotments of more than three
acre feet were given. An allotment of more than three acre feet is
still a possibility under federal law. The board of directors of
the El Paso County Water Improvement District No. 1 decided to restrict the district to no more than a three acre feet allotment
(Fifer). Therefore, no water allocations over three acre feet were

Table 23. A Simplified Structure of the Temporal Linear Programming Model

	Net Re 1963 Surface Water Ugea 03	Net Revenue Production 1964	Surface Water Water Use 03	Revenue Trangfer 1963 19641980	Water Used 1963 19641980	Mater Saved 1963 19641979	1980	Stored Water	RHS
Objective Function				1 1 1				ء	
Revenue Transfer: 1963 1964	n n			Ţ					0
									P
1300			บ	٢					0 8
Individual Solution Requirement: 1963	_				٠				
1964		1 1							- -
1980			1 1						Ţ
Water Required 1963	0				. 77				ç
1964		a			-1				2 0
1980			e D		7				ç
Water Available					•	,			1
1964						-8			<u>.</u> ب
1980					ī	î	-		ų. V
Stored Water									
i dister							1	7	0*

a Mater use includes 78 alternatives ranging from 0 to 3 acre feet of water per acre.

b Stored water price parameters.

c Revenue-water use coefficients.

d 1980 real dollars coefficients.

e Water use coefficients.

Level of water availability.

S Evapotation of saved water coefficients.

Table 24. Total Water Allocation for the El Paso County Water Improvement District No. 1 in Acre Feet Per Vested Acre and the Annual Evaporation Rate for Elephant Butte Reservoir, New Mexico, 1951 to 1980

	Total Allotment	Annual Evaporation	
Year	(acre feet)	(% of project water)	
1951	1.75	41.889	
1952	.21	25.522	
1953	1.90	25.404	
1954	. 50	33,233	
1955	.42	28.022	
1956	.39	33.079	
1957	1.17	21.665	
1958	4.00	11.139	
1959	3.50	15.398	
1960	3.25	16.327	
1961	2.45	20.548	
1962	3.25	18.056	
1963	2.00	24.756	
1964	•33	30.363	
1965	1.85	22.187	
1966	2.50	17.297	
1967	1.50	22 . 250	
1968	2.00	21.005	
1969	3,00	16.588	
1970	3.00	17.894	
1971	2.00	24.519	
1972	. 67	21.304	
1973	3.00	13.994	
1974	3,00	14.189	
1975	3.00	14.889	
1976	3.00	14.851	
1977	1.25	21.428	
1978	•75	21.359	
1979	3.00	13.591	
1980	3.00	12.189	

Note: Water allotments were provided by Fifer. Annual evaporation rates were calculated from data provided by the Rio Grande Compact Commission. The calculation of evaporation rates is given in Appendix D.

considered. This is the reason that the temporal analysis begins in 1963, the first year after the last allocation of greater than three acre feet.

These allocation-net returns activities were named by a seven character code. The first character was always A. The next four indicated the level of the surface water allocation. The last two indicated the year. A000063 reads, the activity of no surface water allocation in 1963. A256677 reads, the activity of a 2.566 acre foot allocation in 1977.

The objective function maximized the real value in 1980 dollars of net returns over the time period. The allocation-net return activities did not have an objective function value. Instead, a transfer activity, designated OBJ63 through OBJ80, was used to inflate the net returns associated with the water use level chosen to 1980 dollars. All solutions given in the schedules of allocation-net returns were in 1980 dollars (no inflation). But, this still does not account for the real interest rate (time value of money).

To establish the real rate of interest in El Paso County, the inflation rate was subtracted from the agricultural lending rate. A real rate of interest established in this manner includes an agricultural lending risk component. Thus, the real interest rate determined herein does include this element.

The inflation rate was determined by adjusting the monthly

⁹ The two digits on the end of the names indicate the year.

percentage change in the consumer price index (Council of Economic Advisors) to a yearly basis. This inflation rate was subtracted from the mean of the prime interest rates reported for each month (Council of Economic Advisors). This was done for the period February 1980 through January 1981. The monthly differences were then averaged. All this information is given in Table 25. One percent was then added to this twelve month average. This was done to reflect that the agricultural lending rate in El Paso County is one percent above the prime interest rate. The rate used as the real interest rate for El Paso County was 4.94933 percent. In the temporal linear programming model all net returns were converted to 1980 dollars when transferred to the objective function by a coefficient expressing this percentage.

Each year has a water used activity identified by WATUS plus 63 through 80 which specifies the year. Likewise, there is a water saving activity, identified by WATSV plus 63 through 80 which specifies the year. Water can be used in a given year to generate net returns or some or all of the water can be transferred to the next year for use. The transferred water must suffer the full evaporation loss for the next year. The evaporation rates are given in Table 24. Their calculation is explained in Appendix D. If water was saved in the last year, 1981, it was sold through an activity named SELL80 at \$8.26 per acre foot. This price is the shadow price for surface irrigation water from the static model at a three acre foot allocation.

The Annual Inflation Rate by Month, the Monthly Prime Interest Rate and the Estimated Monthly Real Interest Rate for February, 1980 through January 1981 Table 25.

Month	Veav	Monthly Increase in Consumer	Annual Inflation	Monthly	Mean Monthly	Estimate of Monthly Real
				percent	Trime vace	illelest vale
February	1980	I.3	16.765	15.25-16.75	16	-0.765
March	1980	1.3	16.765	16.75-19.50	18.125	1,36
April	1980	6.	11,135	19.5	19.5	8,365
May	1980	6.	11,135	18.5-14	16.25	5.115
June	1980	1.0	12.683	14-12	13	0.317
July	1980		1,207	12-11	11.5	9.843
August	1980	∞.	10.034	11-11.50	11.25	1.216
September	1980	1.0	12,683	11.50-13	12.25	-0.433
October	1980	1.0	12.683	13.50-14.50	14	1.317
November	1980	1.1	14.029	14.50-17.75	16,125	2,096
December	1980	1.0	12,683	17.75-21.50	19.625	6.942
January	1981	.7	8,731	21.50-20	20.75	12.019
Average						3 07,033
2622200						3.747.0

Note: The monthly increase in the consumer price index and the monthly prime interest rate were reported by the Council of Economic Advisors.

There were two groups of constraints and two groups of accounting rows in the model. The first group of constraints was surface water available in a given year. These rows restricted the amount of new surface water available in a year and accounted for any water saved from the previous year or stored for the next year. These rows were named WATAV plus 63 through 80 to specify the year.

The second group of constraints was to require the model to choose one activity from each year for the solution. This was done by requiring each allocation—net returns activity to include an input of one unit. Each year was restricted to equal one unit. These rows were named by an S plus 63 through 80, to specify the year.

The first groups of accounting rows account for water used by the allocation-net returns activities. They are named WAT plus 63 through 80 to reflect the year. The second group of accounting rows account for net returns produced in each year. They are identified by REV plus 63 through 80 to indicate the year.

This temporal model, optimized with and without the option of groundwater pumping, defined two optimum scenarios of surface water use over the time period. These scenarios define the limits on the range of possible temporal surface water use scenarios which maximize net returns.

CHAPTER V

RESULTS

An accumulation policy for federal irrigation water allowing farmers to allocate water among years is of interest to El Paso County farmers (Sonnen, et al.). This chapter reports the results of an accumulation policy for farmers in El Paso County with emphasis on cropping patterns and economic implications. The first objective was to establish a base of comparison and consider alternative model solutions for El Paso County.

Static Model

The static model was applied under several alternative scenarios. The early solutions were used to further refine the model to better represent average crop yields in the study area as well as define the limits of this model.

Model Refinement

The initial model solution included no crop acreage restrictions and included a cost for fixed machinery and well inputs. The entire 48,050 acres of available cropland was allocated to lettuce production. While a three acre foot allotment was specified, lettuce uses only 2.6 acre feet per acre. Thus, not all of the available surface water was used. The model was then solved without the fixed machinery and well inputs. The only difference was, as expected, an increase in the objective function (net farm revenue) from \$39,290,055.62 to

\$43,426,314.62. These results are given in Table 26. This acreage of vegetables is certainly unrealistic and would exceed both facilities and demand.

To more appropriately represent the study area situation, the crop acreage restrictions for vegetables, pecans and alfalfa as given in the previous chapter were imposed. Crop acreages were distributed in a much more realistic manner, although 35,967 acres were allocated to upland cotton. The model was then solved without the fixed machinery and well inputs. Again, the only effect was that the objective function value increased from \$7,226,356.04 to \$12,604,648.73 (Table 26). Based on the results of these first four solutions of the model, crop acreage restrictions were imposed for all subsequent model applications while a cost for fixed machinery and well inputs was not included.

In refining the model, the first four applications were made with pecan yields reduced by 50 percent as compared to yields developed from secondary sources. The purpose was to approximate historical production with the pecan acreage restriction. As Table 27, solution 1 indicates, even with this adjustment the total production of pecans in the model was greater than the historical high (Table 1).

Similarly, the upland cotton yield of 782 pounds of lint per acre was greater than the El Paso County historical yield of 637 pounds per acre. Therefore, an adjustment of .83333 was included for the yields of upland cotton lint and seed and the model was solved again. The result is solution II and shows a decrease in the objective function from \$12.60 million to \$10.44 million and a switch of 35,967 acres from upland cotton to pima cotton. The pima cotton yield was 478 pounds of

Table 26. Selected Static Model Results With and Without a Fixed Machinery and Well Input Cost and With and Without Crop Acreage Restrictions

		No Crop Acrea	No Crop Acreage Restrictions	Crop Acreag	Grop Acreage Restrictions
	Units	Fixed Machinery and Well Input Costs Included	No Fixed Machinery and Well Input Costs Included	Fixed Machinery and Well Input Costs Included	No Fixed Machinery and Well Input Costs Included
Net Farm Revenue	Militon \$	39,230,055.62	43,426,314,62	7,226,356.04	12,604,648.73
Upland Cotton	Acres			35,967	35,967
Pima Cotton	Acres				
Alfalfa	Acres			6,083	6,083
Wheat	Acres				
Barley	Acres				
Grain Sorghum	Acres				
Pecans	Acres			4,800	4,800
Tomatoes	Acres			100	100
Lettuce	Acres	48,050	48,050	200	200
Onions	Acres			200	200
Green Chili	Acres			700	700
Red Chili	Acres				
Surface Water Used	Acre Feet	124,930	124,930	143,935.5	143,935,5

Table 27. Selected Static Model Results for Various Solutions with Yield Adjustments for Upland Cotton, Pima Cotton and Pecans

		Solui	ions Leadin	Solutions Leading to Final Model	
Item	Unit	I	II	111	IVa
Upland Cotton Adjustment ^b Pima Cotton Adjustment ^b Pecan Adjustment ^b		٦.	.83333 .5	.83333 .90909 .5	.83333 .90909 .5
Model Results: Net Farm Revenue Upland Cotton Pima Cotton Alfalfa	Million \$ Acres Acres Acres Acres	12.6 35,967 6,083	104.4 35,967 6,083	8,9 23,246 12,721 6,083	7.34 17,344 ^c 10,656 ^c 8,517 2,940
Barley Grain Sorghum Pecans Surface Water Used	Acres Acres Acres Acre Feet	4,800 143,935.5	4,800 143,935.5	4,800 143,935.5	4,800 144,150
Model Yield: Upland Cotton Pima Cotton Pecan	1b/acre 1b/acre 1bs.	782	478	686 383 4,800,000	693 392 3,200,000
County Yield: Upland Cotton Pima Cotton Pecand	1b/acre 1b/acre 1bs.	637 426 3,575,000	637 426 3,575,000	637 426 3,575,000	637 426 3,575,000

^aBasic model used for analysis with yield adjustments.

 $^{\mbox{\sc b}_{T}}$ These adjustments are the factors by which yields were decreased. The actual coefficients used in the model are the reciprocals of these adjustments due to model mechanics.

^CTotal cotton acreage restricted to 28,000 acres.

dighest ever total yield of pecans for El Paso County. County yields are from Table 2.

lint per acre while the historical El Paso County yield was 426 pounds per acre. Thus, pima cotton lint and seed yield were adjusted by .90909 and the model was again solved, giving solution III in Table 27. The objective function value decreased further from \$10.44 million to \$8.98 million with 23,246 acres shifted back into upland cotton production leaving 12,721 acres in pima cotton production. This resulted in a 686 pound per acre yield for upland cotton and a 383 pound per acre yield for pima cotton.

While these cotton yields are near the study area average, 35,967 acres in cotton production is more than has been observed in recent years (Table 1). Thus, total cotton acreage was restricted to 28,000 acres. Also, at this time the adjustment on pecans was lowered from .5 to .33333. The model was again solved giving solution IV of Table 27. The objective function again declined in value from \$8.98 million to \$7.34 million. Upland cotton acreage decreased to 17,344 acres and pima cotton acreage decreased to 10,656 acres. Alfalfa acreage increased from 6,083 acres to 8,517 acres. A total of 2,940 acres of wheat were produced and all available surface water was used. The yield of upland and pima cotton increased to 693 and 392, respectively. The total production of pecans decreased to 3,200,000 pounds which is within the range of observed production.

This final adjusted model (solution IV) was selected for use in the analysis. To examine the option in which pumping groundwater was not allowed, the model was modified. The price of the LP gas required for the operation of an irrigation well was increased from \$0.69 per gallon to \$999,999.0 per gallon. This change effectively

eliminated groundwater pumping.

To provide base solutions, the quantity of surface water available annually was parametrically increased from zero to three feet per acre with the groundwater pumping option included and from 1.05927 to three feet per acre for the no groundwater pumping option. At least 50,898 acre feet of surface water are required to sustain established alfalfa fields and pecan orchards. This is equivalent to a surface water allocation of 1.05927 feet per acre. Allocations of surface water below 1.05927 feet per acre were not considered when groundwater pumping was not permitted.

Economic Implications

Tables 28 and 29 give the net farm revenues generated for alternative surface water allocations. Table 28 gives the results where groundwater pumping is included, while Table 29 gives the results in the absence of groundwater pumping. These data are plotted in Figure 5. With groundwater pumping included, net farm revenues range from 4.719 million dollars at no surface water allocation to 7.336 million dollars at a three acre foot per acre surface water allocation. Without groundwater pumping, net farm revenues range from 1.132 million dollars at a 1.15927 acre foot per acre surface water allocation to 7.331 million dollars at a three acre foot surface water allocation. As can be seen, groundwater pumping is not that important in terms of net farm returns at surface water allocations above about 2.25 feet per acre. On the other hand, at surface water allocations below 2.25 feet per acre, pumping groundwater is extremely important in maintaining net farm returns.

Table 28. Irrigation Water Use and Economic Implications for Alternative Surface Water Allocations with Ground-water Pumping

2.77831 0 90.37 113,437.7 2.77831 4.714 2.77831 0 90.37 113,437.7 2.774881 4.754 2.78782 .00633 10.34 85.05 133,137.7 2.77468 4.784 2.78782 .01623 780 85.05 133,137.7 2.77468 4.784 2.79362 .02597 11248 57.32 132,985.7 2.76465 4.884 2.79372 .03107 1248 57.32 133,047.7 2.77432 4.984 2.79374 .004965 2.3885.5 53.25 133,131.7 2.77432 4.998 2.83808 .06965 2.3885.5 47.76 133,131.7 2.77432 4.998 2.83808 .06825 3034 4.5.63 133,131.7 2.77432 4.998 2.84079 .07100 3411.5 37.48 133,131.7 2.77432 4.998 2.86825 .09416 45.5 31.44 133,131.7 2.76579 4.998	Total Water Applied feet/acre	Surface Water Allocation feet/acre	Total Surface Water acre feet	Shadow Price of Surface Water \$/acre foot	Total Groundwater acre feet	Groundwater per Acre feet/acre	Net Farm Revenues million \$
0.0812 390 87.32 113,377 2.77468 0.02597 1248 78.47 133,177 2.77465 0.02597 1248 78.73 133,177 2.77455 0.02597 1248 78.73 133,987 2.76765 0.04967 238.5 53.50 133,137 2.77429 0.04967 238.5 47.76 133,315.7 2.77429 0.0631 3898 47.76 133,315.7 2.77429 0.0632 3898 47.76 133,315.7 2.77429 0.0634 3688 47.76 133,315.7 2.77429 0.0829 4131.5 39.44 133,088.2 2.76979 0.0829 4131.5 39.44 133,088.2 2.76979 0.0829 4131.5 39.44 133,088.2 2.76979 0.0829 4131.5 39.44 133,088.2 2.76979 0.0941 4697 34.44 133,088.2 2.76979 1.091 4697 34.44	2 77831	c	C	90.37	133,497.7	2,77831	4.719
0.0623 780 85.05 113,177.7 2.7645 0.02597 1248 78.47 113,985.7 2.7645 0.02597 1248 77.32 113,047.7 2.7645 0.0596 2385.5 57.32 113,047.7 2.7645 0.0691 2886 47.76 113,047.7 2.77452 0.0635 3054 45.63 113,113.7 2.77452 0.0639 411.5 40.94 113,088.2 2.76979 0.0710 4131.5 39.14 113,088.2 2.76979 0.0715 4697 44.4 113,088.2 2.76979 0.0716 4697 44.4 113,088.2 2.76979 0.0716 4697 34.4 113,088.2 2.76979 0.0716 4697 34.4 113,088.2 2.76979 0.0716 4697 34.4 113,088.2 2.76979 0.0710 4697 34.4 113,122.7 2.79079 1.0816 3197 32.3 <td< td=""><td>2.78310</td><td>.00812</td><td>390</td><td>87,32</td><td>133,337.7</td><td>2.77498</td><td>4.754</td></td<>	2.78310	.00812	390	87,32	133,337.7	2.77498	4.754
.02597 1248 78.47 112,985.7 2.76765 .02597 1248 75.32 132,985.7 2.76765 .03107 1493 77.32 133,034.7 2.7665 .06031 2385.5 57.32 133,034.7 2.7665 .06031 2389 47.76 133,131.7 2.77452 .06829 3054 40.63 133,315.7 2.77452 .07100 4131.5 30.14 133,088.2 2.76979 .07100 4131.5 37.48 133,088.2 2.76979 .08539 4131.5 37.44 133,088.2 2.76979 .08416 4524.5 37.44 133,088.2 2.76979 .09416 4524.5 37.44 133,088.2 2.76979 .09416 4524.5 37.44 133,088.2 2.76979 .09416 4524.5 37.44 133,088.2 2.76979 .10816 4524.5 37.44 133,088.2 2.76979 .15113 12762	2.78788	.01623	780	85.05	133,177.7	2,77165	4.789
0.0297 1248 57.32 132,985.7 2.76665 0.04965 2385.5 5.50 133,034.7 2.76667 0.04965 2385.5 5.50 133,034.7 2.76667 0.06031 2385.5 5.50 133,0315.7 2.77652 0.06356 3054 46.76 133,1315.7 2.77652 0.06829 3281.5 40.94 133,318.2 2.76979 0.07100 4131.5 37.48 133,088.2 2.76979 0.0846 4524.5 37.44 133,088.2 2.76979 0.09475 4697 34.44 133,088.2 2.76979 0.09416 4524.5 33.44 133,088.2 2.76979 0.09416 4524.5 34.44 133,088.2 2.76979 0.09416 4524.5 34.44 133,088.2 2.76979 0.0942 4524.5 34.44 133,088.2 2.76979 0.0942 4524.5 34.44 133,133.2 2.76979 0.0942 133,047<	2.79362	.02597	1248	78.47	132,985.7	2,76765	4.828
03107 1493 57.32 133.034.7 2.76667 04965 2388.5 55.50 133,131.7 2.77452 06031 2898 47.76 133,315.7 2.77452 06031 2898 47.76 133,315.7 2.77452 06032 3954 45.63 133,315.7 2.77452 07100 4131.5 39.14 133,088.2 2.76679 09416 4524.5 39.14 133,088.2 2.76679 09775 4697 34.44 133,088.2 2.76979 10816 4697 34.44 133,088.2 2.76979 1313 1272 34.44 133,088.2 2.76979 1313 1272 34.44 133,088.2 2.76979 1313 1272 34.44 133,088.2 2.76979 1313 1272 34.44 133,122.7 2.79079 1313 1272 32.36 32.27 2.70079 14471 16553.5 30.71 119,278.1	2.79362	.02597	1248	57.32	132,985.7	2,76765	4.828
0.04965 2385.5 53.50 113,213.2 2.77239 0.06356 2088 47.76 113,313.7 2.77452 0.06326 3054 45.64 133,318.7 2.77452 0.06329 34.11.5 39.16 113,088.2 2.76979 0.06359 4131.5 39.16 113,088.2 2.76979 0.09416 4524.5 35.85 133,088.2 2.76979 0.09416 4667 34.44 1133,088.2 2.76979 1.0816 5197 32.36 133,088.2 2.76979 1.0816 5197 34.44 113,088.2 2.76979 1.0816 5197 32.36 133,088.2 2.76979 1.10816 5197 34.44 113,088.2 2.76979 1.10816 5197 34.44 113,088.2 2.76979 1.10816 5197 34.44 113,088.2 2.76979 1.10816 5197 34.44 113,313.7 2.72101 1.10816 11730.5	2,79974	.03107	1493	57.32	133,034.7	2,76867	4.842
.06031 2898 47.76 133,315.7 2.77452 .06836 394 45.63 113,315.7 2.77452 .06836 381.5 40.94 133,088.2 2.76979 .06829 3281.5 40.94 133,088.2 2.76979 .09416 4524.5 35.85 133,088.2 2.76979 .09775 4697 34.44 133,088.2 2.76979 .09775 4697 34.44 133,122.7 2.77697 .10816 5197 32.36 133,122.7 2.77697 .26477 12722 33.36 133,122.7 2.72101 .26477 12722 31.88 124,47 2.78674 .28027 1347 31.81 127,23 2.7201 .26477 12722 31.88 124,47 2.58664 .28027 1347 31.88 124,47 2.7201 .34471 16563.5 2.9.04 119,272 2.7364 .36624 15730.5 2.2104	2.82204	.04965	2385.5	53,50	133,213.2	2,77239	4.893
.06356 3054 45.63 133,315.7 2.77452 .06829 3281.5 40.94 133,088.2 2.76979 .07000 3411.5 37.48 133,088.2 2.76979 .0858 4524.5 35.85 133,088.2 2.76979 .09416 4524.5 35.85 133,088.2 2.76979 .09416 4524.5 35.85 133,088.2 2.76979 .10816 5197 32.36 133,088.2 2.76979 .10816 5197 32.36 133,088.2 2.76979 .2767 35.85 133,088.2 2.76979 .2777 32.36 133,088.2 2.76979 .2777 32.36 133,088.2 2.76979 .28027 13467 31.88 124,47 2.7726 .34421 15663.5 31.67 123,331.7 2.56674 .34524 1350.7 31.67 123,331.7 2.56674 .34524 17501.7 29.04 120,323.7 2.6423	2.83483	.06031	2898	47.76	133,315.7	2.77452	4.920
.06829 3281.5 40.94 133,088.2 2.76979 .07100 3411.5 39.14 133,088.2 2.76979 .08598 4524.5 35.85 133,088.2 2.76979 .09416 4524.5 35.85 133,088.2 2.76979 .09775 4697 32.36 133,088.2 2.76979 .15811 7262 35.85 133,088.2 2.76979 .15812 726.7 2.7757 2.7758 2.7758 .27757 12722 31.88 124,192.7 2.73567 .34725 13337 31.81 124,192.7 2.58674 .34725 13471 1272.3 3.717 2.58674 .34725 1337 31.81 124,192.7 2.58674 .34725 13468.3 29.04 129,277 2.58674 .35600 17730.5 29.04 120,323.3 2.58674 .36800 17730.5 27.74 120,627.5 2.51046 .56449 27075.5 2	2.83808	.06356	3054	45.63	133,315.7	2,77452	4.928
.07100 3411.5 39.14 133,088.2 2.76979 .08598 4534.5 35,48 133,088.2 2.76979 .09416 4524.5 35,44 133,088.2 2.76979 .09775 4697 34,44 133,088.2 2.76979 .09775 4697 34,44 133,122.7 2.79050 .10816 5197 32.36 133,22.7 2.79050 .15113 7262 32.36 130,744.7 2.79050 .26477 12722 33.22.7 2.72101 .26477 1337 31.81 124,192.7 2.78664 .27757 13337 31.81 124,192.7 2.56674 .34471 1688.3 29.04 119,278.1 2.56674 .34500 17300.5 29.04 119,278.1 2.56674 .36900 17730.5 22.74 120,627.5 2.51046 .3600 17730.5 22.74 120,627.5 2.4284 .5649 22467.5 22.30 1	2.83808	.06829	3281.5	40.94	133,088.2	2,76979	4.938
.08598 4131.5 37.48 133,088.2 2.76979 .09416 4524.5 35.85 133,088.2 2.76979 .09416 4697 34.44 133,122.7 2.79050 .09775 4697 32.36 133,122.7 2.7728 .15113 7262 32.36 133,222.7 2.77201 .26477 1222 31.88 124,192.7 2.78466 .27757 1337 31.81 124,331.7 2.56674 .28027 1337 31.81 124,331.7 2.56674 .3471 16563.5 30.71 119,278.1 2.56674 .3472 16685.3 30.71 119,278.1 2.56674 .3472 16685.3 30.71 119,278.1 2.56674 .3690 17730.5 29.04 120,331.7 2.51046 .3690 17730.5 29.04 120,328.3 2.51046 .4680.7 27.74 119,997.5 2.44284 .51701 27075.5 26.92 <th< td=""><td>2.84079</td><td>.07100</td><td>3411.5</td><td>39.14</td><td>133,088.2</td><td>2,76979</td><td>4.943</td></th<>	2.84079	.07100	3411.5	39.14	133,088.2	2,76979	4.943
.09416 4524.5 35.85 133,088.2 2.76979 .09775 4697 34,44 133,122.7 2.79050 .10816 5197 32.36 133,122.7 2.7728 .15113 7262 32.36 133,422.7 2.77210 .26477 12722 31.88 124,192.7 2.72101 .27757 13337 31.81 124,192.7 2.7564 .27757 13337 31.81 124,192.7 2.7564 .3472 13467 31.81 124,192.7 2.7564 .3472 13467 31.81 124,192.7 2.7564 .3472 13467 31.81 126,1331.7 2.5664 .3472 15685.3 30.71 119,278.1 2.48231 .3624 17730.5 29.04 120,278.1 2.48231 .3690 17730.5 27.74 120,627.5 2.5042 .46078 2240.5 27.74 120,627.5 2.5042 .56349 27075 26.92	2.85577	.08598	4131.5	37.48	133,088.2	2,76979	4.972
.09775 4697 34.44 133,122.7 2.79950 .10816 5197 32.36 133,122.7 2.79950 .10816 5197 32.36 133,222.7 2.79950 .26477 12722 31.88 124,192.7 2.58466 .27757 13337 31.81 123,331.7 2.58674 .38027 13467 31.81 123,331.7 2.58674 .34725 13467 31.81 123,331.7 2.58674 .34725 13685.3 30.71 119,278.1 2.58674 .34725 16885.3 29.04 119,278.1 2.58674 .34725 1501.7 29.04 120,328.3 2.5642 .36900 17730.5 29.04 120,328.3 2.51046 .36900 17730.5 27.74 119,997.5 2.49735 .51701 27842.5 27.74 119,997.5 2.49735 .51701 2705.5 27.39 119,497.5 2.49736 .66801 2705.5	2.86395	.09416	4524.5	35,85	133,088.2	2.76979	4.986
.10816 5197 32.36 133,222.7 2.77258 .15113 7262 32.36 130,744.7 2.7201 .26477 1272 31.88 124,192.7 2.5866 .27757 1337 31.81 124,192.7 2.58674 .28077 13467 31.67 123,331.7 2.56674 .34471 16563.5 30.71 119,278.1 2.56674 .34471 16563.5 30.71 119,278.1 2.56674 .34725 16685.3 29.04 119,278.1 2.56674 .34725 16685.3 29.04 119,278.1 2.48231 .36900 17730.5 29.04 120,627.5 2.51046 .46078 22140.5 27.74 120,627.5 2.51046 .46078 22140.5 27.74 120,627.5 2.51046 .51701 24842.5 27.74 110,997.5 2.44284 .5825 2868.5 26.92 117,338.5 2.44284 .5836 24075.5	2.86825	.09775	4697	34.44	133,122.7	2,79050	4.992
.15113 7262 32.36 130,744.7 2.72101 .26477 12722 31.88 124,192.7 2.58466 .27757 1337 31.81 123,331.7 2.56674 .28027 13467 31.67 123,331.7 2.56674 .34725 16685.3 30.71 119,281.7 2.56674 .34725 16685.3 29.04 119,281.7 2.48237 .34725 16685.3 29.04 119,281.7 2.48231 .36900 17730.5 29.04 120,627.5 2.51045 .46078 22140.5 27.74 119,997.5 2.4931 .51701 24842.5 27.74 119,997.5 2.4934 .51701 24842.5 26.92 117,378.5 2.46284 .5825 28265.5 26.92 117,378.5 2.44284 .5837 32098 22.48 108,43 2.26272 .6801 34098 22.48 108,43 2.06872 .86204 41757.2 20.09 96,458 2.05700 .8639 41757.2 20.0	2.88074	10816	5197	32,36	133,222.7	2,77258	5.010
26477 12722 31.88 124,192.7 2.58466 27757 13337 31.81 124,192.7 2.58674 27757 13467 31.67 123,331.7 2.56674 34471 16563.5 30.71 119,278.1 2.56674 34725 16685.3 29.04 119,278.1 2.48201 36900 17730.5 29.04 120,328.3 2.50423 36900 17730.5 29.04 120,627.5 2.51046 46078 22140.5 27.74 120,627.5 2.51046 55349 22140.5 27.74 120,627.5 2.51046 55340 22140.5 27.74 120,627.5 2.51046 5634 22140.5 27.74 119,617.5 2.4933 5634 22140.5 27.74 119,617.5 2.44284 5680 2246.5 26.92 117,378.5 2.44284 5680 32098 24.07 110,634 2.25272 86904 41577.2 20.09 95,495.5 1.9432 91539 43604.5 20.09 <td>2.87214</td> <td>,15113</td> <td>7262</td> <td>32.36</td> <td>130,744.7</td> <td>2,721.01</td> <td>5.077</td>	2.87214	,15113	7262	32.36	130,744.7	2,721.01	5.077
27757 13337 31.81 123,331.7 2.56674 28027 13467 31.67 123,331.7 2.56674 34471 16685.3 29.04 119,260.7 2.48237 34725 16685.3 29.04 119,260.7 2.48201 36900 17730.5 29.04 120,627.5 2.51046 36900 17730.5 27.74 120,627.5 2.51046 36900 17730.5 27.74 120,627.5 2.51046 46078 22140.5 27.74 120,627.5 2.51046 5379 27.74 119,997.5 2.49735 28264 27.73 119,997.5 2.49735 28825 28265.5 26.92 117,378.5 2.46931 58825 28265.5 26.92 117,378.5 2.40958 66801 32098 24.07 110,634 2.25272 86281 41458 21.12 99,402 2.06872 86281 4155 2.09 99,402 2.0670 86394 41757.2 20.09 99,402 2.0570	2,84943	,26477	12722	31.88	124,192.7	2,58466	5.253
.28027 13467 31.67 123,331.7 2.56674 .3471 16563.5 30.71 119,278.1 2.48237 .3472 16685.3 29.04 119,278.1 2.48201 .3472 16685.3 29.04 119,278.3 2.48201 .3624 17730.5 29.04 120,627.5 2.50423 .36900 17730.5 27.74 120,627.5 2.51046 .46078 22140.5 27.74 119,997.5 2.49735 .51701 24842.5 27.74 119,997.5 2.49735 .51701 24842.5 27.39 119,997.5 2.49931 .56349 27075.5 26.92 119,997.5 2.49931 .56349 27075.5 26.92 115,780.5 2.40958 .66801 34090 22.48 108,243 2.25272 .86281 41458 21.12 98,483.8 2.05700 .86281 41458 21.12 98,483.8 2.05700 .86281 41458 20.09 96,458 1.94381 .9530 46094.5 <	2.84431	.27757	13337	31.81	123,331.7	2.56674	5.273
.34471 16563.5 30.71 119,278.1 2.48237 .34725 16685.3 29.04 119,260.7 2.48201 .36424 17501.7 29.04 120,328.3 2.50423 .36900 17730.5 29.04 120,627.5 2.51046 .46078 27.74 120,627.5 2.51046 .51701 24842.5 27.74 119,997.5 2.49335 .51701 24842.5 27.74 119,997.5 2.44284 .58825 28265.5 26.92 117,378.5 2.44284 .58826 28265.5 26.92 117,378.5 2.40958 .66801 32098 24.07 110,634 2.24284 .66801 34090 22.48 108,243 2.25272 .86281 41458 21.12 99,402 2.00745 .86281 41458 21.12 98,438.8 2.00745 .9530 46094.5 19.39 93,835.5 1.94738 .9530 46094.5 19.39 93,615.5 1.94988 .9918 47624.5 19.39 <t< td=""><td>2,84701</td><td>.28027</td><td>13467</td><td>31.67</td><td>123,331.7</td><td>2.56674</td><td>5.277</td></t<>	2,84701	.28027	13467	31.67	123,331.7	2.56674	5.277
34725 16685.3 29.04 119,260.7 2,48201 36424 17501.7 29.04 120,328.3 2,50423 36900 17730.5 29.04 120,627.5 2,51046 36900 17730.5 27.74 120,627.5 2,51046 36900 17730.5 27.74 119,997.5 2,49735 51701 24842.5 27.74 119,997.5 2,49735 51701 24842.5 27.74 119,997.5 2,49735 56349 27.74 119,997.5 2,49735 56801 24826.5 26.92 117,378.5 2,40284 58825 28265.5 26.92 117,378.5 2,40284 66801 32098 24.07 110,634 2,25272 70947 34090 22.48 108,243 2,25272 86581 41458 21.12 98,483.8 2,00745 86584 43984.5 20.09 95,495.5 1,9439 91539 46094.5 19.39 93,483.5 1,94738 99780 47624.5 19.39 93,455.	2,82708	.34471	16563,5	30,71	119,278.1	2,48237	5.375
36424 17501.7 29.04 120,328.3 2.50423 36900 17730.5 29.04 120,627.5 2.51046 36900 17730.5 27.74 120,627.5 2.51046 36900 22140.5 27.74 119,997.5 2.49735 51701 24842.5 27.39 119,611.5 2.46931 56349 28265.5 26.92 117,786.5 2.46284 58825 28265.5 26.92 117,786.5 2.40958 66801 32098 24.07 110,634 2.25272 70947 34090 22.48 108,243 2.25272 86281 41458 21.12 99,402 2.06872 86281 41757.2 20.09 96,438 2.00745 89536 43084.5 20.09 95,495.5 1.9438 91539 47024.5 19.39 93,517.5 1.94988 99780 47624.5 19.39 93,755.5 1.94988	2,82926	.34725	16685.3	29.04	119,260.7	2.48201	5.379
36900 17730.5 29.04 120,627.5 2.51046 .36900 17730.5 27.74 120,627.5 2.51046 .46078 22140.5 27.74 119,997.5 2.40935 .51701 2442.5 27.39 119,611.5 2.44284 .56349 27.692 117,786.5 2.46284 .58825 28265.5 26.92 117,786.5 2.40958 .66801 32098 24.07 110,634 2.24284 .70947 34090 22.48 108,243 2.25272 .86281 41458 21.12 99,402 2.05272 .86504 41757.2 21.12 98,818.8 2.05700 .89536 43022 20.09 95,495.5 1.94751 .95930 46094.5 19.39 93,385.5 1.94738 .99146 47624.5 19.39 93,615.5 1.94988 .99780 47644.5 18.10 93,755.5 1.95121	2.86847	.36424	17501.7	29.04	120,328.3	2,50423	5.402
36900 17730.5 27.74 120,627.5 2.51046 .46078 22140.5 27.74 119,997.5 2.49735 .56349 22740.5 27.39 119,911.5 2.46284 .56349 27.75 119,611.5 2.46284 .56349 27.75 26.92 117,378.5 2.44284 .58825 28265.5 26.92 117,378.5 2.40958 .66801 32098 22.48 110,634 2.30248 .70947 34090 22.48 108,243 2.25272 .86281 4158 21.12 99,402 2.06872 .86904 47757.2 21.12 98,838.8 2.05700 .89536 43984.5 20.09 95,495.5 1.98742 .9530 46094.5 19.39 93,385.5 1.9438 .9914 47624.5 19.39 93,61.5 1.94988 .99780 4764.5 18.10 93,755.5 1.95121	2.87946	.36900	17730,5	29.04	120,627.5	2.51046	5.409
46078 22140.5 27.74 119,997.5 2.4933 51701 24642.5 27.39 119,611.5 2.44284 58349 226.92 115,788.5 2.44284 58825 28.65.5 26.92 115,780.5 2.44284 66801 32.098 22.48 110,634 2.30248 70947 34090 22.48 108,243 2.25272 86281 41458 21.12 99,402 2.06872 86904 47757.2 21.12 98,838.8 2.0700 89536 43964.5 20.09 96,458 2.00745 9539 46094.5 19.39 93,385.5 1.94738 97866 47624.5 19.39 93,571.5 1.94988 99780 4764.5 18.10 93,755.5 1.94988	2.87946	.36900	17730.5	27,74	120,627.5	2,51046	5.409
51701 24842.5 27.39 119,611.5 2.48931 55349 27.39 119,611.5 2.48284 55349 27.75.5 26.92 117,378.5 2.46284 66801 32098 24.07 110,634 2.30248 70947 34090 22.48 108,43 2.25272 86281 41458 21.12 99,402 2.06872 86904 4757.2 21.12 98,838.8 2.05700 89536 43022 20.09 96,458 2.00745 91539 46094.5 19.39 93,385.5 1.94351 97866 47624.5 19.39 93,571.5 1.94988 99180 4764.5 18.10 93,755.5 1.95121	2,95813	84094	22140.5	27.74	119,997.5	2.49/35	5,531
56349 27075.5 26.92 111,378.5 2.4284 58825 28265.5 26.92 115,780.5 2.40958 58826 28265.5 26.92 115,780.5 2.40958 70947 34090 22.48 110,634 2.25272 86281 4158 21.12 99,402 2.05872 86904 41757.2 21.12 98,838.8 2.05700 89536 43022 20.09 96,458 2.00745 9539 46094.5 19.39 93,385.5 1.94351 97866 47024.5 19.39 93,571.5 1.94388 99114 47624.5 18.10 93,755.5 1.95121	3,00632	.51701	24842.5	27.39	119,611.5	2,48931	5.606
.58825 28.265.5 26.92 115,780.5 2.40958 .66801 32.098 24.07 110,634 2.30248 .70947 34.090 22.48 108,243 2.25272 .86281 41.58 21.12 99,402 2.05872 .86504 41.757.2 21.12 98,838.8 2.05700 .89536 43022 20.09 95,495 1.98742 .91539 46094.5 19.39 93,385.5 1.94351 .9786 47024.5 19.39 93,571.5 1.94738 .9914 4764.5 18.10 93,755.5 1.95121	3,00633	.56349	27075.5	26.92	117,378.5	7.44.284	3,008
.66801 32098 24.07 110,634 2.30248 .70947 34090 22.48 108,243 2.25272 .86281 41458 21.12 99,402 2.06872 .86304 41757.2 21.12 98,838.8 2.05700 .89536 43022 20.09 96,458 2.00745 .91539 46094.5 19.39 93,885.5 1.9431 .9786 47024.5 19.39 93,571.5 1.94738 .9914 47624.5 18.10 93,755.5 1.95121	2,99783	.58825	28265.5	26.92	115,780.5	2.40958	5.700
70947 34090 22.48 108,243 2.25272 .86281 4158 21.12 99,402 2.06872 .86904 41757.2 21.12 98,838.8 2.05700 .89536 4302 20.09 95,495.5 1.9454 .91539 46094.5 19.39 93,385.5 1.94531 .97866 47624.5 19.39 93,691.5 1.94988 .99780 4764.5 18.10 93,755.5 1.95121	2,97049	.66801	32098	24.07	110,634	2,30248	5.803
.86281 41458 21.12 99,402 2.06872 .86904 41757.2 21.12 98,838.8 2.05700 .89536 43022 20.09 96,458 2.00745 .91539 46094.5 20.09 95,495.5 1.98742 .95930 46094.5 19.39 93,385.5 1.9438 .97866 47624.5 19.39 93,691.5 1.94988 .99780 47944.5 18.10 93,755.5 1.95121	2,96219	.70947	34090	22,48	108,243	2.25272	5.851
.86904 41757.2 21.12 98,838.8 2.05700 .89536 43022 20.09 96,458 2.00745 .91539 43984.5 20.09 95,495.5 1.98742 .95930 46094.5 19.39 93,385.5 1.94351 .97866 47624.5 19.39 93,571.5 1.94738 .9914 47624.5 18.10 93,755.5 1.95121	2,93153	.86281	41458	21,12	99,402	2.06872	910.9
.89536 43022 20.09 96,458 2.00745 .91539 43984.5 20.09 95,495.5 1.98742 .95930 46094.5 19.39 93,385.5 1.94351 .97866 47024.5 19.39 93,571.5 1.94738 .99114 47624.5 19.39 93,691.5 1.94988 .99780 47944.5 18.10 93,755.5 1.95121	2,92604	86904	41757,2	21.12	98,838.8	2,05700	6.023
. 91539	2,90281	.89536	43022	20.09	96,458	2.00745	6,049
. 95930 46094.5 19.39 93,385.5 1.94351 . 97866 47024.5 19.39 93,571.5 1.94738 . 99114 47624.5 19.39 93,691.5 1.94988 . 99780 47944.5 18.10 93,755.5 1.95121	2,90281	.91539	43984.5	20.09	95,495.5	1.98742	690*9
.97866 47024.5 19.39 93,571.5 1.94738 .99114 47624.5 19.39 93,691.5 1.94988 .99780 47944.5 18.10 93,755.5 1.95121	2,90281	.95930	46094.5	19,39	93,385.5	1.94351	6,111
.99114 47624.5 19.39 93,691.5 1.94988 .99780 47944.5 18.10 93,755.5 1.95121	2,92604	.97866	47024.5	19,39	93,571.5	1.94738	6.129
.99780 47944.5 18.10 93.755.5 1.95121	2.94102	.99114	47624.5	19.39	93,691.5	1.94988	6.141
	2.94901	.99780	47944.5	18,10	93,755.5	1,95121	6.147

Table 28. Continued

Total Water Applied per Acre feet/acre	Surface Water Allocation feet/acre	Total Surface Water acre feet	Shadow Price of Surface Water \$/acre foot	Total Groundwater acre feet	Groundwater per Acre feet/acre	Net Farm Revenues million \$
2 97973	1.02340	49174.5	18,10	94,001,5	1,95633	6,169
3,03667	1,07085	51454.5	18.10	94,457.5	1,96582	6.210
3,06851	1.09739	52729.5	16,60	94,712.5	1.97112	6.234
3,06851	1.09765	52742.3	16.60	64,699.7	1.97086	6.234
3,06852	1.09835	52775.5	16.60	94,666.5	1,97017	6.234
3,06851	1,09855	52785.5	16.28	94,656.5	1,96996	6,234
3,06851	1.18807	57087	16.27	90,355	1.88044	6.304
3.06851	1.20453	57921	16.27	89,521	1.86308	6,318
3,06851	1,23740	59457	16.26	87,985	1.83111	6.343
3,06851	1.26133	20909	16.26	86,835	1.80718	6.362
3,06852	1.27861	61437	16.26	86,005	1.78991	6.375
3,06851	1.28901	61937	16.26	85,505	1,77950	6.383
3.07892	1.29942	62437	16.26	85,505	1,77950	6.392
3,06851	1,33261	64032	16.26	83,410	1.73590	6.417
3,06850	1.49197	71689.5	16.26	75,752.5	1.57653	6.542
3,06851	1,64468	79027	16.26	68,415	1,42383	6.661
3,06852	1,75426	84292	16.26	63,150	1.31426	6.747
3,06851	1,75701	84424.5	16.26	63,017.5	1,31150	6.749
3,06851	1.75946	84542	16.26	62,900	1.30905	6.751
3.06851	1,83100	87979.5	16.26	59,462.5	1.23751	6.807
3,06851	1.84827	88809.5	16.26	58,632.5	1.22024	6.820
3,06851	1.85868	89309.5	16.26	58,132.5	1,20983	6.829
3.06852	1.86706	89712	16.26	57,730	1,20146	6.835
3.06851	1,93100	92784.5	16.26	54,657.5	1,13751	6,885
3.06851	1,93823	93132	16.26	54,310	1.13028	6.891
3.06851	2.00000	96100	8.27	51,342	1,06851	6.939
3.06851	2,09062	100454.5	8.27	46,987.5	0.97789	6.975
3,06851	2.10798	101288.5	8.27	46,153.5	0,96053	6.982
3.06851	2,13995	102824.5	8.26	44,617.4	0.92856	6.995
3,06851	2,18537	105007	8.26	42,435	0.88314	7.013
3.06851	2,20930	106157	8.26	41,285	0.85921	7.022
3,06851	2,24999	108112	8.26	39,330	0.81852	7.038
3.06851	2,25722	108459.5	8.26	38,982.5	0.81129	7,041
3,06851	2,40993	115797	8.26	31,645	0.65858	7.102
3,06851	2.43386	116947	8.26	30,495	0.63465	7,111
3.06851	2.48407	119359.5	8.26	28,082.5	0.58444	7.131
3.06851	2.81851	135429.5	8.26	12,012.5	0.25000	7.264
3,06851	2,82574	135777	8.26	11,665	0.24277	7.267
3,06851	2,89619	138162	8.26	8,280	0.17232	7.295
3,06851	2,92491	140542	8.26	006.9	0.14360	7,306
3,06852	2.97374	142888	8.26	4,554	0.09478	7.326
3,06851	3,00000	144150	8.26	3,292	0.06851	7.336

Table 29. Irrigation Water Use and Economic Implications for Alternative Surface Water Allocations in the Absence of Groundwater Pumping

	idwater rumping		
Surface Water	Total	Shadow Price	Net Farm
Allocation	Surface Water	of Surface Water	Revenue
feet/acre	acre feet	\$/acre foot	million \$
1.05927	50,898	544.49	1.132
1.06739	51,288	485.26	1.344
1.07550	51,678	395.34	1.533
1.10391	53,043	326.34	2.078
1.10797	53,238	99.99	2.137
1.11453	53,553	99.99	2.168
1.14184	54,866	99.99	2.299
1.14965	55,241	99.99	2.337
1,15745	55,616	99.99	2.374
1.16135	55,803	99.99	2.393
1.18348	56,866	99.99	2.500
1.19967	57,644	99.99	2.577
1.21079	58,179	99.99	2.631
1.21860	58,554	99.99	2.668
1.22640	58,929	99,99	2.706
1.22699	58,957	99.99	2.709
1.23479	59,332	99.99	
1.24260	59,707		2.746
1.37586		99.99	2.784
	66,110	99.99	3.424
1.40317	67,422	99.99	3.555
1.41098	67,797	99.99	3.592
1.41371	67,929	99.99	3.606
1.41761	68,116	99.99	3.624
1.41878	68,172	99.99	3.630
1.42990	68,707	99.99	3.683
1.49331	71,754	99.99	3.988
1.52063	73,066	99.99	4.119
1.52843	73,441	99.99	4.157
1.53604	73,807	99.99	4.193
1.54603	74,287	99.99	4.241
1.59395	76 , 589	99.99	4.472
1.63988	78 ,7 96	99.99	4.692
1.65927	79,728	99.99	4.785
1.66317	79 , 915	99.99	4.804
1.67281	80,379	99.99	4.850
1.69478	81,434	82.56	4.956
1.69868	81,622	74.01	4.971
1.69888	81,631	74.01	4.972
1.71273	82,297	74.01	5.021
1.72600	82,934	71.35	5.069
1.73380	83,309	69.47	5.095
1.74005	83,609	69.47	5.116
1.74161	83,684	59.54	5.121

Table 29. Continued

Surface Water Allocation feet/acre	Total Surface Water acre feet	Shadow Price of Surface Water \$/acre foot	Net Farm Revenue million \$
1.75940	84 , 53 9	59.54	5.172
1.84482	88,644	59 . 54	5.417
1.92668	92,577	59 . 54	5.651
1,95282	93,833		5.726
1.95417	93,898	53.93 51.94	5.729
1.96250	94,298		5.750
1.97290	94,798	51.94 51.94	5.776
1.97811	95,048	51.94	5.789
2.00000	96,100	43.94	5.844
2.03258	97,666	43.94	
2.04091	98,066	43.94	5.912
2.06900	99,416		5.930
2.00300	99,816	43.94 43.94	5.989
2.07733	·		6.007
2.09293	100,316	43.94	6.029
2.15095	100,566	43.94	6.040
2.13093	103,353	43.94	6.162
2.19777	105,103	43.94	6.239
2,20298	105,603	43.94	6.261
	105,853	43.94	6.272
2,22993	107,148	43.94	6.329
2.26635	108,898	43.94	6.406
2.27675	109,398	43.94	6.428
2.28196	109,648	43.94	6.439
2.28258	109,678	43.94	6.440
2.29132	110,098	42.65	6.459
2.32452	111,693	42.65	6.527
2.48388	119,351	42.65	6.853
2.56614	123,303	39.76	7.022
2.57236	123,602	39.76	7.034
2.57334	123,649	39.76	7.036
2.57561	123,758	32.94	2.040
2.57831	123,888	23.81	7.044
2.58102	124,018	15,72	7.047
2.71226	130,324	15.72	7.146
2,75009	132,142	15.72	7.175
2.88495	138,622	9.79	7.277
2.88870	138,802	9.79	7.279
2.94901	141,700	9.79	7.307
3.00000	144,150	9.79	7.331

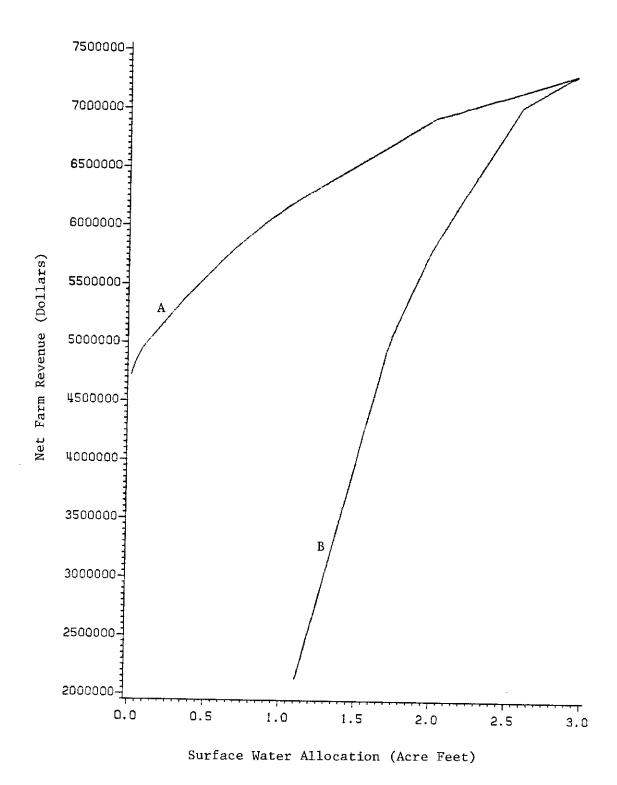


Figure 5. Net Farm Revenue as a Function of Surface Water Allocation With (A) and Without (B) Groundwater Pumping

Tables 28 and 29 also give the value of an additional acres foot of surface water at each specified allocation level (i.e., the marginal value product of irrigation water). This information is displayed in Figure 6. For the groundwater pumping option, this value ranges from \$90.37 per acre foot where no surface water is allocated down to \$8.26 per acre foot at a three foot surface water allocation. For the no pumping option, the value drops from \$544.49 per acre foot at 1.05927 foot allocation to \$9.79 at a three foot surface water allocation. This is almost as low as the \$8.26 value when groundwater pumping is allowed. These values of an additional foot of water establish the economically justifiable maximum price which could be paid for an additional unit of irrigation water.

As the surface water allocation increases, the use of groundwater generally decreases. This is depicted graphically in Figure 7 and numerically in Table 28. The total water applied per acre is also given in Table 28. It ranges from 2.78 feet, or 2 feet and 9.34 inches to a high of 3.08 feet or 3 feet and 0.95 inches. This information is displayed in Figure 8.

There are two abrupt decreases in total water applied as surface water is increased. These drops come about because surface water is replacing saline groundwater. Twenty percent more water is pumped from saline groundwater sources for salt leaching than is required from surface water sources. Thus, total groundwater used is dropping faster than total surface water applied is rising. At a surface water allocation of 1.09737 acre feet, total water applied levels off to 3.06851 acre feet. It appears that the 3 acre feet allocation set as the

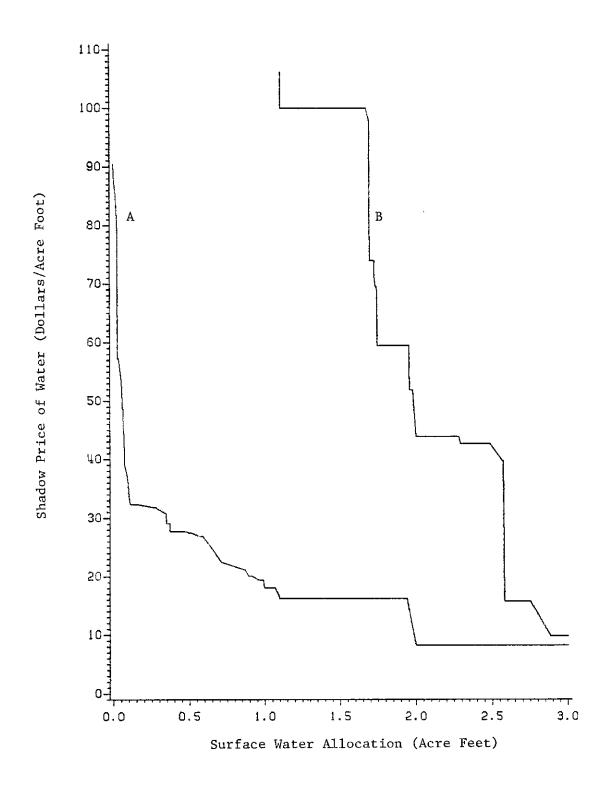


Figure 6. Value of an Additional Acre Foot of Surface Water at Alternative Surface Water Allocations With (A) and Without (B) Groundwater Pumping

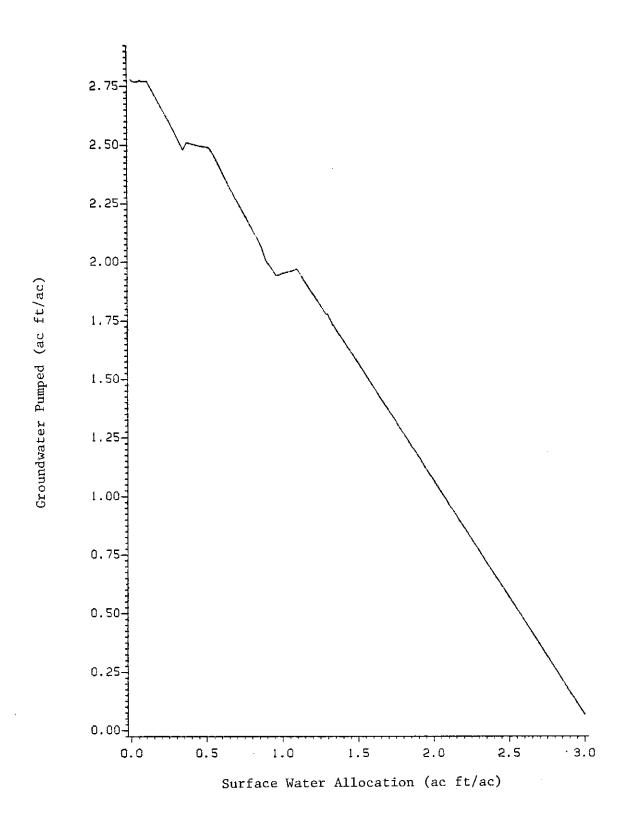


Figure 7. Groundwater Pumped Per Acre at Alternative Surface Water Allocation Levels

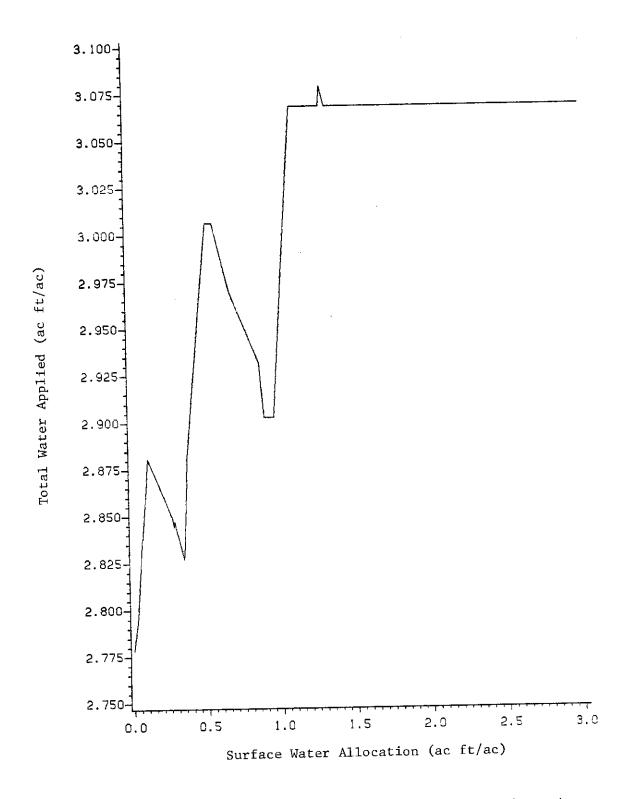


Figure 8. Total Ground and Surface Irrigation Water Applied Per Acre at Alternative Surface Water Allocation Levels

appropriate allocation by Rio Grande Project planners is very close to the optimal requirement for maximum profit. As the surface water allocation rises, the total water applied per acre varies and then stabilizes at 3.06851 acre feet.

Cropping Patterns

The cropping pattern for zero surface water when groundwater pumping is allowed is the following:

Upland cotton - 17312 acres; Pima cotton - 10688 acres: Alfalfa - 6083 acres; Wheat 708 acres; Barley 0 acres; Grain sorghum -0 acres; - 4800 acres: Pecans Tomatoes 100 acres; Lettuce 200 acres; 200 acres; Onions Green chili 700 acres; and Red chili 0 acres.

Barley, grain sorghum and red chili did not enter the solution. Wheat, barley and grain sorghum actually compete for the same acreage. These crops are viewed as substitutes for each other. When land is allocated for the production of grain, the one crop of these three with the highest profit is planted. Thus, the acreages given in the results for wheat could have easily been barley or grain sorghum.

As the surface water allocation increases only upland and pima cotton, alfalfa and wheat acreage change. These changes are given in Table 30. At a surface water allocation of three feet per acre these four crops had the following acreages:

Upland cotton - 17,344 acres; Pima cotton - 10,656 acres; Alfalfa - 8,517 acres; and Wheat - 2,940 acres.

Table 30. Crop Production Acreages for Upland and Pima Cotton, Alfalfa and Wheat by Selected Surface Water Allocation with the Pumping of Groundwater Allowed

Surface Water	Cot	ton		
Allocation	Upland	Pima	Alfalfa	Wheat
feet/acre				
			acres	
0	17,312	10,688	6,083	780
.00812	17,312	10,688	6,083	980
.01.623	17,312	10,688	6,083	1,180
.02597	17,312	10,688	6,083	1,420
.03107	17,312	10,688	6,083	1,518
.04965	17,312	10,688	6,083	1,875
.06031	17,107	10,893	6,083	2,080
.08598	17,107	10,893	6,083	2,320
.09416	17,107	10,893	6,083	2,451
.09775	17,107	10,893	6,083	2,520
.10816	17,107	10,893	6,083	2,720
.27757	17,312	10,688	6,083	2,720
.34471	17,875	10,125	6,083	2,720
.34725	17,875	10,125	6,083	2,778
.36424	17,875	10,125	6,397	2,778
.36900	17,875	10,125	6,485	2,778
.46078	17,875	10,125	7,745	1,518
.51701	17,875	10,125	8,517	746
.56349	17,237	10,763	8,517	746
.70947	17,569	10,431	8,517	746
.86904	17,657	10,343	8,517	658
.89536	18,029	9,971	8,517	286
.91539	18,414	9,586	8,517	286
.95930	19,258	8,742	8,517	286
.97886	19,258	8,742	8,517	658
.99114	19,258	8,742	8,517	898
.99780	19,258	8,742	8,517	1,026
1.02340	18,766	9,234	8,517	1,518
1.07085	17,854	10,146	8,517	2,430
1.09739	17,344	10,656	8,517	2,940
3.00000	17,344	10,656	8,517	2,940

The model solutions for crop acreages when groundwater pumping is not allowed is a completely different situation. The results are given in Table 31. At a surface water allocation of 1.05927 feet per acre, only 6083 acres of alfalfa and 4800 acres of pecans were in the solution. The 4800 acres of pecans were constant throughout all solutions. Vegetable crops came into the solution as soon as there was irrigation water available beyond the alfalfa and pecan requirements. Vegetable acres across all surface water allocations of 1.11 acre feet/acre or more were as follows:

Lettuce - 200 acres; Onions - 200 acres; Green chili - 700 acres; and Tomatoes - 100 acres.

As the allocations of surface water were increased, upland cotton, wheat and finally pima cotton successively entered the solutions (Table 31). At a three foot surface water allocation, upland and pima cotton, alfalfa and wheat had the following acreages:

Upland cotton - 18,441.33; Pima cotton - 9,558.67; Alfalfa - 8,517; and Wheat - 1,842.67.

It should be noted from Table 31 that as the surface water allocation is increased, vegetable crops were first added to the solution, then upland cotton. Only above a surface water allocation of 2.32452 feet per acre do pima cotton and wheat enter the solution and alfalfa acreage increase over its lower limit.

Laser Leveling

Laser leveling was shown to be unimportant when groundwater pumping is allowed. Only a maximum of 640 acres leveled and only at surface

Table 31. Crop Production Acreages for Upland and Pima Cotton, Alfalfa, Wheat, Tomatoes, Lettuce,

Alfalfa Wheat Tomatoes Lettuce Onions 6,083 200 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200 6,083 100 200 200	Surface Water	Cotton							Green
6,083 acres 6,083 acres 6,083 100 200 6,083 100 200 6,083 100 200 868 6,083 100 200 1,088 6,083 100 200 1,588 6,083 100 200 2,358 6,083 100 200 2,535 6,083 100 200 2,535 6,083 100 200 2,537 6,083 100 200 2,537 6,083 100 200 2,537 6,083 100 200 3,030 6,083 100 200 3,030 6,083 100 200 2,685 6,083 100 200 3,500 6,083 100 200 2,585 6,083 100 200 2,585 6,083 100 200 3,500 6,083	Allocation feet/acre	Upland	Pima	Alfalfa	Wheat	Tomatoes	Lettuce	Onions	Ch111
6,083 200 6,083 200 6,083 100 200 6,083 100 200 1,086 6,083 100 200 1,268 6,083 100 200 1,268 6,083 100 200 1,368 6,083 100 200 2,435 6,083 100 200 2,435 6,083 100 200 2,435 6,083 100 200 2,435 6,083 100 200 2,435 6,083 100 200 2,835 6,083 100 200 3,050 6,083 100 200 3,550 6,083 100 200 6,083 100 200 200 7,565 6,083 100 200 7,565 6,083 100 200 8,250 6,083 100 200 9,875 6,083 100 200 10,775 6,083 100 <t< td=""><td>1 05037</td><td></td><td></td><td>6 083</td><td>a</td><td>res</td><td></td><td></td><td></td></t<>	1 05037			6 083	a	res			
168 6,083 100 200 168 6,083 100 200 200 1,068 6,083 100 200 200 1,068 6,083 100 200 200 1,268 6,083 100 200 200 1,368 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 3,035 6,083 100 200 200 3,550 6,083 100 200 200 6,865 6,083 100 200 200 7,555 6,083 100 200 200 8,250 6,083 100 200 200 7,955 6,083 100 200 200	1.03927			6,083			200		
6,083 100 200 200 168 6,083 100 200 200 868 6,083 100 200 200 1,268 6,083 100 200 200 1,268 6,083 100 200 200 1,268 6,083 100 200 200 1,368 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 2,635 6,083 100 200 200 3,036 6,083 100 200 200 3,036 6,083 100 200 200 3,036 6,083 100 200 200 3,036 6,083 100 200 200 3,036 6,083 100 200 200 3,036 6,083 100 200 200 4,	1.00550			6-083			200	200	
168 6,083 100 200 200 1,068 6,083 100 200 200 1,068 6,083 100 200 200 1,268 6,083 100 200 200 1,268 6,083 100 200 200 1,268 6,083 100 200 200 2,368 6,083 100 200 200 2,350 6,083 100 200 200 2,355 6,083 100 200 200 2,350 6,083 100 200 200 3,450 6,083 100 200 200 4,855 6,083 100 200 200 5,865 6,083 100 200 200 7,465 6,083 100 200 200 7,965 6,083 100 200 200 8,250 6,083 100 200 200 <td>1 10391</td> <td></td> <td></td> <td>6.083</td> <td></td> <td></td> <td>200</td> <td>200</td> <td>700</td>	1 10391			6.083			200	200	700
168 6,083 100 200 200 1,068 6,083 100 200 200 1,268 6,083 100 200 200 1,368 6,083 100 200 200 2,368 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 3,050 6,083 100 200 200 3,050 6,083 100 200 200 3,450 6,083 100 200 200 7,365 6,083 100 200 200 7,365 6,083 100 200 200 7,365 6,083 100 200 200 7,365 6,083 100 200 200 10,375 6,083 100 200 200 <td>1,10797</td> <td></td> <td></td> <td>6,083</td> <td></td> <td>100</td> <td>200</td> <td>200</td> <td>700</td>	1,10797			6,083		100	200	200	700
1,668 6,083 100 200 200 1,568 6,083 100 200 200 1,568 6,083 100 200 200 1,588 6,083 100 200 200 1,588 6,083 100 200 200 2,355 6,083 100 200 200 2,835 6,083 100 200 200 3,356 6,083 100 200 200 3,450 6,083 100 200 200 6,855 6,083 100 200 200 7,565 6,083 100 200 200 8,550 6,083 100 200 200 7,365 6,083 100 200 200 7,365 6,083 100 200 200 10,375 6,083 100 200 200 10,375 6,083 100 200 200	1.11453	168		6,083		100	200	200	700
1,068 6,083 100 200 200 1,268 6,083 100 200 200 1,368 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 2,355 6,083 100 200 200 3,035 6,083 100 200 200 3,050 6,083 100 200 200 3,550 6,083 100 200 200 6,865 6,083 100 200 200 7,355 6,083 100 200 200 7,365 6,083 100 200 200 7,355 6,083 100 200 200 7,355 6,083 100 200 200 8,250 6,083 100 200 200 10,775 6,083 100 200 200 10,775 6,083 100 200 200 10,775 6,083 100 200 200 11,264 6,083 100 200 200 12,44 6,083 100	1,14184	898		6,083		100	200	200	700
1,268 6,083 100 200 200 1,368 6,083 100 200 200 1,378 6,083 100 200 200 2,350 6,083 100 200 200 2,635 6,083 100 200 200 2,635 6,083 100 200 200 3,035 6,083 100 200 200 3,50 6,083 100 200 200 3,450 6,083 100 200 200 7,565 6,083 100 200 200 7,565 6,083 100 200 200 7,855 6,083 100 200 200 7,855 6,083 100 200 200 7,855 6,083 100 200 200 8,250 6,083 100 200 200 10,775 6,083 100 200 200 </td <td>1,14965</td> <td>1.068</td> <td></td> <td>6,083</td> <td></td> <td>100</td> <td>200</td> <td>200</td> <td>700</td>	1,14965	1.068		6,083		100	200	200	700
1,368 6,083 100 200 200 2,350 6,083 100 200 200 2,350 6,083 100 200 200 2,635 6,083 100 200 200 2,835 6,083 100 200 200 3,035 6,083 100 200 200 3,450 6,083 100 200 200 6,865 6,083 100 200 200 7,565 6,083 100 200 200 7,565 6,083 100 200 200 7,935 6,083 100 200 200 7,935 6,083 100 200 200 8,250 6,083 100 200 200 10,775 6,083 100 200 200 10,75 6,083 100 200 200 10,75 6,083 100 200 200 10,75 6,083 100 200 200 10,75 6,083 100 200 200 11,26 6,083 100 200 200 12,454 6,083 100	1,15745	1,268		6,083		100	200	200	700
1,935 6,083 100 200 200 2,350 6,083 100 200 200 2,835 6,083 100 200 200 2,835 6,083 100 200 200 3,036 6,083 100 200 200 3,050 6,083 100 200 200 3,450 6,083 100 200 200 7,565 6,083 100 200 200 7,565 6,083 100 200 200 7,565 6,083 100 200 200 7,965 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 10,970 6,083 100 200 200 11,454 6,083 100 200 200 14,228 6,083 100 200 200 14,228 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 <td>1,16135</td> <td>1,368</td> <td></td> <td>6,083</td> <td></td> <td>100</td> <td>200</td> <td>200</td> <td>700</td>	1,16135	1,368		6,083		100	200	200	700
2,350 6,083 100 200 200 2,635 6,083 100 200 200 2,635 6,083 100 200 200 3,035 6,083 100 200 200 3,050 6,083 100 200 200 3,250 6,083 100 200 200 3,450 6,083 100 200 200 7,565 6,083 100 200 200 7,765 6,083 100 200 200 7,835 6,083 100 200 200 7,965 6,083 100 200 200 8,250 6,083 100 200 200 10,375 6,083 100 200 200 10,375 6,083 100 200 200 10,375 6,083 100 200 200 10,375 6,083 100 200 200	1.18348	1,935		6,083		100	200	200	700
2,635 6,083 100 200 200 2,835 6,083 100 200 200 3,035 6,083 100 200 200 3,050 6,083 100 200 200 3,450 6,083 100 200 200 3,450 6,083 100 200 200 7,565 6,083 100 200 200 7,855 6,083 100 200 200 7,855 6,083 100 200 200 7,945 6,083 100 200 200 8,250 6,083 100 200 200 9,875 6,083 100 200 200 10,775 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,428 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 16,083 100 200 200 200 16,083 100 200	1,19967	2,350		6,083		100	200	200	700
2,835 6,083 100 200 200 3,035 6,083 100 200 200 3,050 6,083 100 200 200 3,450 6,083 100 200 200 3,450 6,083 100 200 200 6,865 6,083 100 200 200 7,565 6,083 100 200 200 7,835 6,083 100 200 200 7,935 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 11,245 6,083 100 200 200 11,4528 6,083 100 200 200 14,228 6,083 100 200 200 14,428 6,083 100 200 200 14,438 6,083 100 200 200 14,438 6,083 100<	1,21079	2,635		6,083		100	200	200	700
3,035 6,083 100 200 200 3,050 6,083 100 200 200 3,450 6,083 100 200 200 6,865 6,083 100 200 200 7,565 6,083 100 200 200 7,765 6,083 100 200 200 7,935 6,083 100 200 200 7,945 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 11,245 6,083 100 200 200 12,454 6,083 100 200 200 14,228 6,083 100 200 200 14,28 6,083 100 200 200	1.21860	2,835		6,083		100	200	200	700
3,050 6,083 100 200 200 3,250 6,083 100 200 200 3,450 6,083 100 200 200 7,565 6,083 100 200 200 7,765 6,083 100 200 200 7,935 6,083 100 200 200 7,965 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,775 6,083 100 200 200 10,775 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,28 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 16,093 100 200 200 200 16,093 100 200	1.22640	3,035		6,083		100	200	200	700
3,250 6,083 100 200 200 3,450 6,083 100 20 200 6,865 6,083 100 20 200 7,565 6,083 100 200 200 7,835 6,083 100 200 200 7,935 6,083 100 200 200 7,965 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 10,575 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,428 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 16,03 100 200 200 200 16,03 100 200	1.22699	3,050		6,083		100	200	200	700
3,450 6,083 100 200 200 6,865 6,083 100 200 200 7,565 6,083 100 200 200 7,765 6,083 100 200 200 7,835 6,083 100 200 200 7,935 6,083 100 200 200 7,935 6,083 100 200 200 8,250 6,083 100 200 200 10,775 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 15,038 6,083 100 200 200 15,038 6,083 100 200 200 16,090 200 200 200 200 16,090 200 200 <td>1.23479</td> <td>3,250</td> <td></td> <td>6,083</td> <td></td> <td>100</td> <td>200</td> <td>200</td> <td>700</td>	1.23479	3,250		6,083		100	200	200	700
6,865 6,083 100 200 200 7,565 6,083 100 200 200 7,765 6,083 100 200 200 7,835 6,083 100 200 200 7,965 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,775 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,478 6,083 100 200 200 14,475 6,083 100 200 200 15,038 100 200 200 15,038 100 200 200 15,038 6,083 100 200 200 15,038 6,083 100 200 200 15,038 6,083 100 200 200 16,093 100 200 200 200 <td>1,24260</td> <td>3,450</td> <td></td> <td>6,083</td> <td></td> <td>100</td> <td>200</td> <td>200</td> <td>700</td>	1,24260	3,450		6,083		100	200	200	700
7,565 6,083 100 200 200 7,765 6,083 100 200 200 7,835 6,083 100 200 200 7,935 6,083 100 200 200 8,250 6,083 100 200 200 9,875 6,083 100 200 200 10,575 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,038 6,083 100 200 200 15,038 6,083 100 200 200 100 200 200 200 200 100 200 200	1,37586	6,865		6,083		100	200	200	700
7,765 6,083 100 200 200 7,835 6,083 100 200 200 7,935 6,083 100 200 200 7,965 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,228 6,083 100 200 200 14,428 6,083 100 200 200 14,475 6,083 100 200 200 15,038 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,038 6,083 100 200 200 15,038 6,083 100 200 200 100 200 200 200 200 100 200 200 200	1,40317	7,565		6,083		100	200	200	700
7,835 6,083 100 200 200 7,935 6,083 100 200 200 7,945 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,970 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,228 6,083 100 200 200 14,478 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 15,038 6,083 100 200 200 15,038 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 <	1,41098	7,765		6,083		100	200	200	700
7,935 6,083 100 200 200 7,965 6,083 100 200 200 8,250 6,083 100 200 200 10,575 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,228 6,083 100 200 200 14,428 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,038 100 200 200 15,038 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 20	1,41371	7,835		6,083		100	200	200	700
7,965 6,083 100 200 200 8,250 6,083 100 200 200 9,875 6,083 100 200 200 10,775 6,083 100 200 200 10,970 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,475 6,083 100 200 200 14,475 6,083 100 200 200 16,083 100 200 200 14,475 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,038 100 200 200 15,038 5,083 100 200 200 15,038 6,083 100 200 200 10 200 200 200 200 10 200 200 200 200 <td>1,41761</td> <td>7,935</td> <td></td> <td>6,083</td> <td></td> <td>100</td> <td>200</td> <td>200</td> <td>200</td>	1,41761	7,935		6,083		100	200	200	200
8,250 6,083 100 200 200 9,875 6,083 100 200 200 10,575 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,478 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,038 100 200 200 15,038 200 200 200	1,41878	7,965		6,083		100	200	200	700
9,875 6,083 100 200 200 10,575 6,083 100 200 200 10,775 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,228 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	1,42990	8,250		6,083		100	200	200	700
10,575 6,083 100 200 200 10,775 6,083 100 200 200 10,970 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,28 6,083 100 200 200 14,475 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200	1,49331	9,875		6,083		100	200	200	200
10,775 6,083 100 200 200 10,970 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 14,128 6,083 100 200 200 14,458 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200 201 200 200 200 200 200 200 200 200 200 200 200 201 200 200 202 203 200 203 200 200 204 200 200 205 200 200 206 200 200 207 200 200 208 200 200 209 200 200 200 200 200 200 200 200 200 200 <td< td=""><td>1,52063</td><td>10,575</td><td></td><td>6,083</td><td></td><td>100</td><td>200</td><td>200</td><td>700</td></td<>	1,52063	10,575		6,083		100	200	200	700
10,970 6,083 100 200 200 11,226 6,083 100 200 200 12,454 6,083 100 200 200 13,631 6,083 100 200 200 14,128 6,083 100 200 200 14,475 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	1,52843	10,775		6,083		100	200	200	200
11,226 6,083 100 200 200 12,454 6,083 100 200 200 13,631 6,083 100 200 200 14,128 6,083 100 200 200 14,475 6,083 100 200 200 15,138 6,083 100 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	1,53604	10,970		6,083		100	200	200	200
12,454 6,083 100 200 200 13,631 6,083 100 200 200 14,128 6,083 100 200 200 14,475 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	1,54603	11,226		6,083		100	200	200	700
13,631 6,083 100 200 200 14,128 6,083 100 200 200 14,228 6,083 100 200 200 14,475 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200	1,59395	12,454		6,083		100	200	200	200
14,128 6,083 100 200 200 14,228 6,083 100 200 200 14,475 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200	1,63988	13,631		6,083		100	200	200	700
14,228 6,083 100 200 200 14,475 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200	1,65927	14,128		6,083		100	200	200	700
14,475 6,083 100 200 200 15,038 6,083 100 200 200 15,138 6,083 100 200 200	1,66317	14,228		6,083		100	200	200	200
15,038 6,083 100 200 200 15,138 6,083 100 200 200	1.67281	14,475		6,083		100	200	200	700
15,138 6,083 100 200 200	1.69478	15,038		6,083		100	200	200	700
	1,69868	15,138		6.083		100	200	200	700

	Continued
4	5
÷	;
	2

Surface Water Allocation feet/acre	Cotton Upland	n Pima	Alfalfa	Wheat	Tomatoes	Lettuce	Onfons	Green Chili
				acres-				- 005
1,69888	15.143		6,083		100	200	200	200
1,71273	15,498		6,083		100	200	200	96
1 72600	15, 838		6,083		100	200	200	00/
1 73380	16.038		6,083		100	200	200	200
1 74,005	16 198		6,083		100	200	200	700
1,74005	16 238		6.083		100	200	200	700
10676	16,230		6.083		100	200	200	200
1.90230	16,598		6.083		100	200	200	200
1.97290	16,530		6,083		100	200	200	200
1.2/011	17 118 8		6,083		100	200	200	700
2,0000	17,745.0		6.083		100	200	200	700
2,03230	17 905		6,083		100	200	200	200
2,04091	18 6.5		6,083		100	200	200	200
006900	18 605		6,083		100	200	200	200
25/10.7	10,007		6 083		100	200	200	700
2.08//3	18,005		6,083		100	200	200	700
2.09293	000 00		6 083		100	200	200	700
2,13093	20,020		6,083		100	200	200	200
727017	20,120		6,083		100	200	200	200
1116177	21,020		6,083		100	200	200	700
0,707.7	21,020		6,083		100	200	200	700
2.22935	22,236		6,083		100	200	200	200
2,2002.2	22,22		6,083		100	200	200	700
70100	22 538		6,083		100	200	200	200
06707*7	22,238		6,083		100	200	200	700
2,202.0	22,230		6,083		100	200	200	700
2,27132	22,12	638	6,083		100	200	200	700
20,024.2	37 718	3 701	6 083		100	200	200	700
2,40300	21,677	5,782	6,083		100	200	200	700
5.00C.2	22,110 21 667	7,202	7.134		100	200	200	700
0771/7	11 164	65.6	7 437		100	200	200	200
60007.7	*0C 17	317.7	, , , , , , , , , , , , , , , , , , ,		100	200	200	700
2,88493	20,204	97. C	8 517	9	100	200	200	700
7.888/0	20,224	0//6/	0,017	1 027	100	200	200	700
2,94901	19,258	8,742	0,017	1 07.7 67	201	200	200	700
3,00000	18,441.33	79.855,8	9,317	T,042.07	257) } !	•	

water allocations below .28027 feet per acre. The crops that justified laser leveling were lettuce, onions and green chili. This information is given in Table 32.

Laser leveling was much more important in the absence of ground-water pumping. In addition to lettuce, onions and green chili, tomatoes and upland cotton were also leveled. The vegetables were leveled first and then upland cotton. The acreages immediately go to the limit for vegetables. Upland cotton acreage laser leveled increases to 17,438 acres at a surface water allocation of 1.74161 feet per acre with the total acres leveled at a maximum of 18,638 acres. At surface water allocations above 1.95282 feet per acre, only vegetables are leveled, and above 2.58102 feet per acre no acres are laser leveled. These results are also given in Table 32.

Temporal Model

The temporal model was run with and without groundwater pumping. The temporal model selected the temporal water usage of available surface water allocations under a situation of perfect knowledge across all years. The model maximized the real value in 1980 dollars of net revenue brought forward to 1980 by the real interest rate.

Annual Surface Water Use

The optimal usage rates and the actual surface water allocations are given in Table 33. It should be noted here that the surface water usage for the no groundwater pumping scenario for 1964 and 1978 are below 1.05927 feet per acre. This is the allocation necessary to maintain alfalfa fields and pecan orchards. There is not 1.05927 feet

Table 32. Crop Acreages Laser Leveled at Alternative Surface Water Allocations With and Without Groundwater Pumping

Surface Water		Acre	s Laser Lev	veled	
Allocations	Onions	Lettuce	Green Chili	Tomatoes	Upland Cotton
Pumping	<u>, </u>				· — —
.00812	200				
.01623	200	200			
.02597	200	200	240		
.06356	200	200			
.07100	200				
.28027					
No Pumping					
1.06739		200			
1.07550	200	200			
1.10391	200	200	700		
1.10797	200	200	700	100	
1.11453	200	200	700	100	168
1.14184	200	200	700	100	868
1.14965	200	200	700	100	1,068
1.15745	200	200	700	100	1,268
1.16135	200	200	700	100	1,368
1.18348	200	200	700	100	1,935
1.19967	200	200	700	100	2,350
1.21079	200	200	700	100	2,635
1.21860	200	200	700	100	2,835
1.22640	200	200	700	100	3,035
1.22699	200	200	700	100	3,050
1.23479	200	200	700	100	3,250
1.24260	200	200	700	100	3,450
1.37586	200	200	700	100	6,865
1.40317	200	200	700	100	7,565
1.41098]00	200	700	100	7,765
1.41371	200	200	700	100	7,835
1.41761	200	200	700	100	7,935
1.41878	200	200	700	100	7,965
1.42990	200	200	700	100	8,250
1.49331	200	200	700	100	9,875
1.52063	200	200	700	100	10,575 10,775
1.52843	200	200	700 700	100 100	10,773
1.53604	200	200	700 700	100	11,226
1.54603	200	200	700 700	100	12,454
1.59395	200	200	700	100	13,631
1.63988	200	200	700	100	14,128
1.65927	200	200	700 700	100	14,228
1.66317	200	200	700	100	14,220

Table 32. Continued

Surface Water		Acre	s Laser Lev	reled	
Allocations	Onions	Lettuce	Green	Tomatoes	Upland
			Chili		Cotton
1.67281	200	200	700	100	14,475
1.69478	200	200	700	100	15,038
1.69868	200	200	700	100	15,138
1.69888	200	200	700	100	15,143
1.71273	200	200	700	100	15,498
1.72600	200	200	700	100	15,838
1.73380	200	200	700	100	16,038
1.74005	200	200	700	100	16,198
1.74161	200	200	700	100	17,438
1.75940	200	200	700	100	14,870
1.84482	200	200	700	100	8,303
1.92668	200	200	700	100	2,010
1.95282	200	200	700	100	
1.95417	200	200	700		
2.57236	200	200	240		
2,57334	200	200	168		
2.57561	200	200			
2.57831	200				
2.58102					

Table 33. Actual Surface Water Allocations, Optimal Temporal Surface Water Usage Rates With and Without Groundwater Pumping and the Two Acre Feet Usage Rates, 1963 to 1980

	Actual	Optimal Tempor Water Usa		
Year	Surface Water Allocation ac ft/acre	Groundwater Pumping ac ft/acre	No Groundwater Pumping ac ft/acre	Two Acre Feet Per Acre ac ft/acre
1963	2	1,51461	2	2
1964	.33	.66801	.33	.33
1965	1.85	1.85	1.85	1.85
1966	2.5	2	2	2
1967	1.5	1.88875	1.88875	1,93229
1968	2	2	2	2
1969	3	3	2.57831	2
1970	3 3 2	3 2 2	2,57831	2
1971	2	2	2	2
1972	.67	1.26401	1.12615	1.95148
1973	3	3	2.58102	2
1974	3	3	2.58102	2
1975	3	2,58241	2.57831	2
1976	3	2	2,57561	2
1977	1.25	2	2	
1978	.75	.99780	.99290	2 2 2 2
1979	3	3	3	2
1980	3	3	3	2
Available for Transfer to 1981				2.27122
Total .	38.85	37.76559	37.66038	36.33499
Evaporation Feet		1.08441	1.18962	2.51501
%		2.79	3.06	6.47

Note: All entries measure surface water use only. The two acre feet per acre option is the same whether or not groundwater pumping is allowed. Its method of calculation is given in Appendix ${\tt E}_*$

per acre available total for both the years of 1963 and 1964. For the model to solve, it was necessary to allow the surface water usage for 1964 to be below 1.05927 feet per acre. This resulted in the 1978 surface water usage falling just below the 1.05927 alfalfa and pecan maintenance level. Thus, the production and acreage for alfalfa and pecans for 1965 and 1979 may not be as realistic as estimates for other years.

Also given in Table 33 is a usage scheme whereby a maximum of two acre feet of surface water is used per acre and the rest stored for future use. This is a practical surface water usage scheme which will, most likely, be contemplated by farmers. The adaptation of the Rippl diagram, described in Chapter II, in Figure 9 demonstrates how water would be needed for use in short surface water allocation years and be available for storage in long surface water allocation years. The area below the two acre feet per year line is needed from storage to provide two acre feet per year. The area above the two acre feet per year line is available for storage. Evaporation has not been taken into account.

The calculation of this surface water usage scenario is explained in Appendix E. Table 33 also contains the total surface water used over the time period, the total evaporation from stored water and the percentage loss to evaporation for each of the three scenarios. As can be seen, while the two acre feet per acre scenario provides a much more consistent supply of water, the associated evaporation loss is at least twice as high as either of the other scenarios. The groundwater pumping scenario indicates losses to evaporation of almost as much water as the

Figure 9. Cumulative Total Water Allocated (A) by Year and the Cumulative Total Water for Two Acre Feet Per Year (B) by Year.

no groundwater pumping scenario. It should be noted only the two acre feet per acre scenario had stored water in 1980 for 1981 use. Each of these three scenarios is depicted graphically against the actual surface water allocation for 1963 through 1980 in Figures 10, 11 and 12. Each figure demonstrates when water would be required from storage and available for storage.

Crop Production

Crop production was very consistent, as expected, for surface water use of the two acre feet and the optimal temporal surface water allocation with groundwater pumping. Both these scenarios showed the same production of the following crops for all years:

- 0 bushels; Barley Grain sorghum - 0 bushels; - 3,200,000 pounds; Pecans Tomatoes - 1160 tons; - 111,600 50-1b. cartons; Lettuce - 142,800 50-1b. sacks; Onions Green chili - 5390 tons; and Red chili - 0 pounds.

Upland and pima cotton lint and seed, alfalfa and wheat production varied only for the years 1964 and 1978, for the optimal temporal surface water use scenario and for the year 1964 for the two acre feet per acre surface water allocation scenario. The production levels for these crops are given in Table 34. The crop production results of the no groundwater pumping scenario were more varied and are given in Table 35. Pima cotton and wheat are not always produced and the production of pecans and vegetables varies. There is no production of barley, grain sorghum or red chili.

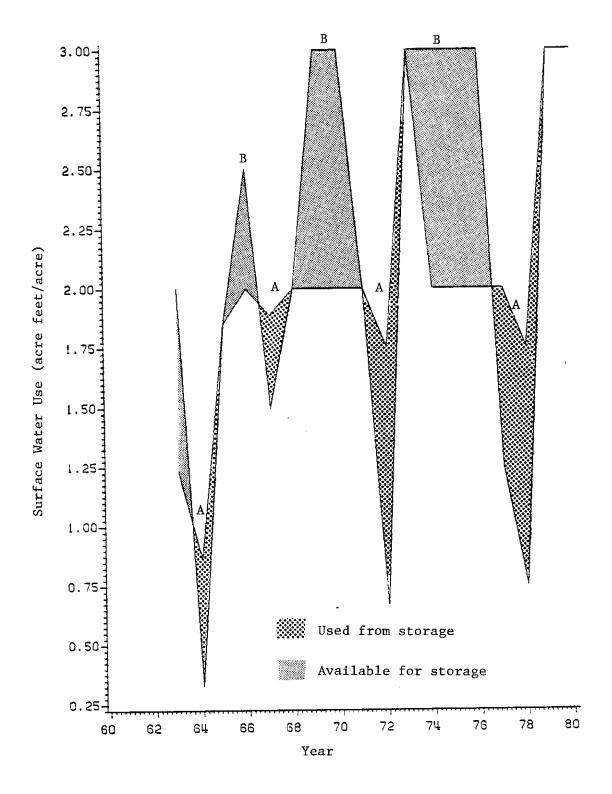


Figure 10. Optimal Temporal Surface Water Use With Groundwater Pumping (A) Against the Actual Pattern of Water Allocations (B)

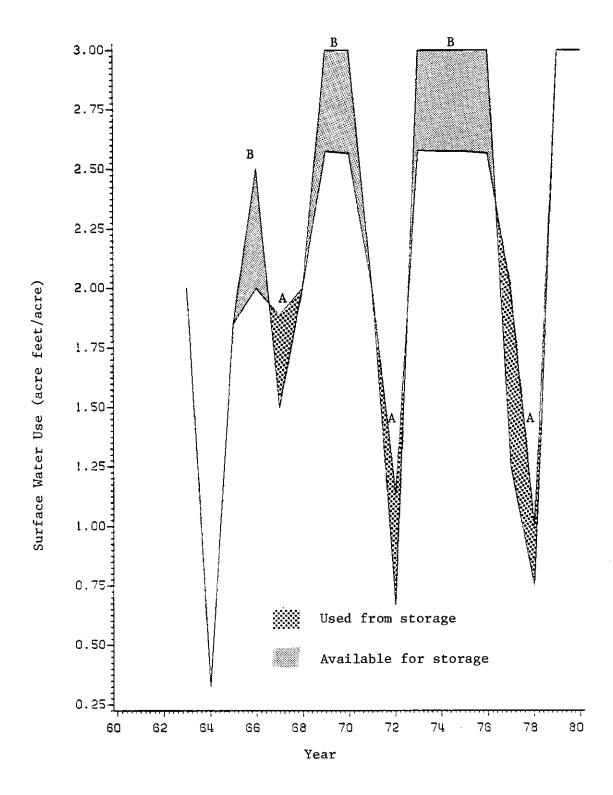


Figure 11. Optimal Temporal Surface Water Use Without Groundwater Pumping (A) Against the Actual Pattern of Water Allocations (B).

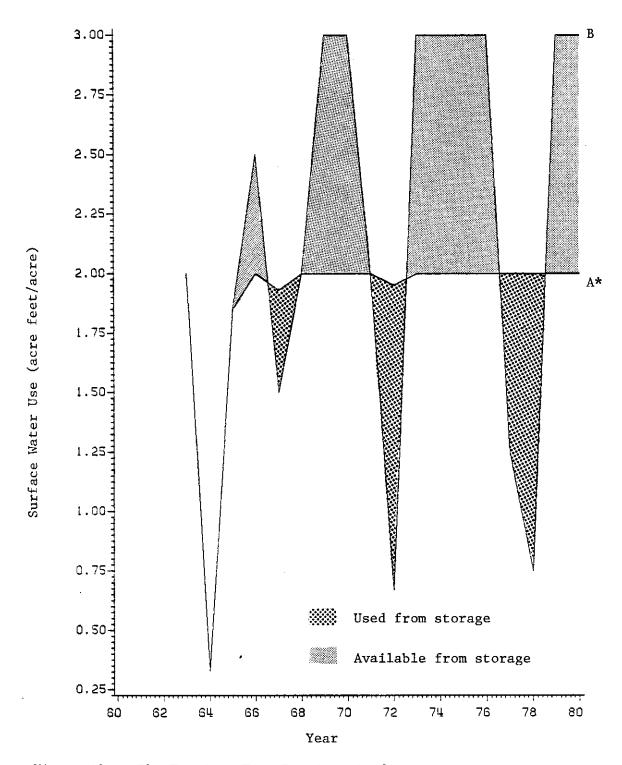


Figure 12. The Two Acre Feet Per Acre Surface Water Use Scenario (A) Against the Actual Pattern of Water Allocations (B).

Groundwater pumping does not affect the decision of how much surface water is used.

Crop Production Levels for Upland and Pima Cotton, Alfalfa and Wheat for the Optimal Temporal Surface Water Allocation With Groundwater Pumping and Two Acre Feet Per Acre Scenarios, 1963-1980 Table 34.

	Upland Cotton	Cotton	Pima (Pima Cotton		
	Lint 1b.	Seed 1b.	Lint 1b.	Seed 1b.	Alfalfa ton	Wheat bu.
Optimal Temporal Allocation	12,084,107	19,334,571	4,175,215	6,680,343	54,509	199,920
Except: 1964	11,713,100	18,868,960	4,417,402	7,067,843	53,617	50,728
1978	13,194,227	21,110,763	3,425,275	5,480,439	54,509	69,768
Two Acre Feet Per Acre	12,084,107	19,334,571	4,175,215	6,680,343	54,509	199,920
Except: 1964	12,473,984	19,958,375	4,213,429	6,741,486	37,339	184,960

Crop Production Levels for Twelve Selected Crops for the Optimal Temporal Surface Water Allocation Without Groundwater Pumping Scenario Table 35.

	Upland	Upland Cotton	Pima (Pima Cotton	-						Green
Year	Lint (1b.)	Seed (1b.)	Lint (1b.)	Seed (1b.)	Alfalfa (ton)	Wheat (bu.)	Pecans (1b.)	Tomatoes (ton)	Lettuce (carton)a	Onlons (sack)b	(F111)
1963	12,310,477	19,696,764			38,931		3,200,000	1,160	111,600	164,200	5,390
1964	2,235,791	3,477,265			7,377		606,336	220	21,146	31,116	1,021
1965	11,799,613	18,879,381			38,931		3,200,000	1,160	111,600	164,200	5,390
1966	12,310,477	19,696,764			38,931		3,200,000	1,160	111,600	164,200	5,390
1967	11,799,613	18,879,381			38,931		3,200,000	1,160	111,600	164,200	5,390
1968	12,310,477	19,696,764			38,931		3,200,000	1,160	111,600	164,200	5,390
1969	15,558,013	24,892,821	2,069,584	3,311,334	38,931		3,200,000	1,160	111,600	164,200	5,390
1970	15,558,013	24,892,821	2,069,584	3,311,334	38,931		3,200,000	1,160	111,600	164,200	5,390
1971	12,310,477	19,696,764			38,931		3,200,000	1,160	111,600	164,200	5,390
1972	7,629,748	12,207,597			25,173		2,069,152	750	72,162	106,173	3,485
1973	15,558,013	24,892,821	2,069,584	3,311,334	38,931		3,200,000	1,160	111,600	164,200	5,390
1974	15,558,013	24,892,821	2,069,584	3,311,334	38,931		3,200,000	1,160	111,600	164,200	5,390
1975	15,558,013	24,892,821	2,069,584	3,311,334	38,931		3,200,000	1,160	111,600	164,200	5,390
1976	15,558,013	24,892,821	2,069,584	3,331,334	38,931		3,200,000	1,160	111,600	164,200	5,390
1977	12,310,447	19,696,764			38,931		3,200,000	1,160	111,600	164,200	5,390
1978	6,727,077	10,763,324			22,195		1,824,352	199	63,624	93,612	3,073
1979	12,720,560	20,352,896	3,745,259	5,992,415	54,509	125,301	3,200,000	1,160	111,600	164,200	5,390
1980	12,720,560	20,352,896	3,745,259	5,992,415	54,509	125,301	3,200,000	1,160	111,600	164,200	5,390

a 50 pound cartons. b 50 pound sacks.

Cropping Patterns

Cropping patterns naturally followed closely the production patterns for the alternative surface water usage scenarios. For the optimal temporal surface water allocation with groundwater pumping and two acre feet per acre surface water scenarios, the following acreages of these crops were indicated by the model results for all years:

Barley - 0 acres;
Grain sorghum - 0 acres;
Pecans - 4800 acres;
Tomatoes - 100 acres;
Lettuce - 200 acres;
Onions - 200 acres;
Green chili - 700 acres; and
Red chili - 0 acres.

Upland and pima cotton, alfalfa and wheat acreage change only for 1964 and 1978 for the optimal temporal surface water allocation and only in 1964 for the two acre feet per acre scenario (Table 36). The optimal temporal surface water allocation without groundwater pumping scenario results reflect much more variation than the results of the other scenarios (Table 37). Cropping pattern results based on no groundwater pumping do not always include acreages for pima cotton and wheat and never include acreages for barley, grain sorghum and red chili.

Input Requirements

The level of input requirements for a 2 or 3 foot surface water allocation per year per acre with groundwater pumping and for a 2, 2.57831 and 3 foot surface water allocation without groundwater pumping are presented in Table 38. These surface water allocations were chosen because of their more frequent occurrence over time in the alternative scenarios.

Table 36. Crop Acreages for Upland and Pima Cotton, Alfalfa and Wheat for the Optimal Temporal Surface Water Allocation With Groundwater Pumping and the Two Acre Feet Per Acre Scenarios (1963-1980)

	Co	tton		
	Upland	Pima	Alfalfa	Wheat
	acres	acres	acres	acres
Optimal Temporal Allocation				
Pumping	17,344	10,656	8,517	2,940
Except: 1964	17,237	10,763	8,517	746
1978	19,258	8,742	8,517	1,026
Two Acre Feet Per Acre	17,344	10,656	8,517	2,940
Except: 1964	17,776	10,224	6,083	2,720

Table 37. Crop Acreages for Twelve Selected Crops for the Optimal Temporal Surface Water Allocation Without

Year	Upland Cotton	Pima Cotton	Alfalfa	Wheat	Pecans	Tomatoes	Lettuce	Onions	Green Chili
1963	17,118.8		6,083		4,800	100	200	200	700
1964	3,076.78		1,156.61		909.5	18,95	37.9	37.9	132,64
1965	16,238		6,083		4,800	100	200	200	700
9961	17,118.8		6,083		4,800	100	200	200	700
1967	16,238		6,083		4,800	100	200	200	700
1968	17,118.8		6,083		4,800	100	200	200	700
1969	22,718	5,282	6,083		4,800	100	200	200	700
1970	22,718	5,282	6,083		4,800	100	200	200	700
1671	17,118,8		6,083		4,800	100	200	200	700
1972	10,499.65		3,933,33		3,103.73	99.79	129.32	129.32	452.63
1973	22,718	5,282	6,083		4,800	100	200	200	200
1974	22,718	5,282	6,083		4,800	100	200	200	700
.975	22,718	5,282	6,083		4,800	100	200	200	700
9261	22,718	5,282	6,083		4,800	100	200	200	700
1977	17,118.8		6,083		4,800	100	200	200	700
8261	9,257.45		3,467.98		2,736.53	57,01	114.02	114,02	399.08
6261	18,441.33	9,558.67	8,517	1,842,67	4,800	100	200	200	700
1980	18 771 33	6 550 67	2 517	1 94.9 47	000	001	000	0	000

Input Requirement Levels for Selected Surface Water Allocations With and Without Groundwater Pumping Table 38.

		Crompanate	Surfac	⋖	ation	
		3	gurdung 1	ON	No Groundwater Pumping	mping
Item	Unit	ac ft/ac	an ft/an	2 64/22	2,57831	E ,
		20 /2 20	ac 15/ ac	ac IL/ac	ac it/ac	ac ft/ac
Upland Cottonseed	115.	433,600	433,600	427.970	050 795	7,61 033
Fima Cottonseed	16.	266,400	266,400		132 050	40T 022
Wheat Seed	1P.	352,800	357 800		474,070	/06,067
Tomato Seed	1b.	200	000	6		221,120
Lettuce Seed	: -	001	007	007	200	200
Onion Seed	, T	027	120	120	120	120
Green Chill Sood	10.	800	800	800	800	800
Nitrogon Postfilano	10.	3,500	3,500	3,500	3,500	3.500
Dhambana Tantilla	Ib.	5,655,180	5,655,180	3,995,249	5,135,340	5.442.297
Tiospiorus rertilizer	Ib.	2,880,040	2,880,040	2,156,805	2.718 150	7 883 332
zice astum rertilizer	lb.	288,000	288,000	288,000	288,000	288 000
The Solution	gal.	14,400	14,400	14,400	14,400	16 400
Insecticide	so.	1,043,232	1,043,232	777,310	1.078,922	1 052 011
Herbicide	€0-	541,534	541,534	330,972	526 834	526 067
Nematicide	s s	21,000	21,000	21,000	21 000	21,047
Dust	acre	200	200	200	300	21,000
Surface Water	ac. ft,	96,100	144.150	96 100	133 000	007
Groundwater	ac. ft.	51,342	3,242	001600	177,000	144,150
LP Gas	gal.	981,648	62,943			
Diesel	gal.	1.086,235	1.086 235	761 015	1 000	
Gasoline	gal.	204.004	204,004	147 105	796,090,1	1,084,447
Oil and Lubrication	Š	616 070	50, 930	14/,193	616,902	204,256
Repairs	- c:	010,010	996,433	440,038	5/8,759	594,148
Labor	<u>.</u>	835 750	007,037	595,283	906,941	887,931
Custom Hoeine		000,400	005,000	5/8,938	770,472	817,054
Custom Upland Cotton Ginning	n e	808,122	221,808	221,808	221,808	221,808
Custom Pima Cotton Cinning	n- 6	477,460	894,224	910,975	1,151,293	941,321
Custom Wheat Harmer	۰ ﴿	334,01/	334,017			299,621
Chatom Decan Harmon	Λ 4	71,971	71,971			45,108
Chefon Tomate Basset	n (2/6,000	576,000	276,000	576,000	576,000
Custom Johnson Manney	or +	10,150	10,150	10,150	10,150	10,150
Custom Cettuce narvegr	s	284,502	284,502	284,502	284,502	284,502
Custom Outon Chair n	v>-	332,724	332,724	332,724	332,724	332,724
Baltac tital	so ;	407,700	407,700	407,700	407,700	407, 700
Partig wire	1 b ,	476,952	476,952	340,648	340,648	476,952
Fortliff Comiton	bag	164,220	164,220	164,220	164,220	164,220
Con Transpoor	hr.	647	249	647	647	647
Loser Longitza	s.	588,000	588,000	370,376	588,000	588,000
raser reverting	acre			1,100	200	

Table 38. Continued

TREET SO: OF STREET						
			Surfac	Surface Water Allocation	ation	
		Groundwater Pumping	r Pumping	No G	No Groundwater Pumping	mping
		6	7	2	2.57831	6
and I	Unit	ac ft/ac	ac ft/ac	ac ft/ac	ac ft/ac	ac ft/ac
T COM						
		1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 577 7.82	1 577, 482	1.577,482
Constant Institute	s	1,577,482	70h'//C'T	1976/16	1000 000	1 388 390
Constant Inputs	·	1.421.310	1,421,310	933,654	1,200,090	000 T
Miscellaneous	y- •C	010 620	853,756	594,509	794,791	83/,133
Interest on Operating Capital	<i>r</i> > ∢	1 403 053	1 483 853	1,360,936	1,360,936	1,483,852
Establishment-Alfalfa and Pecans	љ	1,40,000	7110111			

Economic Implications

With more efficient use of surface water supplies, the recharge of groundwater in the study area will decrease. As time passes, limits on groundwater pumping can be expected. Not knowing what these limits may be, this study used the two extreme limits to develop economic implications. These two extremes are no restrictions at all on groundwater pumping and an absolute restriction against any groundwater pumping. With each of these limits imposed the economic implications of accumulation of surface irrigation water for future use was examined.

As a basis of comparison, the actual surface water allocations for 1963 to 1980 (Table 33) were used to determine the annual net farm revenue for 1963 to 1980. This was done for both cases — groundwater pumping (Table 39) and no groundwater pumping (Table 40). For each actual surface water allocation, the appropriate net farm revenue was determined from the schedule of net farm revenues by surface water allocation given in Table 28 for groundwater pumping and in Table 29 for no groundwater pumping. These annual net farm revenues were then adjusted to 1980 dollars by the real interest rate developed in Chapter IV (Tables 39 and 40).

The results of the temporal linear programming model were an optimal temporal scenario of net farm revenues and their 1980 real values for 1963 to 1980 for both the groundwater pumping (Table 39) and no groundwater pumping options (Table 40). The two acre feet per acre usage scheme (Table 33) was also evaluated in the same manner as earlier described for the actual surface water allocation. The net farm revenue and 1980 real value scenarios developed in this manner are

also included in Table 39 for the groundwater pumping case and Table 40 for the no groundwater pumping case.

Assume that there is no limit on groundwater pumping. The results in Table 39 indicate that both the optimal temporal and the two acre feet per acre scenarios would have generated more total net revenues than the actual allocation did. Also, the net farm revenue streams of the optimal temporal and two acre feet per acre scenarios have less variation than the net farm revenue stream of the actual allocation. The optimal temporal scenario provided \$0.84 per acre per year in 1980 dollars above the returns of the actual allocation. The two acre feet per acre scenario provided only about as half as big an increase or \$0.44 per acre per year in 1980 dollars. But the two acre foot per acre scenario produced the most stable stream of net farm revenues as indicated by the coefficients of variation in Table 39.

Now assume that absolutely no groundwater pumping is allowed. The results in Table 40 indicate that the optimal temporal scenario would have generated more total net revenues than the actual allocation did. But the two acre feet per acre scenario would have not generated as much total net revenue as the actual allocation. The optimal temporal scenario would have added \$3.56 per acre per year in 1980 dollars to total net revenues. The two acre feet per acre scenario would have decreased net farm revenue per acre per year by \$2.50 in 1980 dollars below the net revenues of the actual allocation. But, again, the two acre feet per acre scenario had the most stable flow of net farm revenues. The optimal temporal scenario also had less variability than the net farm revenue stream of the actual allocation.

Table 39. Annual Net Farm Revenue and 1980 Real Values for the Actual Surface Water Allocation and the Optimal Temporal and Two Acre Feet Per Acre Scenarios Both with Groundwater Pumping, 1963 to 1980

	Net Farm Revenue		1980 Real Value ^a			
	Actual Allocation	Optimal Temporal Scenario	Two Acre Feet Per Acre Scenario	Actual Allocation	Optimal Temporal Scenario	Two Acre Feet Per Acre Scenario
Year:						
1963	6,939,006	6,559,682	6,939,006	15,774,356	14,912,042	15,774,356
1964	5,357,712	5,802,723	5,357,712	11,605,239	12,569,169	11,605,239
1965	6,821,782	6,821,782	6,821,782	14,079,683	14,079,683	14,079,683
1966	7,137,553	6,939,006	6,939,006	14,036,691	13,646,229	13,646,229
1967	6,548,262	6,852,067	6,886,090	12,270,486	12,839,770	12,903,526
1968	6,939,006	6,939,006	6,939,006	12,389,487	12,389,487	12,389,487
1969	7,336,102	7,336,102	6,939,006	12,480,780	12,480,780	11,805,208
1970	7,336,102	6,939,006	6,939,006	11,892,196	11,248,483	11,248,483
1971	6,939,006	6,939,006	6,939,006	10,718,013	10,718,013	10,718,013
1972	5,800,990	6,363,829	6,901,089	8,537,672	9,366,037	10,156,755
1973	7,336,102	7,336,102	6,939,006	10,287,813	10,287,813	9,730,922
1974	7,336,102	7,336,102	6,939,006	9,802,647	9,802,647	9,272,040
1975	7,336,102	7,170,280	6,939,006	9,340,362	9,129,236	8,834,777
1976	7,336,102	6,939,006	6,939,006	8,899,878	9,418,136	8,418,136
1977	6,352,882	6,939,006	6,939,006	7,343,613	8,021,143	8,021,143
1978	5,894,451	6,146,925	6,939,006	6,492,362	6,770,446	7,642,872
1979	7,336,102	7,336,102	6,939,006	7,699,190	7,699,190	7,282,440
1980	7,336,102	7,336,102	6,939,006	7,336,102	7,336,102	6,939,006
Value o	of Water i		901,431			901,431
Total	123,419,446	124,031,834	124,014,188	190,986,570	191,714,409	191,369,768
Coeffic of	eient					
Variati	Lon 9.0704	6.3105	5.4251			
Differe Allocat	ence from Act	ual				
Total		612,368	594,722		727,839	383,198
Percer	ntage	.5	•5		. 4	. 2
Per Ac	cre	12.74	12.38		15.15	7.97
Per A	cre Per Year	.71	.69		.84	. 44

 $^{^{\}rm a}$ 4.94933 percent was used as the real rate of interest.

Table 40. Annual Net Farm Revenue and 1980 Real Values for the Actual Surface Water Allocation and the Optimal Temporal and Two Acre Feet Per Acre Scenarios Both Without Groundwater Pumping, 1963 to 1980

	Net Farm Revenue			19	1980 Real Value ^a		
	Actual Allocation	Optimal Temporal Scenario	Two Acre Feet Per Acre Scenario	Actual Allocation	Optimal Temporal Scenario	Two Acre Feet Per Acre Scenario	
Year:							
1963	5,843,575	5,843,575	5,843,575	13,284,127	13,284,127	13,284,127	
1964	970,410	970,410	970,410	2,101,986	2,101,986	2,101,986	
1965	5,431,539	5,431,539	5,431,539	11,210,317	11,210,317	11,210,317	
1966	6,886,339	5,843,575	5,843,575	13,542,654	11,491,957	11,491,957	
1967	4,366,846	5,542,397	5,666,948	8,182,831	10,385,644	10,619,032	
1968	5,843,575	5,843,575	5,843,575	10,433,612	10,433,612	10,433,612	
1969	7,331,068	7,044,258	5,843,575	12,472,216	11,984,271	9,941,570	
1970	7,331,068	7,044,258	5,843,575	11,884,036	11,419,102	9,472,734	
1971	5,843,575	5,843,575	5,843,575	9,026,007	9,026,007	9,026,007	
1972	1,940,820	3,311,574	5,721,859	2,856,424	4,873,879	8,421,210	
1973	7,331,068	7,047,354	5,843,575	10,280,753	9,882,886	8,194,761	
1974	7,331,068	7,047,354	5,843,575	9,795,921	9,416,817	7,808,303	
1975	7,331,068	7,044,258	5,843,575	9,333,952	8,968,785	7,440,069	
1976	7,331,068	7,039,976	5,843,575	8,893,771	8,540,629	7,089,201	
1977	3,639,038	5,843,575	5,843,575	4,206,546	6,754,880	6,754,800	
1978	2,183,423	2,919,784	5,843,575	2,404,901	3,215,936	6,436,325	
1979	7,331,068	7,331,068	5,843,575	7,693,907	7,693,907	6,132,793	
1980	7,331,068	7,331,068	5,843,575	7,331,068	7,331,068	5,843,575	
Value of Water Stored		1,068,403			1,058,403		
Total	101,597,684	104,323,173	100,669,209	154,935,029	158,015,809	152,770,782	
C oeffi c of	cient						
Variati	on 37.8672	30.1783	20.6666				
Differe Allocat	ence from Acti ion:	ual					
Total 2,725,489		-928,475		3,080,780	-2,164,247		
Percentage 2.7		9		2.0	-1.4		
Per Ac	re	56.72	-19.32		64.12	-45.04	
Per Acre Per Year 3.15		3.15	-1.07		3.56	-2.50	

 $^{^{\}mbox{\scriptsize a}}$ 4.94933 was used as the real rate of interest.

With the results in Tables 39 and 40, the range of economic implications of accumulation for the El Paso County Water Improvement District No. 1 has been identified. This range is defined in the knowledge dimension by the optimal temporal (perfect knowledge) and the two acre feet per acre (no future knowledge) scenarios. This range is also defined on the conjunctive groundwater use dimension by the results in Table 39 (no limit) and in Table 40 (no groundwater).

CHAPTER VI

CONCLUSIONS, IMPLICATIONS AND LIMITATIONS

The purpose of this study was to identify the impacts on El Paso County farmers and the El Paso County Water Improvement District No. 1 of allowing individual El Paso County water users to hold part of their surface water allocation in account in Elephant Butte Reservoir for future call subject to evaporation losses. In identifying these impacts, the economic theories concerning the allocation of variable resources, marginal analysis and linear programming were employed.

The procedure was to first develop a static linear programming model. This static model was comprised of 1182 crop production activities. Production activities were developed for twelve crops on six different soil groups where irrigation was from groundwater with one of six different salinity levels or surface water and either laser land leveling or no laser land leveling. The inputs for these activities came from six input groups — seed, chemicals, water, machinery, labor, harvest, other and fixed. The model also contained about 100 buy, sell or transfer activities. The model contained 154 rows with constraints on the acreages of soil classes by salinity of underlying groundwater and on the surface water available.

The model was solved for each level of surface irrigation water in which the basic solution changed considering conjunctive use of groundwater. Groundwater pumping was then disallowed and the model was again solved for all levels of surface irrigation water for which the

basic solution changed. This resulted in two schedules of solutions for all possible surface water allocations up to three acre feet per acre with and without groundwater pumping.

These schedules were used to build temporal linear programming models to optimize the use of surface irrigation water allocation over the period 1963 to 1980 both with and without groundwater pumping. The models were developed to maximize the real value of net farm returns subject to the actual surface water allocation made in each year and the actual evaporation of stored water in Elephant Butte Reservoir. The results produced two optimal temporal scenarios of surface irrigation water use over the last 18 years, i.e., one considering groundwater pumping and one not including any groundwater pumping. For comparison purposes, four other temporal water use scenarios were included, e.g., the use each year of the actual surface water allocation with and without groundwater pumping and a scenario in which two acre feet are used each year with the surplus stored for years of less than two acre feet allotments with and without groundwater pumping. These scenarios provide the basis for this analysis.

Conclusions

The results of the static model indicate the following conclusions:

- Red chili is not as profitable as green chili.
- If vegetables are limited in acreage, upland cotton can successfully compete for more acres than it has historically.
- Vegetable crops could produce a much higher return per acre than general field crops or pecans.

- 4. Total groundwater and surface water needed to sustain net farm revenue above \$4.719 million range from 2.79 to 3.07 acre feet per acre.
- 5. Below an annual surface water allocation of 2.25 acre feet per acre, groundwater is extremely important in maintaining net farm revenues.
- 6. When groundwater is pumped the cropping pattern of the district is relatively constant across alternative surface water allocations.
- 7. When groundwater is not pumped, the district cropping pattern varies widely in response to surface water allocations.
- 8. Barley and grain sorghum are less profitable than other field or grain crops based on crop prices used in this analysis.
- 9. Laser leveling is economically justified initially on high value crops such as vegetables.
- 10. Laser leveling economic potential is much more important when total available irrigation water is limited.
- 11. Under the current circumstance of conjunctive groundwater and surface water use, laser leveling does not contribute to net farm revenues on a district wide basis.

The results of the temporal model and the water use scenarios indicate the following conclusions:

- The optimal temporal allocation of surface water in conjunction with groundwater pumping is the most efficient in terms of evaporation loss.
- 2. The two acre feet per acre annual surface water use scenario

- is the least efficient in terms of evaporation loss.
- 3. Only relatively minor improvements can be made in net farm revenues by optimal conjunctive groundwater and surface water usage or by stabilizing water usage if unlimited groundwater withdrawals can be made.
- 4. The two acre feet per acre surface water use rate provides the most consistent and stable flow of net farm returns.
- 5. When groundwater is pumped, crop production and acreages change very little over time.
- 6. By not permitting groundwater pumping, crop production and acreages and net farm revenues vary dramatically over time.
- 7. Not permitting groundwater pumping also increases the variability of the levels of required inputs.
- 8. Temporally optimizing surface water allocation use increases net farm revenue.
- 9. The optimal temporal scenario for no groundwater pumping increases net farm revenues more than the optimal temporal scenario allowing groundwater pumping.

Implications

The above conclusions suggest the following implications:

- Some increase in vegetable production could increase farm net returns but it is also likely to increase risk faced by producers.
- Upland cotton acreage could be profitable beyond its current level at the expense of pima cotton acreage and/or an

- increase in total cotton acreage.
- 3. Conjunctive use of ground and surface irrigation water stabilizes net farm revenue, cropping patterns, crop production and input usage. The limits of the aquifer and implications of long term pumping need to be clearly identified.
- 4. Laser leveling is not necessary to produce maximum net farm revenues for the district, assuming water is not limiting; i.e., unlimited groundwater pumping.
- 5. Surface irrigation water storage by farmers will add little to net farm revenue as long as large supplies of groundwater exist, but it will help stabilize net farm revenue.
- 6. Without perfect knowledge of the future, farmers may increase total net farm revenue and stabilize their incomes by adopting a policy of using only two acre feet of surface water per year and storing any remainder with supplementary groundwater pumping.
- 7. Temporally optimizing surface water use can increase net farm revenues.
- 8. Temporally optimizing surface water use seems to be much more important when groundwater pumping is not allowed. That is, if groundwater shortages develop in the future, optimizing surface water use by use of accumulation will be extremely important.

Limitations

The model indicates that vegetables are highly profitable

activities. The model cannot take into account the fact that lettuce producers are trying to match a ten-day to two-week lull in the lettuce market. Production areas elsewhere in the nation leave this gap. On the other hand, chili and tomato producers operate under contracts which guarantee a market for their production.

Vegetables are very expensive to produce. Only one out of three or four years do producers usually make a profit. Thus, vegetable producers must be able to finance several bad years in order to receive the profits of a good year. Therefore, vegetable activities in reality may not be nearly as attractive as they appear to the model, and do represent substantial risk faced by the producer.

Laser leveling is new to the study area. Accurate data on input reduction associated with laser leveling has not yet been gathered. There may be yield and quality increases from laser leveling which have not been quantified at this time. As more knowledge is gained about laser leveling and its effects on crops and crop production, laser leveling may well become a necessary operation for profitable crop production in El Paso County. This could be particularly true with groundwater limitations.

The temporal model which optimized water usage over time had perfect knowledge of surface water allocation and evaporation rates. Since the future is unknown, the two acre feet per acre scenario with its more stable flow of net farm revenues may be more realistic. The storage decision is made regardless of any future surface water allocations or evaporation rates.

The level of future surface water allocation is, of course, an

unknown. Echlin has done a tree ring study for the Rio Grande above San Marcial, New Mexico. One might conclude from this study that rainfall and consequently the flow of the Rio Grande may be generally increasing and above average for the next forty years. If this turns out to be the case, stored water may simply evaporate in storage, never being needed.

Water in the Southwest is a very precious resource. The city of El Paso is constantly involved in searching for new sources of water as its demands for water continue to grow. The Republic of Mexico does not receive near enough Rio Grande water under treaty to irrigate all of its potential agricultural acreage (U.S. Department of the Interior, Water and Power Resources Service, Southwest Regional Office, 1980). Hudspeth County farmers are now farming with residual Rio Grande River flows and drainage flows from El Paso County as their only sources of surface irrigation water. The quality of groundwater is extremely poor in Hudspeth County (Alvarez and Buckner). Thus, accumulation and its associated water saving technologies (e.g., laser leveling) will tend to not only decrease or eliminate residual and drainage flows, but to further decrease groundwater availability through reduced recharge. In years of low surface water allocations when the El Paso County farmers have plenty of water from their individual stored accounts, the city of El Paso, the Republic of Mexico, Hudspeth County producers and Elephant Butte District producers without stored water may have the necessary incentive to push for, and possibly succeed in, changing the state, federal and international laws which govern the water of the Rio Grande. In this case, those who have more

water, the El Paso County farmers, would lose water to those who have less, everyone else. This and other institutional factors make water issues in the region most complex.

Any analytical model like the one developed in this study cannot make subjective judgments. Marketing techniques and strategies with their associated risks and possibilities cannot be included. The model works on knowledge and data and, therefore, does not include any consideration of uncertainty of the future. The model is also apolitical and does not account for the political ramifications of the results. But, despite these shortcomings, the model does efficiently and effectively evaluate the information provided it. This provides a basis for evaluating a policy such as impact of water accumulation in Elephant Butte Reservoir.

REFERENCES

- Agricultural Products and Seed Company. Personal communication. Mesquite, New Mexico, April 30, 1981.
- Ahmed, J., C. H. M. van Bavel and E. A. Hiler. "Optimization of Crop Irrigation Strategy under a Stochastic Weather Regime:

 A Simulation Study." Water Resources Research 12(1976): 1241-1247.
- Alvarez, H. J., and A. W. Buckner. <u>Ground-Water Development in the El Paso Region</u>, Texas with <u>Emphasis on the Lower El Paso Valley</u>. Report 246, Austin, Texas. Texas Department of Water Resources, June 1980.
- American Ground Water Consultants, Inc. "Evaluation of the Albuquerque Plan to Store Its San Juan-Chama Water in Elephant Butte Reservoir." Albuquerque, New Mexico.
- Ayers, R. "Water Quality: Use Limitations Related to Irrigation Water Quality." Mimeograph. Cooperative Extension Service, University of California.
- Bauer, W. Personal communication. Soil Conservation Service District Office, Pecos, Texas, April 1981.
- Beattie, B. R. "Lecture Notes and Selected Readings for Production Economics Theory." Mimeograph. Department of Agricultural Economics, Texas A&M University.
- Beltran, A. Personal communication. Farm Bureau Insurance, El Paso, Texas, April 21, 1981.
- Childers, Roy. Personal communication. Department of Agricultural Engineering, Texas A&M University, College Station, Texas, April 28, 1981.
- Council of Economic Advisors. "Economic Indicators." Prepared for the Joint Economic Committee. Washington, D.C.: U.S. Government Printing Office, February 1981.
- Cross, Henry. Personal communication. Cotton Division, Agricultural Marketing Service, U.S. Department of Agriculture, Memphis, Tennessee, May 1981.

- Dallas Morning News, The. <u>Texas Almanac and State Industrial</u>
 <u>Guide, 1980-81</u>, Fred Pass (ed.). Dallas, Texas: A. H. Belo Corporation, 1979.
- Day, J. C. "International Aquifer Management: The Hueco Bolson on the Rio Grande River." Nat. Resources Journal 18(1978): 163-180.
- Echlin, Douglas. Personal communication. Biologist, International Boundry and Water Commission, El Paso, Texas, July 27, 1981.
- El Paso County, Central Appraisal District. Personal communication. El Paso, Texas, April 20, 1981.
- Erie, L. J., and A. R. Dedrick. <u>Level-Basin Irrigation: A Method</u>
 for Conserving Water and <u>Labor</u>. Farmers' Bulletin No. 2261,
 U.S. Department of Agriculture. Washington, D.C.: U.S. Government Printing Office, April 1979.
- Extension Economists-Management. "Texas Crop Budgets." Texas Agricultural Extension Service, Texas A&M University System, College Station, Texas, MP-1027, 1979.
- Fabens Delinting Plant. Personal communication. Fabens, Texas, April 30, 1981.
- Farias, Dan. Personal communication. Rio Grande Project, Bureau of Reclamation, U.S. Department of the Interior, El Paso, Texas, June 1981.
- Fiffer, E. Personal communication. General Manager, El Paso County Water Improvement District #1, El Paso, Texas, from July 1980 to October 1981.
- Fishburn, M. Personal communication. Agricultural Statistician, New Mexico Department of Agriculture, Las Cruces, New Mexico, May 14, 1981.
- Gates, J. S., D. E. White, W. D. Stanley, and H. D. Ackerman.

 Availability of Fresh and Slightly Saline Ground Water in the
 Basins of Westernmost Texas. Report 256, Austin, Texas.

 Texas Department of Water Resources, September 1980.
- Gorman, W. D., D. F. Landrum, and S. D. Hicks. Pecan Orchard Costs and Returns for 40 and 320 Acres, Southern Rio Grande Valley, New Mexico, 1979. Research Report 413. Las Cruces, New Mexico: Agricultural Experiment Station, New Mexico State University, May 1980.

- Hernandez, J. W. Rio Grande Water Quality Base Line Study 1974-75

 for the Rio Grande Canals, and Associated Drains from San

 Marcial, New Mexico to Fort Quitman, Texas. WWRI Report No.

 064, Las Cruces, New Mexico. New Mexico Water Resources
 Research Institute, New Mexico State University, June 1976.
- Quality in the El Paso-Juarez and Mesilla Valleys." Nat. Resources Journal 18(1978): 1-9.
- Hinz, W. W., and A. D. Holderman. "Laser Beam Land Leveling Costs and Benefits." Q114, Cooperative Extension Service, University of Arizona, November 1978.
- Howe, C. W. <u>Natural Resource Economics</u>. New York: John Wiley and Sons, 1979.
- Ikard and Newsom of Fabens. Personal communication. Fabens, Texas, May 1, 1981.
- Kletke, D. D., T. R. Harris, and H. P. Mapp, Jr. <u>Irrigation Cost Program Users Reference Manual</u>. Research Rep. P-770, Still-water: Oklahoma State University, 1978.
- Lane, M. N., and S. C. Littlechild. "Water-Dependent Pricing for Water Resources in the Texas High Plains." Water Resources Research 12(1976): 599-605.
- Lansford, R. R., B. J. Creel, and C. E. Seipel. <u>Demonstration</u>
 of Irrigation Return Flow Water Quality Control in the Mesilla
 Valley, New Mexico. WRRI Report No. 120, Las Cruces, New
 Mexico. New Mexico Water Resources Research Institute, May 1980.
- Laughlin, D. H. "The Agricultural Benefits of Salinity Control on the Red River of Texas and Oklahoma." Ph.D. Thesis, Texas A&M University, College Station, Texas, 1980.
- Laughlin, D. H., R. D. Lacewell, and D. S. Moore. The Agricultural
 Benefits of Salinity Control on the Red River of Texas and
 Oklahoma. Technical Report No. 112, College Station, Texas.
 Texas Water Resources Institute, Texas A&M University, December 1980.
- Libbins, J. D., J. J. Dillon, Jr., M. L. Jones, L. J. Porter, D. C. Nelson, R. R. Lansford, P. Gutierrez, N. R. Gollehon, J. Vargas, and R. F. Lamb. "Costs and Returns for Producing Selected Irrigated Crops on Farms with Above-Average Management in the Lower Rio Grande Valley, Dona Ana and Sierra Counties, 1980." Forthcoming Research Report, Agricultural Experiment Station, New Mexico State University.

- Lindsey, K. E. Personal communication. Area Extension Agronomist, Ft. Stockton, Texas, April 1981.
- Longenecker, D. E., and P. J. Lyerly. <u>Control of Soluble Salts in</u>

 Farming and Gardening. Bulletin B-876, College Station, Texas.

 Texas Agricultural Experiment Station, June 1974.
- Maas, E. V., and G. J. Hoffman. "Crop Salt Tolerance -- Current Assessment." J. Irrig. and Drainage Div. 103(1977): 115-124.
- Malstrom, H. L. Personal communication. Pecan Researcher, Texas A&M University Agricultural Research Center, El Paso, Texas, April and June 1981.
- McDaniels, L. L. <u>Consumptive Use of Water by Major Crops in Texas.</u>
 Bulletin 6019. Austin, Texas. Texas Board of Water Engineers,
 November 1960.
- McDonald, J. W. Personal communication. Soil Conservation Service, El Paso, Texas, April 1, 1981.
- McMasters, G. A. Personal communication. Soil Conservation Service, El Paso, Texas, April 1981.
- McNeely, J. G., and R. D. Lacewell. <u>Water Resources Uses and Issues in Texas</u>. Report B-1189, College Station, Texas. Texas Agricultural Experiment Station, August 1978.
- Meyer, W. R., and J. D. Gordon. <u>Development of Ground Water in the El Paso District, Texas, 1963-70</u>. Report 153, Austin, Texas. <u>Texas Water Development Board</u>, August 1972.
- Meyers Company. Personal communication. El Paso, Texas, May 1, 1981.
- Moore, J. L., and J. M. Armstrong. "The Use of Linear Programming Techniques for Estimating the Benefits from Increased Accuracy of Water Supply Forecasts." <u>Water Resources Research</u> 12(1976): 629-639.
- New Mexico Crop and Livestock Reporting Service. New Mexico Agricultural Statistics. U.S. Department of Agriculture, Las Cruces, New Mexico, 1976-1980.
- New Mexico State University, Center for Business Services, College of Business Administration and Economics. <u>Inventory of the Economic</u>, Sociocultural and Socioeconomic Resources in the Rio Grande Valley from Elephant Butte Reservoir, New Mexico to Fort Quitman, Texas. Las Cruces, New Mexico, July 1976.

- North, C. L. Personal communication. Cole Drilling and Pump Co., El Paso, Texas, April 1981.
- Peavy, W. S. Personal communication. Area Extension Vegetable Specialist, El Paso, Texas, April 1981.
- Pedde, K. R. Personal communication. Project Superintendent, Rio Grande Project, Bureau of Reclamation, U.S. Department of the Interior, El Paso, Texas, June 5, 1981.
- Randall, A. Resource Economics. Columbus, Ohio: Gard Publishing, Inc., 1981.
- Richardson, J. W. Personal communication. Department of Agricultural Economics, College Station, Texas, May and August 1981.
- Richardson, J. W., T. P. Zacharias, G. D. Condra, and D. D. Stebbins. "Economic Analysis of Alternative Farm Sizes in El Paso County, Texas." Departmental Technical Report No. 79-1. Department of Agricultural Economics, Texas Agricultural Experiment Station, Texas A&M University, College Station, Texas, 1979.
- Riley, B. Personal communication. Chief Engineer, Rio Grande Compact Commission, El Paso, Texas, from July 1980 to July 1981.
- Rio Grande Compact Commission. Report of the Rio Grande Compact Commission. Annual Report, El Paso, Texas, 1950-1980.
- Rives, J. Personal communication. Soil Conservation Service District Office, Pecos, Texas, April 1981.
- Runkles, J. R. Personal communication. Director of the Texas Water Resources Institute, College Station, Texas, April 23, 1981.
- Shainberg, I., and J. D. Oster.

 Pub. No. 2, Ottowa, Canada.

 mation Center, 1978.

 Quality of Irrigation Water.

 International Irrigation Infor-
- Sonnen, M. B., B. Dendy, and K. P. Lindstrom. <u>Incentives for Agricultural Water Conservation</u>. Washington, D.C.: Office of Water Research and Technology, U.S. Department of the Interior, July 1980.
- Texas Crop and Livestock Reporting Service. Texas County Statistics. U.S. Department of Agriculture, Austin, Texas, 1968-1980a.

- ture, Austin, Texas, 1976-1980b.
- Texas Water Development Board.

 and Development for Texas.

 May 1977.

 Continuing Water Resources Planning
 Draft of Phase I, Austin, Texas,
- Transmountain Oil Company. Personal communication. Cantutillo, Texas, May 1, 1981.
- Tuck, Comer. Personal communication. Texas Department of Water Resources, Austin, Texas, May 6, 1981.
- U.S. Department of Agriculture, Agricultural Marketing Service, Cotton Division. Quality of Cotton Classed Under Smith-Doxey Act, Western States. Vol. 22, No. 28, Memphis, Tennessee, February 3, 1981a.
- Long Staple Cotton Review. Vol. 20, No. 8, Memphis, Tennessee, March 1981b.
- U.S. Department of Agriculture, Soil Conservation Service. Soil Survey, El Paso County, Texas. Washington, D.C., November 1971.
- U.S. Department of Agriculture, Statistical Reporting Service. Agricultural Prices, Annual Summary. Washington, D.C., 1976-1980.
- . Agricultural Prices. Washington, D.C., May 1981.
- U.S. Department of Commerce. 1974 Census of Agriculture, State and County Data. Washington, D.C., 1977.
- U.S. Department of the Interior, Water and Power Resources Service, Southwest Regional Office. Elephant Butte Reservoir -- Fort Quitman Project, New Mexico Texas (Rio Grande Regional Environmental Project). Amarillo, Texas. Preliminary Draft, Special Report, July 1980.
- . Personal communication with Leroy Buettner, Jim Morrison, Fred Landefelt, Larry Walkoviak, Rufus Pepper, and Bill Seth. Amarillo, Texas, May, June and July 1981.
- U.S. Water Resources Council. "Discount Rate Set at 7 3/8 Percent." Federal Register. 45(1980): 70167.
- Wall Street Journal, The. March 11, 18, and 25, and April 1, 8, 15, 22, and 29, 1981. New York, New York, Dow Jones and Company.

- Watson, W. D., C. F. Nuckton, and R. E. Howitt. "Crop Production and Water Supply Characteristics of Kern County." Giannini Foundation Bulletin No. 1895, University of California, Berkeley, April 1980.
- Welch, C. D., C. Gray, K. E. Lindsay, W. B. Gass, and L. B. Fenn.

 Fact Sheet Field and Forage Crop Fertilization in the Trans

 Pecos and Edwards Plateau. Rep. L-1506, College Station,

 Texas. Texas Agricultural Extension Service, 1979.
- Young, R. A., and J. D. Bredehoeft. "Digital Computer Simulation for Solving Management Problems of Conjunctive Groundwater and Surface Water Systems." <u>Water Resources Research</u> 8(1972): 533-556.

APPENDIX A

Laser Leveling and Level-Basin Irrigation

Laser Leveling and Level-Basin Irrigation

Laser leveling is a term used to describe a land leveling activity which utilizes a laser beam. Laser leveling has been used and is increasingly being used to bring irrigated acreages in the southwest United States under level-basin irrigation. Level-basin irrigation is the rapid turnout of irrigation water onto an extremely level field with no escape for tailwater. The field becomes uniformly watered with greater irrigation efficiency. Greater efficiency is obtained by reduced atmospheric evaporation and no losses to tailwater.

Laser leveling is used to gain the necessary accuracy in land leveling required to utilize level-basin irrigation. The term "laser leveling" is loosely used to imply that level-basin irrigation practices are followed subsequent to actual performance of the laser leveling procedure. In this study, the term laser leveling is also used to indicate level-basin irrigation.

The following is a list of the advantages and requirements of level-basin irrigation and was adapted from Eric and Dedrick:

Level-Basin Advantages

Less Water Required

High application efficiencies

Natural even leaching of salts

No guess work in applying correct amount of water

Large stream reduces irrigation time thus evaporation

and waste

All rainfall contained for plant growth and leaching

Even water distribution; no extra water for high spots

Less Labor Required
Time of set controlled by clocks
Fewer outlets
No tailwater
Large streams reduce irrigation time hence labor requirements

Charge of sets predetermined--no continual attention Little time to open and close valves No erosion

Increased Yield

Natural even leaching of salts
Precise correct water application
Maintains fertilizer in root zone
Light applications possible—frost control and
fertilizer application
Even germination in furrows
All rainfall contained for plant growth and leaching
No erosion of soil or crops
Even water distribution improved plant environment
and even growth

Management

Reduces water table build-up--minimizes drainage
requirements
Maintains fertilizer in root zone--not leached to
groundwater
Precise water application
Light applications possible for vegetables
Used for flat bed and furrow
Corner flood may not require a supply along one side
of field--reduce waste area, costs and maintenance
40 acre fields--large machinery
No erosion

Reduced Inputs

Maintains fertilizer in root zone

Even germination in furrow crops—greater germination

percent, no replant or spot replant

Level-Basin Requirements

Level-Basin Requirements

Precision leveling required

More soil movement required--top soil must be deep Soil movement depends on topography--may limit field size

Large stream requires elaborate erosion prevention at outlet

Secondary ditches are usually required

Temporary dikes may be required in front of turnouts

Management Requirements

Correct water applications

Benched level-basin fields--dike breakage if too much

Emergency drainage may be necessary to protect from over irrigation

It is clear to see from this list of advantages and requirements that level-basin irrigation is an advanced managerial practice. Also, the exactness of land leveling is of critical importance. Laser leveling offers this accuracy.

The laser leveling technique utilizes a command post from which emanates a laser beam set at a prescribed level or grade. This command post rotates so that the beam cuts a 1000 foot circle in a level plane. A receiver is mounted on a scraper and automatically operates the scraper and automatically operates the scraper's hydrolic controls. The accuracy of such a procedure has been within plus or minus .05 feet.

Fifer estimates that 80 percent of the farmland in El Paso County could be laser leveled. Laser leveling is very common in Dona Ana County, New Mexico and was routinely included by Libbins, et al. in their crop budgets. More information concerning laser leveling is contained in Hinz and Halderman. An excellent review of level-basin irrigation is given in Eric and Dedrick.

APPENDIX B

Costs and Characteristics of a

Typical Irrigation Well in

El Paso County, Texas

DDK 477 Mailing Address Surface Default Data Irrigation Cost Input Form Default System (5) Typical Well Identification El Paso Valley THE FARM 100^a 155.0 (1) Acres irrigated (2) varies 20.0 Acre inches/acre/year 3.0 Average inches applied per set 850.0 (4) 1800 Gallons/minute produced by the well 5.0 (5)Pressure/square inch at the final opening THE WELL (6) 150 480.0 Depth of well 360.0 (7) Depth to water (average drawdown) 25.50 (8) 35 Development cost per foot for well THE PUMP 400.0 (9) 100 Depth setting of column pipe 6.0 (10) Line number from column, pipe, shaft array Number of bowls (O for it to be computed by program) 0.0 (11) 0.75 (12) Pump efficiency THE ENGINE 2.0 (13) Fuel type (1=LP, 2=NG, 3=diesel, 4=electric) 2.0 (14) Engine type (leauto, 2=light ind., 3=inter. ind., 4=electric) 0.0 (15) Engine line number (if 0 the program will determine) 3100.0 (16) 4000 Altitude above sea level 90.0 (17) Maximum average daily temperature 1.0 (18) Are there accessories? (generator, air cleaner, heat exchanger)(0=no, 1=yes) 0.0 (19) Are a fan and radiator used? (0=no, 1=yes) (20) Type of drive (0=direct, l=right angle, 2=Vee-belt, 3=flat belt) 1.0 PARAMETERS .699 1.40 (31) .19C Fuel cost/gal, MCF, or KWH .09 (21)Interest rate .01.75 ^Q 3.53ⁿ 5.00 (32) 0.005 Cost/gal of lubricant (22)Insurance rate 3.60 e Cost of above ground valves 25.75 (33) (23)Labor cost/hour 3.00 O 30.10 (34) (24) .0102474 Cost of below ground valves 0.01 Property tax rate 0 Electric engine life 50,000.00 (35) 1.0 f Tax assessment ratio 0,2 (25) 0 20,000.00 (36) Automotive engine life $(26)_{-}$ 0.0 0.0 Well tax per gallon 30,000.00 (37) Light ind. engine life (27)_15 Well life 20.0 10 years 40,000.00 (38)_ Inter, ind, engine life 5 8.0 (28)Bowl life 15,00 (39)_ 0 PSI/1000 ft. allowed in pipe 16.0 (29)<u>10</u> Calumn life (30) 1053 15.0 Gearhead life

Source: North, unless otherwise noted.

a Tuck

b Fifer

See other inputs, Chapter iii.

d Beltran

e Minimum Wage

f El Paso County, Central Appraisal District

g Ikard and Newsom of Fabens

h Transmountain Oil Company

APPENDIX C

Static Linear Programming Model Column and Row Names and Abbreviated Matrix

The static linear programming model contains 1182 production activities and 100 buy, sell or transfer activities. The production activities were designated by a 7 or 8 character code. The first 3 characters identified the crop. The twelve crop codes follow:

CTU - Cotton, Upland;

CTP - Cotton, Pima;

ALF - Alfalfa;

WHE - Wheat;

BAR - Barley;

GSH - Grain Sorghum;

PCN - Pecans;

TOM - Tomatoes;

LET - Lettuce;

ONI - Onions;

CHG - Chili, Green; and,

CHR - Chili, Red.

The fourth and fifth characters indicated the soil group upon which crop is to be grown. These groups are GH, GP, SA, ST, VN and BR and are identified in Table 3. The sixth character is either R or G. R indicates that the irrigation water used is project water and G indicates groundwater. The seventh character is a number between 1 and 6 and indicates the salinity level of groundwater underlying the land regardless of the source of irrigation water. The six salinity levels are the same as those defined in Table 5. If there is an eighth character, it will be an L indicating that laser leveling his been employed.

The name CHGVNGl translates to green chili on land of soil group VN utilizing groundwater of salinity level 1. TOMGPR4L means tomatoes grown on laser leveled land of soil group GP with underlying groundwater of salinity level 4 but irrigated with project water. The production activities are read crop, soil group, water source, groundwater salinity level, laser leveling.

The buy and sell activities were named by attempting to include as much of the common name as possible. But, transfer and accounting activities were not necessarily named in this manner. The following is a list of all the buy, sell, transfer and accounting activities:

SEEDCTUP - Buy upland cottonseed;

SEEDCTPI - Buy pima cottonseed;

SEEDWHEA - Buy wheat seed;

SEEDBARL - Buy barley seed;

SEEDGRAI - Buy grain sorghum seed;

SEEDTOMA - Buy tomato seed;

SEEDLETT - Buy lettuce seed;

SEEDONIO - Buy onion seed;

SEEDGREE - Buy green chili seed;

SEEDREDC - Buy red chili seed;

NITROGEN - Buy nitrogen fertilizer;

NITREG - Total nitrogen fertilizer required on non-laser leveled land;

NITLL - Total nitrogen fertilizer required on laser leveled land;

PHOSPHOR - Buy phosphorus fertilizer;

PHOREG - Total phosphorus fertilizer required on non-laser leveled land;

PHOLL - Total phosphorus fertilizer required on laser leveled land;

POTASSIU - Buy potassium fertilizer;

ZINC - Buy zinc solution;

INSECTIC - Buy insecticide;

HERBICID - Buy herbicide;

NEMATICI - Buy nematicide;

DUST - Buy dust;

WATERSUR - Total surface water required on non-laser
leveled land;

WATERSLL - Total surface water required on laser leveled land;

WATER2FT - Total surface water required of the first
 two feet of water allocated;

WATERTOT - Total surface water required;

WATERGR - Total groundwater required on non-laser
leveled land;

WATERGLL - Total groundwater required on laser leveled land;

WATERGRO - Total groundwater required;

LPWELL - Total LP gas required for well operation on non-laser leveled land;

LPWELLLL - Total LP gas required for well operation on laser leveled land;

LPGAS - Buy LP gas;

DISOTHER - Total machinery diesel required;

DISHARVE - Total harvest diesel required;

DIESEL - Buy diesel;

GASOTHER - Total machinery gasoline required;

GASHARVE - Total harvest gasoline required;

GASOLINE - Buy gasoline;

OLWELL - Total oil and lubrication required for well operation on non-laser leveled land;

OLWELLLL - Total oil and lubrication required for well operation on laser leveled land;

OLWELLT - Total oil and lubrication required for well operation;

OLOTHER - Total machinery oil and lubrication required;

OLHARVES - Total harvest oil and lubrication required;

OILLUBE - Buy oil and lubrication;

OLIOC - Total machinery and well oil and lubrication:

REPWELL - Total repairs required for well operation on non-laser leveled land;

REPWELLL - Total repairs required for well operation on laser leveled land;

REPWELLT - Total repairs required for well operation;

REPOTHER - Total machinery repairs required;

REPHARVE - Total harvest repairs required;

REPAIRS - Buy repairs;

REPIOC - Total machinery and well repairs;

LABORIRR - Total irrigation labor required on nonlaser leveled land:

LABORIRL - Total irrigation labor required on laser leveled land;

LABORIRT - Total irrigation labor;

LABORWEL - Total well operation labor required on non-laser leveled land;

LABORWLL - Total well operation labor required on laser leveled land;

LABORWLT - Total well operation labor;

LABORHAR - Total harvest labor;

LABOROTH - Total machinery labor;

LABORIOC - Total machinery, irrigation and well labor;

LABOR - Buy labor;

HOECUSTO - Buy custom hoeing service;

CUSHRCTU - Buy custom ginning for upland cotton;

CUSHRCTP - Buy custom ginning for pima cotton;

CUSHRWHE - Buy custom wheat harvest;

CUSHRBAR - Buy custom barley harvest;

CUSHRGRA - Buy custom grain sorghum harvest;

CUSHRPCN - Buy custom pecan harvest;

CUSHRTOM - Buy custom tomato harvest;

CUSHRLET - Buy custom lettuce harvest;

CUSHRONI - Buy custom onion harvest;

CUSHRCHG - Buy custom green chili harvest;

CUSHRCHR - Buy custom red chili harvest;

BALEWIRE - Buy baling wire;

FIELDBAG - Buy field bags for onion harvest;

FORKLIFT - Buy forklift services;

CROPINSU - Buy crop insurance;

LASERLEV - Buy laser leveling;

FIXEDCOS - Buy constant inputs: farm insurance, land tax, water district tax;

OTHEREXP - Buy miscellaneous inputs;

INONOPCP - Buy interest on operation capital;

ESTABLIS - Buy establishment inputs for alfalfa and pecans;

FIXMACHC - Buy fixed machinery inputs;

FIXWELLC - Buy fixed well inputs;

ACREGREE - Total acres of green chili;

ACREREDC - Total acres of red chili;

COTTON - Sell upland cottonlint;

PIMA - Sell pima cottonlint;

COTTONSE - Sell pima cottonseed;

COTTONSU - Sell upland cottonseed;

ALFALFA - Sell alfalfa;

WHEAT - Sell wheat;

BARLEY - Sell barley;

GRAINSOR - Sell grain sorghum;

PECAN - Sell pecans;

TOMATO - Sell tomatoes;

LETTUCE - Sell lettuce;

ONION - Sell onions

GREENCHI - Sell green chili;

REDCHILI - Sell red chili;

ACREUPLA - Total acres of upland cotton; and

ACREPIMA - Total acres of pima cotton.

Buy and sell activities also total the commodities bought or sold.

The linear programming model contained 154 rows. Forty-six rows were restrictions while the remaining were 104 accounting or transfer rows and the objective function. The objective function was designated OBJ. The rows which total crop yields are named by Y plus the crop code with the additions of CTSD, pima cottonseed, and CTSDU, upland cottonseed. The rows which accumulate crop production to be custom harvested or ginned are named by CUS plus the crop codes. Alfalfa is not custom harvested. The rows which accumulate the planting seed required for each crop are given by S

plus the crop code. Since alfalfa and pecans are established by means other than planting at the beginning of the yearly production cycle, they have no seed requirement as such. There are 36 acreage restrictions which limit the acreage of a given soil group with underlying groundwater of a given salinity level. Thus, these restrictions are named by four characters. The two characters are one of the above six soil group designations. The third character is G for groundwater and the fourth is salinity level 1 through 6.

The remaining rows are defined as follows:

N - Totals nitrogen required on non-laser leveled land;

NL - Totals nitrogen required on laser
leveled land;

NT - Totals all nitrogen required;

PH - Totals phosphorus required on non-laser leveled land;

PHL - Totals all phosphorus required on laser leveled land;

PHT - Totals all phosphorus required;

PO - Totals all potassium required;

Z - Totals all zinc solution required;

IN - Totals all insecticide required;

HR - Totals all herbicide required;

NEM - Totals all nematicide required;

DUST - Totals all dust required;

WRQ - Totals surface water required on nonlaser leveled land;

WRQL - Totals surface water required on laser
leveled land;

WRQ3 - Restricts the additional amount of surface water which can be purchased to 1 acre foot per acre;

WRQAVL - Totals all surface water available;

WRQT - Restricts total surface water required to
 total surface water available;

WRQG - Totals groundwater required on non-laser
leveled land;

WRQGL - Totals groundwater required on laser
leveled land;

WRQGT - Totals groundwater required;

LP - Totals LP gas required for well operations
 on non-laser leveled land;

LPL - Totals LP gas required for well operations on laser leveled land;

LPT - Totals all LP gas required;

DO - Totals machinery diesel required;

DT - Totals all diesel required;

GH - Totals gasoline required during harvesting operations;

GO - Totals machinery gasoline required;

GT - Totals all gasoline required:

OLH - Totals oil and lubrication required for harvesting operations;

OLO - Totals machinery oil and lubrication
 required;

OLW - Totals oil and lubrication required for well operation on non-laser leveled land;

OLWL - Totals oil and lubrication required for well operation on laser leveled land;

OLWT - Totals all oil and lubrication required for well operations;

OLTIOC - Totals machinery and well oil and lubrication required;

OLT - Totals all oil and lubrication required;

RO - Totals machinery repairs required;

RW - Totals repairs required for well operation on non-laser leveled land;

RWL - Totals repairs required for well operation on laser leveled land;

RTIOC - Totals machinery and well repairs
 required;

RT - Totals all repairs required;

LI - Totals labor required for irrigation on non-laser leveled land;

LIL - Totals labor required for irrigation on laser leveled land;

LIT - Totals all irrigation labor;

LH - Totals labor required for harvesting operations;

LO - Totals machinery labor required;

LWT - Totals all labor required for well operation;

LTIOC - Totals machinery, irrigation and well labor required;

LT - Totals all labor required;

HOE - Totals all custom hoeing required;

WIRE - Totals all baling wire required.

BAGS - Totals field bags required for onion harvest;

FORKL - Totals forklift services required.

IC - Totals all crop insurance required;

LL - Totals all acres laser leveled;

FC - Totals all constant inputs required;

OE - Totals all miscellaneous inputs required;

Totals all operating costs to be charged
interest;

EST - Totals all establishment inputs required;

FMC - Totals all fixed machinery inputs
 required;

FWC - Accounts for all fixed well inputs;

ACTV - Totals all acres of upland cotton;

ACTP - Totals all acres of pima cotton;

AALF - Restricts the number of acres which can grow alfalfa;

AWHE - Totals all acres of wheat;

ABAR - Totals all acres of barley;

AGSH - Totals all acres of grain sorghum;

APCN - Restricts the number of acres which can grow pecans;

ATOM - Restricts the number of acres which can grow tomatoes;

ALET - Restricts the number of acres which can grow lettuce:

AONI - Restricts the number of acres which can grow onions;

ACHG - Totals all acres of green chili;

ACHR - Totals all acres of red chili;

CHILITOT - Restricts the acreages of all chili either green or red;

AALF2 - Requires a minimum number of acres of alfalfa to be grown;

APCN2 - Requires a minimum number of acres of pecans to be grown; and

TOTALCOT - Totals upland and pima cotton acreage.

The model was abbreviated by deleting all laser leveling activities and all activities for salinity levels 2 through 6. The resultant linear programming matrix in computer output form follows:

MPSX*VIM7.	7 EXECUTOR.	MPSX RELEASE	1 MOD LEVEL	•			PAGE	6 - 81/292	
	CTUGHRI	CTUGPRI	CTUSARI	CTUSTRI	CTUVNR1	CTUBRRI	CTUGHGI	CTUGPG1	11
retu	872,00000	836,00000	696,00000	680.0000	592,00000	440.00000	872.00000	836.00000	YCTU
YCTSDU	1365,2000	1337-6900	1113.6000	1068 -0000	947.20300	704.00000	1395,2000	1337-6000	YCTSDU
SCTU	25,00000	25,00000	25,00000	25.00000	25.00000	25,00000	25.00000	25.00000	SCTU
GHG1	1.00000	•	•	•	•		1.00000	•	GHG1
1949		1.00000	•	•	•	•		1.00000	GPG1
SAGI	•	•	1.00000	•	•	•	•	•	SAGI
5161	•	•	•	1 • 00000	•	•	•	•	5161
VNGI	•	•	•	•	1.00000	•	•	•	NAG1
8861	•	•	•	•	•	1.00000	•	٠	BRG1
z	125,00000	121,00000	101.00000	00000.66	86.00000	64.00000	126.00000	121-00000	z
Ŧ	63,00000	61.00000	51.00000	50.0000	43.00000	32,00000	63.00000	61.00000	P.H.
Z ==	35.00000	35.00000	35.00000	35.00000	35.00000	35.00000	35.00000	35.00000	Z
Ĭ	18,00000	18.00000	18-00000	18.00000	18.00000	18.00000	18.00000	18.00000	¥
94	17.79000	17.05000	14.20000	13.87000	12.08000	8.98000	17.79000	17.05000	Н
00	17.72000	17.72000	17.72000	17.72000	17.72000	17.72000	17.72000	17.72000	00
Ŧ	5.37000	5.14000	4.28000	4.18000	3.64000	2.71000	5.37000	5.14000	ቼ
90	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	00
ت	•	•	•	•	•	•	47.80000	47.80000	٦
OLH	9.87000	9.47000	7.88000	7.70000	6-70000	4.98000	9.87000	9.47000	OL H
מרס	5.70000	5.70000	5.70000	5.70000	5.70000	5.70000	5.70000	5.70000	OLO OLO
סרא	•	•	•	•	•	•	1.10000	1-10000	מרא
Ŧ	21.61000	20-72000	17.25000	16.85000	14.67000	10.91000	21.61000	20.72000	¥.
02	6.56000	6.56000	6.36000	6.56000	6.36000	6.56000	6.56000	6,56000	₽
*	•	•	•	•	•	•	1.28000	1.28000	*
	5,75000	5. 75000	5.75000	5.75000	5.75000	5.75000	8.75000	5.75000	1.1
Ŧ	7.59000	7.28000	6.06000	5.92000	5.15000	3.83000	7.59000	7.28000	Ŧ
1.0	6. 79000	6.79000	6.79000	6.79000	6.19000	6.79000	6.79000	6.79000	5
*	•	•	•	•	•	•	.52000	.52000	
200	2,50000	2.50000	2.50000	2.50000	2.50000	2.50000	•	•	27.0
WROG	•	•	•	•	•	•	2.50000	2.50000	WROG
F	000001	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	ñ
OE.	30.0000	30.0000	30.0000	30.0000	00000*0E	30.0000	30.00000	30.0000	믬
T V	77.11000	77.11000	77.11000	77.11000	77.11000	7.7 - 11000	77.11500	77.11000	F WC
10	20,00000	20.00002	20.0000	20.0000	20.0000	20.00002	20.00000	20.00000	5
ACTU	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	ACTU

MPSX#V1M7	7 EXECUTOR.	MPSX RELEASE	1 MOD LEVEL 7				PAGE	7 - 81/292	
	CTUSAGI	CTUSTG1	CTUVNGI	CTUBRG1	CTPGHR1	CTPGPRI	CTPSARI	CTPSTRI	21
NC TIL	496.00000	680.0000	592.00000	440.00000	•	•	•	•	YCTU
			•	•	540.00000	540.00000	431,00000	431.00000	YCTP
101	•	,	١ (•	864.00000	864.00000	689,60000	689.60000	YCTSD
TCTSU			047.2000	704.00000	•	•	•	•	YCTSDU
ACTSDU	00000111	0000000		00000-100			•	•	SCTU
SCTU	25,00000	22*0000	0000000	2000	24.0000	25.00000	25,00000	25.00000	SCTP
SCTP	•	•	•	•	1.00000		•	•	GHG
GHG			•	•		,0000		•	6961
GPG1	•	•	•	•	• 1		1.00000	•	SAGI
SAGI	1.00000	•	•	•	• 1	•		1.00000	5161
STG1	•	00000	•	•	•		. •	•	VNG1
VNG	•	•	00000	•	•	•	. ,	. (BBG1
BRG1	•	•	•	00000	•			96.0000	2
z	101-00000	000000.66	86.00000	64.00000	120-10000	00000001	0000000		: 2
Ŧ	51.00000	20 *00000	43.00000	32,00000	60.0000	00000*09	48.0000	0000000	
Z =	35.00000	35,00000	35,00000	35.00000	20*00000	20.00000	20.00000	50.0000	Z !
	18.0000	18.00000	18.00000	18.00000	18.00000	18.00000	18.00000	18.00000	¥ i
2	0000000	13.87000	12.08000	8.98000	11.02000	11.02000	8.79000	6-79000	Ŧ
5 5	12.72000	17.72000	17.72000	17.72000	17.72000	17,72000	17.72000	17.72000	20
3 3	A.28000	4.18000	3.64000	2.71000	3,32000	3.32000	2.65000	2.65900	F
5 5	200000	2.00000	2.00000	2.00000	2.00000	2.00000	2,00000	2,00000	00
9.	47.80000	47.80000	47.80000	47.80000	•		•	•	2
֓֞֜֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	00000	7.70000	6.7000	4.98000	6.11000	6.11000	4.86000	4.98000	gC#
֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֓֡	22000	20000	5.7000	5.70000	5.70000	5.70000	5.70000	5.70000	aro
מבים		000011	1.10000	1.10000	•	•	•	•	8
#		00001	14.67000	10.91000	13,38000	13.38000	10.68000	10.68000	Ŧ
Z C	00003411	6.56000	6.56000	6.56000	6.36000	6.56000	6.56000	6+56000	202
2 2	28000	1.28900	1.28000	1.28000	•	•	•	•	× .
	5.75000	5.75000	5.75000	5.75000	5.75000	5.75000	5.75000	5.75000	.
- 1	000000	5.92000	5.15000	3.83000	4.70000	4.70000	3.75000	3.75000	Ξ:
; :	6.7900	6.79000	6.79000	6.79000	6.79000	6.79000	6.79000	6.79000	5
2 2	00065	.52000	. 52000	.52000	•	•	•	•	<u>.</u>
				•	2.50000	2.50000	2.50000	2.50000	0.1
	20004	2.50000	2.50000	2.50000	•	•	•	•	MA OC
2	1,00000	1.00000	1.00000	1.00000	1.00000	00000*1	1.00000	1.0000	L L
. C		00000-01	30.0000	30.0000	30.0000	30.00000	30,00000	30.00000	E C
i i	77-11000	27.11000	77.11000	77.11000	17.32000	77.32000	77,32000	77,32000	F.
, E -	00000	20.00000	20.0000	20.0000	20.00000	20.00000	20.00000	20-00000	<u>د</u>
ACTU	00000	1.00000	1.00000	1.00000	•		•		ACTU
ACTB		•		•	1.00000	1.90000	1.00000	1.00000	ACTP

MPSX-VIM7.	7 EXECUTOR.	MPSK RELEASE	E 1 MOD LEVEL				PAGE	8 - 81/292	
	CIPVNRI	CIPBRRI	CTPGHG1	CTPGPGL	CTPSAGI	CTPSTG1	CIPVNG1	CTPBRG1	- E7
	00000	00000.001	0000000	540.0000	431.00000	431,00000	371.00000	300.00000	YCTP
1		00000	86.4.0000	864.00000	689-60000	689.60000	593,60000	480.00000	YCTSD
2012	00000	00000-96	00000	25.0000	25.00000	25.00000	25.00000	25.00000	SCTP
1	000000		1.00000	•	•	•	•	•	GHGI
	•	•		00000		•	•		GPG1
101	•	• •	• •		1.00000	•	•	•	SAGI
- 9	•	•	•			00000			5161
161		•	• •	•	• •		1.00000		NOI
		00000	•				•	1.00000	BRGI
		000001	00000	120,0000	26.00000	96.00000	82.00000	67.00000	z
_ 3	00000	44.0000	80.0000	60.0000	48.00000	48.00000	41.00000	34.00000	Ha
. 2	00000	20.00000	20.0000	20.0000	20.00000	20.00000	20.00000	20.00000	z
. 0	18-0000	18,00000	18.00000	18.00000	18.00000	18.00000	18.00009	18-00000	₹
=	00025-2	6.12990	11.02000	11.02000	8.79000	8.79000	7.57000	6.12000	на
	17.72000	17.72000	17.72000	17.72000	17.72000	17.72000	17.72000	17.72000	00
I	2.28000	1.05000	3.32000	3,32000	2.65000	2.65000	2.28000	1.85000	ij
	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	00
2 0	•	•	47.80000	47.80000	47.80000	47.80000	47.80000	47.80000	٥
. I	4.20000	3.40000	6.11000	6.11.000	4.88000	4.88000	4.20000	3,40000	OLH
	5.10000	5.70000	5.70000	5.70000	5.70000	5.70000	5.70000	5.70000	סרם
· •	•	•	1.10000	1.10000	1.10000	1.10000	1.10000	1.10000	٥٢
į	0.2000	7.44000	13+38000	13.38000	10.68000	10.68000	9.20000	7.44000	Ŧ
	50000	6.56000	6.56000	6.36000	6.56000	6.56000	6.56000	6.56000	20
2 =		•	1.28000	1.28000	1.28000	1.28000	1.28000	1.28000	7
·	5.75000	5.75000	5,75000	5.75000	5.75000	5.75000	5.75000	5.75000	5
: =	3.23000	2.61000	4.70000	4.70000	3,75000	3,75000	3.23000	2.61000	3
	6.79000	6. 79000	6.79000	6.79000	6.79000	6.79000	6.79000	6.79000	2
	· ·	•	.52000	.52000	.52000	•52000	*52000	.52000	ij
2	2.50000	2.50000	•	•	•	•	•	•	WRO
908	•		2,50000	2.50000	2.50000	2.50000	2.50000	2.50000	WROG
,	00000-1	000001	1.00000	1.00000	1.00000	1.00000	1.00000	1-00000	5
. F	30.0000	30,00000	90000*0E	30.0000	00000°0E	30.0000	30.00000	30.0000	뿔
	77.32000	77,32000	77.32000	77.32000	77.32000	77.32000	17,32000	77.32000	J.
ر :	20.0000	20.00000	20,00000	20.00000	20.0000	20.0000	20.00000	20.0000	ħ
(CTP	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	ACTP
IC ACTP	1.00000	20.00000	1.00000	1.00000	1.00000	1.00000	1.00000		1.00000

			2 1929 - 002				PAGE	962/10 - 6	
. MPSX-VIM7.	.MPSX+V1M7 EXECUTOR.	MPSX RELEASE	1 300 554				10000	11,66061	1
		At FGPR 1	ALFSARI	ALFSTRI	ALF VNR 1	ALFORRI	1000	•	
	1 1 5 1 5					3.60000	6.40000	6.4000	YALF
		40000	4.80000	4.40000	90000**	•	1.00000		GHG1
YALF	0000			•	•	•	•	000000	GP G1
GHG	1.0000	•	, 1	•	•	•	•		SAGI
6961	•	00000			•	•	•	•	6161
SAG1	•	•		00000	•	•	•	•	
	•		•			•	•	•	1044
		•	•	•		000000	•	•	B K61
19 1	•	•	•	•			000000	00000.00	Ξ
9201		00000	80.00000	80.0000	00000.08		10.0000	10,00000	Z
Ĭ.			10.0000	10.0000	10.000		B. 41000	8.41000	H
ž	000001	00014-6	6.31000	5.78000	5.26000	0000	00050	.95000	8
HO		0000	.95000	. 95000	00056*	00006.	1 B0000	1.80000	09
00	00066	00000	1.80000	1.80000	1.80000	00000*1	00012441	114.71000	٦
00	1.80000		•	•	•	•	00044	11.54000	H.P
٩	•		A.56000	7.94000	7.22000	00064-9	0001	.31000	סרם
OLH	11.54000	0000011	DOOLE .	.31000	.31000	.31000	00010	00000	*
010	.31000	90016	,	•	•	•	00066-2		H
OLW	•	•	• •	3.84000	3.49000	3.14000	5.58000		C
H	5.58000	5.58000	00061		.28000	.28000	.28000	1	2
5	.28000	.28000	• 28000			•	3.06000	300000	
2 2		•	•	• •	00000	13.80000	13.80000	13.60000	֓֞֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
# ·	00000	13.80000	13.80000	13.80000	00000	0.000	3.36000	3.36000	=
֓֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	14000	3,36000	2.52000	2,31000	00000	COURT	.38000	.38000	5
֓֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		38000	.38000	.38000	00005		1,25000	1.25000	
נם			•	•	•			•	0.00
3	• ,	00000	6.0000	6.0000	6.6000		A . DODOO	6.0000	MROG
WRO	00000		•	•	•			00000*1	J.
WROG	•			00000	1.00000	10000	0000	00000	96
J.	1,00000	00000-1		30.0000	30.0000	30.0000	0000000		-
96	36.0000	30.00000		0000100	50.90000	50.50000	20.000.05		1 E
EST	80.50000	50.50000	000000000000000000000000000000000000000	72.0000	72.00000	72.00000	72.00000	00000	AALF
J. H.	72.00000	72.00000	00000	1.00000	1.00000	1.00000	00000	00000	AAI F2
AALF	1.00000	00000*1		00000	1 1 00000	1.00000	1.00000		Ì
A A! F.2	1.00000	1.00000	1.00000						

ALEBRGI WHEGHRI WHEGHRI WHESARI 3.60000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 12.00000 13.00000 13.00000 13.00000 13.00000 13.00000 14.00000 15.0000	EXECUTOR.	Ŧ.					PAGE	10 - 81/292	
4.00000 3.60000 68.00000 120.00000 1	ALFS	101	ALFVNG	ALFBRGI	MHEGHRI	WHEGPRI	WHESAR	WHESTRE	51
1,00000	**	0000	4.00000	3.60000	•	•	•	•	YALF
120,0000	•		•	•	80.00000	72.00000	68.00000	61.00000	YWHE
1.00000	•		•		120.0000	120.00000	120.00000	120.00000	SWIFE
1.00000 1.00	•		•	•	000001	•		•	GHG
1,00000	•		•	•	•	1.00000	•	•	GPG1
1.00000	•		•	•	•	•	1 - 00000	•	SAGI
1.00000	1.00	000	•	•	•	•	•	1.00000	STG1
1,00000	•		1.00000	•	•	•	•	•	ANGI
100000	•		•	1.00000	•	•	•	•	BRG1
10,00000 10,00000 7,	•		•	•	234.00000	211.00000	199,00000	179.00000	z
10.00000	80.00	000	80.0000	80.0000	•	•	•	•	Ŧ
5.26000 4.73000 5.00000 5.00000 5.00000 1.80000 1.80000 1.40000 1.40000 1.40000 1.18.71000 1.14.71000 1.40000 1.40000 1.40000 7.22000 2.20000 2.20000 2.20000 2.20000 2.60000 2.76000 2.95000 2.95000 3.49000 3.66000 2.95000 2.95000 3.6000 13.8000 2.45000 2.45000 2.10000 13.8000 2.45000 2.45000 2.10000 13.8000 2.45000 2.45000 2.10000 1.25000 2.45000 2.45000 2.10000 1.00000 3.00000 3.00000 30.0000 1.00000 30.00000 3.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	10.00	000	10.0000	10.0000	7.00000	7.00000	7,00000	7.00000	Z
5.2600 4.7300 7.0400 7.0400 7.0400 1.8000 1.4000 1.4000 1.4000 1.4000 1.14.7100 1.14.7100 1.4000 1.4000 1.4000 7.2200 6.4900 2.2000 2.2000 2.2000 2.6900 2.6900 2.9500 2.9500 3.4000 3.4000 2.9500 2.9500 3.0600 3.0600 2.4500 2.9500 2.1000 13.8000 6.9000 2.4500 2.1000 13.8000 2.4500 2.4500 2.1000 13.8000 2.4500 2.4500 2.1000 1.2500 3.0000 3.0000 3.0000 1.0000 3.0000 3.0000 4.0000 1.0000 3.0000 3.0000 50.5000 22.6100 22.6100 22.6100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	•		•	•	5.00000	5.00009	5.00000	5.00000	Ĩ
195000	5.78	000	5.26000	4.73000	•	•	•	•	Н
1.80000	.95	000	.95000	.95000	7.04000	7.04000	7.04000	7.04000	00
114.71000	1.80	000	1.80000	1.90000	1.40000	1.40000	1.40000	1.40000	09
7.22000	114.71	000	114.71000	114.71000	•	•	•	٠	4
2.69000 2.29000 2.29000 2.29000 3.49000 3.69000 2.95000 2.95000 3.06000 3.06000 2.95000 2.95000 13.80000 13.8000 2.45000 2.95000 2.10000 1.98000 2.45000 2.45000 1.25000 1.25000 3.00000 3.0000 6.0000 6.0000 1.0000 3.0000 1.0000 1.0000 1.0000 30.0000 2.5000 22.6100 22.6100 22.6100 1.0000 1.0000 1.0000 1.0000	7.94	000	7.22000	6-49000	•	•	•	•	GC H
2.69000 2.69000 2.95000 2.95000 3.49000 3.26000 2.95000 2.95000 3.06000 13.8000 6.90000 6.90000 2.10000 13.8000 2.45000 2.45000 2.10000 1.2500 2.45000 2.45000 1.2500 1.2500 1.0000 3.0000 6.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 30.0000 2.6500 22.6100 22.6100 22.6100 1.0000 1.0000 1.0000 1.0000	Ē.	000	.31000	.31000	2.29000	2.29000	2 • 29000	2.29000	OLO
3.49000 3.14000 2.95000 2.95000 2.95000 2.95000 3.06000 3.06000 2.950000 2.950000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.9000000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.9000	2.69	000	2.69000	2.69000	•	•	•	•	מרא
3.06000 2.95000 2.95000 2.95000 3.06010 13.06000 6.90000 6.90000 2.10000 13.0000 2.4500 2.4500 2.10000 1.2500 2.4500 2.4500 1.2500 1.2500 3.0000 3.0000 1.2500 1.0000 1.0000 1.0000 30.0000 30.0000 1.0000 30.0000 30.0000 30.0000 30.0000 30.0000 72.0000 22.6100 22.6100 22.6100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	3.84	000	3.49000	3.14000	•		•	•	Ξ
3.06000 3.06000 6.90000 6.90000 6.90000 6.90000 13.80000 13.80000 2.45000 2.45000 2.45000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.25000 1.20000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.00000 1.200000 1.	• 26	3000	*28000	.28000	2.95000	2.95000	2.95000	2.95000	RO
13.80000	30.€	5000	3.06000	3.06000	•		•	•	R.N.
2.10000 1.89000 2.450000 2.4500000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.4500000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.450000 2.4500000 2.450000 2.450000 2.45000000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.45000000 2.45000000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.4500000 2.45000000 2.45000000 2.45000000 2.45000000 2.450000000 2.450000000 2.450000000 2.45000000000000000000000000000000000000	13.80	0000	13.80000	13.80000	00006-9	6.90000	6.90000	6.90000	-
1.2500	2.31	000	2.10000	1.89000		•	•	•	Ŧ
1.25000	Ĕ.	3000	.38000	•38000	2.45000	2.45000	2+45000	2.45000	2
6,00000 6,00000 1,00000 1,00000 1,00000 3,00000 3 50,50000 30,50000 30,6000 30,0000 30,00000 3 72,00000 72,00000 22,61000 22,61000 22,61000 2 1,00000 1,000	1.2	5000	1.25000	1 • 25000	•	•	•	•	_
6.00000 6.00000 1.00000 1.00000 1.00000 30.000000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.000000 30.000000 30.000000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.0	•			•	3.00000	3.00000	3.00000	3-00000	WRQ
1.00000 1.00000 1.00000 1.00000 1.00000 30 30.00000 30.00000 30.00000 30.00000 30 50.50000 50.50000 22.61000 22.61000 22 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.0	000	6.00000	6.00000	•	•	•	•	WROG
30,00000 30,00000 30,00000 30,00000 30,00000 30 50,50000 50,50000 22,61000 22,61000 22,61000 22,61000 22,61000 1,000000 1,000	1.00	000	1.00000	1.00000	1.00000	1.00000	1:00000	1.00000	FC
50.50000 50.50000	30.00	000	30.00000	30.00000	30.0000	30.0000	30,00000	30.0000	90
72,00000 72,00000 22,61000 22,61000 22,61000 1,00000 1	50+50	0001	50.50000	50.59000	•	•	•	•	EST
1.00000 1.000000 1.00000 1.00000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000000	72.00	0000	72.00000	72.00000	22.61000	22.61000	22-61000	22.61000	FMC
1,00000 1,00000	1.00	000	1.00000	1.00000	•	•	•	•	AALF
1.00000 1.00000 .	•		•	•	1.00000	1.00000	1.00000	1.00000	AWHE
	1.00	000	1.00000	1.00000	•	•	•	•	AALFZ

MPSX-VI	***MPSX=VIM7** EXECUTOR*		MPSX RELEASE MOD LEVEL 7	.			PAGE	11 - 81/292	
	WHEVNRI	WHEBRR!	WHEGHGI	WHEGPG1	MHESAGI	WHESTGI	WHEVNG1	WHEBRGI	61
YWHE	56.00000	48,00000	80.00000	72.00000	68.00000	61.00000	56.00000	48.0000	41.14
SWHE	120.00000	120.00000	120.00000	120.00000	120,00000	120,00000	120.00000	120.000	2 KHI
15H9			1.00000	•	•	•	•		1040
gp G 1	•	•	•	1.00000				•	
5461	•	•	•	•	00000		•	•	
STGI	. (• •	•			•	•	SAGI
15N>	00000+	. •	•	• •	• •	00000		•	5161
				•	•	•	000001	•	No.
BRG	•	1 - 00000	•	•	•	•	•	1.00000	BRGI
z	164.00000	140.00000	234.00000	211-00000	199.00000	179.00000	164.00000	140.00000	z
z	7.00000	7.00000	7.00000	7.00000	7.00000	7.00000	7.00000	7.00000	Z
Œ	5.0000	5.00000	5.00000	5.00000	5.00000	2.00000	5.00000	5.00000	2
00	7.04000	7.04000	7.04000	7.04000	7.04000	7.04000	7.04000	7.04000	00
09	1.40000	1.40000	1.40000	1.40000	1.40000	1.40000	1.40000	1.40000	0
٦	•	•	57.36000	57.36000	57.35000	57,36000	57.36000	57,36000	3
aro aro	2.29000	2.29000	2.29000	2.29000	2.29000	2.29000	2.29000	2.29000	סרס
OL¥	•	•	1.34000	1.34000	1.34000	1.34000	1.34000	1.34000	*10
P.O	2.95000	2+95000	2.95000	2.95000	2.95000	2.95000	2.95000	2.95000	200
3	•	•	1.53000	00068-1	1.53000	1.53000	1.53000	1.53000	*
ב	00006-9	00006*9	6.50000	00006*9	6.90000	6.90000	6.90000	6.9000	11
L 0	2.45000	2.45000	2.45000	2+45000	2.45000	2-45000	2.45000	2.45000	2
Ę	•	•	•62000	•62000	•62000	•62000	.62000	.62000	<u>د</u>
W.R.O	3.00000	3.00000	•	•	•	•	•	•	MRG
WROG	•		3.00000	3.00000	3.00000	3.00000	3.00000	3.00000	WROG
ũ	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	J.
8	30.00000	30.00000	30.0000	30.0000	30+00000	30.00000	30.00000	30.0000	OE
F F	22.61000	22.61000	22.61000	22.61000	22.61000	22,61000	22.61000	22.61000	FMC
AXI	1.00000	1.00000	000001	1.00000	1.00000	000000	1.00000	00000-	AWHE

MPSX=VIM7	•• EXECUTOR•	NPSX RELEASE	I MOD LEVEL 7				PAGE	12 - 81/292	
	BARGHRI	BARGPRI	BARSARI	BARSTRI	BARVNR1	GARBRRI	BARGHGI	BARGPG1	71
YBAR	00000000	79.00000	70.00000	72.00000	52,00000	48.00000	80.0000	70,00000	YBAO
SBAR	120,00000	120.00000	120.00000	120-00000	120.0000	120,00000	120.00000	120.0000	SEAG
GHG1	1.00000	•	•	•	•	•	1.0000		ניתניו
GPG1	•	1.00000	•	•				00000	1000
SAGI	•	•	1.00000	•	•	•	•		
STG1	•	•	•	1.00000		. ,	•		
VNG1		•		•	00000		•	•	1916
BRGI	. •	. •		•		1,0000	•	•	ANG.
. 2	400.000	00000	00000	00000	00000		•	•	
. :	00000	000000	200001	00000.691	103.000	85.0000	188.00000	186,00000	z
<u>z</u>	7.00000	7.00000	7.00000	7. 00000	7.00000	7.00000	7.00000	7.00000	z
¥	5,00000	5.00000	\$.0000	5.00000	8.00000	5.00000	2.00000	5.00000	Ŧ
DQ	7.04300	7.04000	7.04000	7.04000	7.04000	7.04000	7.04000	7.04000	00
09	1.40000	1.40000	1.40000	1.40000	1.40000	1.40000	1.40000	1.40000	09
- -	•	•	•	•	•	•	57.36000	57,36000	Ę,
01.0	2.29000	2.29000	2.29000	2.29000	2.29000	2.29000	2.29000	2.29000	CK.O
٥٢٨	•	•	•	•	•		1.34000	1.34000	OL#
80	2+95000	2.95000	2.95000	2.95000	2.95000	2.95000	2.95000	2 + 95000	RO
> 2	•		•	•	•	•	1.53000	1.53000	F
	6.90000	6.90000	6.90000	6.90000	6 • 90000	00006*9	6.90000	6.90000	5
ro ro	2.45000	2.45000	2.45000	2.45000	2 • 4 5000	2.45000	2 • 45000	2.45000	רט
ا *	•		•	•	•	•	•62000	-62000	ני
223	3.00000	3.00000	3.00000	3.0000	3.00000	3.00000	•	•	WRO
#R0G	•	•	•	•	•		3,00000	3,00000	WROG
J.	1.40000	1.00000	1.00000	1.00000	1.00000	0000001	1.00000	1.00000	FC
0E	30.00000	30.00000	30.0000	30.00000	30.0000	30.00000	30.00000	30.00000	O.E.
FEC	22.61000	22.61000	22.61000	22.61000	22.61000	22.61000	22.61000	22.61000	FMC
ABAR	1.00000	000001	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	ABAR

. .

* MPSX=V	*MPSX=VIMT. EXECUTOR.	MPSX RELEASE	I MOD LEVEL				PAGE	13 = 81/292	
	BARSAGI	BARSTGI	BARVNG	BARBRG1	GSFOHRI	GSHGPRI	GSHSARI	GSHSTRI	81
	1				•	•	•	•	YBAR
YBAR	70.00000	00000.27	2000		77.00000	69.00000	64.00000	57.00000	VGSH
YGSH	•	• ***	• • • • • • • • • • • • • • • • • • • •	00000			•	•	SBAR
SBAR	120.00000	150.0000	00000071		00000	00000	0000006	0000006	SGSH
SGSH	•	•	•	•	00000	,		•	GHG1
GHGI	•	•		•		00000		•	1949
GPG1	•	•	•	•	•		00000		SAGI
SAGI	1.00000	•	•		•	• •		1.00000	5761
SIGI	•	00000	•	•	•	•		•	VNGI
VNGI	•	•	1.00000	•	•	•	•		
BBG1	•	•	•	1.00000	•	•	•	•	
	164.0000	169,00000	103.0000	85.00000	162.00000	145.00000	134 .00000	120.00000	Z
2	00000	7.00000	7.00000	7.00000	18.00000	16.00000	18.00000	16.00000	Z
Z (00000		4.00000	12.00000	12,00000	12.00000	12-00000	¥
E I	000000	0000	0000	7.04000	11.71000	11.71000	11.71000	11.71000	20
00	000+0-2			1.4000	2.00000	2,00000	2,00000	2.00000	00
00	00000			00076	•	•	•	•	4
ره	57,36000	57.36000	5 4 3 5 6 0 0	00000-16		2000	76000	3.76000	0 6
ora	2.29000	2.29000	2.29000	5-29000	3.75000	0000100			3
* E	1.34000	1.34000	1.34000	1.34000	•	•	•	•	
	0.03000	2.95000	2.55000	2.95000	4.48000	4.48000	4.48000	4.48000	2 (
3 3	0000	0.0000	1.53000	1.53000	•	•	•	•	* .
	00000	6.90000	6.90000	6.90000	4.98000	4.98000	4.98000	00086*+	-
	00004-6	2.45000	2.43000	2.45000	4.73000	4.73000	4.73000	4.73000	٠.
: د د	00000	00000	00000	60000	•	•	•	•	.
• ·	00029.)		2.17000	2.17000	2.17000	2.17000	WRO
0 22	•	•				:		•	WROG
FROG	00000*E	3.00000	3.0000	00000	•	00000.1	1.00000	1.00000	Ę.
Ę	1.00000	1.00000	00000	00000-1			00000-01	00000	<u> </u>
06	30.0000	30.0000	00000 * OE	30.00.00	20000.05		27.60000	00000	- E
FMC	22.61000	22.61000	22-61000	22.61000	27.69000	7 1 - 0 4 0 0 0	20060		ABAR
ABAR	1.00000	1.00000	1.00000	1.00000	•	• •		00000	AGSH
		,	•	•	00000*	000001	***	***	

...-

	16	_		_	_		_																					-
	ā	ACSH	265H	GHG	GPG1	SAGI	STG	VNG	BRG	z	Z	£	8	9	<u>۔</u>	GL0	910	8	2	ב	9	ī	WRO	WROS	Ä	뜅	Ŧ	AGSH
14 - 81/292	G SHBRG1	47.00000	00000*6	•	•	•	•	•	1.00000	00000*66	18.00000	12.00000	11.71000	2.00000	41.42000	3.76000	.98000	4.48000	1.10000	4.98000	4.73000	.45000	•	2-17000	1.00000	30.00000	27.69000	1.00000
PAGE	GSHVNG1	51.00000	0000006	•	•	•	•	1.00000	•	107.00000	18.00000	12.00000	11.71000	2.00000	41.42000	3.76000	.98000	4.48000	1.10000	4 • 98000	4.73000	•45000	•	2.17000	1.00000	30.00000	27.69000	1.00000
	GSHSTG1	57,00000	9.00000	•	•	•	1.00000	•	•	120,00000	18.00000	12.00000	11.71000	2,00000	41.42000	3.76000	00086*	4.48000	1.10000	4.98000	4.73000	.45000	•	2-17000	00000*1	30.00000	27.69000	1.00000
	GSHSAG1	.00000.	00000*6	•	•	1.00000	•	•	•	134.00000	18.00000	12.00000	11.71000	2.00000	41.42000	3.76000	.98000	4.48000	1.10000	4.98000	4.73000	.45000	•	2 - 17000	1.00000	30.0000	27.69000	1.00000
	GSHGPG1	69.00000	9.0000	-	1.00000	•	•	•	•	145.00000	18.00000	12.00000	11.71000	2.00000	41.42000	3.76000	.98000	4.48000	1.10000	4.98000	4.73000	.45000	•	2.17000	1.00000	30.0000	27.69000	1.00000
1 MOD LEVEL 7	GSHGHG1	77.00000	0000006	1.00000	•	•	•	•	•	162.00000	18.00000	12.00000	11.71000	2.00000	41.42000	3.76000	.98000	4.48000	1.10000	4.98000	4.73000	.45000	•	2.17000	1.00000	30.00000	27.69000	1.00000
MPSX RELEASE	GSHBRR1	47.00000	00000.6	•	•	•	•	•	1.00000	00000.66	18.00000	12.00000	11.71000	2.00000	•	3.76000	•	4.48000	•	4.98000	4.73000	•	2.17000	•	1.00000	30.00000	27.69000	0000001
MPSX=VIM7 EXECUTOR.	GSHVNR1	51.00000	0000006	•	•	•	•	1.00000	•	107.00000	18.00000	12,00000	11.71000	2.00000	•	3.76000	•	4.48000	•	4.98000	4.73000	•	2.17000	•	1.00000	30.0000	27.69000	1.00000
MPSX=VIM7.		¥65H	36SH	1949	6PG1	SAG1	5161	1927	BRG	. 2	Z	Œ	00	09	5	000	OL.	P. C	2	1	10	.	W.R.O	WROG	£C	30	FIEC	A GSH

.MPSX-VI	.MPSX=VIM7 EXECUTOR.	MPSK RELEASE	E 1 MOD LEVEL 7	~			PAGE	15 - 81/292	
	PCNGHR1	PCNGPRE	PCNSARI	PCNSTRI	PCNVNR	PCNBRRI	PCNGHGI	PCNGPGI	101
Z	2000,0000	1750.0000	1250.0000	1100.000	1500 + 0000	1300,0000	2000.0000	1750.0000	YPCN
SHOP	00000+1	•	•	•	•	•	1.00000	•	GHG1
1945		1,00000	•	•	•	•	•	1.00000	GP G1
1 V V V	•	•	1.00000	•	•	•	•	•	SAGI
Tol.		. •	•	1.00000	•	•	•	•	5161
1000	. ,	•	•	•	1.00000	•	•	•	VNG1
1000	•		•	•	•	1.00000	•	• •	BRG1
	330.0000	330.0000	330.0000	330.00000	330,00000	330.0000	330.00000	330.0000	z
	0000000	100.0000	100.0000	100.0000	100.00000	100.00000	100.00000	100.00000	¥
	90000	60.0000	60.0000	60.0000	60.0000	60.0000	60.00009	60.0000	P
,	3,0000	3.0000	3.00000	3.00000	3.00000	3.00000	3.00000	3.0000	2
z	16.84000	16.84000	16.84000	16.64000	16.84000	16.84000	16.84000	16.84000	Y
: 0	13.70300	13.70000	13.70000	13.70000	13.70000	13.70000	13.70000	13.70000	8
200	1.80000	1.80000	1.80000	1.80000	1 +80000	1.80000	1.80000	1.80000	09
, E	•	•	•	•	•	•	57.35000	57,36000	<u>_</u>
פרס	20.86000	20.86000	20.86000	20.86000	20.86000	20.86000	20.86000	20.86000	סרם
>	•	•	•	•	•	•	1.34000	1.34000	OL.
	32.61000	32.51000	32.61000	32.61000	32.61000	32.61000	32,61000	32,61000	20
	•	•	•	•	•	•	1.53000	1.53000	
-	00006*9	6,90000	6.90000	6.90000	6.90000	6.90000	6.90000	6.90000	=
. =	15,54000	15.54000	15.54000	15.54000	15.54000	15.54000	15.54000	15.54000	5
· •		•	•	•	•	•	•62000	+62000	-
HOE	20,21000	20.21000	20.21000	20.21000	20.21000	20.21000	20.21000	20.21000	HOE
E C	3.00000	3.00000	3.0000	3.00000	3.00000	3.00000	•	•	WRG
MROG	•	•	•	•	•	•	3.00000	3.0000	WROG
E C	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	J.
	42,00000	42.00000	42.00000	42.00000	42.00000	42.00000	42.00000	42.00000	#
EST	219,53000	219,53000	219.53000	219.53000	219,53000	219,53000	219.53000	219.53000	EST
N E	101-14000	101.14000	101.14000	101-14000	101.14000	101-14000	101.14000	101-14000	FIAC
APCN	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	APCN
APCN2	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	APCN2

Persistant Per	**MPSX=VIM7**	7. EXECUTOR.	MPSX RELEASE	I HOD LEVEL 7				PAGE	16 = 81/292	
1.00000		PCNSAGI	PCNSTG1	PCNVNG1	PCNBRG1	TOMBHRI	T,OMGPR1	TOMSARI	TOMSTRI	111
1.00000	7	- CRC +	1100.000	1500.0000	1300,0000	•	•	•	•	ADCN
1-0000		2000				12,00000	•	11.60000	8.40000	YTOM
1.00000	MO L	•	•			2.00000	2.00000	2.00000	2.00000	STOM
1,00000		•	•	•		00000	•	•		GHG
1,00000	GHG1	•	•	•	•			1.00000	•	SAGI
1.00000	SAGI	00000*1	•	•	•		. •	•	1.00000	STG1
130,00000	STG1	•	1 - 00000		e 1	•			•	ANGI
100,00000 100,0000 100,00000 100,0000 100,0000 100,00000 100,000	15N^	•	•	00000		•	•			1000
10,000,000 10,000,000 10	BRG1	•	•	•	00000-1			000000	63.0000	
100,00000 100,000000 100,00000 100,00000 100,000000 100,000000 100,000000 100,000000 100,000000 100,000000 100,00000 100,00000	z	330.00360	330.0000	00000 *DEE	330-0000	00000.60	00000000	000000000000000000000000000000000000000		2
10,00000 1,0	. ±d	100,0000	100.00000	100-00000	100 00000	180.0000	180*0000	00000*081	00000000	
13,00000 3,00000 3,00000 15,	00	60.0000	000000	60.00000	60.0000	•	•	•	•	2.
16.24000) ~	3.0000	3,00000	3.00000	3+0000	•	•	•	•	2
13,70000	, 2	16.9400	16.84000	16.84000	16.84000	15.00000	15.00000	15.00000	15.00000	Z
13,7000	<u> </u>			•	•	12.00000	12,00000	12,00000	12.00000	Œ
13,70000	¥ :	•	•	. (16.36000	13.52000	16.01000	11.59000	표
1.60000 1.60000 1.60000 2.00	Z (. T. 20000	00007-61	13.70000	20.58000	20.56000	20.58000	20.58000	00
1.80000 1.80000 57.36000 3.76000 3.76000 3.63000 6.06000 6.0	00	13.7000	00000		5000a-1	00000	2.00000	2.00000	2.00000	09
1.34000 20.86000 20.86000 20.86000 6.06000 6	00	1.80000	1.80000		87 - WG 0 0 0	,	•	•	•	9
1.34000	4	57.36000	27.35000	000000		00092-6	0.0070.F	3.63000	2.63000	OLH
1.34000 1.34000 1.34000 1.34000 5.80000 4.74000 5.61000 4.06	0 L H	•	•	•	•	00000	00000	6.06000	0.0000	0.0
1.34000	מרם	20.86000	20.86000	20.86000	20.000	000000				2 2
1.554000 32.61000 32.61000 32.61000 6.110000 6.110000 6.110000 6.110000 6.110000 6.110000 6.110000 6.110000 6.110000 6	סרא	1.34000	1.34000	1.34000	1.34000	•				,
1.53000	I	•	•	•	•	2.80000	00001.0	2.61000	00000	Ę (
1.53000		32,61000	32.61000	32.61000	32.61000	00011-0	8-11000	8.11000	8.11000	D ;
Feedon F	2	0.005.1	1.53000	0.0003.1	1.53000	•	•	•	•	X
15.54000 15.54000		00000	6.9000	6.50000	6.90000	5.98000	5.98000	2.98000	9.98000	_
15.54000 15.54000	; :			•	•	11.84000	9.67000	11.45000	8.29000	5
Control Cont	: C		45.54000	15,84000	15.54000	00006.8	00006.8	8.90000	8.90000	-
20.21000 20.21000 20.21000 37.00000 37.00000 37.00000 37.00000 37.00000 37.00000 37.00000 37.00000 37.00000 37.00000 37.00000 2.600000 2.60000 2.6000000 2.600000 2.600000 2.600000 2.600000 2.600000 2.600000 2.6000000 2.600000 2.600000 2.600000 2.600000 2.600000 2.600000 2.6000000 2.600000 2.600000 2.600000 2.600000 2.600000 2.6000000 2.6000000 2.6000000 2.6000000 2.6000000 2.6000000 2.6000000 2.600000 2.6000000 2.6000000000 2.6000000 2.6000000 2.6000000 2.60000000000	2 .		60000	00069	.62000	•	•	•	•	*
3.00000 3.00000 3.00000 1.000000 1.00000 1.00000 1.00000 1.000000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0		00000	00010	00016-00	20.21000	37.00000	37.00000	37.00000	37.00000	HOR
3.00000 3.00000 1.000000 1.00000 1.00000 1.00000 1.000000 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.	201	00010100	20017107	· · · · · · · · · · · · · · · · · · ·		2.60000	2.60000	2.60000	2.60000	WRO
1-00000 1-00	W RO	• ;	• ,	• •	F00000	•	•	•	•	WROG
1.00000 1.00000 1.00000 1.00000 30.000000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.000000 30.000000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.0	MROG	00000	0000000		-	000001	1.00000	1.00000	1,00000	J.
42.00000 219.53000 219.53000 219.53000 67.22000	ر ا	1.00000	00000*1			00000-01	30.0000	30.00000	30.0000	0E
219,53000 219,53000 219,53000 219,53000 67,22000 67,20000	0E	42.00000	00000.24	0000	00000			,	•	EST
	EST	219.83000	219.53000	219.53000	00050-612		KT. 22000	67.22000	67.22000	FINC
1.00000 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00	F III	101.14000	101-14000	101-14000	00000	00022110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	•	APCN
1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00	APCN	1.00000	1.00000	00000*1	00000	•			1.00000	ATOM
1.00000 1.00000 1.00000 1.00000	ATOM	•	•		•	2000:1			,	ADCN2
	APCNZ	1.00000	1.00000	1.00000	1.00000	•	•	-	•	;

MPSX#VIM7	. EXECUTOR.	MPSX RELEASE	1 MOD LEVEL 7				PAGE	17 - 81/292	
	TCMVNR	TOWBERI	TOMGHG1	TOMGPG1	TOMSAGE	TOMSTGI	TOMVNG1	TOMBRGI	12
701	7.80000	0000009	12,00000	9.80000	11.60000	8.40000	7.80000		YTOM
ATOM	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	2.00000	STOM
שוני		•	00000	•	•	•		•	GHG
1909		, (•	1.0000	•	•	•	•	GPG1
	, ,		•	•	1.00000	•	•	•	SAGI
1010	•		•	•	•	1.00000	•	•	STGI
i de la	1.00000	. •	•	•	•	•	1.00000	•	VNGI
1000		0000001	•	•	•	•	•	•	BRGI
2012	00000-64	63.00000	63.0000	63.00000	63.00000	63.00000	63.00000	63.00000	z
	180.0000	180.00000	180.0000	180.0000	180.0000	180.00000	180.00000	180.0000	Ŧ
. 2	00000-81	13.00000	15.00000	15.00000	15.00000	15.90000	15.00000	15.00000	z
	10.0000	12,00000	12.0000	12.00000	12.00000	12.00000	12.00000	12.00000	£
£ 2	10.76000	8,28000	16.56000	13.52000	16.01000	11.59000	10.76000	8.28000	Ы
5 5	20.58000	20.58000	20.58000	20.58000	20.38000	20.58000	20.58000	20.58000	20
8 5	000000	2,00000	2.00000	2,00000	2.00000	2.00000	2.00000	2.00000	09
3 =	•	•	49.71000	49.71000	49.71000	49.71000	49.71000	49.71000	٦
; E	2.44000	1.88000	3.76000	3.07000	3.63000	2.63000	2.44000	1.88000	OL'H
	6.0600	0.0600.0	6.06000	6.05000	6.06000	6.06000	6.06000	6.06000	ar.o
270	•		1.18000	1.18000	1.18000	1.18000	1.18000	1.18000	4,4
	4.77000	2.90000	5.80000	4.74000	5.61000	4.06000	3.77000	2.90000	Ŧ
	000114	9,11000	6.11000	8.11000	8.11000	8.11000	8.11000	8.11000	BQ.
			1,33000	1.33000	1.33000	1.33000	1.33900	1.33000	RW
	8.58000	5.98000	5.98000	\$.98000	5.98000	5.98000	5.98000	8.98000	<u>.</u>
; :	7-70000	5.92000	11.84000	9.67000	11.45000	8.29000	7.70000	5.92000	Ę
; c	B-40000	8.90000	8.90000	8.90000	8.90000	00006*8	8.90000	00006"8	5
3 -	•		.54000	.54000	.54000	-54000	.54000	.54000	
HOM	37.0000	37.00000	37.00000	37.00000	37.00000	37.00000	37.00000	37.00000	HOE
2 2	0.600.0	2-60000	•	•	•		•	•	0 2 A
		•	2.60000	2.60000	2.60000	2,60000	2.60000	2.60000	WROG
·	1,0000	1,00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	FC
2 4	00000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30*0000	삠
F C	67,22000	67,22000	67.22000	67-22000	67.22000	67.22000	67.22000	67.22000	FIEC
ATOM	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	ATOM

	1		MOD LEVEL 7				PAGE	18 - 81/292	
MIN-XSOM'	MPSX-VIM7. EXECUTOR.	MPSA KELEASE	. :	18181	LETVNAI	LETBRRI	LE TGHG1	LETGPG1	131
	LETGHRI	LETGPRI	LF13AK1				1		MET
		•		405.00000	376.00000	289.00000	978 • 00 0 00	00000	1
18.5	578,00000	472.00000	00000000	0000	.60000	.60000	.60000	00000	
	60000	•60000	• 66000			•	1.00000	•	CHOI
31.E		٠	•	•	•	• •	•	1.00000	GPG1
E He		1.00000		•	•	•	•	•	SAGI
1945	•))))	1.00000	•	•	•	•	•	STG
SAGI	•	•	•	1.00000	•	•	•	•	VNG1
5161	•	•	•	•	1.00000	•	•	•	BRG1
154	•	•		•	•	00000*		00000-005	z
BRG1	•	• 0000	300.0000	300.0000	300.000	3000.000	00000	200.00000	¥
z	300-0000	000000000	900000000	200.0000	20000.002	200.0000	000000000000000000000000000000000000000	00000	Z
Ŧ	200.0000	200-0000		100.00000	100-0000	100.0000	00000.001		Ŧ
ž	100-00000	0000000		6.67000	6.47000	6.67000	00029*9		Talla
2	6.67000	6.67000	00010-0	00000	1,00000	1-00000	1.00000	00000	2 2
TOUGH	1.00000	00000.1	000001		00000000	22,32000	22,32000	22.32000	3 8
	00024766	22.32000	22.32000	22.32000		2.00000	2,00000	2.00000	0 <u>0</u> ;
	00000	2.00000	2.00000	2.00000	00000	•	49.71000	49.71000	2
00		; •	•	•	•	2.06880	7.26000	7.26000	מרם
ا د		7.26000	7.26000	7.26000	1.26000	222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.18000	OL*
950	00000		•	•	•	•	A A 2000	8.62000	C.
00.		8.62000	8.62000	6.62000	8.62000	2000	1. 11000	1,33000	T C
80	000000		•	•	•		8.48000	5.98000	5
T .	• 1	5.98000	5.98000	5.98000	5.98000	00006	0000E*6	9.30000	La
٠.		9,30000	9,30000	9.30000	00000		. 54000	. 54000	:
ָר ַ	00000	•	•	•	•		150.00000	160.00000	HOE
×.		160,00000	160.0000	160.00000	160.00000	000000		٠	DUM
HOE	00000001	000000	2.60000	2,60000	2.60000	2.60000	2.60000	2.60000	MROG
K RO	2.0000		•	•	•	•	1.00000	1.00000	J.
WROG	•	1.00000	1.00000	1.00000	1.00000	00000	10.0000	30.0000	빌
F C	00000	30.0000	30.0000	30.0000	00000-06	0000010	53.82000	53.82000	FMC
E E	53.62000	53.82000	53.82000	53.82000	00000-1	1.00000	1.00000	1.0000	ALET
ALET	1.00000	1.00000	1.00000	****					

.MPSX=VIM7.	M7 EXECUTOR.	MPSX RELEASE	E 1 POD LEVEL				PAGE	19 - 81/292	
	LETSAGI	LETSTGI	LETVNG1	LETBRG1	ONIGHR1	ONIGPRI	ONISARI	OMISTRE	141
		4	0000	00000	,	•	•	•	nlet
YLET	558.00000	00000*60*	000000000	000000	7.40.0000	605.00000	714.00000	518-00000	LNOA
AON I	•			00008		•	•	•	SLET
SLET	00009	00000	200		4 .0000	4.00000	4.00000	4.00000	SONI
SONE	•	•	•	•				•	GHG1
GHGI	•	•	•	•	20004				GPG1
1949	•	•	•	•	•	0000		•	
SAGI	1.00000	•	•	•	•	•	000001		9461
STGI		1.00000	•		•	•	•	000001	10.10
227	•	•	1.00000	•	•	•	•	•	SNA
			•	1.00000	•	•	•	•	BRG1
	00000	00000	60000-005	00000-000	450.0000	450.00000	450.00000	450,00000	z
zi	000000000000000000000000000000000000000	000000000000000000000000000000000000000	200000000000000000000000000000000000000	200-0000	250.00000	250.00000	250.00000	250.0000	Ŧ
¥ ;	0000000			100.0000	41 00000	0000014	41.00000	41.00000	Z
Z !	00000-001	20001	6-67000	6.67000	35.00000	35.00000	35,00000	35.00000	至
HK.	000000	2000	00000	000004		•	•	•	₽US‡
DUST	000001			50000 F - 00	00000-80	25.02000	25.02000	25.02000	00
00	22.32000	22.32000	00000		00000	000000	2.00000	2.00000	09
00	2.0000	2.00000	000000	200011))))		•	•	ţ
ر و	45.71000	00017.64	00011.6	0001111	. 0	0.17000	A. 17000	8-17000	000
0.0	7.26000	7.26000	7.26000	00000	200110			•	*
OLW	1.18000	1 - 18000	1.18000	1.18000	•	•			
80	E.62000	8.62000	8.62000	8.62000	0.45000	9.45000	9.45000	0000++6	2 1
2	1,33000	1.33000	1.33000	1.33000	•	•	•	•	· ·
-	5.98000	5.98000	\$.98000	5.98000	5.28000	5.28000	5.28000	5.28000	.
; =	0.0000	9.30000	9.30000	9.30000	10.79000	10.79000	10,79000	10.79000	ָבָבָּ בַּבָּ
3	00040	.54000	.54000	.54000	•	•	•	•	
u CA	160.0000	160.00000	160.0000	160.00000	120.0000	120.00000	120,00000	120.0000	¥0.
		•	•	•	2.60000	2.60000	2.60000	2.60000	02.5
2 6	00004:6	2.60000	2.60000	2.60000	•	•	•		#ROG
2		1-00000	000001	1.00000	1.00000	1.00000	1.00000	1.00000	Ų.
7 1	000000	00000	30-00000	30.00000	30.000	30.0000	30.0000	30.0000	9 6
נ ע כ	000000000000000000000000000000000000000	53.82000	53.82000	53.82000	57.92000	57,92000	57.92000	57,92000	J. M.C
) U	000000000000000000000000000000000000000	1-00000	000001	1.00000	•	•	•	•	ALET
ACE	•	, , , , ,	 	· · · · · · · · · · · · · · · · · · ·	1.00000	1.00000	1.00000	1.00000	AONI
;									

. .

	151	IND	SONI	GHG1	GPG1	SAGI	STG1	VNGI	BRGI		I	z	£	00	00	5	9	*	RO	-	•		•	HOE	50	206	FC	DE	FMC	INDV
262/18 - 02	ONIBAGE	370.00000 Y			•	•	•	•	1.00000 B	450.00000 N	250.00000	41.00000	35.00000 H	25.02000 D	2.00000 G	49.71000 L	0.17000	I.18000 D	9.45000 R	1.33000 R	5.28000 L	10.79000	.54000 L	120.00000 H		2.60000 W	1.00000		57.92000 F	1.00000 A
PAGE	15NA INO	481.00000	4.00000		•	•	•	1.00000	•	450.00000	250.00000	41.00000	35.00000	25.02000	2.00000	49.71000	8.17000	1.18000	9.45000	1.33000	5.28000	10.79000	.54000	120.00000	•	2.60000	1.00000	30.00000	57.92000	1.00000
	ONISTGE	518.00000	4.00000	•	•	•	1.00000		•	450.00000	250.00000	41.00000	35.00000	25.02000	2.00000	49.71000	8.17000	1.18000	9.45000	1.33000	5.28000	10.79000	.54000	120-00000	•	2.60000	1.00000	30.0000.0€	57.92000	1.00000
	ONISAGE	714.00000	4.00000	•	•	1.00000	•	•	•	450.0000	250.00000	41.00000	35.00000	25.02000	2 • 00000	49.71000	8.17000	1.18000	9.45000	1.33000	5.28000	10.79000	.54000	120.00000	•	2.60000	1.00000	30.0000	57.92000	1.00000
	19d9 IND	605.00000	4.00000	•	1.00000	•	•	•	•	450.00000	250.00000	41.00000	35.00000	25.02000	2.00000	49.71000	8-17000	1.18000	9-45000	1.33000	5.28000	10.79000	. 54000	120,00000		2.60000	1.00000	30.0000	57.92000	1.0000
E 1 MOO LEVEL 7	DNIGHGI	740.0000	4.00000	1.00000	•	•	•	•	•	450.00000	250.00000	41.00000	35.00000	25.02000	2,00000	49.71000	8-17000	1.18000	9.45000	1.33000	5.28000	10.79000	.54000	120.0000	•	2-60000	1.00000	30.0000	57,92000	1.00000
MPSX RELEAS	ONIBERI	370.00000	4.00000		•	•	•	•	1.00000	450.00000	250.00000	41.00000	35,00000	25.02000	2,00000	•	8.17000	•	9.45000	•	5.28000	10. 79000	•	120.00000	2.60000	•	1.00000	30.0000	57.92000	1.00000
**MPSX=VINT.* EXECUTOR.	ONIVNRI	481.00000	4.00000		•	•	•	1.00000		450.00000	250.00000	41.00000	35.00000	25.0200	2.00000	•	8.17000		9.45000	•	5.28000	10.79000	•	120.00000	2.60000	•	1.00000	30.0000	57,52000	1.00000
**HPSX-VIM7		INDA	SONI	GHGI	GPG1	SAGI	STGI	NO.	BRG1	z	Ŧ	Z	Ĩ	00	00	٦,	00	0ر ≼	80	7	3	2		HOE	WR0	BROG	FC	96	FMC	AONT

. MPSX-V1M7.	.MPSX-VIM7 EXECUTOR.	MPSX RELEASE	NOD LEVEL 7				PAGE	21 - 81/292	
	CHGGHRI	CHGGPR 1	CHGSARI	CHGSTRI	CHGVNR1	CHGBRR1	CHGGHGI	снеерез	161
!		7	7.70000	5.60000	5.20000	4.00000	8.00000	6.50000	YCHG
*CHG	00000*8	00000	9 6 6 6 6 9	F. 00000	A.00000	5.00000	5.00000	5.00000	SCHG
SCHG	2.0000	2.0000))))))		1,00000	•	GHG
GH61	1,00000	•	•	•	•	• 1		1.00000	GP G1
GPG1	•	00000-1	•	•	•	•	•	•	
1040	•	•	1.00000	•	•	•	•	•	
1010	•	, (•	1.00000		•	•	•	STG
5161	•	•	•		1.00000		•		VNG1
4×61	•	•	•	•	•	1.00000	•	•	BRGI
BAGI	•	•	•		00000.006	300.000	300,00000	300.00000	z
z	300.00000	300.000	00000000		200000	70.0000	70.00000	70.0000	Ŧ
I	10.00000	70.0000	00000		00002-0	9.7000	9.70000	9.70000	Z
z	9.70000	9.70000	00002.5		00000	10.0000	10.00000	19.0000	Œ
T I	19.0000	19.00000	19.0000		0000000	30.0000	30.00000	30.0000	MARIE
NE E	30.0000	30.0000	00000*06	00000000		00040-40	23.07000	23.07000	DQ
00	23.07000	23.07000	23.0700	23.0700	00000		2.0000	000000	9
00	2.00000	2.00000	2-00000	5.00000	200000	200	49.71000	49.71000	2
ιρ	•	•	•	. ,	7.48000	7.48000	7.48000	7.48000	OLG G
01.0	7.48000	7.48000	1.48040				1 . 18000	11.18000	מהא
OLW	•	•	•	•		9.41000	8.31000	8.31000	RO
80	8.31000	8.31000	8.31000	000 25 40			1.33000	1.33000	R
× ×	•	•	•		. A . O . A .	00000	3.98000	5.98000	5
	5.98000	5.98000	0000000	00000	0.45000	9.45000	9.45000	9.45000	5
2	6.45000	9.45000	45000	00000		•	454000	.54000	3
٥	•	•	•		00000 Ko	93.00000	93.00000	00000°E6	HOE
НОЕ	03.0000	00000*66			2.60000	2.60000	•	•	WRO
WR0	2.60000	2.60000	00000				2.60000	2.60000	WROG
WROG	•					1-00000	1.00000	1.00000	J.
Į.	000001	00000	00000-1	00000	00000	00000	30 00000	30.0000	96
0E	30.0000	30.0000	30000*06	200000	200000	61.0700	61.07000	61.07000	FAC
有量の	61.07000	61.07000	00000	00000	00000	40.00000	40.00000	40.00000	2
2	40.00000	40.00000	000000			00000-1	1.00000	1.00000	ACHG
ACHG	1.00000	1.00000	1.0000	****	> > > > > > > > > > > > > > > > > > > >	•			

MPSX=V1H7	/** EXECUTOR*	NPSX RELEASE	1 MOD LEVEL 7				PAGE	22 - 81/292	
	CHGSAG1	CHGSTG1	CHGVNGP	CHGBRG1	CHRGHRI	CHRGPR1	CHRSAR1	CHRSTRI	171
	4 4		,	00000	•	•	•	•	YEHG
CHG	7.70000	•	•		3500-0000	2860,0000	3378.0000	2450.0000	YCHR
CH#	•	• ;	•	4.00000	•	•	•	•	SCHG
CHG	5.00000	2.00000	000000			9.0000	8.00000	8.00000	SCHR
CHR	•	•	•	•	00000)))		•	GHG1
194	•	•	•	•	000001				GP G1
1561	•	•	•	•	•			• •	SAGI
1981	1.00000	•	•	•	•	•		00000	5161
101	•	1.00000	•	•	•	•	•		- LONA
		•	1.00000	•		•	•	•	
		•	•	1.0000	•	•	• • • •	•	
	00000	00000-001	300.00000	300.0000	200-0000	200.00000	200,000,002	0000000	
_ ;		00000	70.0000	70.0000	00000.09	60.0000	60.0000	60.0000	Hd.
I	000000	00000		0.7000	9.70000	9.7000	9.70000	9.10000	z
z	0.0004 6	00001.6		00000	19.00000	19.00000	19.00000	19.00000	¥
Œ.	19.00000	00000*61	0000041		00000.02	30.00000	30.00000	30.0000	ZEZ
#EM	30.00000	30.0000	30-0000		000000000000000000000000000000000000000	21.57000	21.57000	21.57000	00
0.0	23.07000	23.07000	23,07000	00000	20000-2	000000	2.00000	2.00000	09
05	2.0000	2.00000	2.00000	00000		· · · · · · · · · · · · · · · · · · ·	•	•	5
<u> </u>	00011-64	49.71000	49.71000	00011.64		0000	6.47000	6.97000	מרס
070	7.48000	7.48000	7.48000	7.48000	000.5.0	202.640	•	•	× 5
	1.18000	1.18000	1.18000	1.18000	•		• 6	7.07000	2
	8.31000	0.31000	8.31000	6.31000	7.97000	0000			2
	1.33000	1.33000	1.33000	1.33000	•	•			
•	00086-5	5.98000	5.98000	5.98000	5.98000	2.98000	00086.5		; =
• 6	9.45000	9.45000	9.45000	9.45000	00010.6	00000	000.045		3 -
	54000	.54000	-34000	. 54000	•	• 1		00000	101
. 0	00000-10	•	•	93.00000	93.00000	93.0000	00000.58		. 3
		•	٠ (•	2,60000	2.60000	2.60000	2.60000	3
200	•	•	00000	0.6000	•	•	٠	•	NO CO
MROG	2.60000	2.60000			1,0000	1.00000	1.00000	1.00000	J.
F.	1.00000	000001	000001		20.0000	30.0000	30.00000	30.0000	뿔
06	30.0000	30-0000	30.000		61.7000	41,79000	51.79000	51.79000	FIRC
FINC	61.07000	61.07000	61.07000	0000000	00000	000000	40.00000	40.00000	ñ
21	40.0000	40.0000	40.0000	00000*0*			•	•	ACHG
ACHG	1.00000	1.00000	1.00000	1.00000	• •	1,00000	1.00000	1.00000	ACHR
ACHR	•	•		•	>>>>	,			

				,			PAGE	23 - 81/292	
NEX - X S d M	.MPSX=V1M7 EXECUTOR.	MPSX RELEASE	1 MOD LEVEL /	•					
		100000	CHRGHG1	CHRGPG1	CHRSAGI	CHRSTG1	CHRVNG1	CHRBRGI	
	CHHANKI					0000	0000-2266	1750.0000	YCHR
			0000	2860.0000	3378,0000	2450.0000	000000	00000	SCHE
ACHR.	2275.0000	1750.0000	000000000000000000000000000000000000000	00000	8.00000	0.0000	9,000		1000
	00000	8.00000	00000	200	•	•	•	•	1915
SCHE			1.00000		•		•	•	GPG1
GHGI	•	•		1.00000	•	•	•		SAGI
1995	•	•	•	•	000000	•	•	•	
	1	•	•	•		00000	•	•	2010
SAGI	•		•	•	•	,	1.00000	•	VNG1
STGI	•	•	•	•		•	•	1,00000	BRG1
V NG1	00000*1	•	•	•	•	•		0000	z
1000	•	000001		00000	000000000000000000000000000000000000000	200-0000	200.00000	000000000000000000000000000000000000000	: 6
1040	00000	200.00000	200.0000	200000000	00000	00000	60.00000	60-0000	r 1
z	0000000	0000	600000	60.0000	60.0000		20000	9.10000	Z
H	60.0000	- 09		9-70000	9.70000	00001*6		00000	물
2	9.70000	9.70000	2000/ **		00000	0000001	19.00000	***************************************	
<u>.</u>	00000	19.00000	19.00000	00000		00000.06	30.00000	30.0000	E E
Ĩ		0000	30.00000	00000 DE	30 •0000		51.57000	21.57000	60
エルス	00003*3E	00000	21.57000	21,97000	21.97000	0001617		0000076	09
2	21.57000	21.57000	00010417	00000	2.00000	2.00000	2.00000		
, ,	2.00000	2.00000	2.00000		90014	49.71000	49.71000	00017-64	ו ני
3		•	49.71000	49.71000	000110	4.07000	6.97000	6.97000	950
٥	•	00000	6.97000	6.97000	9.97000		00000	1.18000	2
0,0	6.0076.0		00041-1	1.18000	1.18000	0000111		2.97000	5
> 70	•	•		4.97000	7.97000	7.97000	00016		*
	1.97000	7.97000	1.97000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00061.4	1,33000	1.33000	00000	٠.
ב ב		•	1.33000	1.33000		00080.8	5.98000	5.98000	;
K.4		5.0A000	5.98000	5.98000	000000	00000	0.07000	9.07000	-
_	00000	000000	9.0700	9.07000	00010.6		00000	.54000	_
ני	9.07000	200.6		.34000	.54000	00045*	1	00000	HOE
>	•	•		00000	93.00000	93.00000	000000.64))	203
ָ בּ	00000-69	93.00000	93.00000		1	•	•	•	
0 1		2.60000	•	•		2.60000	2.60000	2.60000	25
₩	00000		2.60000	2.60000	2.60000		00000-1	1.00000	ñ
¥R0G	•	4		1.00000	1.00000	000001		40.00000	e E
FC	1.00000	000001		00000-01	30.000.05	30.0000	2000	0000	THE CHARLE
u	30.0000	30.0000	30.00	0000	41.79000	51.79000	51.79000	00000	
, ,	91.79000	91.79000	21*19000	00064-10	00000	40.0000	40.00000	40.0000	210
J E ų	00000	40.00000	40.00000	00000*0*		1,00000	1.00000	1.00000	ACHR
5	000001	1.00000	1.00000	1.00000	> > > > > > = = = = = = = = = = = = = =				

5X-V1M7.	MPSX=VIM7 EXECUTOR.	MPSK RELEASE	1 MOD LEVEL 7		Þ		PAGE	24 - 81/292	
	SPEDCTUP	SEEDCIPI	SEEDWHEA	SEEDBARL	SEEDGRAI	SEEDTOMA	SEEDLETT	SEEDONI O	101
087	100004	-000000	-00022.	. 18000-	.60000	-0000001	35.00000=	-0000011	DBJ SCTU SCTP
SCH TO SCHOOL SC		1000000	1.00000	-000000	-00000-1				SWHE SBAR SGSH STOM
Stor Storic Sovic Toc	48000	00000	. 22000	00081.	000009*	18.50000	35.0000	-00000-1	SONI
MPSX=VIM7.	EXECUTOR.	MPSX RELEASE	1 MOD LEVEL 7			,	PAGE	25 + 81/292 Gura	100
	SEEDGREE	SEEDREUC	NITROGEN	NITREG	NITEL.	PHGSPHUR •12500≖	•	•	087
	1.00000-	12.00000-1						•••	SCHR SCHR
1 L 3	• • • •	• • • •	-000000**	00000.	1.00000 1.00000		1.00000+	. 33333*	독 F F F
	12.0000	12.00000	.12000	•••	•••	1,00000-	0000041	1.00000	PHT 100

MPSX-VIMT EXECUTOR.	EXECUTOR.	MPSX RELEASE	1 MOD LEVEL 7				PAGE	26 = 81/292	
	POTASSIU	ZINC	INSECTIC	HERBICID	NEMATICI	DUST	BALEWIRE	CROPINSU	211
OBJ PG 2 2 1 1 N H A H A B U S I I C I O C		1 . 000000		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-000000-1	11.67000-	.35500	-000000-1	08J 7 1N 1N HR HR OUST 1C
WPSX-VIM7	EXECUTOR.	NPSX RELEASE	1 MOD LEVEL 7				PAGE	27 - 81/292	
	OTHEREXP	HOECUS TO	LABORIRR	LABORIRL	LABORIRT	LABORWEL	LABORYLL	LABORNLT	221
680	1.00000-	1.000001	•	•	•	•		•	00
LTIOC				•	1,00000		•	1.00000	LT 10C
-	•	•	1.00000-	•	•	•	•	•	=
רונ	•	•	•	1.33333-	•	•	•	•	רזר
רוו	•	•	1.00000	1.00000	1-00000-	•	•	•	LIT
L*	•	•	•	•	•	-00000-1	•	•	-
ראר	•	•	•	•	•	•	1,33333*	•	LH
LWT	•	•	•		•	00000*1	1.00000	1.00000-	LWT
HOE	•	1.00000-	•	•	•	•	•	•	HOE
90	1.00000-1	•	•	•	•	•	•	•	9
roc	1.00000	1.00000	•	•	•		•	•	100

. MPSX=V1M7	. EXECUTOR.	MPSX RELEASE 1	I MOD LEVEL 7				PAGE	28 - 81/292	
	LABORHAR	LABORUTH	LABORIDC	LABOR	DESOTHER	DESHARVE	DESTEL	GASOTHER	231
08J 000 000 601 1100 100	1.00000	-00000°1	1.00000- 1.00000 3.60000	-000000.1	1.00000		1.063001 1.0000001	1.00000-1.00000	08) 01 02 03 04 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08
. KPSX=VI Mr.	• EXECUTOR •							1 1 1 1 1 1 1 1	241
	GASHARVE	GA SOL I NE	LPWELL	LPVELLL	LPGAS	OLWELL	OUTELLOL		
- 80	•	1.24200=		•	-00-666655	•	• •	, ,	1 80 H3
	-000001	•	•	•	•	•	•		15
. 5	1.00000	1.00000	•	•	•	•		•	5
ا ا	•	•	1.00000-1	•	•		•	•	LPL
ראר	•	•	•	1.33333	-		•	•	LPT
LPT	•	•	1.00000	00000		-00000-1	•	•	OLW
OLW	•		•	•	• •	•	1.333333-	•	OF. W.
סראר	•	•	•	•		1.00000	1.00000	1.00000-	CILNT
OLVT	•	•	•	•	• 1		•	1.00000	OL. 110C
OLTIBE	•		•	•	. 4000	, .		•	tac
100	•	•	•	•	>				

MPSX-VIM7 EXECUTOR.	EXECUTOR.	HPSK RELEASE	I MOD LEVEL 7				PAGE	30 - 81/292	
	OLOTHER	OL HARVES	OILLUBE	OL 1 OC	REPIELL	REPWELLL	REPWELLT	REPOTHER	251
080		•	1.00000-1		•	•	•	•	9
OLH	•	1.00000	•	•	•		•	•	
010	1.00000-	•	. (•	•	•	•	Ę
4			•	•	•	•			OC O
2.1		•	•	1 *00000	•	•	•	•	OL TIBC
	•	00000	1.000001	00000	•	•	•	•	7
RO.	•	•	•	•	•	٠	•	1.00000-	02
*	•	•	•	•	1.00000		•	•	*
۲. ۳.	•	•		•		■ EEEEEE	•		
RNT	•	•	•	•	1.00000	1.00000	1.00000		1 1 2
RTIOC		•	•	•	•	•	00000	1,00000	RTINC
100	•			00000-1	•	ı ·	,		7011
	•	•			•	•	•	•	201
MPSX=VIH7.	EXECUTOR.	NPSX RELEASE	1 MOD LEVEL 7				PAGE	31 - 817202	
	REPHARVE	REPAIRS	REPIOC	WATERSUR	WATERSLL	WATERZFT	WATERSHD	WATERTOT	261
680	•	1.00000-	•	•	•	•		,	ğ
E E	1.00000-	•	•	•	, ,	ì		•	
R. T.	1.0000	1000000	60000	•	•		•	•	I
24100		•		•	•	•	•	•	₩
	•	•		•	•	•	•	•	RTIOC
	•	•	•	1000000	•	•	•	•	WRO
#ROL.	•		•		1 •33333**	•	•	•	WROL
Z H CZ	•	•	•	•	•	1-00000	•	•	WR02
EQ. I	•	•	•	•	•	•	1.00000	•	WRQ3
100	•	•	1.00000	•	•	•	•	•	100
#R07	•	•	•	1.00000	1.00000	•		100000-1	1002
WROAM	•	•	•		•	1.00000	1.00000	1.00000	MROAVE

. MPSX=V1X7.	. EXECUTOR. MPSX	MPSX RELEASE	1 MOD LEVEL ?			,	PAGE	32 - 61/292	
	WATERGR	WATERGLL	WATERGRO	LASERLEV	INGHOPCP	CUSHRCTU	CUSHRC 1P	CUSHRWME	271
GBJ CUSCTU CUSCTP CUSWHE WROGL WROGL WROGT 10C	-00000-1	**************************************		+5.00000 +5.00000 1.00000	1.00000.1	100000	1000000	1	CUSCTU CUSCTP CUSMHE WROG MRGGL WROGT 1DC
MPSX=VIM7	. EXECUTOR.	MPSX RELEASE	1 MOD LEVEL 7				PAGE	33 - 81/292	
	급	CUSHRGRA	CUSHRPCN	CUSHRTOM	CUSHRLET	CUSHRONI	CUSHRCHG	CUSHRCHR	281
DBJ CUSBAR CUSPCN CUSTON CUSTON CUSCUSONI CUSCHG	1	1000000	1.00000-	1000000	1 - 00000-	1.00000	100000000000000000000000000000000000000		CUSBAR CUSBAR CUSPCN CUSTON CUSLET CUSON I CUSCHR

MPSX-VIM7.	EXECUTOR.	MPSX RELEASE	I MOD LEVEL 7				PAGE	34 - 81/292	
<u>.</u>	F 1 XEDCOS	FIXMACHC	FIXWELLC	ESTABLIS	ACREGREE	ACREREDC	COTTON	PIMA	291
	32,83000=	1.00000	1610208.0-	1.00000-	•	•	.78000	1.03760	F80
		•	•	•	•	•	1.20000-	•	YCTU
rcrp	•	•	•	•	•	•	•	1.10000-	YCTP
CUSCTU	•	•	•	•	•	•	1.00000	•	CUSCTU
CUSCIP	•	•	•	•	•	•	•	1.00000	CUSCIP
ڀِ	1.00000	•	•	•	•	•	•	•	FC
D# €		•	1.00000	•	•	•	•	•	FWC
EST			•	1.00000	•	•	•	•	EST
JM:	•	1.00000	•	•	•		•	•	FIEC
(CHG	•	•	•	•	1.00000-1	•	•	•	ACHG
(CHR	•	•	•	•	•	-00000*1	•	•	ACHR
CHILITOT	•	•	•	•	00000-1	1.00000	•	•	CHILITOT
. MPS X-VIM7.	executor.	MPSX RELEASE	1 NOO LEVEL 7				PAGE	35 - 61/292	
Ü	COTTONSE	COTTONSU	ALFALFA	WHEAT	BARLEY	GRAINSOR	PECAN	TOWATO	301
3 8 5		16950.	77.83000	3.93000	2.49000	2.86000	.95000	96.20000	007
rctso	1.10000-	•	•	•	•			•	YCTSD
rctsbu		1.20000=		•	•	•	•	•	YCTSDU
TALF	•	•	1.00000-	•		•	•	•	YALF
YWHE	•	•	•	1.00000=	•	•	•	•	YWHE
YBAR	•	•	•	•	1.00000	•	•	•	YBAR
YGSH	•	•	•	•	•	1.00000-	•	•	YGSH
YPCN	•	•	•	•	•	•	3.00000-	•	ADCN
YTOM	•	•	•	•	•	•	•	1.00000-	YTOM
CUSWHE	•	•	•	1.00000	•	•	•	•	CUSWHE
CUSBAR	•	•	•		1.00000	•	•	•	CUSBAR
CUSGRA	•	•	•	•		1.00000	•	•	CUSGRA
CUSPCN	•	•	•	•	•	•	1.00000	•	CUSPCN
CUSTON	•		•	•	•	•	•	1.00000	CUSTOM
WIRE	•	•	8.75000	•	•		•	•	WIRE

FE1LDBAG
-00001.
•
•
•
•
-
-00000-1
5
5
5
5
O
U
WR02
AALF
N I
ALET
<u>.</u>
AALFZ
7 7
2 7
-

APPENDIX D

Evaporation from Elephant Butte
Reservoir, New Mexico

Evaporation from Elephant Butte Reservoir

After consultation with the staff members of the U.S. Department of the Interior, Water and Power Resources Service, Southwest Regional Office and Bill Riley, Chief Engineer, Rio Grande Compact Commission, the following procedure was developed to calculate evaporation from Elephant Butte Reservoir. This procedure was based on the suggestions and comments of these above-mentioned experts and any state, federal, compact or treaty law or regulation which might apply.

Percentage evaporation loss was calculated monthly from January 1951 to December 1980. The calculation procedure begins with the monthly pan evaporation in inches reported for Elephant Butte Dam in the annual Rio Grande Compact Commission Report. Riley said that, for Rio Grande Compact Commission purposes, 70 percent of pan evaporation is used as actual lake surface evaporation. Therefore, the monthly pan evaporation figures were multiplied by .7 to obtain actual lake surface evaporation. Monthly rainfall totals in inches were also reported in the Rio Grande Compact Commission Report. monthly rainfall total was subtracted from the monthly actual lake surface evaporation to give the monthly actual net lake surface evaporation in inches. The procedure to this point is different than that used by American Ground Water Consultants, Inc. (AGWC) in a study done for the Jicarilla Indian Tribe in a lawsuit against the city of Albuquerque, New Mexico. AGWC subtracted rainfall from pan evaporation first, then multiplied by .7 to obtain actual lake surface

evaporation. This, of course, diminishes the impact of rainfall on countering actual lake surface evaporation, rainfall being reduced by 30 percent. Thus, evaporation rates were over-estimated. Higher evaporation rates helped support the Indians' lawsuit. The AGWC method was not used. Instead, the technically correct procedure initially described in this appendix was developed with Riley's guidance.

The Rio Grande Compact Commission Report also reported either monthly lake levels in feet above sea level or lake capacities in acre feet for Elephant Butte Reservoir. 10 Monthly lake levels were reported for 1951 and 1959 through 1975. Monthly lake capacities were reported for 1952 through 1958. Transmountain water was introduced into Elephant Butte in 1976. This water under legal agreements is registered as a reduction in lake evaporation with the amount determined by the increase in lake surface area attributable to the transmountain water. Therefore, the monthly lake capacities for 1976 through 1980 were reduced by the monthly capacities of transmountain water. This monthly lake capacity was then used for calculation purposes.

Any container may be measured for the volume of the liquid

Lake levels and lake capacities are actually reported as of the last day of the month. The end of the month figure and the end of the previous month figure were averaged to obtain the monthly figures for either lake level or lake capacity.

contained. This capacity has a relationship to the height of the liquid in the container. The level of the liquid in the container, depending on the shape of the container, determines some given liquid surface area. For an irrigation water storage reservoir like Elephant Butte, this means that the lake level is exactly related to lake capacity and lake area due to the physical structure of the lake. Periodically the U.S. Department of the Interior, Water and Power Resources Service, Southwest Regional Office redefines these relationships for Elephant Butte Reservoir. In 1980, they developed a new set of elevation—area and elevation—capacity tables for Elephant Butte. By knowing one of the three —— lake level, lake area or lake capacity—the other two may be determined from the tables. From these tables monthly lake levels, lake areas and lake capacities were determined from either the monthly lake levels or monthly lake capacities

The monthly actual net surface evaporation in inches was multiplied by the monthly lake area in acres. The result divided by twelve converts the evaporation to acre feet. This monthly total acre feet of evaporation was divided by the monthly lake capacity yielding the monthly percentage loss due to evaporation. These monthly evaporation rates are listed in Table 41.

In December of 1960, no pan evaporation was reported. The total lake evaporation in acres calculated by Riley in some earlier work was used.

Table 41. Monthly and Annual Percentage Evaporation Rates for Elephant Butte Reservoir 1951 through 1980

								Year							
Month	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965
January	1,004	1.777	.851	.951	.562	1,126	1.793	,336	.522	.274	.246	.411	.580	1.058	1,159
February	1.098	2,708	•656	1,776	1,348	806.	1.670	009.	9/9.	.802	1,003	1.129	. 765	1.107	1,392
March	1,859	5,223	1,348	2,444	2,344	2,425	2.834	.488	1,329	1,552	1,728	1,368	1.748	2.738	2,375
April	2,950	4.182	2,523	3.747	4.053	3.272	4.164	1.509	1.570	2,223	2,764	2,303	2,696	3,794	3,578
May	3,452	3,586	3,423	4.236	4.147	4.622	4.190	1.731	2,445	2.507	3,602	3.209	3,365	5,008	3,739
June	6.295	2,782	4.001	6.039	5.075	4.518	3,780	1,991	2,390	2,348	3,146	3.292	4.264	5,680	3,362
July	6,136	2,012	3,173	6,449	3,245	3.560	2,357	1.648	2.272	1,786	3,093	1,719	3,773	3.238	2,500
August	7.026	2,170	3,393	5,187	2,658	3.642	.481	1.495	.913	2,208	2,191	3.239	3,144	4.387	2.146
September	9.794	1,813	4.090	3,399	3,692	5.660	1.560	.501	2,190	2.068	1,835	.883	2.532	2,114	1.736
October	7,025	1.537	2,654	2,105	2.113	5.335	.384	.385	1.193	1,012	2,375	1.287	2,600	3,320	1,656
November	3,480	.836	1,834	1,941	1,909	2,708	.401	.555	.723	. 987	.089	.828	1.477	2,102	.992
December	2,517	.383	.919	1.251	1.182	1,582	,435	164.	.359	-,115	.632	.009	1,083	.962	,121
Annual	41.889	25.522	25,404	33,233	28.022	33.079	21.665	11.139	15.398	16,327	20.548	18.056	24.756	30,363	22.187
Month	1966	1967	1968	1969	1.970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
Tannata	17.2	188	749	127	468	724	906	375	472	310	476	296	717	.453	.276
February	637	1.099	774	935	.451	1.129	1.221	151	.658	.591	.739	897	838	976	484
March	1.360	2,341	1.222	1.407	1,093	1.901	2.262	1.239	1.227	1.281	1,381	1,499	1,738	1.838	1,166
April	1.990	3,338	2.495	2,340	2,009	2,305	3.295	1.880	1.764	2,101	1,688	1,853	3,341	2,181	1,299
May	2.621	4.033	3.505	2,381	2,339	3.518	3.612	1.884	2.165	2,502	1,860	3.145	2.979	1,861	1,741
June	2.509	3,436	4.224	2,921	2.620	4.267	2.926	2.193	2.667	2,879	2,542	3.249	2,927	1,757	2.178
July	2.631	3,778	2,995	1,822	2,350	4.297	3.810	1,531	1,913	1,752	1.878	3,015	3,299	1,633	1,999
August	1.743	1,415	2.092	2,270	2,316	2,976	2,037	1,415	1,924	1.903	2,299	2,198	3,208	1.170	1,319
September	1,626	1,386	2,269	.915	2,473	3.784	2,297	1.556	1,165	.261	1.120	2.486	2,680	.612	. 685
October	1,565	2.056	1.885	1,174	1,356	1,589	.038	1,235	.275	1,299	1,010	2.073	1.993	1.128	946.
November	1.189	.869	.712	.779	1,333	1,036	.546	.962	.693	.753	.481	1.830	-,282	.599	944.
December	.768	.178	.629	.292	.709	.159	.678	.567	.246	.336	.466	1.287	.560	.317	.366
Annua1	17,297	22,250	21,005	16.588	17,894	24.519	21,304	13,994	14.417	14.889	14.851	21,428	21.359	13,591	12,189

The annual evaporation rate was determined from the monthly evaporation. Since evaporation is a continual process, the monthly rates must be compounded into the annual rate. The monthly evaporation rates were first divided by 100 and then subtracted from one. These monthly factors of water remaining were then multiplied together for each year. This result was subtracted from one and multiplied by 100 giving the annual evaporation rate in percent (Table 41).

APPENDIX E

The Two Acre Feet Per Acre
Water Use Scenario

The Two Acre Feet Per Acre Water Use Scenario

Farmers in El Paso County do not have perfect knowledge of future surface water allocations. They, therefore, cannot optimally allocate their future surface water allocations by means of a temporal linear programming as was used in this study. Thus, the two acre feet per acre water use scenario was developed as an example of a probable water use scheme which farmers may implement.

Under this scheme a farmer would use no more than two acre feet of surface water in any year. When surface water allocations were above two acre feet per acre, the excess over two acre feet would be stored for future use. Table 42 gives the annual surface water allocation and the portion of that allocation saved for future use. Table 42 also gives the cumulative total of water saved. Water stored for a whole year is charged the total evaporation for the year. Stored water used within a year was only charged evaporation for the first six months of the year.

In development of this water use scenario, it was possible to determine evaporation rates which includes the effects of the additional (stored) water in the reservoir. These revised evaporation rates are given in Table 43 for applicable months. They were determined by adding to actual lake capacity the hypothetical stored water. This yielded a new capacity which from the elevation-capacity tables for Elephant Butte Reservoir produced a new lake level. Then the new lake level was used to read a new lake area from the

Table 42. Development of the Two Acre Feet Per Acre Surface Water Use Scenario for the Years 1963 through 1980

	Surface	Water Saved	Total	Water Charged	Water Charged	Water	Porres	
Year	Water Allocation	from Allocation	Water Used	Full Year Evaporation	1/2 Year Evaporation	Available to be Called		Water Used
				acre feet per acre	per acre			
1963	2,00							2.00
1964	.33							.33
1965	1,85							1.85
1966	2.50	.50	.50					2.00
1961	1.50		.50		.50	.50	.43229	1.93229
1968	2.00		.50					2.00
1969	3.00	1,00	1.50					2,00
0761	3.00	1.00	2,50	1,00		1.00		2.00
1761	2.00		2.50	1.83044		1,83044		2.00
1972	.67		2.50		1,45207	1.45207	1.28148	1.95148
1973	3.00	1,00	3.50					2.00
1974	3.00	1.00	4.50	1.00		1.00		2.00
1975	3.00	1,00	5,50	1.86276		1.86276		2.00
1976	3.00	1.00	6.50	2,60291		2,60291		2.00
1977	1.25		6.50	2,51402	.75	3.26402	.75	2.00
1978	.75		6.50	.77722	1.25	2,02722	1.25	2.00
1979	3.00	1.00	7,50	.51318		.51318		2,00
1980	3.00	1.00	8.50	1,44486		1,44486		2.00
1981				2.27122		2,27122		

Revised Evaporation Rates for Elephant Butte Reservoir for the Two Acre Feet Per Acre Water Use

	Scenario	Scenario									
						Year					
Month	1961	1970	1971	1972	1974	1975	1976	1977	1978	1979	1980
					n n	reent					
January	.845	.451	.641	.805	.463	.463 .287	.450	.239	.334	,419	.270
February	1,055	.436	1.014	1.117	.648	.550	.703	.727	.719	.920	.475
March	2,273	1,054	1,679	2,071	1.204	1,190	1,311	1.232	1.511	1,783	1.143
April	3,211	1,930	2.016	2.881	1.732	1,935	1,582	1,528	2,799	2,117	1.274
May	3.762	2,248	3.123	3.064	2.113	2,316	1,729	2,563	2.620	1.802	1,710
June	3,190	2.514	3,659	2,414	2,595	2.687	2,332	2,627	2.572	1,733	2.149
July		2,194	3,365		1,841	1.648	1.668	2,296	3.079	1.618	1.972
August		2,191	2.408		1,806	1.780	1,946	1.607	2.986	1.159	1.303
September		2,221	2,620		1,089	.245	.945	1.822	2,501	909	.677
October		1.232	1,245		,258	1,221	.854	1,530	1.870	1.120	.935
November		1,266	.844		.652	.713	.406	1,349	263	.593	.441
December		999.	,129		.235	,321	.394	926.	.519	,315	.362

elevation—area tables for Elephant Butte. The appropriate monthly net actual lake surface evaporation from Appendix D was multiplied by this new lake area. The result was divided by twelve to convert it to acre feet. This new total evaporation was then divided by the new capacity and multiplied by 100 to produce the percentage loss due to evaporation. This percentage evaporation loss was divided by 100 and subtracted from one to give the factor of water remaining. This factor was multiplied by the hypothetical stored water to give the hypothetical stored water for the next month. This stored water for the next month to yield the new capacity for the next month. Then the whole procedure was repeated for each month as necessary. As water was stored it was added in January to hypothetical stored water. As water was used it was subtracted from the July hypothetical stored stored water.

Table 42 also gives the water available on January 1st of each year which is in storage and available to be called. The stored water which is called for delivery is also given. Finally, the water used is given which is two acre feet in years with allocations at or above two acre feet. Water used is the water allocation plus the saved water called for years with allocations below two acre feet.