

Break-Even Investment in a Wind Energy Conversion System for an Irrigated Farm on the Texas High Plans

D.C. Hardin R.D. Lacewell

Texas Water Resources Institute

Texas A&M University

ABSTRACT

The purpose of this study was to quantify the benefits of using a wind energy system for irrigation. The value of wind energy was estimated on both a static basis (where the annual value of wind power was assumed to be constant over the life of the machine) and on a temporal basis (where the annual value of wind power was estimated recursively).

The model for static analysis contained two components which were applied consecutively. The first was a linear programming (LP) model for the High Plains region. Production activities were included which allowed both optimal and non-optimal timing of post-plant irrigations, giving the producer added flexibility in the employment of limiting water resources. The optimal irrigation schedule determined by the LP solution was used as input to the second component. A simulation model matched stochastically generated estimates of wind power availability with irrigation fuel requirements (derived from the profit maximizing irrigation schedule) by three-hour time periods throughout a year.

For the temporal analysis, a Fortran subroutine was added to the LP model to operate the model recursively over the life of the wind system and to account for the annual decline of the aquifer. Both fixed and variable costs were included. The basic LP model was applied to develop the benchmark case (i.e., without wind power). The farm operation with wind power was analyzed by applying the LP model with the monthly expectations of wind-generated electricity added.

Two wind machines were analyzed, with rate outputs of 40 to 60 kilowatts (KW). Each was applied to the Northern and Southern Texas

High Plains over a range of land and water resource situations. Breakeven investment was estimated at discount rates of three, five and ten percent.

Cropping patterns on the Southern High Plains were dominated by irrigated cotton and were insensitive to changes in crop or electricity prices. On the Northern High Plains, irrigated corn and grain sorghum were the major crops, with acreage reverting to dryland wheat at the higher electricity prices. The cropping patterns in this area were impacted heavily by labor restrictions. Consideration of wind power had little effect in determining optimal cropping patterns.

When wind power was applied to an irrigated farm on a static basis, the set of crop prices applied had little effect on the annual value of a wind system. Value of wind power was increased, but by smaller proportions than associated increases in the price of electricity. Each machine size had a greater value when operated on the larger of the two applicable land units (100 acres for the 40 KW machine and 144 acres for the 60 KW system). The 60 KW system was also tested on the 100 acre unit but returned less per KW than the 40 KW system.

Available wind power in the temporal analysis was less than in the static analysis, thus temporal estimates of wind system value should be regarded as conservative. On the Southern High Plains, break-even investment was decreased slightly from the static analysis. However, in some situations on the Northern High Plains, break-even investment increased. This indicates that the value of wind power could increase as the aquifer declines in some situations. Break-even investment

increased by up to 80 percent when the price of electricity was increased by \$.005 per KWH per year. The most significant effect of wind power was that it allowed the maintenance of irrigation levels which, without wind power, had been made uneconomical.

These results indicate that, at least in the future when wind system costs decrease and stabilize, wind-assisted irrigation could be an economically viable alternative for Texas High Plains producers. The results are limited by the need for future research regarding the effect of irrigation timing on crop yield as well as some of the long-term characteristics of wind system operation, such as durability and the requirements and costs for system repairs and maintenance.

ACKNOWLEDGEMENTS

We would like to thank Bob Whitson, Wyatte Harman, J. R. Runkles, Bruce Beattie and Bob Taylor for their input and suggestions throughout this study. Special thanks go to Dr. Runkles and the Texas Water Resources Institute for the financial support of this study, and to Dr. John Hopkin, Head of the Department of Agricultural Economics. We would also like to express our appreciation to Dr. Gerald Higgins of the Texas Department of Water Resources, whose support and suggestions during the final stages of this study were invaluable.

Other scientists offered valuable assistance. Nolan Clark, Bob Lansford and Ray Supalla contributed information about wind systems. Unpublished data from irrigation experiments were provided by Jack Musick and Dan Undersander. Don Reddell and Wayne LePori aided in the development of the technical equations for the temporal model. Lastly and especially, we want to thank Dianne Miller for her excellence in typing this manuscript.

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	1
	Objectives	4
	The Study Area	5
	Review of Literature	7
	High Plains Irrigation	8
	Wind Energy	10
	An Overview of the Study	13
II.	THEORETICAL CONSIDERATIONS	15
	Probability Theory	1.5
	Simulation	16
	Mathematical Expectation	17
	Selection of a Density Function	17
	Selection of a Power Function	18
	Economic Theory	20
	Allocation of Variable Resources	20
	Effect of Irrigation Timing on Crop Yield	21
	Effect of Wind Energy on Resource Allocation .	22
	Allocation of Exhaustible Resources	23
	Application of the Theory	24
	Linear Programming Model	25
	Estimation of the Value of Wind Power	27
III.	PROCEDURES	29
	Crop Yield and Irrigation Timing	29
	Input Requirements and Costs	37
	Analytical Model for Static Analysis	40
	Linear Programming Model	40
	Activities	40
	Constraints	44
	Wind Energy	46
	Simulation Model	49
	Analytical Model for Temporal Analysis	53
	Fixed Costs	54
	Fortran Subroutine	55
	Specification of Alternative Scenarios	57
	Method of Analysis	61
	Static Applications	61
	Temporal Applications	62
	= ===r =r 1	

viii

Chapter	P	age
IV.	WIND AND POWER RESULTS	63
	Power Output and Operating Characteristics	63
	Value of Wind Energy	66
V.	IMPLICATIONS FOR IRRIGATION WITH WIND ENERGY	71
	Static Analysis	71
	Effect of Non-Optimal Irrigation Timing	71
	Cropping Pattern Results	74
	Southern High Plains	74
	Northern High Plains	79
	Break-Even Analysis	82
	Crop Price Effects	83
	Electricity Price Effects	90
	Feasibility of Investment	92
	Comparisons Among Farm Situations	92
	Effect of Load Management Strategies	96
	Temporal Analysis	101
		102
	Southern High Plains	102
	Northern High Plains	103
	Increasing Electricity Price	105
	Southern High Plains	105
	Northern High Plains	107
	Comparison of Static and Temporal Results	107
VI.	SUMMARY AND CONCLUSIONS	111
-		
	Methodology	112
	Alternative Scenarios	114
	Results	115
	Operating Characteristics	115
	Static Analysis	11:
	Non-Optimal Irrigation Timing	115
	Cropping Patterns	116
	Returns to Wind Energy	117
	Effect of Load Management	118
	Temporal Analysis	118
	Cropping Patterns	119
	Returns to Wind Energy	119
	Conclusions	120
	Limitations	120
REFER	ENCES	123
APPEN	DIX A: THE LINEAR PROGRAMMING MATRIX FOR A 100 ACRE	
	SOUTHERN HIGH PLAINS FARM WITH A 40 KILOWATT	
	WIND SYSTEM	13

Chapter		Page
APPENDIX B:	AN EXAMPLE OF THE SIMULATION MODEL COMPUTER OUTPUT	167
APPENDIX C:	AN EXAMPLE OF THE TEMPORAL MODEL COMPUTER OUTPUT	171
APPENDIX D:	PHYSICAL RESULTS FROM TEMPORAL ANALYSIS	195

Table		Page
17	Cropping Pattern Results, Southern High Plains, Farm Situation 1	75
18	Cropping Pattern Results, Southern High Plains, Farm Situations 2 and 3	76
19	Cropping Pattern Results, Southern High Plains, Farm Situation 4	77
20	Cropping Pattern Results, Northern High Plains, Farm Situation 3	80
21	Cropping Pattern Results, Northern High Plains, Farm Situation 4	81
22	Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 1	84
23	Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 2	85
24	Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 3	86
25	Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 4	87
26	Break-Even Investment in a Wind Energy System, Northern High Plains, Farm Situation 3	88
27	Break-Even Investment in a Wind Energy System, Northern High Plains, Farm Situation 4	89
28	Comparison of the Value of 40 Kilowatt and 60 Kilowatt Wind Energy Systems on a 100 Acre Farm Unit, Southern High Plains	94
29	Simulation Results of Electricity Sold and Used for Irrigation	95
30	Effects of Wind Energy Expectations on the Optimal. Farm Organization: Northern High Plains, Farm Situation 3, 1974-78 Average Crop Prices	98
31	Effects of Wind Energy Expectations on the Optimal Farm Organization: Northern High Plains, Farm Situation 3, 1985 Simulated Crop Prices	100

[able		Page
32	Temporal Analysis of Break-Even Investment in a Wind Energy System: Constant Electricity Price	104
33	Temporal Analysis of Break-Even Investment in a Wind Energy System: Increasing Electricity Price	106
34	Comparison of Break-Even Investment Values Derived from Static and Temporal Analysis	108

LIST OF TABLES

Table		Page
1	Timing of Irrigation and Related Yield for Irrigated Cotton: Texas High Plains	31
2	Timing of Irrigation and Related Yield for Irrigated Corn: Texas High Plains	33
3	Timing of Irrigation and Related Yield for Irrigated Grain Sorghum: Texas High Plains	355
4	Timing of Irrigation and Related Yield for Irrigated Wheat: Texas High Plains	36
5	Fertilizer Recommendation Equations for N and $P_2 O_5$	39
6	A Simplified Structure of the Basic Linear Programming Model	41
7	Base 1980 Input Prices: Texas High Plains	43
8	1941-1970 Average Wind Speeds by Month: Amarillo, Texas	47
9	1965-1978 Average Wind Speeds by Month and Hour of Day: Amarillo, Texas	51
10	Annual Fixed Costs of Developed Irrigation Wells	56
11	Annual Fixed Costs of Pumping Plants	56
12	Characteristics of the Farm Situation Scenarios	59
13	Crop Price Scenarios	60
14	Simulation Results of Annual Power Output and Operating Characteristics	64
15	Annual Revenue and Break-Even Investment Where all Power Output is Sold to the Utility	67
16	Effect of the Inclusion of Non-Optimal Irrigation Timings on Estimated Farm Organization, Northern High Plains, Farm Situation 3	73

CHAPTER I

INTRODUCTION

The Texas High Plains is a fairly level, semi-arid region located on the Southern Great Plains, encompassing about 35,000 square miles. The region's climate and land resource capability support dryland production of cotton, grain sorghum and wheat. With irrigation, yields of these crops can be increased substantially and other crops such as corn and soybeans can be produced. In addition, irrigation can greatly reduce the risk of drought (Black).

Irrigation water on the High Plains is pumped from the underlying Ogallala aquifer. This aquifer receives a negligible amount of recharge (one-half to one inch per year) compared to the amount of water withdrawn annually. Average annual rates of decline in the static water level have been projected to be from .35 to 4.08 feet, depending on the original saturated thickness (Wyatt, et al.). For the farmer, this results in (1) declining well yields, where less water can be pumped in a given period of time, (2) increased energy requirements as pumping lift increases and (3) eventual economic exhaustion of the water supply for irrigation.

Energy is one of the most important input factors in irrigated crop production. In 1973, it was estimated that 39 percent of the

The citations on the following pages follow the style of the American Journal of Agricultural Economics.

total agricultural energy demand in Texas was for pumping groundwater (Coble and LePori). This figure is likely understated for the High Plains, due to the relatively higher intensity of irrigation in the area. An estimate for this region in 1975 showed that 53.4 percent of the total variable costs of producing irrigated corn was energy related (Skold).

The dramatic increases in energy prices since 1973, in conjunction with higher variability of crop prices, have accelerated research directed to reducing costs of production. For example, emphasis has been placed on modified crop production systems which seek to improve the energy efficiency of irrigated production by reducing the usage of energy inputs (Condra, et al.; Sprott, et al.). Other studies have focused on the benefits of reducing energy requirements through reducing the amount of water pumped, improving irrigation and pumping plant efficiencies, and lowering the distribution system pressure requirements (Hardin, et al.; Hardin and Lacewell, 1979).

The sensitivity of irrigated agriculture to increased fuel costs has placed considerable emphasis on the development of new and competitive alternative energy supplies. Much of the research emphasis in agriculture has been placed on biomass; i.e., the conversion of crop residue into usable energy (LePori and Lacewell). In addition, the utilization of grain for the production of alcohol has gained substantial interest (Hiler). Solar energy has been proposed as an alternative to the use of natural gas in grain drying applications (Knutson, et al.) and for irrigation (Katzman and Matlin).

The use of wind energy is being developed in a number of agricul-

tural applications, including water heating (Gunkel, et al.) and for cooling and refrigeration (O'Brien, et al.). The application which is of most interest to High Plains crop producers is that of wind-assisted irrigation pumping. Large scale wind systems have been developed which are capable of providing supplemental energy to an existing electrical pumping plant. The electric motor is sized to operate the pump on a stand-alone basis. However, when the wind velocity is sufficient, the wind system operates and reduces the load on the electric motor (Clark and Schneider).

The wind-assist concept appears to be a particularly attractive alternative on the High Plains. A study by Elliot shows that the mean annual wind power available is as high as in any other area in the nation, with monthly average wind speeds ranging from 15.6 miles per hour (mph) in March to 12.1 mph in August. In addition, about 50 percent of the energy used on irrigated farms in the area is accounted for by irrigation pumping (Clark and Schneider), thus providing a large potential for energy substitution.

Previous studies (Clark and Schneider; Buzenberg, et al.) considering wind power application to irrigation have shown potential savings but have assumed no load management; i.e., rescheduling energy use to periods of expected high winds. This leaves open the possibility of further savings. For example, on the High Plains, traditional cropping patterns (involving corn, grain sorghum and cotton) make the summer months (when post-plant irrigations are applied) the peak water use period. However, peak winds occur in the spring months when wheat, which in the past has not been one of the area's major irrigated crops,

uses the bulk of its irrigation water. Further load management strategies might include the consideration of non-optimal irrigation timing, that is, shifting one or more post-plant irrigations to different time periods. The negative effect on yield might be compensated for not only in energy savings from wind, but also through the possible extension of a seasonally limited water supply. High Plains producers, faced with declining well yields and increasing energy requirements due to the continuing depletion of the Ogallala aquifer, are in a position to benefit considerably from the use of wind energy. However, these benefits must be quantified.

Objectives

The general objective of this study is to determine the economic value of a wind energy conversion system (WECS) for an irrigated farm on the Texas High Plains. Specific objectives of the study are:

- Develop a model to plan the optimal farm organization and simulate the energy generated by a wind system.
- Estimate the value of wind energy under alternative situations of groundwater availability and size of wind system.
- Test the sensitivity of the results to changes in energy costs and crop prices.
- 4. Estimate the value of wind energy considering load management strategies.
- Estimate the temporal value of wind energy considering a declining groundwater supply.

The Study Area

The High Plains of Texas includes 42 counties and is roughly rectangular, averaging about 300 miles north to south and 120 miles east to west. The Canadian River flows from west to east, dividing the region. The main soils in the region include Pullman, Mansker and Richfield in the "Hardlands", Amarillo and Portales in the "Mixed Lands", and Brownfield and Tivoli in the "Sandy Lands". Average annual rainfall averages from 14 to 21 inches, with the growing season ranging from 180 to 220 days (Godfrey, et al.).

The High Plains region has 34 percent of the total cropland, and approximately 70 percent of the irrigated cropland in Texas. Over the period from 1970 to 1977, crop production from the region (as a percentage of total state production) was 61 percent of cotton, 50 percent of grain sorghum and 61 percent of wheat. The area also produces 78 percent of the fed cattle in Texas, enough to feed 13.2 million people (Texas Department of Water Resources).

Pumpage from the Ogallala for irrigation purposes began to rise to a significant level in the late 1930's and accelerated in the 1950's, spurred by the availability of low-cost natural gas. This rapid development has resulted in the mining of Ogallala water. In 1974, there were nearly 5.9 million irrigated acres on the High Plains. However, based on projected pumpage rates, the aquifer will be able to supply enough water to irrigate only 53 percent of these acres by the year 2000 and only 35 percent in 2030 (Texas Water Development Board).

The study area lies within a 21-county sub-region of the High

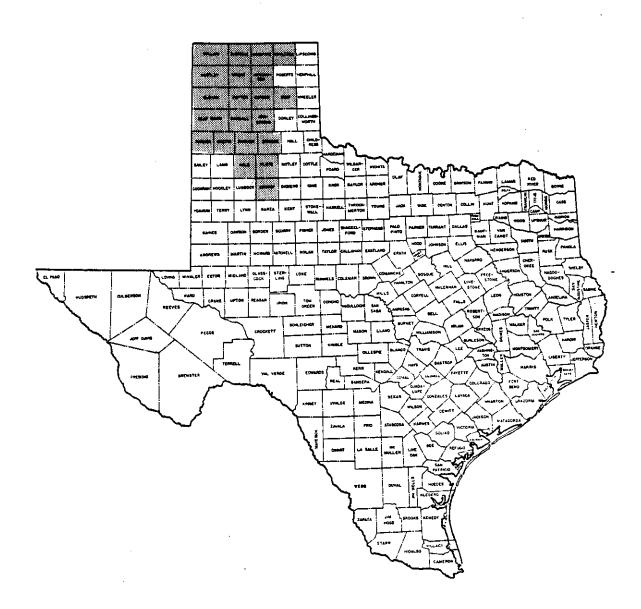


Figure 1. Map of the Study Area.

Plains, Figure 1. In 1974, 4.16 million acres in the region were irrigated, which was 66 percent of the total crop acreage (New, 1977). In 1979, irrigated acreage had decreased to 3.27 million acres (57 percent of total cropland), while total crop acreage had declined by over 572 thousand acres (Texas Crop and Livestock Reporting Service, 1979). Much of this decrease comes from the area south of the Canadian River, where irrigation development began earlier than in the northern region.

Even though irrigated acreage is decreasing, irrigated agriculture continues to be of vital importance to the state and regional economies. The region produced 77 percent of the grain sorghum and 87 percent of the wheat harvested from irrigated acreage in the state in 1979. Due to the length of the growing season, cotton can be produced only south of the Canadian River. Still, this portion of the study area produced 24 percent of the state's irrigated cotton output (Texas Crop and Livestock Reporting Service, 1979).

There were 37,010 irrigation wells in the area in 1977, 9,029 of which were powered by electricity. Natural gas was the predominant fuel used, powering 27,323 wells. Ninety-eight percent of the wells lift water from a depth greater than 125 feet, while 73 percent produce less than 700 gallons per minute (New, 1977). Most of the lower yielding wells were situated in the southern part of the region. Surface irrigation methods were used on 90 percent of the irrigated acres, while sprinkler systems were in use on the remaining 10 percent.

Review of Literature

The following review of literature was developed to address two

major areas. The first section, in general, deals with irrigation on the High Plains. This includes studies which address the impacts of, and adjustments to, the problems of increasing energy costs and declining groundwater levels. The second section examines wind energy applications.

High Plains Irrigation

The High Plains has been the focus of several studies on the expected effect of increasing irrigation fuel prices. A common thread among these studies has been the significance of crop price levels on the ability of producers to adjust to increasing energy costs.

Break-even relationships between product and irrigation fuel prices for High Plains irrigators were estimated for natural gas (Hardin and Lacewell, 1977) and for electricity (Shipley and Goss). Both studies showed that all crops except cotton were threatened for continued irrigation at prevailing prices, particularly for farm operators who did not own their land. However, relatively small crop price increases could have changed several cases. A regional study for the High Plains (Lacewell, Condra and Fish) showed similar effects. When average 1971-1974 crop prices were assumed, significant cropping pattern adjustments would be made when natural gas price reached \$2.47 per thousand cubic feet (mcf). When higher crop prices were used, indicative of 1975-1976, irrigated acreage held constant up to a price of \$5.46 per mcf for natural gas.

A more recent analysis (Petty, et al.) examined both static (one year) and temporal effects of increasing energy prices. In response to an increase from \$1.50 per mcf to \$2.50 per mcf, annual net returns

were decreased by from 9 to 15 percent for sprinkler irrigation, and from 5 to 13 percent for furrow irrigation, depending on well yield and pumping level. A temporal analysis with natural gas price increasing \$.10 mcf per year showed reductions in the present value of the water supply of up to 59 percent, while an increase of \$.25 per mcf per year decreased returns to water by as much as 79 percent. In both cases, the economic life of the water supply was reduced significantly.

The continuing decline of the Ogallala aquifer not only affects the profitability of individual producers but, due to reductions in irrigated acreage, will exert significant downward pressure on the economy of the region. Several attempts have been made to quantify this conclusion.

In 1967, the value of crop output in the High Plains was estimated by Osborn and Harris to be \$778.1 million, of which nearly 82 percent was attributed to irrigated crops. By the year 2015, it was forecast that irrigated production would decrease by 61.6 percent. Even with an increase in dryland production value, the total value of crop production would be only 60.9 percent of the 1967 value. For approximately the same time period (1966 to 2015), Hughes and Harman predicted massive reductions in production of cotton and grain sorghum, with a smaller increase in the production of wheat. Total value of agricultural production was estimated to decline by more than 70 percent.

In another study, Harman, Hughes and Martin evaluated increases in farm size necessary to adjust from irrigated to dryland farming without sacrificing living standards or net worth. It was shown that only those producers in areas having more than 225 feet of initial

saturated thickness (approximately 30 percent of the area) would be able to make this transition.

Rising costs of all inputs, not only energy, have given rise to the development of new production systems. Of particular interest are those which improve the efficiency of water use; thus, also attempting to reduce the requirements for groundwater pumpage. The use of conservation bench terraces (Jones) and, more recently, furrow diking (Clark) have been tested. Both practices have the effect of holding more runoff water on the field so that it may be utilized by the crop. Over 21 years, average grain sorghum yields on conservation benches were 60 percent higher than shown from land where runoff was lost. Furrow dams have been shown to increase yields of dryland cotton from 11 to 25 percent and dryland grain sorghum from 25 to 40 percent (Runkles). Further efficiency gains are expected from a developing system which combines furrow diking with a low energy-precision system of applying irrigation water (Lyle). The system is designed to use all water more efficiently as well as reduce energy requirements for pumping.

Wind Energy

As is to be expected in a developing field, the major proportion of the studies in wind energy deal solely with the engineering aspects of wind systems. Of the limited number of studies making any mention of economics, most have simply amortized the expected cost of a wind machine and divided by expected output to find cost per kilowatt-hour produced (e.g., Eldridge). However, these estimates have little relevance when examining the use of wind for irrigation purposes,

where the actual timing of wind power received and electricity used is of critical importance. The articles cited below represent the available literature which actually considers such factors.

A wind energy project for irrigation pumping was started at the U.S. Department of Agriculture Southwestern Great Plains Research Center in Bushland, Texas in late 1976 (Clark and Schneider). A vertical-axis wind turbine was installed which was designed to produce 40 kilowatts (KW) in a 32 mph wind and furnish power only when the wind speed is above 13 mph. A test of the system was reported for the period between 9:00 a.m. and 4:00 p.m. on September 18, 1978. The pump produced 458 gallons per minute with a total dynamic head of 344 feet. In the seven hour period reported, the wind turbine produced an average of 35.9 KW. Overall, 65 percent of the energy required to pump water was produced by the wind, despite the fact that the long-term average wind speed for September is one of the lower in the year (U.S. Department of Commerce).

A 1980 study also shows the High Plains to have considerable potential for using wind power for irrigation (Lansford, et al.). Average monthly wind power was estimated from historical data and, along with load characteristics, were used to estimate break-even investment values for three energy price scenarios and two discount rates. Wind-assist electric systems with sale of surplus electricity were shown to be economically viable in the high energy price scenario. At lower energy prices, break-even values were less than the cost of prototype units. However, irrigators in a position to take advantage of tax savings could afford to make the investment, even at lower

energy prices.

A study using a simulation model to determine the optimum size wind system for each of 1.775 million potential farm applications in 23 states included both farm operation and residential uses (Buzenberg, et al.). Wind velocity was described by Beta distributions for each of 15 wind reporting stations. Other input into the model included load characteristics for each application, wind turbine capital costs (high and low estimates) and alternative electricity costs of \$.04, \$.06 and \$.08 per kilowatt hour (KWH). Wind systems were found to be economically feasible only with low capital costs and electricity priced at \$.06 and \$.08 per KWH. In the state of Texas, there were estimated to be 3200 potentially viable wind systems with annual net savings of \$1.92 million when electricity was priced at \$.06 per KWH. With electricity at \$.08 per KWH, there were 187,700 viable systems with annual savings of \$9.04 million.

The initial cost of a wind system is also subject to some uncertainty as different producers are in different stages of technological development. Recent estimates of installed costs for small systems (less than 100 KW rated output) have been as low as \$500 to \$700 per installed KW (Gipe) and ranging up to \$2000 per KW (Alternative Energy Institute). Again, this is due to the relatively new nature of the field. As more companies move past the prototype stage into production, prices should decrease and stabilize. A typical prediction of mature costs is in the \$300 to \$500 per KW range (Katzenberg). Another cost factor is the possibility of tax savings. Federal solar tax credits, which effectively reduce the initial cost, are available with

individuals receiving 40 percent of the first \$100,000 invested, while businesses can claim 25 percent with no upper limit (Alternative Energy Institute). However, these are credits, meaning that the investor must have taxes due to be reduced.

An Overview of the Study

The following chapter presents some of the major theoretical concepts which provide a background for the study. Chapter III chronicles the development of the study's data base and analytical models. Some results relating to wind power are included in Chapter IV, while Chapter V presents the results of wind-assisted irrigation. A summary and some of the limitations inherent to the study make up the final section.

CHAPTER II

THEORETICAL CONSIDERATIONS

The theoretical background in this study encompasses two areas.

Elements of probability theory provide the basis for the estimation of power generated by a wind machine. Economic theory presents the conditions necessary for optimal allocation of resources by the profit maximizing firm. These theoretical principles will be discussed in this chapter, as well as the quantitative techniques selected to estimate the value of wind power.

Probability Theory

Stochastic generation of wind power requires knowledge of the magnitude, and the relative frequency thereof, of wind velocities. These characteristics can be described by a probability density function (p.d.f.), a mutually exclusive list of all values of a random variable which may result from a random process, and the probability associated with each (Richmond). For a discrete random variable, the probability of each event can be shown. For example, there are only two possible outcomes associated with the toss of a fair coin. The probability of each is 1/2.1

A continuous random variable, such as wind speed, has no

This illustrates another characteristics of a p.d.f.. that the sum of all probabilities of all events equals one.

probability associated with the occurrence of a given point, since there are an infinite number of points. Statements of probability associated with a continuous p.d.f. can, however, be expressed in terms of intervals. Using the example of wind, the probability of a velocity of 15 mph is zero, while it would be possible to determine the probability of wind speeds greater than 14.99 mph and less than 15.01 mph.

This evaluation requires a further concept, cumulative probabilities, which state the probability that the random variable assumes a value less than or equal to a given number. A distribution that gives the cumulative probabilities for every value of the random variable is known as the cumulative distribution function (c.d.f.) (Kmenta). If the p.d.f. is represented by f(v), the c.d.f. at any point X is given by

$$F(X) = \int_{-\infty}^{X} f(v) dv$$
 (1)

and is subject to the following properties (Hogg and Craig):

- (a) $0 \le F(X) \le 1$; (b) F(X) is a non-decreasing function of X; and
- (c) $F(\infty) = 1$ and $F(-\infty) = 0$. Given the cumulative distribution, the probability of wind speeds between 14.99 and 15.01 mph could be determined by evaluating F(15.01) minus F(14.99).

Simulation

Once the c.d.f. is identified, it can be used to stochastically generate random wind speeds. The c.d.f. is transformed such that v, the value of the random variable, is expressed as a function of its cumulative probability. Since, as is shown above, the cumulative

probability is always between 0 and 1, a random number drawn from a uniform distribution (0-1) can be substituted. By solving the transformation of the c.d.f., a unique value of v is generated which is associated with the cumulative probability represented by the value of the random number. Use of this procedure will allow the generation of a series of independent, stochastic wind speeds which will be used in the simulation model to calculate electricity produced by a wind machine.

Mathematical Expectation

The planning and temporal models will require estimates of average wind power over a given time period rather than individual, stochastically generated values. Let f(v) represent a p.d.f. of wind speed and g(v) a function which represents the amount of electrical power generated as a function of wind speed. Thus, g(v) may be thought of as the "payoff" of each value of v. The mathematical expectation or expected value of wind power generated, E[g(v)], can be expressed as

$$E[g(v)] = \int_{-\infty}^{\infty} f(v)g(v)dv.$$
 (2)

Selection of a Density Function

Previous studies (Doran, et al.; Cliff; Hennessey) have proposed two general analytical forms as appropriate for the description of wind velocity density functions. The Weibull distribution is a function of two parameters measuring, indirectly, the mean and standard deviation of wind speed, while the Rayleigh distribution has a single parameter, the long-term mean wind speed. At low average wind speeds

(less than 10 mph) the Weibull distribution is significantly better.

However, at higher average wind speeds, there is little difference

between the two (Doran, et al.). Since, as noted earlier, average High

Plains wind speeds are considerably above 10 mph, the Rayleigh distribution was selected for this study due to is simpler form.

The Rayleigh distribution of wind speed can be expressed as

$$f(v) = \frac{IIv}{2v^2} \exp \left[-\frac{II}{4} \left(\frac{v}{v}\right)^2\right]$$
 (3)

where $\overline{\mathbf{v}}$ represents the mean wind speed. This yields the cumulative distribution

$$F(x) = 1 - \exp \left[-\frac{11}{4} \left(\frac{v}{v}\right)^2\right].$$
 (4)

The transformation of this distribution for use in simulation would be

$$V = \frac{-\ln(1-F(x))f\overline{v}^2}{\Pi} \qquad (5)$$

Selection of a Power Function

The choice of a function to relate electrical power generation to wind speed was dictated by the need for the function to apply to different sizes of wind machines. A typical power function of the quadratic form applies to a National Aeronautics and Space Administration prototype unit (Puthoff and Sirocky). The general form of this function has been applied to different machines in other studies

(Doran, et al.; Justus, et al.).

The power function is described by

$$g(v) = 0 v \leq v_0 (6)$$

$$g(v) = a + bv + cv^2, v_o < v \le v_1$$
 (7)

$$g(v) = P$$
 , $v_1 < v \le v_2$ (8)

$$g(v) = 0$$
 , $v > v_2$ (9)

where:

g(v) = wind generator output, in KW

P = rated (maximum) power output

 v_{o} = cut-in speed, below which the machine does not operate

 \mathbf{v}_1 = rated speed, at which the machine begins to produce its rated output

 \mathbf{v}_2 = cut-out speed, above which the machine does not operate.

Power output is assumed to be constant at rated power when wind velocity is between rated speed and cut-out speed, and varies parabolically from zero at cut-in speed to rated power at rated speed. The parameters a, b and c are estimated as functions of these variables and are determined by solving the following set of simultaneous equations (Justus, et al.).

$$a + bv_0 + cv_0^2 = 0$$
 (10)

$$a + bv_1 + cv_1^2 = P$$
 (11)

$$a + bv_c + cv_c^2 = P (v_c/v_1)^3$$
 (12)

where

$$v_c = (v_0 + v_1)/2.$$
 (13)

Economic Theory

The typical farm operator on the Texas High Plains is assumed to use production economic theory to allocate resources among competing enterprises such that net returns to the farm firm are maximized. The primary focus of this study is on resources; irrigation water pumped from an exhaustible aquifer and the fuel necessary to pump it. Some of the theoretical principles which underlie optimal resource allocation will be discussed here. More detailed expositions of economic theory may be found in other references, such as Leftwich or Henderson and Quandt.

Allocation of Variable Resources

The profit maximizing firm determines its optimal resource allocation from the interrelationships of the production function and the input and output prices. The production function measures the relationship between a firm's inputs of resources and its level of output.

Marginal physical product (MPP), defined as the first derivative of the production function, measures the change in output per unit change in the quantity employed of a given input, holding all other input levels constant. This study focuses on crop output with the major variable input being irrigation water. Typically, crop production functions are characterized by diminishing marginal productivity of water, meaning that each successive unit of water contributes less to

output than the preceding unit.

Input levels are determined by the point at which the last unit of input used makes the same contribution to profit as its price. The contribution of an input to profits is measured by its marginal value product (MVP), which, for a firm facing perfect competition in the product market, is equal to MPP times the product price. The profit maximizing firm will employ that quantity of the resource for which MVP equals input price. Over all outputs and all inputs, the ratio of MVP to input price must equal one for each input in the production of each output.

The relationships specified above will hold true if all resources are unlimited in quantity. However, the typical Texas High Plains farmer is faced with limitations in the amounts of many resources, the most important being land, labor and irrigation water. At the maximum level of input usage, the MVP will be equal to the factor price plus some unknown value, which is known as the shadow price. The shadow price measures the additional amount the firm could afford to pay to obtain one more unit of the resource. Thus, the last unit of a limited resource would be allocated to the use showing the highest shadow price. In addition, a limited quantity of one resource may affect the level of employment of another if the level of the first input is a factor in the MVP of the second input.

Effect of Irrigaton Timing on Crop Yield

Previous studies involving irrigation on the High Plains have assumed that, for any given number of post-plant irrigations, each irrigation was timed such that the maximum yield was achieved for the

given amount of irrigation water. However, actual practices suggest that this is not always the case. Due to physical limitations on the amount of water that can be pumped in any time period, the producer may not be able to apply a timely irrigation to all land. For the remaining acres, he is faced with the choice of (a) applying the irrigation in an untimely manner, resulting in some moisture stress and reduced yield or (b) eliminating that post-plant watering altogether and facing further yield reduction.

Even though the first choice would not make the most technically efficient use of the water, its marginal value could still be greater than its marginal cost, hence making it economically viable. In addition, the use of wind energy could result in a relatively greater reduction in marginal cost for the untimely irrigation, making it a more attractive alternative than the timely irrigation even if there is no physical limitation on irrigation water.

Effect of Wind Energy on Resource Allocation

The amount of electricity used by the firm in any given time period will, in effect, be limited. This is because electricity requirements are directly affected by the amount of irrigation water pumped, which is physically limited.

Operation of a wind machine will provide part or all of the electricity required in any given time period at zero variable cost. In effect, this will reduce the marginal factor cost (MFC) of electricity by the ratio of wind generated electricity to total electricity requirements. Since the actual wind power available will be unknown in advance, some estimate of its magnitude must be developed for

planning purposes. By using long-term average wind speed for the time period in question and the chosen density and power functions, average wind power availability can be estimated using the principles of mathematical expectation as shown above.

Since the MVP of electricity in the production of crops is assumed to be a decreasing function over the relevant range, a decrease in the effective cost of electricity would indicate that optimal usage of electricity would increase in all time periods. However, this would not be possible in all cases due to limitations on irrigation water and land. It would, in fact, be possible for usage to be decreased in a given time period. With wind energy, the effective MFC would be lower in time periods with historically higher wind speeds. If the relative difference were great enough, it could cause a shift in the employment of water and complementary resources away from previous usage to time periods having higher winds.

Allocation of Exhaustible Resources

Recharge to the Ogallala aquifer is negligible in comparison with the rate of extraction. Groundwater stocks will eventually become depleted. Depletion can occur in the physical sense, meaning simply that the well runs dry, or more likely in the economic sense, where the cost of extracting the groundwater is greater than the revenues to be derived from its use.

A major issue for individual farmers is temporal allocation of their underground water supply to maximize returns to the water. This involves not only annual allocation of water among competing crops but also allocation of water over time (Lacewell and Grubb). Optimal temporal allocation involves equating the present value of a unit of water used in the future with the incremental value of using an additional unit in the present time. This allocation is difficult to estimate quantitatively and even more difficult to achieve in actual practice. Thus, this study will assume, as have others (such as Petty, et al.; Bredehoeft and Young), that producers will allocate the water supply through maximization of annual net returns.

Application of the Theory

The decision-making process of the profit maximizing firm operator is based on the theoretical principles discussed above. Linear programming (LP) is one of the most widely used analytical techniques by which economic theory is applied. The following section is designed to give a brief overview of the linear programming method, including the underlying assumptions, mathematical formulation and some comparisons with marginal analysis. Other references (e.g., Heady and Chandler; Beneke and Winterboer) provide more detailed presentations.

There are many similarities between models which determine the profit maximizing position of a firm in a linear programming framework and those which use the neoclassical marginal analysis approach. Some of the more basic comparisons will be made here. A more detailed discussion of these similarities is given by Naylor.

The production function gives rise to the principal differences between the two approaches. The neoclassical model is assumed to have a production function which, in the relevant range, exhibits diminishing marginal productivity. A linear programming model is comprised of activities which are linear, thereby having constant marginal productivity. The activity is a more specifically defined concept than a production function. A production function may be thought of as a family of activities which use the same resources and turn out the same products. Comparing any two points of the production surface, if the ratios of the inputs and outputs are the same, they represent the same activity; otherwise there are two different activities. Thus, the production function is a tool for exhibiting and comparing different but related activities. The production function may be presented as a family of linear activities which have constant marginal returns, but each successive activity having a lesser slope, thereby depicting diminishing marginal returns for the production function as a whole.

Linear Programming Model

The four basic assumptions underlying a linear programming model are:

- (1) Additivity or linearity -- The net returns and resources required by two or more activities are the sum of the amount required by each. In addition, each activity is assumed to exhibit constant returns to scale.
- (2) Divisibility -- All of the firm's factors and products are perfectly divisible. This assumption may be relaxed. In some cases, it is possible to formulate an integer model.
- (3) Finiteness -- The number of resource restrictions and the number of alternative activities is finite.
- (4) Single-valued expectations -- The amount of each resource available, the input-output coefficients, and prices are

fixed and known with certainty.

Mathematically, the linear programming model with n activities and k resource constraints maximizes a given objective function:

$$Z = C_1 X_1 + C_2 X_2 + \dots + C_n X_n$$
 (14)

subject to the resource constraints:

$$A_{11}X_1 + A_{12}X_2 + \dots + A_{1n}X_n \le b_1 \tag{15}$$

$$A_{21}X_1 + A_{22}X_2 + \dots + A_{2n}X_n \le b_2$$
 (16)

$$A_{k1}X_1 + A_{k2}X_2 + \dots + A_{kn}X_n \le b_k$$
 (17)

also subject to the condition that a negative amount of an activity can not be produced:

$$X_k \ge 0$$
 for all j. (18)

In these equations:

 $\mathbf{X}_{\mathbf{j}}$ represents the output of the j-th activity,

 $C_{\mathbf{j}}$ represents the net returns per unit of the j-th activity,

 ${\tt A}_{\tt ij}$ represents the amount of the i-th resource required to produce one unit of the j-th activity,

 ${\bf b}_{\bf i}$ represents the amount of the i-th resource available.

These equations are used to solve for the output of each activity which will maximize net income to the firm. The procedure used most often to solve linear programming problems is the Simplex method.

This is an iterative procedure which, on each iteration, adds to the

solution the activity which will increase net returns by the greatest amount. Iterations are continued until the objective function is maximized. A more detailed outline of the Simplex method can be found in the linear programming texts mentioned above.

Estimation of the Value of Wind Power

To appropriately estimate the ability to pay for a wind machine, it is necessary to establish net returns for the farm under two situations: with wind power and without wind power, all other things being identical. The predicted operation of the farm without wind power serves as a benchmark. This makes it possible to determine the benefits directly attributable to wind power as the difference in net returns between the two situations.

The investment in a wind machine involves a cost in the present which will generate a stream of future returns. Thus, the farmer's maximum economically feasible investment would be determined by the present value of the future income stream. The discounting procedure is

$$NPV = \sum_{i=1}^{n} \frac{NR_{i}}{(1+d)^{i}}$$
 (19)

where:

NPV = the net present value of wind power

NR; = net returns to wind power in year i

d = the discount rate

n = number of years.

The discount rate selected in evaluating a capital decision represents the fact that a dollar at some point in the future is not worth as much as a dollar at present. The time value of money, allowance for risk and alternative earning potential of capital are all reflected in the discount rate. Obviously, this will not be the same for all individuals. For this reason, this study will use alternative discount rates to provide a range of results.

CHAPTER III

PROCEDURES

This chapter presents the data base underlying the analysis and the development of the analytical models used to estimate the value of wind energy. The study is based on a typical farm operation on the Texas High Plains, having 640 acres of land irrigated by a furrow or gravity flow distribution system (Petty, et al.). This analysis will, in all scenarios, include the land unit which can be irrigated by one well, applicable to a single wind machine. The size of the land unit will be based on the "rule of thumb" that 0.18 acres can be irrigated per gallon per minute (GPM) of well yield (Lacewell, Hardin, McGrann and Griffin). Well yield is a function of saturated thickness, which will depend on the scenario to be analyzed. These scenarios will be specified subsequently.

Crop Yield and Irrigation Timing

Expected yield reductions resulting from non-optimal irrigation timing were estimated for the study area. Experimental data from the Texas A&M Research Centers in Amarillo and Lubbock and from the U.S. Department of Agriculture Southwestern Great Plains Research Center in Bushland, Texas were obtained for corn, cotton, grain sorghum and wheat. Original intentions were to also include soybeans in the analysis. However, insufficient data were available to provide reliable yield estimates. Since soybeans comprise a minor portion of

irrigated acreage in the region (less than five percent), they were excluded from the remainder of the study.

Cotton data were obtained from an experiment which was replicated over five years (1950-54). Even though the study is an old one, it was felt that the reported yield levels were representative of those in more recent years. Average yield over the five year period for each reported combination of irrigation timings was used for this study, shown in Table 1. Current tillage and herbicide practices were included in the crop enterprise budgets.

Data were obtained from mixed sources for each of the remaining crops. This often resulted in differences in nomenclature regarding the stages of growth at which water was applied. Thus, the first step was to group post-plant irrigation applications into common time periods. (Adequate pre-plant watering was provided in all experiments.) Actual dates of application, length of time from planting and relation to commonly named growth stages were among the criteria used in making the groupings. It was assumed that the "critical periods" for irrigation applications were ten days long. For purposes of generality, it was further assumed that each month had 30 days, thus establishing three critical water periods per month.

The greatest number of post-plant irrigations common to all experiments for a particular crop was used to establish a base for that crop. A base yield for the given amount of seasonal irrigation water was established from statistical production functions estimated for the area (Shipley 1977a, Shipley 1977b). Then, within each experiment, yields for all eported combinations of irrigation timings were

Timing of Irrigation and Related Yield for Irrigated Cotton: Texas High Plains Table 1.

Irrigation Level	Time of Post June (3) ^a	Time of Post-Plant Irrigation une (3) ^a July (2) Aug. (1)	Yield Per Acre (1bs. of lint)
Pre-Plant Only			420 *c
Pre-Plant + 1 Post-Plant:	Х		451 *
		X	4 0 Z *
		×	517 *
Pre-Plant + 2 Post-Plants:			
	×	×	897
	×	×	588 *
		×	590 *
Pre-Plant + 3 Post-Plants:			
	×	X	518

 $^{\rm a}_{\rm Numbers}$ in parentheses refer to the first, second or third 10-day critical water period in a month.

 b "X" indicates a post-plant irrigation at the specified time.

cust indicates the activity was included in the LP model.

Source: Jones, et al.

expressed as a percentage of the highest yield reported for the base number of post-plants. This was done to remove annual variations in yield levels and attempted to isolate the yield reduction effect of differences in timing of irrigation water.

Across all experiments for each crop, these percentages were averaged for each combination of irrigation timings. The average percentages were then applied to the base yield, the results of which were used in this study and are presented in Tables 2, 3 and 4. Due to a limited number of data points, it was recognized that little statistical significance could be attached to these estimates of reduced yield. However, it was felt that they would still be effective as a broad representation of the alternatives available to an irrigated producer and represent the relative yields for alternative timings of irrigaton water application.

Each of the combinations of irrigation timing could be included in a linear programming model as a separate activity. Clearly, in many cases, yield levels are low enough to be effectively dominated. It was decided to use only those activities for which yield is greater than the highest yield achieved by applying one less irrigation. For example, an activity with three post-plant irrigations would be included only if its yield were greater than the yield from the optimal timing of two post-plants.

Cotton and wheat are characterized by the production of joint products. Cotton income is derived from the sale of lint and seed, while wheat produces both grain and grazing. In both cases, yield of the joint product (seed or grazing) is a function of the main product

able 2. Timing of Irrigation and Related Yield for Irrigated Corn: Texas High Plains

Table 2. Timing of irrigati	of irrigation and Related fletd for irrigated colff; reads fight tailing	ted Tleia ro	rırrıgared	רסונוו: זבא	מא חוצוו נדש	2112	
Irrigation Level			of P				Yield Per Acre
	July (1)a	July (2)	July (3)	Aug. (1)	Aug. (3)	Sept. (1)	(bu, of grain)
Pre-Plant + 2 Post-Plants:	2						i.
	×	×	>				58.5 83.1 *C
	< >		<	>			61.1
	< >			4	×		62.9
	< >				!	×	42.8
	:	×	×				
		×		×			
		×			×		76.8 *
		×				×	52.9
			×	×			60.4
			×		×		61.1
			×			×	
				×	×		73.0 *
				×		×	22.7
					×	×	20.1
n-a plant 1 2 Back-Dlanter							
Fre-riant + 3 Fost-Fiants:	×	×	×				62.9
	: ×	: ×	•	×			91.2 *
	: ×	: ×			×		88.8 *
	: ×	: ×				×	62.9
	:	: ×	×	×			115.8 *
		: ×:	×		×		107.0 *
		: ×	×			×	
			×	×	×		* 9. 06
			×	×		×	59.2
				×	×	×	35.3
	×		×	×			83.1
	×		×		×		64.8
	: ×		×			×	68.0
	×			×	×		* 8.86
	×			×		×	56.7
	×				×	×	
		×		×	×		101.7 *
		×		×		×	7.09
		×			×	×	64.2
			X		×	×	51.6

Table 2. (Continued)

Irrigation Level		Time of Pos	Time of Post-Plant Irrigation	fgation			Yield Per Acre
	July (1)a	July (2)	July (3)	Aug. (1)	Aug. (3)	Sept. (1)	(bu. of grain)
Pre-Plant + 4 Post-Plants:							
	×	×	X	×			119.6 *
	×	×	×		×		1.08.3
	×	×	×			×	6.96
	×		×	×	×		98.2
	×		×	×		×	95.7
	×			×	×	×	42.8
		×	×	×	×		122.1 *
		×	×	×		×	125.9 *
		×		×	×	×	83.1
			×	×	×	×	91.9
	×	×		×	×		113.9
	×	×		×		×	105.1
	×	×			×	×	88.1
		×	×		×	×	93.2
	×		×		×	×	9.08
Pre-Plant + 5 Post-Plants:							
	×	×	×	×	×		146.4 *
	×	×	×	×		×	136.0 *
	×	×	×		×	×	112.1
	×	×		×	×	×	137.2 *
	×		×	×	×	×	103.2
		×	×	×	×	×	131.8 *
<pre>Pre-Plant + 6 Post-Plants:</pre>							
	×	×	×	×	×	×	147.7 *

 $^{
m a}$ Numbers in parentheses refer to the first, second or third 10-day critical water period in a month.

 $^{\rm b_{II}X^{II}}$ indicates a post-plant irrigation at the specified time.

 $^{\mathrm{C}_{\mathrm{II}}*\mathrm{II}}$ indicates the activity was included in the LP model.

Sources: Shipley and Regier (1976); Musick and Dusek (1978); Musick; Undersander.

Plains
High
Texas
Grain Sorghum:
Irrigated
for
Yield
Related
and
Irrigation
of
Timing
Table 3.

	E	6 n + n1			Viold Bor Acto
Irrigation Level	July (1)a	July (3)	July (3) Aug. (2)	Aug. (3)	(cwt, of grain)
Pre-Plant Only:					29.6 *C
Pre-Plant + 1 Post-Plant:	х				18.6
		×	×		38.4 *
			ł	×	36.7 *
Pre-Plant + 2 Post-Plants:					
	×	×			38.4
	×		×		50.4 ×
	×			×	28.4
		×	×		53.7 *
		×		×	51.9 *
			×	×	* 6.87
Pre-Plant + 3 Post-Plants:					
	×	×	×		63.0 *
	×	×		×	9.74
	×		×	×	52.9
		×	×	×	¥ 5.09
Pre-Plant + 4 Post-Plants:					
	×	×	×	×	* 0.69

any and a second or third 10-day critical water period in a month.

 $^{b_{l}}X^{\prime\prime}$ indicates a post-plant irrigation at the specified time.

c.*" indicates the activity was included in the LP model.

Sources: Shipley and Regier (1975); Musick and Dusek (1971).

Table 4. Timing of Irrigation and Related Yield for Irrigated Wheat: Texas High Plains

[rrioation [eve]	Tim	Time of Post-Plant Irrigation	nt Irrigatio	<u> </u>	Yield Per Acre
	Mar. (2)a	Apr. (2)	May (1)	May (3)	(bu. of grain)
Pre-Plant Only:					22.8 *C
Pre-Plant + 1 Post-Plant:	:				4
	×				24.9 ×
		×			32.2 *
			×		33.2 *
				×	25.9 *
Pre-Plant + 2 Post-Plants;					
	×	×			35.1 *
	×		×		41.5 *
	×			×	30.7
		×	×		45.0 ×
		×		×	35.1 *
			×	×	38.1 *
Pre-Plant + 3 Post-Plants:					
	×	×	×		40.0
	×	×		×	35.6
	×		×	X	* 6.5
		×	×	×	48.3 *
Pre-Plant + 4 Post-Plants:	:	:	;	;	÷ c
	×	⊀	×	×	46.0

 $^{\rm a}{}_{\rm Numbers}$ in parentheses refer to the first, second or third 10-day critical water period in a month.

 $^{
m b}$ "X" indicates a post-plant irrigation at the specified time.

 $^{c_{\rm H}_{\rm A}}{}^{\rm H}$ indicates the activity was included in the LP model.

Sources: Schneider, Musick and Dusek; Harman.

yield. Cotton yields 1.67 pounds of seed per pound of lint (Parnell). Income from wheat grazing is assumed to be \$11.25 for dryland wheat (15 bu. per acre grain yield) and increases by \$0.45 for each additional bushel of grain. The dryland wheat yield, as well as the other dryland yields used in this study, are based on the 1975-1979 average for the area (Lacewell, Hardin, McGrann and Griffin).

Input Requirements and Costs

For each of the selected yield levels, resource requirements and costs were compiled from a variety of sources. Crop enterprise budgets developed by Extension Economists-Management of the Texas Agricultural Extension Service for the 1980 crop year were the basis for developing many of the coefficients. Modifications were required where input levels vary with yield or with number of irrigations, since budgets were published for only one irrigation level.

The most common cost components related to yield are the costs of harvesting and hauling done on a custom basis, with the rates reflecting common practices in the area (Extension Economists-Management). In most cases, these costs are on a direct, per unit of yield basis.

There are two exceptions. For cotton, the cost of stripping (harvesting), hauling and ginning is based on the total amount of material (seed contton) brought to the gin, and is computed as 4.75 pounds of seed cotton per pound of lint yield (Parnell). Seed cotton includes seed, lint, burrs, leaves, trash and dirt. The harvest cost of wheat is based on a flat rate of \$10 per acre plus \$.10 per bushel of grain over 20.

Application rates for nitrogen and phosphorous were varied with expected yield for irrigated crops based on published recommendations for the area (Valentine, et al.). Existing soil test levels were assumed to be low for both nutrients in order to estimate fertilizer requirements. Recommendations are published for alternative yield levels. To estimate the amount to be applied for each of the many different yield levels, linear interpolations were made. The resulting equations for fertilizer application levels are given in Table 5. Fertilizer requirements for crops grown dryland are also presented, but are not dependent on yield.

Irrigation water is the most obvious input varying with irrigation level. To reflect "average" practices for furrow distribution systems in the area, pre-plant irrigations were specified as seven acre-inches per acre and post-plants as four acre-inches per acre (Shipley 1977b). These levels also approximate those used in the yield experiments discussed earlier. Irrigation labor is required at the rate of 0.1 hours per acre-inch applied (Extension Economists-Management).

Irrigation fuel is specified on a per acre-foot basis and varies with pumping lift (Kletke, et al.). The relationship is

$$ELEC = 48.725 + 2.109L$$
 (20)

where

ELEC = Kilowatt-hours of electricity required to pump one acrefoot of water,

L = pumping lift in feet.

Table 5. Fertilizer Recommendation Equations for N and $\mathrm{P}_2\mathrm{O}_5$

Crop	Irrigated or Dryland	Yield Level	N (1bs.)	$\frac{P_20_5}{(1bs.)}$
Corn	Irrigated	Y<100 100 <y<150< td=""><td>1Y 100 + .8(Y-100)</td><td>.6Y 60.</td></y<150<>	1Y 100 + .8(Y-100)	.6Y 60.
Cotton	Trrigated Dryland	Y<750	.0533Y 20.	.0533Y 20.
Grain Sorghum	Irrigated Dryland	Y<40 40 <y<60 60<y<80< td=""><td>$\begin{array}{c} 1.5Y\\60 + 2(Y-40)\\100 + 2(Y-60)\\20. \end{array}$</td><td>1Y 40. 40 + 1(Y-60) 20.</td></y<80<></y<60 	$ \begin{array}{c} 1.5Y\\60 + 2(Y-40)\\100 + 2(Y-60)\\20. \end{array} $	1Y 40. 40 + 1(Y-60) 20.
Wheat	Irrigated Dryland	Y<40	1.5Y $60 + 2(Y-40)$ 20 .	0.5Y 20 + 1(Y-40) 0.

Source: Valentine, et al.

Imbedded in this equation are the assumptions for water pressure required at the wellhead (10 lbs. per square inch for furrow irrigation) and pump efficiency (50 percent, noted by Ulich as an average for the area). Non-fuel variable costs of irrigation are comprised of engine repairs (New 1980), engine lubrication and attendance labor (LePori, et al.) and distribution system repairs (Kletke, et al.).

Analytical Model for Static Analysis

The mathematical model for estimating the value of wind energy consists of two components. The first is a linear programming model which, based on a profit maximization objective, determines the optimal farm plan. The irrigation pattern developed here is used as input to the second phase, a simulation model, which will stochastically simulate wind speeds and thus electrical power generated by a wind machine.

Linear Programming Model

The basic linear programming model provides a means of determining optimal irrigation schedules for input into the simulation model, as well as the benchmark net returns for the farm operation without wind power. A simplified structure of the model is shown in Table 6. For the study of load management strategies, expectations of available wind power are added to the model. A complete version of the model, including the wind expectation structure (to be discussed subsequently), is presented in Appendix A.

Activities

The model includes dryland production activities for cotton, grain

Table 6. A Simplified Structure of the Basic Linear Programming Model

Item	Crop	Input	Crop	Period 1	Borrowing Period 1 Period 2Period 6	Period 1	Savings Period 2Period 6	Cash Transfer	RHS
Objective Function								. 1	
Constraints: Owned Resources Purchased Resources Yield Transfer	r + + p + 1	-1.	#						9 0 0 VIVIVI
Cash Flow: Period 1 Period 2 Period 3	+41 +42 +43	+c ₁ +c ₂ +c ₃	-c ₁ -c ₂ -c ₃	-1. +(1+r)	-1. +(1+r)	i i	; ;		000
Period 6	9 9	9 ₀₊	95-		7		, ,	+1.	0 v i u

Where

input-output coefficients $b = level \ of \ resources \ available$ $c_i = linput-output \ prices \ (non-zero \ only \ for \ cash-flow \ period \ in \ which \ transaction \ takes \ place)$ $d_i = variable \ cost \ of \ production \ not \ accounted \ for \ by \ purchase \ activities.$ $r = rate \ of \ interest \ for \ borrowing \ capital.$

sorghum and wheat. Irrigated production activities (including the above crops plus corn) were selected for inclusion according to the criterion discussed earlier, with a total of 51 irrigated activities over the four crops. In addition to the basic production activities, the model includes (1) purchase activities for selected inputs, (2) sell activities for crops produced, (3) activities which allow a choice in the timing of pre-plant irrigations and (4) borrowing and repaying activities for cash flow by two-month time periods.

The inclusion of purchasing and selling activities facilitates the evaluation of the effects of price changes. The model contains purchase activities for seed, insecticide, herbicide, fertilizer, diesel, gasoline and custom harvest and hauling for all crops. Price changes for these commodities were not considered in this study, but the activities were included in the interests of future research. Separate activities for a single item are required for each cash flow period in which purchases can be made. Buy activities are also included for electricity by critical water period. Electricity and crop prices were varied according to the scenario to be analyzed. Base prices for other input items are shown in Table 7.

Critical water periods 10 days in length were established for the effective timing of post-plant irrigations. However, the timing of the pre-plant watering was not considered to be as crucial. For each crop, activities are included which allow the pre-plant irrigation to be applied effectively in any of five contiguous 10-day periods.

The possibility of price changes makes prior determination of operating capital requirements impossible. For this reason, a separate

Table 7. Base 1980 Input Prices: Texas High Plains

Item	Unit	Price
Corn seed	1b.	\$ 0.90
Cotton seed	1b.	.45
Grain sorghum seed	1b.	.50
Wheat seed	bu.	7.50
Nitrogen	1b.	. 24
P ₂ O ₅	1b.	.23
Custom application of fertilizer	acre	2.00
Gasoline	gal.	1.05
Diesel	gal.	1.00
Custom combining:		
Corn	bu.	. 25
Grain sorghum, dryland	acre	8.00
Grain sorghum, irrigated	cwt.	.35
Wheat, dryland	acre	10.00
Wheat, irrigated	acre, bu,	a
Cotton stripping and hauling	cwt.s.c. ^b	1.50
Cotton ginning	cwt.s.c. ^b	2.00
Custom hauling:		
Corn	bu.	.15
Grain sorghum	cwt.	.25
Wheat	bu.	.12
Corn drying	bu.	.12
Labor, full-time	hr.	5,00
Labor, part-time	hr.	4.50

 $^{^{\}rm a}{\rm Harvest}$ cost for irrigated wheat is \$10 per acre plus \$.10 per bushel of yield greater than 20.

Source: Extension Economists-Management

 $^{^{\}rm b}100$ pounds of seed cotton, includes lint, seed, burr and other trash delivered to the gin.

cash flow section is included. Capital requirements are specified in six two-month periods. Cash deficits at the end of each period are repaid, either by borrowing from the following credit period or by income from product sales. To reflect the producer's short-term capital costs, an interest rate of 2.33 percent is charged for borrowed capital in each two-month period. Excess funds do not earn interest, but are available for operating expenses in the next period. For buying and selling activities, the coefficients in the cash flow rows represent the input or output price. For production activities, these coefficients reflect costs which are not represented by purchase activities (labor and non-fuel machinery and equipment variable costs). The net cash position at the end of the year is equivalent to the traditional objective function value.

An accounting row is included for each cash flow period which measures the net cash position exclusive of carryover from previous periods. All transactions are included with the exception of electricity and capital costs. The values of these rows are input into the simulation model, where the electricity and capital costs are recomputed based on "actual" wind power availability.

Constraints

Constraints included in the model are (1) acres of land,

(2) seasonal irrigation water by critical periods and (3) labor,

divided into two-month periods to correspond with the cash flow section.

The actual constraint levels depended on the scenario. Land and water

were determined by well yield, while labor availability was based on

the size of the land unit.

As was discussed earlier, the land unit included .18 acres per GPM. Well yield is a function of saturated thickness. Maximum well yield of 800 GPM is assumed to remain constant for all levels of saturated thickness above 210 feet. This is representative of an average well in the region, where the maximum yield is much less than the potential that the aquifer can deliver (Reddell). The well yield relationship for lower levels of saturated thickness is represented by equation (21) (Hughes and Harman).

$$GPM = 800 * \left(\frac{ST}{210}\right)^2 \tag{21}$$

where

GPM = well yield in gallons per minute

ST = saturated thickness in feet.

Limitations on seasonal water availability were established by the physical maximum which could be pumped in a critical water period, based on well yield.

$$M = .0044 * GPM * T$$
 (22)

where

M = maximum acre-feet of water that can be pumped in a critical
 water period,

²Saturated thickness refers to feet of water-bearing sand. The coefficient of storage of the Ogallala is about 15 percent, meaning that 100 feet of saturated thickness yields 15 feet of water (Cronin).

- T = number of days in each period not used for well repairs and maintenance (assumed to be 8.5 for this study),
- .0044 = constant value which translates gallons per minute into acre-feet per day.

Labor restrictions were based on the principle that two men, the operator and one full-time employee, will provide all labor (except part-time hoeing labor) for a 640 acre farm. Labor usage is separated into two-month periods in the model and is charged on an hourly basis. The number of hours available in each two-month period depends on weather patterns and length of days, and will thus be higher in the summer months. The amounts based on 640 acres (Petty, et al.) were placed on a per acre basis, then multiplied by the size of the land unit determined above for use as constraints in this study. The labor constraints also provide, indirectly, for machinery limitations.

Wind Energy

The consideration of wind in the LP model requires estimates of wind power availability in each critical water period. The expected value of wind energy was developed using monthly mean wind velocities, over the period 1941-1970, recorded at the Amarillo airport (Table 8). The use of monthly averages means that each ten-day critical irrigation period of any given month will have one-third of the expected monthly wind power.

Wind velocity increases with height above the surface. Accurate estimates of wind power require that the wind speed be adjusted from the height at which it was measured (in this case, 23 feet) to the height of the center of the wind machine, known as "hub height", which

Table 8. 1941-1970 Average Wind Speeds by Month: Amarillo, Texas

Month	Average Wind Speed (mph)
January	13.1
February	14.2
March	15.6
April	15.5
May	14.8
June	14.4
July	12.5
August	12.1
September	13.0
October	13.0
November	13.2
December	13.0

Source: U.S. Department of Commerce.

for this study is assumed to be 65.6 feet (Clark and Schneider). The most widely used method of performing this extrapolation is described by Reed.

$$V_{t} = V_{m} * (\frac{H_{t}}{H_{m}})^{1/7}$$
 (23)

where

 V_{t} = wind velocity at hub height

 V_{m} = wind velocity at measured height

 $H_{t} = hub height$

 H_{m} = measured height.

The power functions used to develop the expectations depend on the size and specifications of the machine. Two different sizes, with rated output of 40 and 60 kilowatts (KW), were analyzed. The assumed specifications are the same for both machines and are based on the characteristics of the system in operation at the U.S. Department of Agriculture station in Bushland, Texas (Clark and Schneider). The cut-in speed is 13 mph, rated speed is 32 mph and cut-out speed is 45 mph. The resultant power functions are, for the 40 KW machine,

$$P = 0.72795 - 0.92401V + 0.06754V^{2}$$
 (24)

and for the 60 KW machine,

$$P = 1.09196 - 1.40101V + 0.10131V^{2}$$
 (25)

where

P = power output in KW

V = wind velocity in mph.

The coefficients in these power functions were estimated according to the procedure described by Justus, et al.

Using the transformed wind speed means, expectations of windgenerated electricity for 8.5 days (matching the maximum pumping time) were developed for each water period. The model allows this "free" electricity to be used for irrigation only in the same proportion as actual to maximum pumping time. For example, if irrigation takes place over only half of the 8.5 days, only half of the wind-generated electricity could be used for irrigation pumping. This requirement prevents electricity which was generated over the entire time period from being used in a shorter time. Ninety percent of any excess electricity can be sold to the electric utility. The 10 percent loss is due to alternator efficiency (Lansford, et al.). The selling price was assumed to be 60 percent of the purchase price (Lansford, et al.). Separate selling and buying activities for electricity are included for each water period along with extra selling activities, by cash flow period, to account for the wind power generated in the 1.5 days in each water period when no pumping takes place.

Simulation Model

The simulation model was designed to match the farm's optimal irrigation pattern (determined by the LP model) with stochastically generated wind power. This determines the amount of irrigation electricity purchased and the apportionment of wind-generated electricity (amounts used for irrigation and sold to the utility).

Simulation of the farm operation with a wind energy system involves four steps. This process includes (1) generation of random wind speeds by three-hour time periods, (2) power output in each period is determined, (3) power output in each period is matched with irrigation requirements to calculate electricity purchases and sales, and (4) capital costs and net returns to the farm are calculated. Input to the simulation model includes parameters defining the scenario being analyzed (saturated thickness, lift, purchase and selling price of electricity), and results from the LP solution relating to the optimal farm organization (acre-feet of water pumped by critical water period and the net cash position for each cash flow period).

Random wind speeds are drawn from probability distributions set up by month and time of day using the Rayleigh distribution. In each month, eight distributions were defined corresponding to the three-hour time intervals at which climatological data are reported in Local Climatological Data, U.S. Department of Commerce. The distributions were filled based on the mean speeds for Amarillo over the period 1965-1978 for each month and each reporting time, i.e., 12 midnight, 3:00 a.m., 6:00 a.m., etc. These are shown in Table 9. After height extrapolation, these means are used in the generation of stochastic, or "actual" wind speeds. These speeds are assumed to be constant over the three-hour time period. The power function uses the wind speed to calculate total kilowatt-hours of electricity generated by the system for each three-hour period in the year.

To match with the estimated wind power availabilities, irrigation fuel requirements are calculated for each three-hour time period. The

1965-1978 Average Wind Speeds by Month and Hour of Day: Amarillo, Texas Table 9.

Month	Midnight	3 AM	7 6 AM	Time of 9 AM	Day Noon	3 PM	Wd 9	9 PM
				(mbh)	(t			
January	12.5	12.5	12.0	12.2	15.6	15.7	12.2	12.3
February	12.9	12.9	12.6	13.7	16.6	16.2	13.8	12.5
March	14.5	13.8	13,3	16.3	18.3	18.6	17.3	14.4
April	14.9	14.2	13.1	17.5	18.1	18.5	17.8	14.3
May	13.9	13.2	11.9	16.1	16.1	16.6	16.8	14.3
June	14.5	13.0	11.7	15.8	14.9	15.7	16.6	14.4
July	12.1	11.0	10.0	14.2	13.6	14.1	15.2	12.2
August	11.9	11.2	10.2	13.8	13.7	14.2	15.2	12.0
September	12.2	11.5	10.9	14.0	14.1	14.4	14.4	12.2
October	12.7	12.2	11.5	14.8	15.7	15.8	13.1	12.6
November	12.8	12.2	11.9	13.2	15.9	15.8	11.7	12.3
December	12.8	12.4	12.7	12.8	16.2	16.1	12.0	12.5

Source: U.S. Department of Commerce.

program operates an outer loop for each 10-day period throughout the year. The amount of water pumped in the period is used to determine electricity requirements for irrigation. If irrigation occurs, it is assumed to begin at midnight on the first day and continue until completed. The number of acre-feet pumped is converted to gallons then divided by gallons per hour (GPM times 60) to determine hours required for pumping. This is divided by three to determine the number of three-hour wind periods required, which will be equal to a whole number K plus a fraction X/3.

The program then operates an inner loop over the 80 three-hour periods in a ten-day critical irrigation period. Using the results from above, an array is constructed which measures, for each wind period, the percentage of the three hours in which pumping occurs. This percentage will be equal to one for the first K periods, X/3 in the next period and zero in the remaining periods. The amount of electricity required to pump for three hours is calculated based on well yield and pumping lift.

These percentages are used in comparing wind-generated electricity with irrigation pumping requirements. If the percentage is zero, 90 percent of the generated electricity is sold for 60 percent of the purchase price, as stated earlier. If the proportion is one, all generated electricity can be used for irrigation. Any excess requirement is purchased from the electric utility. However, if there is a surplus of wind-generated electricity, it is assumed to be lost and cannot be sold. If the percentage is X/3 (from the example above), both wind power and the three-hour electricity pumping requirement are

multiplied by X/3. These values are then matched in the same manner as when the proportion is one. Ninety percent of the remaining proportion of wind power (1 - X/3) is sold. This procedure prevents wind power generated over the entire period from being used for irrigation over a fraction of the period.

Simulated purchases and sales of electricity are summed by twomonth periods, corresponding with the cash flow figures. Beginning
with the January-February period, purchases are subtracted and sales
added to the net cash for the period. Any deficit is borrowed at the
same capital cost used in the LP model and is carried forward to the
next period, while a cash surplus is carried forward but does not earn
interest. The surplus at the end of the November-December period is
net returns to the farm.

The simulation process is repeated twenty times in order to generate a range of solutions. The program then calculates the maximum, minimum, mean and standard deviation for net profit, electricity purchased, electricity sold and electricity generated. Sample output from the simulation program is presented in Appendix B.

Analytical Model for Temporal Analysis

As the Ogallala aquifer declines, requirements for irrigation fuel increase and seasonal water availability decreases. Consideration of these factors requires a model which operates recursively over the assumed 20 year useful life of the wind system (Lansford, et al.). The static linear programming model is modified to serve as the core of the temporal model. The temporal model is completed with the development

of (1) fixed costs appropriate for a long-run analysis and (2) a Fortran subroutine which applies the LP model on a year-to-year basis.

Fixed Costs

Annual fixed costs were calculated for (1) machinery and equipment, (2) furrow distribution system, (3) irrigation wells and (4) pumping plants. The fixed costs are based on the expected life of the equipment, and include charges for deprecreation, taxes, insurance and opportunity cost of the investment. Depreciation was calculated using the straight-line method. Charges for taxes and insurance were one-half percent and one percent, respectively, of the initial investment. Interest charges were based on a rate of 14 percent on one-half of the initial investment.

Machinery and equipment fixed costs were calculated on a per acre basis to apply to different sizes of farms and estimated from the 1980 crop budgets (Extension Economists-Management). A single estimate of fixed cost was derived for irrigated production. The per acre values for each crop were weighted according to the number of acres of each crop in the study area. The machinery and equipment fixed cost thus derived was \$32.79 per acre for irrigated production.

Also established on a per acre basis was the annual fixed cost of a furrow distribution system. Initial investment for a furrow distribution system was calculated to be \$69,203 for 640 acres (Laughlin, et al.). Main line pipe and valves were depreciated over 20 years, while lateral pipe was depreciated over 15 years. Annual, per acre fixed cost was thus estimated to be \$14.89 per acre. Machinery and equipment and distribution system fixed costs are charged according to

the size of the land unit regardless of whether or not all acres are irrigated.

Fixed costs of wells and pumping plants were calculated on an annual basis and are charged in the Fortran subroutine regardless of the number of irrigated acres. Annual fixed costs were calculated for (1) developed wells of various depths and (2) pumping plants (engines, pumps and gearheads) for various combinations of well yield and pumping lift. These are shown in Tables 10 and 11.

Fortran Subroutine

An extension of linear programming is utilized which consolidates a Fortran program with an LP model. The Fortran program functions as a subroutine which modifies the LP model after each year's solution to reflect the farm situation for the following year. The procedure performs as follows:

1. Calculates the decrease in saturated thickness of the aquifer and associated increase in pumping lift based on the amount of water withdrawn in the previous year. The relationship is

$$D = W/(CA * .15)$$
 (26)

where

D = decline in water level of the aquifer (in feet)

W = acre-feet of water pumped in the previous year

CA = acres contributing to the aquifer (including non-cultivated acres and dryland)³

³Acres contributing irrigation water are expected to exceed acres irrigated since all acres cannot be cropped, i.e., there is water available beneath land used for turn rows, roads and homesteads.

Table 10. Annual Fixed Costs of Developed Irrigation Wells

Well Depth (feet)	Annual Fixed Cost (dollars)
150	863.35
200	1074.38
250	1285.38
300	1496.39
400	1918.42
500	2340.44

Source: Petty, et al.

Table 11. Annual Fixed Costs of Pumping Plants

Well Yield		Pumi	ping Lift	(feet)	
(gpm)	< 100	101-150	151-200	201-300	> 300
	*		(dollars)	
< 350	751.64	798.31	838.31	936.96	1252.57
351-600	789.64	883.63	1032.21	1239.24	1265.90
601-800	848.29	978.88	1172.57	1272.57	1285.90

Sources: Petty, et al.

Emerson Industrial Service

- .15 = coefficient of storage for the Ogallala aquifer.
- 2. Calculates well yield based on the new saturated thickness, according to equation (21).
- 3. Calculates the amount of electricity required to pump an acre-foot of water based on the adjusted pumping lift, according to equation (20).
- 4. Calculates the maximum acre-feet of water which can be pumped in each critical water period based on the adjusted well yield, according to equation (22).
- 5. Calculates the present value of net returns using three different discount rates.
- 6. Modifies the LP tableau with new irrigation water upper limits and electricity requirements.

Input data specifying the scenario being analyzed are read into the subroutine, which creates a file to initialize the basic LP matrix. The program is called after each year's solution to perform the updating procedure. A summary table is printed for each year showing the activities in the solution and their level, irrigation pumping and shadow prices by water period, irrigation fuel requirements separated into the amounts purchased and wind-generated by month in addition to cropland acres and their shadow price. At the end of 20 years the temporal analysis is summarized in tabular form. An example of the output from the temporal model is shown in Appendix C.

Specification of Alternative Scenarios

Scenarios analyzed in this study are comprised of changes in

four basic areas, (1) region of the study area, (2) the farm situation, (3) crop prices and (4) electricity prices. The region was separated into the areas north and south of the Canadian River. The basic difference between the two is that cotton is not included as a crop option in the northern area due to the shortness of the growing season. Another difference is that low lift wells are not common in the northern region, thus only a 60 KW machine was analyzed for this area.

Farm situations were specified according to the beginning water resource (saturated thickness and lift), size of the land unit and rated output of the wind system. Four combinations (Situations 1-4) were considered (Table 12). Three different water resource situations are utilized to represent the area. Two sizes of wind machines (40 and 60 KW) were chosen to analyze the effects of the size of wind machine for a given water resource situation as well as to analyze a single machine size on two different water resource situations.

Two sets of crop prices were specified. The first was intended to reflect recent levels, based on 1974-1978 average prices received (Texas Crop and Livestock Reporting Service). To estimate future situations, a set of 1985 prices (in 1980 dollars), estimated by an econometric simulation model (Collins) was used. Cotton prices are adjusted to reflect quality differences. Both price sets are shown in Table 13.

For static analysis, three levels of electricity prices, \$.05, \$.075 and \$.10 per KWH, were analyzed. The first approximates current prices in the area, with the others included to evaluate the effects of price increases. Two scenarios were specified for the temporal

steristics of the Farm Situation Scenarios	Cropland for Pumping of Wind System (acres) (KW)	32,65 10,4 40	100 42.7 40	100 42.7 60	144 69.3 60
	Lift (feet)	125	175	175	200
	Well Yield (GPM)	181	555	555	800
	Saturated Thickness (feet)	100	175	175	225
Table 12. Characteristics of	Farm Situation	1	2	34	da

 $^{\mathrm{a}}\mathrm{Only}$ Farm Situations 3 and 4 were analyzed for the Northern High Plains.

Table 13. Crop Price Scenarios

Commodity	Unit	1974-1978 Average ^a (dollars)	1985 Simulated ^b (dollars)
Corn	bu.	2,48	3.06
Cotton Lint ^c	1b.	•533	.823
Cotton Seed ^C	ton	96.20	137.94
Grain Sorghum	cwt.	4.02	5.52
Wheat	bu.	3.08	3.14

^aSource: Texas Crop and Livestock Reporting Service.

^bSource: Collins.

 $[\]ensuremath{^{\text{C}}}$ Cotton was not included as a crop option for the Northern High Plains.

analysis, one in which price remains constant at \$.05 per KWH while the second increases the price by one-half cent per year.

Method of Analysis

Static Applications

To estimate benchmark net returns and optimal cropping patterns, the basic LP model was applied over all scenarios. The irrigation schedule derived was used as input to the simulation model. The annual value of wind power was calculated as the average simulated net returns minus benchmark net returns.

For the analysis of load management strategies, the LP model including wind expectations was solved. If the optimal irrigation schedule was changed in response to wind power, the simulation model was applied to the new schedule using the same set of random wind speeds as for the simulation of the benchmark case. Again, benchmark returns were netted out of average simulated returns to determine value of including wind expectations in the planning process.

The annual value of wind power was assumed to be constant over 20 years. Break-even investment value was estimated by discounting this constant stream of returns. Since the discount rate is a subjective judgement on the part of the investor, break-even investment was calculated at discount rates of three, five and ten percent to indicate the range of values. A complicating factor was the requirement of an allowance for yearly operation and maintenance costs for the wind system. Available estimates of these costs were all based on a percentage of initial investment. For this study, an annual charge of

one percent was assumed (Traudt). The discounting equation thus becomes

$$I = \sum_{t=1}^{20} \frac{V - .01T}{(1+d)^{t}}$$
 (27)

where

I = break-even investment value in a wind system

V = annual value of wind power

d = discount rate

t = years.

Over the 20 year period, inflation was not explicitly considered but was assumed to apply equally to all costs and returns. Thus, d is in real, rather than nominal terms (Watts and Helmers). The discount rate is of the form

$$d = [(1+r)/(1+i)] - 1$$
 (28)

where

r = nominal discount rate

i = rate of inflation.

Temporal Applications

Over all scenarios, benchmark net returns on a temporal basis were estimated by applying the temporal model without wind. The value of wind power was estimated by adding wind expectations to the temporal model, maximizing over the 20 years, and netting out benchmark net returns. The discounting procedure is the same as above, with the exception that the annual value of wind power is not constant.

CHAPTER IV

WIND AND POWER RESULTS

This chapter is designed to give a brief overview of some of the study results relating solely to wind power. Break-even investment values are presented based on the assumption that all electricity produced is sold to the utility, hence these results will provide a lower bound on the value of wind energy as compared to its value in irrigation use. Results relating to the use of wind energy in irrigation will be shown in Chapter V.

Results are presented for the 40 KW and 60 KW wind systems. In each case, benchmark simulations from the Southern High Plains analyses were aggregated over all crop and electricity price scenarios to obtain the wind and power results. Thus, the wind and power results are based on 240 annual simulations.

Power Output and Operating Characteristics

Physical characteristics of the simulated wind system operation are presented in Table 14. Maximum, minimum, mean and standard deviation are shown for power output, percent down time (during which the machine does not operate) and percent of time producing rated output. Predicted performance parameters from the 40 KW machine in operation at Bushland, Texas (Clark and Schneider) will be used for purposes of comparison. It should be noted that these predictions are based on

Table 14. Simulation Results of Annual Power Output and Operating Characteristics^a

Item	Unit	Rated Output Of Wind Machine (KW)		
		40	60	
Electric Power Generated:		<u> </u>		
Maximum	KWH	74085.4	108131.3	
Minimum	KWH	62316.8	95372.3	
Mean	KWH	67679.4	101618.6	
Standard deviation	KWH	2024.4	2558.4	
Down Time: b				
Maximum	percent	44.06	44.65	
Minimum	percent	39.06	39.10	
Mean	percent	41.58	41.42	
Standard deviation	percent	0.95	0.89	
Time Producing Rated Output:				
Maximum	percent	5.97	6.15	
Minimum	percent	3.65	4.06	
Mean	percent	4.91	4.93	
Standard deviation	percent	0.41	0.39	

^aThese results are based on 240 annual simulations.

 $^{^{\}rm b}{\rm Down}$ time measures the times during which wind velocity is less than cut—in speed or greater than cut—out speed.

 $^{^{\}rm C}{\rm Time}$ producing rated output measures the time during which wind velocity is between rated speed and cut-out speed.

monthly averages while the simulation results are based on eight average wind speeds (corresponding to time of day) within each month. The use of less frequent sampling periods tends to underestimate the power available from higher wind speeds, since power is proportional to the cube of wind speed (Doran, et al.). Thus, the power results from the simulation model are expected to be higher than the predicted performance of the 40 KW machine at Bushland.

Annual power output from the 40 KW machine ranged from 62,316.8 to 74,085.4 KWH, with a mean of 67,679.4. Predicted output from the Bushland system was 65,190 KWH. The 60 KW machine produced an average of 101,618.6 KWH, with individual observations ranging from 108,131.3 to 95,732.3 KWH. No figures are available for direct comparison; however, the ratio of power output of the 60 KW machine to the 40 KW would be expected to be the same as the ratio of their rated outputs, i.e., 1.5. The actual ratio of the means is 1.501, indicating a slight bias in favor of the 60 KW unit.

Since both machines have the same operating specifications, expected down time and time running at rated output would not be expected to differ between sizes of machine, as they are dependent only on wind speeds. Thus, any differences would be resultant only from the simulation process.

Predicted down time of the Bushland unit was 43.7 percent, compared with 41.58 and 41.42 for the 40 and 60 KW machines, respectively. For the same reasons as noted earlier, the machine is expected to operate longer, thus having less down time, under the simulated results. The simulated operation of wind machines produced rated output between 3.65

and 6.15 percent of the time, with an average for both machine sizes of approximately 4.9 percent. No estimate of time running at rated output was made for the Bushland system.

Monthly average wind speeds over the period 1941-1970 were used in determining the expectations of wind power applied in the LP model. Expected output was 65,075.9 KWH for 40 KW (compared with 65,190 at Bushland) and 97,613.8 for the 60 KW unit. However, predicted down time of 41.5 percent corresponded more closely with that from the simulation model. In both cases, all months were assumed to have the same number of days, in contrast to the predictions from the Bushland unit.

Value of Wind Energy

The power output results were used to calculate the expected (mean) annual value of wind power if sold to the power grid only and the related maximum and minimum values. These are presented in Table 15 along with break-even investment values, based on mean returns to wind as a constant over 20 years, at each of three discount rates. Break-even investment represents the maximum economically feasible price that could be paid for a wind system.

Three selling prices of electricity (\$.03, \$.045, and \$.06 per KWH) were used. These correspond to the electricity price scenarios specified for static analysis, with each adjusted to 60 percent of the purchase price, which is the assumed fuel replacement value that utilities would pay (Lansford, et al.). Power output that can be sold is 90 percent of the total generated, with the 10 percent loss due to to alternator efficiency (Lansford, et al.). In this analysis, the

Table 15. Annual Revenue and Break-Even Investment Where all Power Output is Sold to the Utility

Item	Selling Price of Electricity (cents per KWH)				
	3	4.5	6		
	((dollars)			
40 KW Machine					
Annual Revenue:					
Maximum	2000.31	3000.46	4000.61		
Minimum	1682.55	2523.83	3365.11		
Mean	1827.35	2741.02	3654.69		
Break-Even Investment:					
3% Discount rate	23665.52	35498.21	47330.90		
5% Discount rate	20249.29	30373.88	40498.48		
10% Discount rate	14336.69	21505.00	28673.30		
60 KW Machine					
Annual Revenue:					
Maximum	2919.55	4379.32	5839.09		
Minimum	2575.05	3862.58	5150.11		
Mean	2743.70	4115.55	5487.40		
Break-Even Investment:a					
3% Discount rate	35532.92	53299.37	71065.83		
5% Discount rate	30403.58	45605.37	60807.16		
10% Discount rate	21526.02	32289.04	43052.05		

 $[\]ensuremath{^{\mathrm{a}}}\xspace\mathrm{Break-even}$ investment is calculated based on mean annual revenue.

same electricity amounts were applied to each price, thus changes in returns are proportional to the changes in electricity price.

In the situations where annual returns are assumed constant over the life of the wind system, changes in the discount rate will have the same proportional effect on break-even investment values in each scenario analyzed. For example, break-even investment calculated at the three percent discount rate will be 16.9 percent higher than for the five percent discount rate and 65.1 percent higher than for the ten percent discount rate. The different discount rates reflect differences in the return on investment required to satisfy an individual investor's subjective judgement of risk and time preference for money. An example of the implications is the person who requires a greater return for risk, who would be willing to make a smaller initial investment, other factors being equal.

Based on the maximum and minimum electricity production, the annual value of wind power can vary by as much as \$317.76 for the 40 KW machine and \$344.50 for the 60 KW, while selling electricity at three cents per KWH. Average value was \$1,827.35 and \$2,743.70, respectively. These values increase by 50 and 100 percent for electricity selling at \$.045 and \$.06 per KWH. Break-even investment values for a 40 KW machine range from \$14,336.69 (\$358.42 per KW) with three cent electricity and ten percent discounting to \$47,330.90 (\$1,183.27 per KW) with six cent electricity and the three percent discount rate. At the same combinations of electricity price and discount rate, values for the 60 KW machine vary from \$21,526.02 (\$358.77 per KW) to \$71,065.83 (\$1,184.43 per KW).

As was noted earlier, these values reflect lower limits to the value of wind power. When used for irrigation, part of the power will take on a higher value as it replaces electricity which would otherwise need to be purchased. The following chapter will detail the results of the use of wind energy in conjunction with an irrigated farm.

CHAPTER V

TMPLICATIONS FOR IRRIGATION WITH WIND ENERGY

This chapter extends the analysis of wind energy from exclusive sales of electricity to the electric utility to use on an irrigated farm. Benchmark situations will be analyzed with respect to cropping patterns and water use. Simulation results for the benchmark solutions, including break—even investment for wind power, are presented along with some comparisons among the applicable farm situations. The results from the static analysis are concluded with the analysis of the effect of wind expectations on cropping patterns and value of wind power. Finally, selected results from a temporal analysis are shown.

Static Analysis

In the static analysis, the annual value of wind power was estimated and assumed to be constant over the life of the wind system. For each farm situation, three electricity prices (\$.04, \$.075 and \$.10 per KWH) were analyzed with each of two sets of crop prices (1974-78 average prices and 1985 simulated prices).

Effect of Non-Optimal Irrigation Timing

To give a broader presentation of an irrigated producer's alternatives, irrigated activities with both optimal and non-optimal irrigation timings were included in all analyses. To indicate the effects of the inclusion of non-optimal timings, one situation was analyzed with only

optimal timings. These results are compared with those of the full model in Table 16. The results are from the Northern High Plains under farm situation 3, with 1974-78 average crop prices and electricity purchased at five cents per KWH.

With only optimal timings allowed, 8.52 acres of the total of 100 acres are left idle, as labor availability is restrictive in three of the six two-month periods. The optimal cropping pattern includes 39.52 acres of grain sorghum with three post-plant irrigations, 23.15 acres of both grain sorghum with one post-plant and corn with five post-plants and 5.66 acres of wheat with three post-plants. Returns over variable costs are \$5,797.63.

With non-optimal timings added to the model, irrigated acreage increases by 5.13 acres (although 3.39 acres still remain idle) while net returns show an increase of \$50.50. There are 3.5 additional acrefeet of water pumped, but the average application rate is reduced from 1.58 to 1.54 acre-feet per acre. Cropping pattern changes feature, besides the total increase in irrigated acreage, shifts which allow an increase in the production of grain sorghum. Corn acreage decreases and shifts to a non-optimal timing, as an irrigation is shifted from late July to early September. Yield is reduced by nine bushels per acre but releases amounts of two limiting inputs; late July water and July-August labor. Acreage of grain sorghum with one post-plant irrigation is also decreased as sorghum with three post-plants increases and sorghum with two post-plants and non-optimal timing enters the solution. In this case, 1.8 cwt. of grain per acre are forfeited as compared to optimal timing. An irrigation is applied in late

Effect of the Inclusion of Non-Optimal Irrigation Timings on Estimated Farm Organization, Northern High Plains, Farm Situation $3^{\rm a}$ Table 16.

	Item		Unit	Optimal Timing Only	Non-optimal Timing Allowed
Crop Acreage: Crop	Post-Plants ^b Rank ^c	Rank ^c			
Corn	ιΛ	r-1 (acres	23,15	000
Corn Grain Sorghum	1 2	1 5	acres acres	23.15	13.98
Grain Sorghum	7 7	7 -	acres	30 52	13.98
Grain Sorghum Wheat	m ch		acres	5.66	5.98
Total Planted Acres	Acres		acres	91.48	96.61
Irrigation Water: Water Pumped			acre-feet	144.8	148,3
Number of Limiting Seasonal Water Periods Range of Shadow Prices	lting Seasonal ls w Prices		number dollars	3 11.51-30.77	3 7.79-26.45
Net Returns ^d			dollars	5797.63	5848.13

 $^{\mathrm{a}}\mathrm{This}$ analysis is based on 1974-78 average crop prices and electricity at \$.05 per KWH. Wind expectations are not included. Farm situation 3 has a saturated thickness of 175 feet, lift of 175 feet and 100 acres of cropland.

^bRefers to the number of post-plant irrigations applied.

^CRefers to the relative yield ranking among all activities of a given crop with a given number of post-plant irrigations.

dReturns are net of variable costs only.

August rather than mid-August, when water is limiting. In both cases, three water periods are limiting but, with non-optimal timings allowed, shadow prices decrease by approximately \$4 per acre-foot.

As was discussed earlier, the inclusion of non-optimal irrigation timings was originally hypothesized primarily to take advantage of wind energy and secondarily as a method of easing seasonal water limitations. These results point out a further advantage, the increased flexibility of labor utilization. This, in addition to the extension of the limited pumping capacity in critical water periods, allows the irrigated producer in this situation to increase both irrigated acreage and net returns. In more practical terms, the extended model more closely represents the situation faced by irrigation farms on the Texas High Plains.

Cropping Pattern Results

Selected results from the benchmark LP solutions for the Southern and Northern High Plains are presented in this section. Acreage planted in the various crop activities and some of the characteristics of the limiting resources are discussed.

Southern High Plains

Benchmark solutions for the Southern High Plains area are presented in Tables 17, 18 and 19. Each table represents one of the three land units analyzed, with all combinations of crop and electricity prices included.

Optimal cropping patterns for the area are devoted to irrigated cotton. The solution is not sensitive to electricity price, commodity

Table 17. Cropping Pattern Results, Southern High Plains, Farm Situation 1

Item		Unit	_	Purchase Price of Electricity(cents per KWH)		
			5	7,5	10	
1974-78 Average Crop Pr	ices ^b					
Crop Acreage:						
Crop Post-Plants	c Rank ^d					
Cotton 1	2	acres	12.19	12.19	12.19	
Cotton 2	1	acres	8.28	8.28	8.28	
Cotton 2	2	acres	12.19	12.19	12.19	
Cropland Shadow Pri	ce	dollars	107.19	99.40	91.62	
Irrigation Water: Number of Limiting: Water Periods Range of Shadow Pri		number dollars	2 3.26–125.44	2 3.45-117.26	2 3.64-109.08	
1985 Simulated Crop Pri	cesb					
Crop Acreage:						
Crop Post-Plants	Rankd					
Cotton 1	2	acres	12.19	12.19	12.19	
Cotton 2	1	acres	8.28	8.28	8.28	
Cotton 2	2	acres	12.19	12.19	12.19	
Cropland Shadow Pric	ce	dollars	259.19	251.40	243.62	
Irrigation Water: Number of Limiting ! Water Periods		number	2	2	2	
Range of Shadow Pric	es	dollars	5.25-242.60	5.44-234.42	5.63-226.24	

 $^{^{\}mathrm{a}}$ Farm situation 1 has a saturated thickness of 100 feet, lift of 125 feet and 32.65 acres of cropland.

 $^{^{\}mathrm{b}}\mathrm{See}$ Table 13 for a listing of the crop price scenarios.

^CRefers to the number of post-plant irrigations applied.

 $^{^{\}rm d}_{\rm Refers}$ to the relative yield ranking among all activities of the given crop with a given number of post-plant irrigations.

Table 18. Cropping Pattern Results, Southern High Plains, Farm Situations 2 and 3ª

Item	Unit	Purchase Price of Electricity (cents per KWH)		
		5	7.5	10
1974-78 Average Crop Prices ^b				
Crop Acreage:				
Crop Post-Plants ^C Rank ^d				
Cotton 1 2	acres	37.33	37.33	37.33
Cotton 2 1	acres	25,34	25.34	25.34
Cotton 2 2	acres	37.33	37.33	37.33
Cropland Shadow Price	dollars	102.33	91.91	81.48
Irrigation Water: Number of Limiting Seasonal Water Periods Range of Shadow Prices	number dollars	2 3.38–120.35	2 3.64-109.40	2 3.90-98.44
1985 Simulated Crop Prices ^b Crop Acreage: Crop Post-Plants ^C Rank ^d				
Cotton 1 2	acres	37.33	37.33	37.33
Cotton 2 1	acres	25.34	25.34	25.34
Cotton 2 2	acres	37.33	37.33	37.33
Cropland Shadow Price	dollars	254.33	243.91	233.48
Irrigation Water:				
Number of Limiting Seasonal				
Water Periods	number	2	2	2
Range of Shadow Prices	dollars	5.38-237.51	5.63-226.56	5.89-215.61

 $^{^{}a}$ Farm situations 2 and 3 differ only in the size of wind machine; thus, their basic cropping patterns will be identical. Both have a saturated thickness of 175 feet, lift of 175 feet and 100 acres of cropland.

 $^{^{\}mathrm{b}}\mathrm{See}$ Table 13 for a listing of the crop price scenarios.

 $^{^{\}mathrm{C}}\mathrm{Refers}$ to the number of post-plant irrigations applied.

 $^{^{\}rm d}$ Refers to the relative yield ranking among all activities of the given crop with a given number of post-plant irrigations.

Table 19. Cropping Pattern Results, Southern High Plains, Farm Situation 4a

	Item		Unit	Purchase Price of Electricity (cents per KWH)		
				5	7.5	10
974-78 Avera	ge Crop Pric	esb			· 	
Crop Acreag						
Crop P	ost-Plants ^c	Rank ^d				
Cotton	0	1	acres			53.76
Cotton	1	2	acres	53.76	53.76	
Cotton	2	1	acres	36.49	36.49	90.24
Cotton	2	2	acres	53.76	53.76	
Cropland	Shadow Price		dollars	99.83	88.14	76.68
Water P	Shadow Price	s	number dollars	2 3.45-117.73	2 3.73–105.44	2 3.31-93.15
Crop Acreag	e: ost-Plants ^c	Rank ^d				
Cotton	1	2	acres	53.76	53.76	53.76
Cotton	2	1	acres	36.49	36.49	36.49
Cotton	2	2	acres	53.76	53.76	53.76
Cropland	Shadow Price	s	dollars	251.83	240.14	228.44
Irrigation Number of	Water: Limiting Se	asonal				
Water P	_		number	2	2	2
	Shadow Price		dollars	5.44-251.83	5.73-222.60	6.01-210.

 $^{^{\}rm a}{\rm Farm}$ situation 4 has a saturated thickness of 225 feet, lift of 200 feet and 144 acres of cropland.

 $^{^{\}rm b}{\rm See}$ Table 13 for a listing of the crop price scenarios.

 $^{^{\}mathrm{C}}$ Refers to the number of post-plant irrigations applied.

 $[\]overset{\mbox{\scriptsize d}}{\mbox{\scriptsize Refers}}$ to the relative yield ranking among all activities of the given crop with a given number of post-plant irrigations.

price, lift or saturated thickness changes, as acreage in each crop activity remains the same (as a proportion of the total land unit) in all cases but one. In the predominant cropping pattern (all cotton), 37.33 percent of the acreage is planted with both one and two postplant irrigations applied non-optimally. The remaining 25.34 percent receives two post-plants timed optimally. The yield differential for the non-optimal two post-plant irrigations is only two pounds of lint per acre. Both receive an irrigation in early August, the same time at which one post-plant, optimally timed, would be applied. Thus, the acreage receiving one post-plant is shifted to a mid-July irrigation, even at the loss of 47 pounds of lint per acre as compared to optimal timing of irrigation.

The optimal cropping pattern is changed only for farm situation 4 with 1974-78 average crop prices and electricity purchased for \$.10 per KWH. Here, 37.33 percent of the total acreage shifts from one post-plant application to a pre-plant only. The remaining 62.67 percent receives two post-plants applied optimally, as the elimination of the single post-plant releases water in mid-July.

In all cases, two seasonal water periods are limiting. The low shadow price is between three and four dollars for the average crop prices and between five and six dollars per acre-foot for the simulated prices. The higher shadow price ranges for the 1974-78 average crop prices are from \$93.15 to \$125.44 and for the 1985 simulated crop prices are from \$210.31 to \$251.83. Additional cropland also has a relatively large value, up to \$107.19 per acre with 1974-78 average crop prices and \$259.19 for simulated crop prices.

Northern High Plains

In contrast to the results for the area south of the Canadian River, cropping patterns for the northern region vary considerably over the alternative scenarios. These results are shown in Tables 20 and 21 for farm situations 3 and 4, respectively. Again, all crop and electricity price scenarios are reflected in each table.

Under 1974-78 average crop prices, the optimal cropping patterns change in response to changes in the price of electricity. With electricity at \$.05 per KWH corn, grain sorghum and wheat are produced under irrigation, although land is left idle in both farm situations. With an increase in electricity price from \$.05 to \$.075 per KWH, all land is utilized as dryland wheat enters the solution. Irrigated corn production increases (and shifts to an optimal timing) while irrigated grain sorghum and wheat acreage decrease. Finally, with \$.10 per KWH electricity, irrigated wheat leaves the solution and dryland wheat acreage increases. All irrigated acreage shifts to grain sorghum in farm situation 4 while approximately 17 acres of irrigated corn remain in farm situation 3.

Cropping patterns stabilize in response to the 1985 simulated crop prices. The solutions do not change in response to electricity prices and are the same (proportionate to total acreage) for both farm situations. All acres are irrigated, as 1.37 percent of the available acreage is planted to corn, with the remaining 98.63 percent in grain sorghum. Five different sorghum activities are included, receiving one, two, three and four post-plant irrigations.

The solutions are very sensitive, as is emphasized by the results

Table 20. Cropping Pattern Results, Northern High Plains, Farm Situation 3

Ite	in .		Unit	Purchas	Purchase Price of Electricity (cents per KWH)		
				5	7.5	10	
974-78 Average Cro	p Pricesb						
Crop Acreage:		,					
Crop Pos	st-Plants ^C	Rankd					
Corn	5	1	acres		22.05	16.98	
Corn	5	2	acres	13.98			
Grain Sorghum	1	1	acres	13.98	22.05	16.98	
Grain Sorghum	2	2	acres	13.98			
Grain Sorghum	3	1	acres	48.69	40,62	45.68	
Wheat	3	1	acres	5.98	2,43		
Wheat	Dryland		acres		12.84	20.35	
Cropland Shadow	Price		dollars	0	6.65	13.31	
Irrigation Water:							
Number of Limit:	ing Seasonal						
Water Periods	5		number	3	3	3	
Range of Shadow	Prices		dollars	7.79-26.45	10.63-35.50	1.84-47.63	
	Ł						
985 Simulated Crop	Prices ^D						
Crop Acreage:	C	d					
Crop Pos	st-Plants ^C	Rank ^d					
Corn	5	2	acres	1.37	1.37	1.37	
Grain Sorghum	1	1	acres	8.31	8.31	8.31	
Grain Sorghum	2	2	acres	35.96	35.96	35,96	
Grain Sorghum	2	3	acres	27.66	27.66	27.66	
Grain Sorghum	3	1	acres	1.37	1.37	1.37	
Grain Sorghum	4	1	acres	25.34	25.34	25.34	
Cropland Shadow	Price		dollars	0.64	9.56	18.47	
Irrigation Water:							
	ina Coccessi						
Number of Limit:	rng seasonal	-					
Number of Limit: Water Periods	rng seasonal	_	number	3	3	3	

 $^{^{\}rm a}{\rm Farm}$ situation 3 has a saturated thickness of 175 feet, lift of 175 feet and 100 acres of cropland.

 $^{^{\}mbox{\scriptsize b}}\mbox{See}$ Table 13 for a listing of the crop price scenarios.

 $^{^{\}mathrm{C}}$ Refers to the number of post-plant irrigations applied.

 $^{^{\}rm d}{\rm Refers}$ to the relative yield ranking among all activities of the given crop with a given number of post-plant irrigations.

Table 21. Cropping Pattern Results, Northern High Plains, Farm Situation 4^a

Item			Unit	Purchas	e Price of Ele (cents per KWH	
				5	7.5	10
1974-78 Average Cro	p Prices ^b					
Crop Average:		,				
Crop Po	st-Plants ^c	Rank ^d				
Corn	5	1	acres		31.76	
Corn	5	2	acres	20.13		
Grain Sorghum	1	1	acres	20.13	31.76	
Grain Sorghum	2	2	acres	20.13		
Grain Sorghum	3	1	acres	70.12	58.49	90.24
Wheat	3	1	acres	8.61	3.51	
Wheat	Dryland		acres		18.50	53.76
Cropland Shadow	Price		dollars	0	9.81	13.44
Irrigation Water: Number of Limit		L				
Water Periods			number	3	3	2
Range of Shadow	Prices		dollars	6.88-27.79	10.09-42.51	17.08-30.64
1985 Simulated Crop Crop Acreage: Crop Po	Prices ^b	Rank ^d				
Corn	5	2	acres	1.97	1.97	1.97
Grain Sorghum	1	1	acres	11.96	11.96	11.96
Grain Sorghum	2	2	acres	51.79	51.79	51.79
Grain Sorghum	2	3	acres	39.38	39.38	39.38
Grain Sorghum	3	1	acres	1.97	1.97	1.97
Grain Sorghum	4	1	acres	36.49	36.49	36.49
Cropland Shadow	Price		dollars	2.78	12.78	22.79
Irrigation Water: Number of Limit	ing Seasonal	L				
			number	2	^	•
Water Periods Range of Shadow			number	3	3	3

 $^{^{\}rm a}{\rm Farm}$ situation 4 has a saturated thickness of 225 feet, lift of 200 feet and 144 acres of cropland.

 $^{^{\}mbox{\scriptsize b}}\mbox{See}$ Table 13 for a listing of the crop price scenarios.

 $^{^{\}mathrm{C}}$ Refers to the number of post-plant irrigations applied.

 $^{^{\}rm d}$ Refers to the relative yield ranking among all activities of the given crop with a given number of post-plant irrigations.

with average 1974-78 crop prices. At low electricity prices, land is left idle due to labor restraints. As the electricity price increases, irrigated acreage is forced out; however, this frees enough labor in critical periods for dryland crops to utilize all available acreage. The phenomena of cropland shadow prices rising with electricity price is caused by the tight labor situation. To fully utilize the marginal unit of land, some additional acreage must be shifted to dryland (along with the marginal unit) to stay within the labor restrictions. Thus, the value of the marginal unit of land would be the added returns from dryland production minus the returns foregone from the acreage withdrawn from irrigation. As electricity price increases, the foregone irrigated returns decrease, thus increasing the value of the marginal unit.

Shadow prices for irrigation water, with 1985 simulated crop prices, remain constant as electricity price increases. Again, this is due to restrictions on labor availability. Each of the three limiting seasonal water periods fall within the most restrictive labor period, July-August. Thus, to obtain sufficient labor to apply the marginal unit of water, a like amount of water from a different water period but the same labor period must be deleted. This results in an even trade-off in costs regardless of the electricity price, with the marginal value of water remaining constant.

Break-Even Analysis

The cropping patterns and associated irrigation schedules discussed above were used as input to the simulation model to estimate the annual value of wind power. Results relating to these simulations

are shown in Tables 22 through 25 for the Southern High Plains and in Tables 26 and 27 for the Northern High Plains. Each table consists of all combinations of crop and electricity prices for a given farm situation.

The benchmark net returns (calculated as returns above variable cost for the static analysis) from the LP solution are shown for each scenario. These returns are netted out of the "actual" returns as estimated by the simulation model to determine returns to wind power. Maximum, minimum, mean and standard deviation of returns to wind over 20 annual simulations are shown to indicate the dispersion of values. Mean returns are used in the calculation of break-even investment at three discount rates. As was noted in the previous chapter, the value estimated using the three percent discount rate will be 16.9 percent higher than at five percent and 65.1 percent higher than for the ten percent discount rate.

Crop Price Effects

All crop prices were higher in the 1985 simulated prices than in the 1974-78 average prices. These differences are reflected in the benchmark returns. With 1985 prices, benchmark returns range from \$9,459.15 for farm situation 1 with \$.10 per KWH electricity to \$39,246.10 for farm situation 4 with \$.05 per KWH electricity in the Southern High Plains. With average 1974-78 prices, the same returns are \$3,684.43 (61 percent lower) and \$13,790.32 (65 percent lower). In the northern region, benchmark returns are much lower than in the south, less than half in all situations, as cotton is not included as a crop option. The different sets of crop prices have a wider

Table 22. Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 1^a

Item	Price of Purchased Electricity (cents per KWH)				
	5	7.5	10		
1974-78 Average Crop Prices ^b					
Benchmark Returns	4301.65	3993.04	3684.43		
Returns to Wind:					
Maximum	2006.12	2997.48	3897.91		
Minimum	1854.05	2738.85	3506.73		
Mean	1935.63	2883.36	3702.11		
Standard Deviation	47.97	78.91	110.74		
Break-Even Investment ^C :					
3% Discount Rate	25067.82	37341.61	47945.02		
5% Discount Rate	21449.17	31951.19	41023.95		
10% Discount Rate	15186.21	22621.74	29045.34		
1985 Simulated Crop Pricesb					
Benchmark Returns	10076.37	9767.76	9459.15		
Returns to Wind:					
Maximum	2055.58	3023.60	4077.76		
Minimum	1824.01	2739.98	3698.81		
Mean	1920.43	2909.50	3865.83		
Standard Deviation	57.41	70.39	112.86		
Break-Even Investment ^c :					
3% Discount Rate	24870.97	37680.15	50065.32		
5% Discount Rate	21280.73	32240.85	42838.17		
10% Discount Rate	15066.96	22826.83	30329.83		

 $^{^{}m a}$ Farm situation 1 has a saturated thickness of 100 feet, 1ift of 125 feet, 32.65 acres of cropland and a 40 KW wind machine.

 $^{^{\}mathrm{b}}\mathrm{See}$ Table 13 for a listing of the crop price scenarios.

 $[\]ensuremath{^{\text{C}}\text{Break-even}}$ investment is calculated based on mean returns to wind.

Table 23. Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 2^a

Item		Purchased El ents per KWH	
	5	7.5	10
		-(dollars)	
1974-78 Average Crop Prices b			
Benchmark Returns	12725.17	11459.64	10194.11
Returns to Wind:			
Maximum	2331.16	3383.83	4782.47
Minimum	2108.09	3136.98	4179.77
Mean	2201.47	3276.04	4387.45
Standard Deviation	61.25	69.70	147.00
Break-Even Investment ^c :			
3% Discount Rate	28510.64	42427.11	56820.68
5% Discount Rate	24395.00	36302.57	48618.36
10% Discount Rate	17271.89	25702.56	34422.26
1985 Simulated Crop Prices b			
Benchmark Returns	30411.67	29146.14	27880.60
Returns to Wind:			
Maximum	2342.21	3493.96	4682.08
Minimum	2052,43	3179.70	4158.58
Mean	2181.53	3291.59	4418.71
Standard Deviation	81.22	86.78	138.12
Break-Even Investment ^c :			
3% Discount Rate	28252.40	42628.49	57225.52
5% Discount Rate	24174.04	36474.88	48964.76
10% Discount Rate	17155.45	25824.56	34667.51

 $^{^{}m a}$ Farm situation 2 has a saturated thickness of 175 feet, 1ift of 175 feet, 100 acres of cropland and a 40 KW wind machine.

 $^{^{\}mathrm{b}}\mathrm{See}$ Table 13 for a listing of the crop price scenarios.

 $^{^{\}rm c}{\rm Break\text{-}even}$ investment is calculated based on mean returns to wind.

Table 24. Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 3^a

Item	Price of Purchased Electricity (cents per KWH)				
	5	7.5	10		
		(dollars)-			
1974-78 Average Crop Prices b					
Benchmark Returns	12725.17	11459.64	10194.11		
Returns to Wind:					
Maximum	3315.28	5082.86	6622.14		
Minimum	3096.49	4573.62	6120.27		
Mean	3198.66	4809.38	6339.44		
Standard Deviation	69.89	130.21	154.83		
Break-Even Investment ^c :					
3% Discount Rate	41424,98	62284.98	82100.37		
5% Discount Rate	35445.10	53293.87	70248.82		
10% Discount Rate	25095.47	37732.56	49736.83		
1985 Simulated Crop Prices b					
Benchmark Returns	30411.67	29146.14	27880.60		
Returns to Wind:					
Maximum	3338.79	5078.47	6673.12		
Minimum	3069.88	4607.80	6157.61		
Mean	3212.75	4804.09	6415.65		
Standard Deviation	81.53	132.71	143.26		
Break-Even Investment ^c :					
3% Discount Rate	41607.45	62216.47	83087.34		
5% Discount Rate	35601.23	53235.25	71093.32		
10% Discount Rate	25206.01	37691.06	50334.74		

 $^{^{\}rm a}{\rm Farm}$ situation 3 has a saturated thickness of 175 feet, 1ift of 175 feet, 100 acres of cropland and a 60 KW wind machine.

^bSee Table 13 for a listing of the crop price scenarios.

 $[\]ensuremath{^{\text{C}}}\xspace Break-even investment is calculated based on mean returns to wind.$

Table 25. Break-Even Investment in a Wind Energy System, Southern High Plains, Farm Situation 4^a

Item	Price of Purchased Electricity (cents per KWH)				
	5	7.5	10		
		(dollars)			
1974-78 Average Crop Prices ^b					
Benchmark Returns	17867.17	15822.35	13790.32		
Returns to Wind:					
Maximum	3408.06	5070.22	6868,51		
Minimum	3058.82	4680.56	6155.72		
Mean	3255.36	4893.37	6469.62		
Standard Deviation	103.22	114.93	197.82		
Break-Even Investment ^c :					
3% Discount Rate	42159.29	63372.71	83786.30		
5% Discount Rate	36073.41	54224.58	71691.37		
10% Discount Rate	25540.31	38391.51	50758.17		
1985 Simulated Crop Prices					
Benchmark Returns	43335.73	41290.91	39246.10		
Returns to Wind:					
Maximum	3444.59	5118.83	6990.00		
Minimum	3107.94	4691.82	6306.04		
Mean	3274.71	4852.47	6568.25		
Standard Deviation	91.64	115.48	189.81		
Break-Even Investment ^c :					
3% Discount Rate	42409.88	62843.02	85063.63		
5% Discount Rate	36287.83	53771.36	72784.32		
10% Discount Rate	25692.13	38070.63	51531.98		

 $^{^{\}rm a}{\rm Farm}$ situation 4 has a saturated thickness of 225 feet, lift of 200 feet, 144 acres of cropland and a 60 KW wind machine.

^bSee Table 13 for a listing of the crop price scenarios.

 $[\]ensuremath{^{\text{c}}}\xspace Break-even investment is calculated based on mean returns to wind.$

Table 26. Break-Even Investment in a Wind Energy System, Northern High Plains, Farm Situation 3^a

Item	Price of Purchased Electricity (cents per KWH)				
	5	7.5	10		
	(dollars)				
1974-78 Average Crop Prices b					
Benchmark Returns	5848.13	4275.61	2788.58		
Returns to Wind:					
Maximum	3287.77	4769.88	6584.74		
Minimum	3043.68	4366.18	5889.24		
Mean	3182.57	4553.45	6255.45		
Standard Deviation	61.75	115.92	175.55		
Break-Even Investment ^c :					
3% Discount Rate	41216.60	58970.50	81012.64		
5% Discount Rate	35266.80	50457.84	69318.11		
10% Discount Rate	24969.23	35724.63	49077.87		
1985 Simulated Crop Prices b					
Benchmark Returns	13836.62	12296.59	10756.56		
Returns to Wind:	13030,02	14470.57	10/30.30		
Maximum	3341.92	5100.99	6598.11		
Minimum	2989.96	4576.96	6063.60		
Mean	3156.93	4784.64	6315.91		
Standard Deviation	84.27	162.38	163.79		
Break-Even Investment ^C :	~ ,				
3% Discount Rate	40884.54	61964.58	81795.64		
5% Discount Rate	34982.68	53019.72	69988.08		
10% Discount Rate	24768.07	37538.46	49552.22		

 $^{^{\}rm a}{\rm Farm}$ situation 3 has a saturated thickness of 175 feet, lift of 175 feet, 100 acres of cropland and a 60 KW wind machine.

 $^{^{\}mathrm{b}}\mathrm{See}$ Table 13 for a listing of the crop price scenarios.

 $[\]ensuremath{^{\text{C}}}\xspace Break-even investment is calculated based on mean returns to wind.$

Table 27. Break-Even Investment in a Wind Energy System, Northern High Plains, Farm Situation 4^a

Item	Price of Purchased Electricity (cents per KWH)				
	5	7.5	10		
	(dollars)				
1974-78 Average Crop Prices ^b					
Benchmark Returns	7843.70	5353.52	3218.64		
Returns to Wind:					
Maximum	3438.41	5074.93	6329.64		
Minimum	3144.07	4629.34	5796.76		
Mean	3255.60	4812.68	5997.10		
Standard Deviation	77.94	121.12	143.62		
Break-Even Investment ^C :					
3% Discount Rate	42162.39	62327.71	77666.82		
5% Discount Rate	36076.07	53330.43	66455.27		
10% Discount Rate	25542.20	37758.45	47050.96		
1985 Simulated Crop Prices b					
Benchmark Returns	19373.22	16884.89	14396.55		
Returns to Wind:	17313.22	10004.03	14370.33		
Maximum	3444.01	5084.94	6829.57		
Minimum	3022.35	4632.90	6073.30		
Mean	3220.47	4860.32	6463.27		
Standard Deviation	107.12	120.79	211.21		
Break-Even Investment ^c :	- · · · · ·		- 		
3% Discount Rate	41707.43	62944.69	83704.06		
5% Discount Rate	35686.78	53858.34	71621.01		
10% Discount Rate	25266.58	38132.22	50708.35		

 $^{^{}m a}$ Farm situation 4 has a saturated thickness of 225 feet, 1ift of 200 feet, 144 acres of cropland and a 60 KW wind machine.

 $^{^{\}mathrm{b}}\mathrm{See}$ Table 13 for a listing of the crop price scenarios.

 $[\]ensuremath{^{\text{C}}}\xspace Break-even investment is calculated based on mean returns to wind.$

percentage effect in the north. Returns under average crop prices are as much as 77 percent lower than with simulated prices in farm situation 4 with \$.10 per KWH electricity (\$14,396.55 vs. \$3,218.87). The smallest decrease in returns is 57 percent, \$13,836.62 to \$5,848.13, in farm situation 3 with electricity at \$.05 per KWH.

In contrast, the set of prices utilized has little effect on returns to wind. On the Northern High Plains, returns to wind are greater under average crop prices with electricity at \$.05 per KWH.

This is reversed at higher electricity prices, where the 1985 simulated crop prices yield higher returns to wind. No tests for statistical significance were made; however, in only two cases was the difference in annual returns greater than \$100. Southern High Plains results show no pattern of higher returns with either set of prices. The difference in annual returns with respect to crop prices is greater than \$100 in only one situation.

Electricity Price Effects

Increases in electricity price have a constant effect on benchmark returns with farm situations where cropping patterns remain constant. This is most easily seen in the Southern High Plains results. In farm situation 1, returns decrease by \$308.61 for each 2½ cent increase in electricity prices. Other rates of change are \$1,265.53 in situations 2 and 3 and \$2,044.82 in situation 4. The only exception is in farm situation 4 with average crop prices, where the increase in electricity price from \$.075 to \$.10 per KWH results in a decrease in benchmark returns of \$2,032.03. This is the only scenario in the southern region where cropping patterns change.

On the Northern High Plains, cropping patterns are constant with simulated crop prices. As electricity price increases by $2\frac{1}{2}$ cents per KWH, benchmark returns decrease by \$1,540.03 in farm situation 3 and by \$2,488.33 in situation 4. With average crop prices, the decrease in returns is slightly greater than above when moving from \$.05 to \$.075 per KWH but less than above for the next electricity price increment.

The decline in returns in response to increasing electricity prices is mitigated by the addition of a wind energy system to the farm operation. In farm situations 1 and 3, total returns (equivalent to benchmark returns plus returns to wind) actually increase with an increase in electricity prices, as increased income from the sale of surplus electricity offsets the added cost of electricity purchases. In each case, the applicable wind system operates on the smaller of the two land units applied to a given size of machine. When the 40 KW and 60 KW machines are placed on the larger land unit for each (farm situations 2 and 4, respectively), higher electricity prices cause a decrease in returns, but the decrease is of a much smaller magnitude than in the benchmark case. For example, in farm situation 2 with average crop prices (Southern High Plains), benchmark returns decrease by \$2,531.06 in response to a five cent increase in electricity price. However, when a wind system is utilized, simulated returns decrease by only \$345.08 in the same situation.

Overall, annual returns to wind energy do not increase in strict proportion to electricity price increases. On the Southern High Plains, simulated returns to wind increase by an average of 49.8 percent in response to a 50 percent increase in electricity prices and

by 99.2 percent when electricity price increases by 100 percent. In the northern region, where irrigated acreage is more likely to decrease in response to higher fuel prices, the respective increases in returns to wind average 48.4 percent and 95.4 percent.

Feasibility of Investment

Break-even investment values for the Southern High Plains range from \$15,186.21 to \$56,820.68 for a 40 KW system and from \$25,095.47 to \$83,786.30 for a 60 KW machine. For the Northern High Plains, where only the 60 KW machine was analyzed, break-even values range from \$24,969.23 to \$81,012.64. These values are somewhat lower than for the southern region, indicating that cotton can make more profitable use of wind energy than the northern crop mix, dominated by grain sorghum.

The wide divergence in both present and projected future costs of wind systems makes a "yes or no" recommendation on the investment decision beyond the scope of this study. One general conclusion can be made. Cost projections for the mature industry often mention \$500 per installed KW (Alternative Energy Institute, Katzenberg). These results show break-even investment values over \$500 per KW in all cases except where electricity is priced at \$.05 per KWH and returns discounted at 10 percent.

Comparisons Among Farm Situations

The farm situations were specified to permit the analysis of a given size of wind system on two different land units as well as examine the two machine sizes on a common land unit. The 100 acre

farm unit was analyzed with both 40 KW and 60 KW wind systems for the Southern High Plains only. These results are shown in Table 28.

Break-even investment values, calculated at a five percent discount rate, are adjusted to a per installed kilowatt of generating capacity basis. In all cases, the ability to pay per KW of capacity is higher for the smaller, 40 KW machine. In farm situation 3, revenue from the sale of electricity offsets purchases for irrigation as electricity price increases, thus suggesting that the 60 KW machine in this situation may be over-sized for irrigation purposes.

In all cases, break-even investment rates are higher for farm situation 2 than for 1 as well as for situation 4 over 3. This means that each size of wind system is more effective on the larger of the two land units applied. Table 29 presents further confirmation of this conclusion. Simulation results within each farm situation were aggregated over all crop and electricity price scenarios. Averages were calculated for wind generated electricity, both sold and used for irrigation, as well as the percentage of total irrigation requirements fulfilled by wind power.

As was noted earlier, cotton production (only in the Soutern High Plains) makes more efficient use of wind energy. In the situations applicable to both regions (farm situations 3 and 4), the amount of wind energy used for irrigation is higher on the Northern High Plains by slightly less than one thousand KWH. However, the percentage of irrigation requirements fulfilled by wind energy is higher in the southern region, 27.56 percent as compared to 23.98 percent in the north for farm situation 3 and 18.79 vs. 16.4 percent for farm

Table 28. Comparison of the Value of 40 Kilowatt and 60 Kilowatt Wind Energy Systems on a 100 Acre Farm Unit, Southern High Plains

Item	Purchase Price of Electricity (cents per KWH)				
	5	7.5	10		
		(dollars)		
1974-78 Average Crop Prices ^a					
Break-Even Investment ^b :					
40 KW Wind System	609.88	907.56	1215.46		
(Farm Situation 2) 60 KW Wind System	590.75	888.23	1170.81		
(Farm Situation 3)	3,000.0				
1985 Simulated Crop Prices ^a					
Break-Even Investment ^b :					
40 KW Wind System	604.35	911.87	1224.12		
(Farm Situation 2)	E02 25	887.25	1184.89		
60 KW Wind System) (Farm Situation 3)	593.35	007.23	1104.09		

^aSee Table 13 for a listing of the crop price scenarios.

bBreak-even investment, discounted at 5 percent, is expressed on a per kilowatt of capacity basis.

Simulation Results of Electricity Sold and Used for Irrigation Table 29.

Item		Wind Generated Electricity	Electricity	
	Sold (KWH)	Used for Irrigation (KWH)	% of Total Requirements ^a (percent)	% of Total Generated ^b (percent)
Northern High Plains				
Farm Situation 3c	7.9994.7	13937.4	23.98	13.80
Farm Situation 4 ^C	77339.7	14970.6	16.40	14.84
Southern High Plains				
Farm Situation 1 ^C	52095.5	4823.5	42.05	7.16
Farm Situation 2 ^c	52518.1	9601.0	20.43	14.13
Farm Situation 3 ^c	78444.7	12952.0	27.56	12,73
Farm Situation 4 ^c	78677.3	14057.0	18.79	13.86

^aRepresents the average percentage of total irrigation requirements fulfilled by wind power.

 $^{
m b}_{
m Represents}$ the average percentage of total wind generated electricity used for irrigation.

 $^{\text{c}}$ Refer to Table 12 for a description of the farm situations.

situation 4. In farm situations 1 and 2 (analyzed only for the southern region) the percentages of irrigation requirements satisfied by wind power are 42.05 and 20.43 percent, respectively.

Even though the proportion of irrigation requirements fulfilled by wind power decreases when a machine is operated on the larger land unit, the percentage of total electricity generated applied to irrigation increases. The increase is slightly more than one percent when moving from farm situation 3 to 4 in both regions, and 6.97 percent when moving from farm situation 1 to 2 in the Southern High Plains. In all cases, the magnitude of wind generated electricity sold and applied to irrigation is higher on the larger land unit for each machine (farm situations 2 and 4). This is due to the assumption that wind power cannot be used for both purposes at the same time. If the wind system is producing more power than required for pumping, the excess power was assumed to be wasted. This was more likely to occur on the smaller land unit.

Effect of Load Management Strategies

The previous results were based on an irrigation schedule that was planned without taking into account the availability of wind power. It was hypothesized that, if wind energy was included in the planning process, irrigation scheduling might be changed to take advantage of periods havinghigher wind power. Thus, expectations of available wind power were included in the LP model to test their effect on cropping patterns. However, wind power expectations result in changes in only four situations.

In the southern region, benchmark cropping patterns were identical

in proportion in all situations but one (farm situation 4, 1974-78 average crop prices and \$.10 per KWH electricity). The addition of wind expectations to this situation resulted in a cropping pattern shift to the same solution as in the other benchmark situations. This was 53.76 acres of cotton receiving one post-plant irrigation (in mid-July) rather than zero, while the remaining 90.24 acres of cotton continue to receive two post-plant irrigations. Average annual returns to wind increase by \$96.06. This was the only scenario in the Southern High Plains where the cropping pattern was affected.

In contrast, the Northern High Plains benchmark results varied considerably under average crop prices. Wind power expectations changed the optimal cropping pattern for farm situation 3, with electricity priced at \$.075 and \$.10 per KWH. These changes are detailed in Table 30.

With electricity at \$.075 per KWH, irrigated corn and dryland wheat acreage decrease in favor of irrigated grain sorghum, with a small increase in irrigated wheat acreage. Irrigation pumping decreases slightly in the two months (July and August) having the lowest average wind speeds, while pumping increases in the spring months. Total pumping increases by 7.41 acre-feet. However, these changes have little effect on the annual value of wind energy, which increases by less than eight dollars for the farm.

When electricity is priced at \$.10 per KWH, wind expectations allow the cropping pattern to return to the benchmark solution that was optimal with electricity at \$.075 per KWH. Again, dryland wheat acreage decreases and 2.43 acres of irrigated wheat enter the solution.

Table 30. Effects of Wind Energy Expectations on the Optimal Farm Organization:
Northern High Plains, Farm Situation 3^a, 1974-78 Average Crop Prices^b

Item	Unit	Purchase Price of Electricity (cents per KWH)			
		7.5		10	
		Benchmark	With Wind	Benchmark	With Wind
Crop and Irrigation Level:					
Corn (PP+5) ^c	acres	22.05	13.70	16.98	22.05
Grain Sorghum (PP+1)	acres	22.05	13.70	16.98	22.05
Grain Sorghum (PP+2)	acres		13.70		
Grain Sorghum (PP+3)	acres	40.62	48.96	45.68	40.62
Wheat (PP+3)	acres	2.43	4.65		2.43
Wheat (Dryland)	acres	12.84	5.27	20.35	12.84
Nater Pumped by Month:					
February	acre-feet	8.92	10.12		8.92
March	acre-feet	40.49	42.42	46.46	40.49
April	acre-feet	0.81	1.55		0.81
May	acre-feet	1.62	3.10		1.62
July	acre-feet	49.08	46.30	47.40	49.08
August	acre-feet	35.55	34.56	32.18	35.55
September	acre-feet	1.42	7.27		1.42
Total	acre-feet	137.99	145.40	126.04	137.99

 $^{^{\}rm 8}{\rm Farm}$ situation 3 has 175 feet of saturated thickness, 175 feet of 11ft, 100 acres of cropland and a 60 KW wind machine.

 $^{^{\}mathrm{b}}$ 1974-78 average crop prices are listed in Table 13.

 $^{^{\}mathrm{C}}$ Indicates a pre-plant plus the given number of post-plant irrigations.

Grain sorghum with three post-plants shows a decrease and acreage of grain sorghum with one post-plant and corn with five post-plant irrigations increase. Total irrigation water application increases by 11.95 acre-feet, with increases in each month except March, where average wind speed is highest. The increase in returns to wind is \$29.10.

The final cropping pattern change was also in farm situation 3, but with 1985 simulated crop prices and \$.05 per KWH electricity (Table 31). Acreage in grain sorghum with two post-plants decreases dramatically and acreage of all other crops in the solution (corn with five post-plants and sorghum with one, three and four post-plants) increases. However, as in the previous case, irrigation actually shifts away from periods with higher wind speeds, as returns to wind increase by less than five dollars per year.

The consideration of wind expectations in the planning process had little effect, with cropping pattern changes occurring in only four of the thirty-six situations analyzed. In two situations, unique cropping patterns were developed, involving relative changes of irrigation scheduling to higher wind speed months, but the increase in returns to wind was negligible (less than eight dollars per year). More substantial increases occurred where wind power simply eased the effect of higher electricity prices by allowing the farm plan to return to a cropping pattern which had been optimal at lower electricity prices.

Table 31. Effects of Wind Energy Expectations on the Optimal Farm Organization: Northern High Plains, Farm Situation 3^a, 1985 Simulated Crop Prices

Item	Unit	Benchmark ^C	With Wind ^c
Crop and Irrigation Level:		· · · · · · · · · · · · · · · · · · ·	
Corn (PP+5) ^d	acres	1.37	10.07
Grain Sorghum (PP+1)	acres	8.31	22.57
Grain Sorghum (PP+2)	acres	63,62	22.57
Grain Sorghum (PP+3)	acres	1.37	10.07
Grain Sorghum (PP+4)	acres	25.34	30.02
Water Pumped by Month:			
February	acre-feet	11.28	10.72
March	acre-feet	47.05	44.87
July	acre-feet	39.88	40.93
August	acre-feet	42.19	45.09
September	acre-feet	0.46	3.35
Total	acre-feet	140.96	145.08
Simulated Returns to Wind	dollars	3156.93	3161.52

 $^{^{\}rm a}{\rm Farm}$ situation 3 has 175 feet of saturated thickness, 175 feet of lift, 100 acres of cropland and a 60 KW wind machine.

b1985 simulated crop prices are listed in Table 13.

 $^{^{\}mathrm{c}}$ The purchase price of electricity is \$.05 per KWH.

 $^{^{\}rm d}{\rm Indicates}$ a pre-plant plus the given number of post-plant irrigations.

Temporal Analysis

The results above assumed the value of wind power to be constant over a 20 year period, the expected life of a wind system. However, the irrigated farmer on the High Plains does not face a constant situation. As the water level of the Ogallala aquifer declines, the producer faces declining well yield, which reduces the amount of water that can be pumped in any seasonal water period, and increasing pumping costs due to increasing pumping lift. These factors will cause net returns to decrease. Whether or not there will be a differential effect on returns to wind power is unknown. The linear programming model was revised and applied on a recursive basis to estimate the effects of the declining water level. The simulation model is not applied in temporal analysis; rather, the mathematical expectation of available wind power, calculated based on monthly average wind speeds, is assumed to be received in each year. As was noted in Chapter IV, this will result in slight underestimates of wind energy availability as compared to that estimated by the simulation model.

Only farm situations 2 and 4 were selected for temporal analysis, as the static results above showed each to be the more efficient application of the given machine size. Both situations were analyzed for the Southern High Plains while only farm situation 4 was included in the northern region. The 1985 simulated crop prices were used. Two scenarios were established for electricity prices; one where the price is held constant at \$.05 per KWH and another where the price is increased from \$.05 per KWH by one-half cent per KWH per year.

Constant Electricity Price

With electricity prices constant, cropping patterns do not change between the benchmark (without wind power) solution and the solution with wind power.

Southern High Plains

Selected physical results of the constant electricity price case are shown in Appendix D, Tables 1 and 2 for the Southern High Plains farm situations 2 and 4, respectively. Comparisons between the first and last year of each analysis are presented.

In the southern region, where all land is initially in irrigated cotton, acreage gradually shifts away from two post-plant irrigations with optimal timing. Eventually, the optimal timing of two post-plants is replaced by a pre-plant irrigation only. This occurs in year 8 in farm situation 2 and in year 15 in farm situation 4. From this point, the above situation reverses, as pre-plant only acreage increases with equal declines in the other activities. By year 19 on the smaller land unit, well yield declines to the point where the five pre-plant irrigation periods are not sufficient to cover all 100 acres. At this point, a small amount of irrigated grain sorghum enters the solution.

By year 20, total irrigation fuel requirements increase by 10 and 11 percent, respectively, in farm situations 2 and 4. The proportion of the requirement fulfilled by wind power is 19.4 and 18.1 percent in year 1, increasing to 30.6 and 22.4 percent, respectively, by year 20. The amount of purchased electricity actually decreases in farm situation 2, as the more rapid decline in well yield and subsequent

extension of irrigation over more seasonal water periods allows the use of wind power to increase.

As was done earlier, present value of returns is calculated at three different discount rates to reflect a range of estimates.

However, since annual returns are not constant, changes between discount rates are not proportional. Returns without wind power (the benchmark) are netted out, with the difference adjusted for the assumed operation and maintenance cost to determine break-even investment, shown in Table 32. When expressed on a per KW basis, break-even investment is slightly higher at all discount rates for the 40 KW machine. These values range from \$421.51 to \$700.96 at ten and three percent discount rates, respectively, as opposed to \$415.08 to \$688.18 for the 60 KW machine.

Northern High Plains

Only farm situation 4 was examined for the northern region. As in the south, wind power does not affect cropping patterns when electricity price remains constant (Appendix D, Table 3). The optimal farm plan consists almost entirely of irrigated grain sorghum in year 1, with only 1.97 acres of irrigated corn. This remains constant until year 7, as corn acreage begins to increase. The following year, irrigated wheat enters the solution. Both wheat and corn acreage increase annually through the remainder of the analysis.

Regardless of whether wind power is included, labor constraints make the optimal land use pattern sensitive to the declining water level. As was the case in the static analysis with increasing electricity prices, the shadow price of cropland does not behave as would

Temporal Analysis $^{\rm a}$ of Break-Even Investment in a Wind Energy System: Constant Electricity Price $^{\rm b}$ Table 32.

Item	Present Val With Wind Power	Present Value of Returns ^C ind Power Without Wind Power	Break-Even Investment
	(dollars)	(dollars)	
Southern High Plains			
Farm Situation 2": 3% Discount Rate	344184.81	311975.13	28038.29
	289852.75	262933.88	23935.93
10% Discount Rate	200385.06	182089.38	16860.27
Farm Situation 4d:			
3% Discount Rate	518283,16	470849.41	41290.73
5% Discount Rate	435580.89	395902.89	35281,19
10% Discount Rate	299706.64	272681.58	24904.78
Northern High Plains			
C)	1	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	151193.91	103206./9	41/12.44
5% Discount Rate	128843.83	88/96.64	35609.47
10% Discount Rate	91307,52	64168.39	25009.90

al985 simulated crop prices (see Table 13) are used in all temporal analyses.

 $^{^{\}mathrm{b}}$ Constant electricity price of \$.05 per KWH.

 $^{^{\}text{c}}_{\text{Returns}}$ are net of variable and fixed costs.

 $^{^{}m d}_{
m Refer}$ to Table 12 for a description of the farm situations.

be expected. The shadow price increases over the first six years, then goes to zero as land is left idle beginning year 7. Full irrigated acreage returns in year 15. From that point, the shadow price makes one large increase, then decreases for the remainder of the analysis.

More water is pumped in the northern region, as ending saturated thickness is 18 feet lower than in the south (156 feet vs. 174 feet). The annual amount of electricity required for irrigation increases substantially by year 20, 45 percent higher than in year 1. The proportion of irrigation fuel fulfilled by wind power increases from 15.9 percent to 22.3 percent over the time of the analysis. The beginning figure is lower than in the south, but in year 20 the percentages are nearly identical. Break-even investment ranges from \$41,772.44 (\$696.20 per KW) at a three percent discount rate to \$25,009.90 (\$416.83 per KW) with returns discounted at 10 percent.

Increasing Electricity Price

Southern High Plains

In farm situation 4, cropping patterns are the same as with constant electricity prices, both with and without wind power (Appendix D, Table 4). The primary difference in the two analyses is in breakeven investment (Table 33), which increases substantially compared to constant prices (80, 75 and 64 percent, respectively, at three, five and 10 percent discount rates).

In farm situation 2, increasing electricity prices result in minor cropping pattern changes (less than one acre) when comparing with and without wind power (Appendix D, Table 5). Both solutions are

Temporal Analysis $^{\rm a}$ of Break-Even Investment in a Wind Energy System: Increasing Electricity Price $^{\rm b}$ Table 33.

Item	Present Val With Wind Power	Present Value of Returns ^C ind Power Without Wind Power	Break-Even Investment
		(dollars)	
Southern High Plains Farm Situation 2 ^d :	336740,81	278641,25	50575.24
5% Discount Rate 10% Discount Rate	284051.94 197093.56	237045.88 167530.75	41797.21 27243.43
ituation Discount Discount	499116.91 420740.14	413561.16 351483.83	74475.66 61581.86 40197.63
10% Discount Rate Northern High Plains	291435.27	24/815.39	40197
Farm Situation 4d: 3% Discount Rate 5% Discount Rate 10% Discount Rate	124383.85 107739.45 79076.71	40638.60 39849.64 36180.96	72899.63 60367.14 39530.31

al985 simulated crop prices (see Table 13) are used in all temporal analyses.

 $^{\rm b}_{\rm Initial}$ electricity price of \$.05 per KWH and increasing by \$.005annually.

^CReturns are net of variable and fixed costs.

 $^{
m d}_{
m Refer}$ to Table 12 for a description of the farm situations.

practically identical to those with constant electricity prices. The major difference in the analyses is an increase in ending well yield of one gallon per minute. Again, break-even investment increases substantially (80, 75 and 62 percent at three, five and ten percent discount rates).

Northern High Plains

Wind power has its greatest effect on cropping patterns in this situation, as shown in Appendix D, Table 6. With and without wind power, cropland shifts to dryland grain sorghum by year 20. However, there are 29 acres of dryland sorghum when wind energy is used compared to 45 acres in the benchmark solution. Irrigation is more intensive, with 16.63 acres of grain sorghum receiving three post-plants, in the benchmark solution. With wind power, only one and two post-plant sorghum activities are in the solution.

Irrigation fuel requirements decrease by year 20 in response to the increasing fuel price by 26,806 KWH without windpower and by 21,506 KWH with wind power. Even though the total fuel requirement decreases substantially, wind-generated electricity used for irrigation increases, as pumping is spread over a longer time period in response to declining well yield. Again, break-even investment values are increased over the constant electricity price case, but by smaller rates than in the south (75, 70 and 58 percent).

Comparison of Static and Temporal Results

Some general conclusions may be made by examining a cross-section of the results. Table 34 shows break-even investment values for the

Table 34. Comparison of Break-Even Investment Values^a
Derived from Static and Temporal Analysis

Item	Sell-Only Analysis ^b	Static Analysis ^c	Temporal Analysis ^d	
	(dollars per KWH)			
Southern High Plains				
40 KW Machine (Farm Situation 2)	591.64	706.31	700.96	
60 KW Machine (Farm Situation 4)	592.22 ^e	706.83	688.18	
Northern High Plains				
60 KW Machine (Farm Situation 4)	592.22 ^e	695.12	696.21	

 $^{^{\}rm a}{\rm All}$ values were discounted at three percent and expressed in dollars per KWH.

^bElectricity sold at \$.03 per KWH.

 $^{^{\}rm C}{\rm Electricity}$ purchased at \$.05 per KWH and 1985 simulated crop prices.

 $^{^{\}rm d}\textsc{Electricity}$ purchase price constant at \$.05 per KWH and 1985 simulated crop prices.

 $[\]ensuremath{^{\text{e}}}\xspace\textsc{No}$ distinction was made between regions for the sellonly option.

sell-only option (discussed in the previous chapter) and from the static and temporal analysis. In all cases, the price of purchased electricity is constant at \$.05 per KWH. This is the assumed equivalent of selling electricity at \$.03 per KWH. The three percent discount rate is used, with 1985 simulated crop prices assumed.

The sell-only option provides a lower limit to the value of a wind system compared to the other analyses, where part of the wind generated electricity is substituted for higher valued purchased electricity.

Break-even investment values are approximately \$100 per KW lower when all electricity is sold to the utility.

Due to the difference in the way wind speed distributions were specified, available wind power is lower in the temporal analysis than in the static. In the Southern High Plains, this is reflected by estimated break-even investment being less than for the static analysis. However, north of the Canadian River, estimated break-even investment is higher under the temporal analysis. It is also higher than for the Southern High Plains temporal analysis for the same machine size, a reversal of the static analysis results.

The benchmark returns (without wind power) in the Northern High Plains are much more sensitive to the declining water level than in the south. This is the major reason behind the increase in value of wind energy, even with lower wind power estimates. The increase in break-even investment for a wind power system as compared to static analysis in the north indicates that temporal analysis could yield higher estimated break-even investment in the south if wind power estimates were equal. Due to the lower wind power estimates, the value

of wind power estimated on a temporal basis should be regarded as conservative in nature.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The High Plains region of Texas is one of the major agricultural areas of the state. The agricultural, as well as the entire regional economy, is heavily dependent on irrigation. Irrigation increases the productivity of crops previously produced under dryland conditions and allows the production of other higher valued crops which cannot be grown without irrigation.

The viability of irrigated agriculture is threatened by continually increasing costs of pumping groundwater. This is due not only to increasing energy prices but also to the declining water level of the Ogallala aquifer, which increases the amount of energy required to lift the groundwater. Since dramatic energy price increases began in 1973, much research has been directed toward increasing the energy efficiency of irrigated agriculture. Other major research efforts have examined the development of energy from renewable sources.

One readily abundant renewable source of energy on the Texas High Plains is wind power. The High Plains has as much available wind power as any region in the country. Due to the importance of irrigation in the region, the concept of wind-assisted irrigation pumping could be an important alternative. Wind systems have been developed which are capable of providing supplemental energy to an existing electrical pumping plant. The electric motor is sized to operate the

pump on a stand-alone basis. However, when the wind velocity is sufficient, the wind system operates and reduces the load on the electric motor. When pumping is not taking place, electricity can be generated and sold to the electric utility. The purpose of this study was to quantify, on both a static and temporal basis, the benefits of a wind energy system in an irrigation application on the Texas High Plains.

Methodology

The procedure for the static analysis involved determination of an optimal cropping pattern by a linear programming model developed for the Texas High Plains region. The optimal irrigation schedule was used as input to a simulation model. The simulation model matched stochastically generated wind power estimates to the irrigation schedule to estimate the annual value of wind energy.

The production activities in the LP model included dryland and irrigated options for cotton, grain sorghum and wheat along with irrigated corn. To give a broader representation of the choices available to an irrigated producer, activities were included assuming both optimal and non-optimal timing of irrigation applications. The yield reduction effects of non-optimal timing were estimated from experimental data for the region. In addition to the production activities, there were separate purchasing activities for selected inputs, selling activities for crops produced and a cash flow section divided into two-month periods.

Constraining resources included land, labor and irrigation water.

Labor restrictions were divided into two-month periods. Irrigation water applications were divided into ten-day periods, with restrictions based on the physical maximum that could be pumped.

The simulation model generates random ("actual") wind speeds by three-hour time periods throughout a year. Random wind speeds are drawn from Rayleigh distributions, the single parameter of which is mean wind velocity. Frequency distributions were set up by month and time of day (each three-hour interval for which wind speed is recorded), making eight distributions per month. Each three-hour estimate of wind power availability is matched with the amount of irrigation fuel required in that period, as determined by the LP model. Irrigation requirements in excess of wind power are purchased. Surplus generated electricity while pumping is assumed to have no value. If irrigation does not take place, 90 percent of excess wind power is sold to the electric utility for 60 percent of the purchase price. The annual value of wind power is calculated based on irrigation fuel saved and excess power sold. The simulation process is repeated 20 times for each situation analyzed to generate a range of solutions.

Mathematical expectations of available wind power based on single monthly average wind speeds were added to the LP model to test if cropping patterns would change when the availability of wind power was considered in the planning process. If this resulted in a change in cropping patterns, the simulation model was applied to the new irrigation schedule using the same set of random wind speeds.

For the temporal analysis, a Fortran subroutine was added to the LP model to operate the model recursively over the assumed twenty year

life of a wind system. Annual farm plans are developed by the LP model. Based on the quantity of irrigation water applied in year t for the LP farm plan, the Fortran subroutine calculates the deline in saturated thickness of the aquifer and associated new well yield, pumping lift and irrigation fuel requirements for year t+1. The LP matrix is then updated with the new coefficients. This procedure continues over the twenty years of analysis.

The benchmark case involved application of the basic LP model. To estimate the value of wind power in the temporal framework, the monthly expectations of wind-generated electricity were added to the model. In both cases, fixed costs appropriate for a long-run analysis are deleted from returns.

Alternative Scenarios

The scenarios analyzed consisted of changes in four basic areas. The region was separated into the areas north and south of the Canadian River, with cotton included as a crop option only south of the river, due to the length of the growing season. Four farm situations were specified: (1) a saturated thickness of 100 feet, lift of 125 feet, 32.65 acres of cropland and a 40 KW wind machine; (2) a saturated thickness of 175 feet, lift of 175 feet, 100 acres of cropland and a 40 KW machine; (3) the same as situation 2 with the exception of a 60 KW machine; and (4) a saturated thickness of 225 feet, lift of 200 feet, 144 acres of cropland and a 60 KW wind machine.

Two sets of crop prices were used, one reflecting 1974-78 averages and the other based on simulated 1985 prices. For the static

analysis, electricity purchase prices of \$.05, \$.075 and \$.10 per KWH were analyzed. In the temporal analysis, a constant purchase price of \$.05 per KWH was specified, plus a situation where the price increased by one-half cent per KWH per year.

Results

Operating Characteristics

The randomly generated wind speeds and power output from the Southern High Plains benchmark simulations were aggregated to examine some predicted performance parameters. Average annual output was 67,679.4 KWH for a 40 KW system and 101,618.6 KWH for the 60 KW machine. Over both machines, the average proportion of time producing rated (maximum) output was 4.92 percent, while the average time not operating due to low or high wind speed was 41.5 percent. Value of wind power was estimated assuming all power was sold to the utility. Break-even investment (on a per KW basis) ranged from \$358.42 at a ten percent discount rate and \$.03 per KWH electricity to \$1,184.43 with three percent discounting and \$.06 per KWH electricity. These selling prices are 60 percent of the assumed purchase price of electricity at \$.05 and \$.10 per KWH, respectively.

Static Analysis

Non-Optimal Irrigation Timing

The effect of the inclusion of non-optimal irrigation timings was examined for a specified situation on the Northern High Plains.

The model was applied with only optimal irrigation timings included

and with non-optimal irrigation timings included. Labor constraints were binding, as land was left idle in both cases, but 5.13 more acres were irrigated where non-optimal timing was allowed. Irrigations were applied non-optimally on 28.9 percent of the irrigated acres. The inclusion of non-optimal timings allowed added flexibility in the usage of labor as well as irrigation water, and increased returns over variable costs to the 100 acre farm by \$50.50. This was felt to more accurately reflect the situation faced by High Plains producers, thus, non-optimal timing of irrigation was permitted in further analyses.

Cropping Patterns

In the analysis of alternative scenarios for the benchmark solutions, cropping patterns were found to be insensitive to changes in crop prices or electricity prices in the southern region. All acres were planted to irrigated cotton over all farm situations. The specific cropping pattern was identical (in proportion to total acreage) in all cases except in farm situation 4 with electricity at \$.10 per KWH and 1974-78 average crop prices, where 37.33 percent of the acreage shifted from one post-plant irrigation to a pre-plant only.

On the Northern High Plains, cropping patterns were insensitive to electricity price changes under 1985 simulated crop prices.

Irrigated grain sorghum dominated these solutions, with a small amount of irrigated corn. With 1974-78 average crop prices, land was left idle with electricity at \$.05 per KWH. At higher electricity prices, irrigated acreage declined, but sufficient labor was released to allow dryland wheat to use all remaining acreage. Again, irrigated grain sorghum and corn dominated the solution, with a small amount of

irrigated wheat in the farm plan except where electricity costs \$.10 per KWH. Labor restrictions impacted heavily in this region, actually causing the shadow price of cropland to increase with higher electricity prices.

Returns to Wind Energy

The set of crop prices applied had very little effect on returns to wind. In the northern region, the annual value of a wind system was higher for the average 1974-78 crop prices with electricity at \$.05 per KWH. At higher electricity prices, value of wind was higher for 1985 simulated crop prices. No such pattern existed in the south. Any differences in annual returns to wind with respect to crop prices were negligible, less than \$100 in most cases.

As expected, returns to wind were higher at higher electricity prices, but by slightly smaller proportions than the increases in electricity price. The addition of a wind system significantly abates the adverse effects of increasing electricity prices. In farm situations where a given wind system is operated on the smaller of the two applicable land units, total returns (returns to wind plus benchmark returns) actually increased with increases in electricity price. On the larger land units, returns did decrease as electricity price was increased, but by a much smaller percentage, where wind power was available, than the decrease in benchmark returns.

Estimated break-even investment was higher for the Southern High Plains, where cotton was available as a crop option. With electricity at \$.05 per KWH, 1985 simulated crop prices and returns discounted at three percent, break-even investment for the 60 KW machine ranged up

to \$42,409.88 (\$706.83 per KW) in the south compared with \$41,707.43 (\$695.12 per KW) in the north. The 40 KW machine was analyzed only in the southern region. At the same prices and discount rate cited above, maximum break-even investment for the 40 KW system was \$28,252.40 (\$706.31 per KW).

On the 100 acre land unit, where both machines were analyzed in the south, the 40 KW machine (farm situation 2) was found to be the better investment on a per KW basis. Each machine had higher value on the larger of the two land units tested, farm situation 2 for the 40 KW machine and situation 4 for the 60 KW system.

Effect of Load Management

The inclusion of wind power expectations in the planning process had little effect on irrigation scheduling, with cropping pattern changes occurring in only four of the 36 situations analyzed. In two of these cases, irrigations were shifted to higher wind speed periods, but this resulted in only a small increase in returns to wind. More significant increases occurred where wind power eased the impact of increasing electricity price, allowing the farm to maintain the irrigation levels estimated without wind power, but which had been decreased due to the price increase.

Temporal Analysis

Only farm situations 2 and 4 were analyzed temporally, as the static analysis results showed each to be the more efficient application of the given size of machine. To reflect the future situation, 1985 simulated crop prices were used.

Cropping Patterns

Wind power had no effect on the optimal farm plan when the price of electricity was held constant through time. Cotton again dominated southern solutions, with a small amount of irrigated grain sorghum planted on the 100 acre unit in the last two years of the analysis. Initial acreage on the Northern High Plains was planted almost entirely to irrigated grain sorghum, with acreage of irrigated wheat and corn increasing through time.

On the Southern High Plains, with electricity price increasing through time, the optimal farm plan remained the same as with constant price for farm situation 4, and changed only minutely in situation 2. In the north, wind power had a significant effect on cropping patterns through time. Acreage reverted to dryland with and without wind power; however, more irrigated acreage was maintained when wind power was available.

Returns to Wind Energy

In contrast to the static results, the estimated break-even investment was higher on the Northern High Plains where electricity price was held constant, with values on the 60 KW power system as high as \$41,772.44 with the three percent discount rate (compared to \$41,290.73 in the south). This is due largely to the more adverse effect of the declining water level in the north. For the 40 KW machine (analyzed only on the Southern High Plains), break-even investment on a per KW basis was higher than for the 60 KW machine in either region.

When electricity price increased annually, break-even investment

showed significant increases, as was expected. The increases were as much as 80 percent on the Southern High Plains and up to 75 percent in the north. For the 60 KW system, the results were again reversed, with higher investment values in the south. Even with wind power, the increasing electricity price forced land out of irrigation in the north, thus reducing the potential for electricity substitution.

Conclusions

With the wind energy industry still in largely a developmental stage, estimates of the initial cost of a wind system can vary considerably. This makes it difficult to draw firm conclusions on the profitability of investment, at least in the short term. As more firms begin mass production of wind systems, prices should decrease and stabilize. Available estimates of the industry's mature cost range around \$500 per KW. Estimated break-even investment rates for wind-assisted irrigation were greater than \$500 per KW in all cases except where electricity was purchased for \$.05 per KWH and returns discounted at ten percent. The possibility of tax credits for the purchase of a wind system was not explicitly considered. However, for the farm business in a position to take full advantage of the credits, the effective break-even investment rate could be increased by as much as one-third.

Limitations

This study uses the typical farm approach, thus, the results will likely not apply directly to any specific farm due to the

"average" nature of the data. This should be noted particularly in view of the Northern High Plains results, where the assumed labor restrictions had a large effect on the optimal farm plan chosen. A producer able to hire additional summer labor could have a significantly different result. In addition, the producer was assumed to be a strict profit maximizer. Personal preferences or consideration of risk could cause changes in an individual's cropping pattern.

The consideration of non-optimal irrigation timing gives the model additional flexibility that more accurately represents the decision making process of the irrigated producer. However, the yield reductions estimated for this study were based on limited data. Further research is needed regarding the effects of irrigation timing.

The monthly wind power expectations used in the LP model were, in total, slightly less than the averages of output from the simulation model. Thus, the temporal results should be regarded as conservative. These same expectations, as a factor in the planning process, were estimated to have little effect on cropping patterns, contrary to what was expected. The use of wind speed distributions based on averages for each ten-day period could improve the model; however, these data would be difficult to obtain.

The price at which the utility will buy back surplus electricity was assumed to be a constant percentage of the purchase price. In actual practice, this price may vary greatly. Peak load pricing structures, where the price of electricity varies according to the time of use, were not considered. This type of pricing might apply not only to electricity purchases but also to sales, where the utility

might pay a premium price for electricity generated at times of peak demand.

The study assumed that normal wind system down time (when the machine does not operate due to insufficient wind speed) could be used for all necessary repairs and maintenance. Major breakdowns could render the system inoperative for long periods of time; however, data regarding the frequency or duration of such breakdowns were unavailable. The cost of normal repairs and maintenance has not been established on a long-term basis. Available estimates varied considerably and were all based on a percentage of the initial investment rather than on operating time or other performance parameters. This type of data should become more readily available as the industry matures.

Break-even investment was estimated over a period of 20 years assuming constant levels of technology, crop prices and input costs (except where specified differently). The future values are, of course, unknown. Significant changes in any of these factors could have a great impact on the value of wind energy.

REFERENCES

- Alternative Energy Institute. "A Brief Discussion of Wind Energy in Texas." West Texas State University, pamphlet, October 1980.
- Beneke, Raymond R. and Ronald Winterboer. Linear Programming Applications to Agriculture. Ames, Iowa: The Iowa Sate University Press, 1973.
- Black, A. L. "Water Situation for Agriculture -- The High Plains Ogallala Study." Presented at Crop Production and Utilization Symposium, Texas A&M Research and Extension Center, Amarillo, Texas, February 22, 1979.
- Bredehoeft, John D. and Robert A. Young. "The Temporal Allocation of Ground Water A Simulation Approach." Water Resources Research 6(1970):3-21.
- Buzenberg, R. J., M. L. David, J. P. Wagner, E. F. Glynn, G. L. Johnson and J. K. Shultis. "Market Potential for Wind Energy Applications in Agriculture." Wind Energy Applications in Agriculture, ed. H. H. Kluter and L. H. Soderholm, U.S. Department of Agriculture, NTI-Conf-7905/109, pp. 22-41, May 1979.
- Clark, R. Nolan. "Furrow Dams for Conserving Rainwater." Presented at Crop Production and Utilization Symposium, Texas A&M Research and Extension Center, Amarillo, Texas, February 22, 1979.
- Clark, R. N. and A. D. Schneider. "Irrigation Pumping with Wind Energy." Transactions of the ASAE 23(1980):850-853.
- Cliff, William C. "The Effect of Generalized Wind Characteristics on Annual Power Estimates from Wind Turbine Generators." Battelle Pacific Northwest Laboratories, Richland, Washington, PNL-2436, October 1977.
- Coble, C. G. and W. A. LePori. "Summary Report on Energy Consumption, Conservation, and Projected Needs for Texas Agriculture." Texas A&M University, Department of Agricultural Engineering, Report S/D-12, Special Project B, December 1974.
- Collins, Glenn S. An Econometric Simulation Model for Evaluating the Aggregate Economic Impacts of Withdrawing Pesticides on Major

 U.S. Field Crops. Ph.D. Dissertation, Texas A&M University,

 December 1980.

- Condra, G. D., K. E. Lindsey, C. W. Neeb and G. L. Philley. "ECONOCOT A Ray of Hope for the Pecos Valley." Texas Agricultural Extension Service, TAP-825, 1978.
- Cronin, J. G. "A Summary of the Occurrence and Development of Ground Water in the Southern High Plains." Texas Board of Water Engineers, Bulletin 6107, September 1961.
- Doran, J. C., J. A. Bates, P. J. Liddell and T. D. Fox. "Accuracy of Wind Power Estimates." Battelle Pacific Northwest Laboratories, Richland, Washington, PNL-2442, October 1977.
- Eldridge, Frank R. "Wind Machines." Report prepared for the National Science Foundation, October 1975.
- Elliott, Dennis L. "Synthesis of National Wind Energy Assessments." Battelle Pacific Northwest Laboratories, Richland, Washington, BNWL-2220 WIND-5, July 1977.
- Emerson Industrial Service. Amarillo, Texas. Cost of Electric Engines, July 1980.
- Extension Economists-Management. "Texas Crop Budgets." Texas Agricultural Extension Service, MP-1027, 1980.
- Gipe, Paul. "Lone Star Wind: An Overview of Current Wind Energy Activities in Texas." Wind Power Digest, Fall 1979, pp. 36-48.
- Godfrey, Curtis L., Clarence R. Carter and Gordon S. McKee. "Land Resource Areas of Texas." Texas Agricultural Extension Service, B-1070.
- Gunkel, W. W., R. B. Furry, D. R. Lacey, S. Neyeloff and T. G. Porter. "Development of a Wind-Powered Heating System for Dairy Application." Wind Energy Applications in Agriculture, ed. H. H. Kluter and L. H. Soderholm, U.S. Department of Agriculture, NTI-Conf-7905/109, pp. 124-157, May 1979.
- Hardin, Daniel C. and Ronald D. Lacewell. "Breakeven Natural Gas Prices for Irrigation: Texas High Plains." Texas Agricultural Experiment Station, TA-13361, April 1977.
- Hardin, Daniel C. and Ronald D. Lacewell. "Implications of Improved Irrigation Pumping Efficiency for Farmer Profit and Energy Use." Southern Journal of Agricultural Economics 11(1979):89-94.
- Hardin, Daniel C., Ronald D. Lacewell and James A. Petty. "The Value of Improved Irrigation Distribution Efficiency with a Declining Groundwater Supply." Texas Agricultural Experiment Station, TA-14294, May 1978.

- Harman, Wyatte L. Texas A&M Research and Extension Center, Amarillo, Texas. Unpublished wheat research data, 1974-1978.
- Harman, Wyatte L., W. F. Hughes and J. R. Martin. "Prospective Costs of Adjusting to a Declining Water Supply: Texas High Plains."

 Texas A&M University, Department of Agricultural Economics and Rural Sociology, DTR 71-3, March 1971.
- Heady, Earl O. and Wilfred Candler. Linear Programming Method. Ames, Iowa: The Iowa State University Press, 1958.
- Henderson, James M. and Richard E. Quandt. Microeconomic Theory: A Mathematical Approach, 2nd edition. New York: McGraw-Hill Book Co., 1971.
- Hennessey, Joseph P., Jr. "A Comparison of the Weibull and Rayleigh Distributions for Estimating Wind Power Potential." Wind Engineering 2(1978):156-164.
- Hiler, Edward A. "Critical Issues in the 80's: Alcohol Fuel." In

 Texas Agriculture in the 80's: The Critical Decade, Texas Agricultural Experiment Station, B-1341, December 1980.
- Hogg, Robert V. and Allen T. Craig. <u>Introduction to Mathematical</u>
 Statistics, 4th edition. New York: Macmillan Publishing Co.,
 Inc., 1978.
- Hughes, William F. and Wyatte L. Harman. "Projected Economic Life of Water Resources, Subdivision Number 1 High Plains Underground Water Reservoir." Texas Agricultural Experiment Station, Technical Monograph 6, December 1969.
- Jones, D. L., E. B. Hudspeth, Jr., L. L. Ray, E. L. Thaxton, Jr., H. J. Walker, W. L. Owen, Jr. and H. C. Lane. "Cotton Production on the Texas High Plains." Texas Agricultural Experiment Station, Bulletin 830, April 1956.
- Jones, O. R. "Conservation Bench Terraces." Presented at Crop Production and Utilization Symposium, Texas A&M Research and Extension Center, Amarillo, Texas, February 22, 1979.
- Justus, C. G., W. R. Hargraves and Ali Yalcin. "Nationwide Assessment of Potential Output from Wind-Powered Generators." <u>Journal of Applied Meteorology</u> 15(1976):673-678.
- Katzenberg, Rick. "Where Are the Dallas Cowgirls When We Need Them?" Wind Power Digest, Summer 1979, pp. 5-7.
- Katzman, Martin T. and Ronald W. Matlin. "The Economics of Adopting Solar Energy Systems for Crop Irrigation." American Journal of Agricultural Economics 60(1978):648-54.

- Kletke, Darrel D., Thomas R. Harris and Harry P. Mapp, Jr. "Oklahoma State University Irrigation Cost Program, User Reference Manual." Oklahoma State University, Department of Agricultural Economics, Research Report P-770, May 1978.
- Kmenta, Jan. Elements of Econometrics. New York: Macmillan Publishing Co., Inc., 1971.
- Knutson, R. D., R. D. Lacewell, W. A. LePori, D. C. Hardin, E. A. Hiler and C. W. Keese. "Analysis of the National Energy Plan: The Effects on Texas Agriculture." Texas Agricultural Experiment Station, MP-1331, June 1977.
- Lacewell, Ronald D., Gary D. Condra and Brian Fish. "Energy and Irrigation." Presented at Energy and Agriclture Symposium, Center for the Biology of Natural Systems, St. Louis, Missouri, June 1976.
- Lacewell, Ronald D. and Herbert W. Grubb. "Economic Evaluation of Alternate Temporal Water Use Plans on Cotton-Grain Sorghum Farms in the Fine-Textured Soils of the Texas High Plains." Texas A&M University, Department of Agricultural Economics and Rural Sociology, DTR-70-3, May 1970.
- Lacewell, Ronald D., Daniel C. Hardin, James McGrann and Steve Griffin. "Estimated Water Depletion Allowance for Irrigated Farms on the Texas High Plains." Texas A&M University, Department of Agricultural Economics, DTR-80-4, August 1980.
- Lansford, Robert R., Raymond J. Supalla, James R. Gilley and R. Nolan Clark. "Economics of Wind Energy for Irrigation Pumping."

 Technical Completion Report submitted to USDA-SEA, by Southwest Research and Development Co., Las Cruces, New Mexico, July 1980.
- Laughlin, David H., Ronald D. Lacewell and Donald S. Moore. "The Agricultural Benefits of Salinity Control on the Red River of Texas and Oklahoma." Texas Water Resources Institute, TR-112, December 1980.
- Leftwich, Richard H. The Price System and Resource Allocation, 5th edition. Hinsdale, Illinois: The Dryden Press, 1973.
- LePori, W. A. and Ronald D. Lacewell. "Energy Potential and Economic Feasibility in Using Agricultural Residues and Crops for Fuels in Texas." Center for Energy and Mineral Resources, Progress Report, Texas A&M University, 1976.
- LePori, W. A., R. L. Trimble and R. M. Acker. "Costs Associated with Irrigation Power Units." Texas Agricultural Experiment Station, TA-13254, 1977.

- Lyle, William M. "New Irrigation System Design for Maximizing Irrigation Efficiency and Increasing Rainfall Utilization." Texas Water Resources Institute, TR-105, May 1980.
- Musick, J. T. U.S. Department of Agriculture Southwestern Great Plains Research Center, Bushland, Texas. Unpublished corn research data, 1978.
- Musick, J. T. and D. A. Dusek. "Grain Sorghum Response to Number, Timing, and Size of Irrigations in the Southern High Plains." Transactions of the ASAE 14(1971):401-04, 410.
- Musick, J. T. and D. A. Dusek. "Irrigated Corn Yield Response to Water." American Society of Agricultural Engineers, Paper 78-2557, December 1978.
- Naylor, Thomas H. "The Theory of the Firm: A Comparison of Marginal Analysis and Linear Programming." Southern Economic Journal 32(1966):263-74.
- New, Leon. 1977 High Plains Irrigation Survey. Texas Agricultural Extension Service, 1977.
- New, Leon. Agricultural Engineer-Irrigation, Texas Agricultural Extension Service, Lubbock, Texas. Personal Communication, October 9, 1980.
- O'Brien, W. F., H. L. Moses, D. H. Vaughan, J. A. Schetz and T. A. Weisshaar. "Application of Windmills to Apple Cooling and Storage." Wind Energy Applications in Agriculture, ed. H. H. Kluter and L. H. Soderholm, U.S. Department of Agriculture, NTI-Conf-7905/109, pp. 158-171, May 1979.
- Osborn, J. E. and T. R. Harris. "Interindustry Effects of a Declining Groundwater Supply." Texas Agricultural Experiment Station, B-1134, June 1973.
- Parnell, Calvin. Department of Agricultural Engineering, Texas A&M University. Personal Communication, October 9, 1980.
- Petty, James A., Ronald D. Lacewell, Daniel C. Hardin and Robert E. Whitson. "Impact of Alternative Energy Prices, Tenure Arrangements and Irrigation Technologies on a Typical Texas High Plains Farm." Texas Water Resources Institute, TR-106, May 1980.
- Puthoff, R. L. and P. J. Sirocky. "Preliminary Design of a 100 KW Wind Turbine Generator." National Aeronautics and Space Administration, NASA-TM-X-71585, 1974.
- Reddell, Donald L. Department of Agricultural Engineering, Texas A&M University. Personal Communication, April 25, 1978.

- Reed, Jack W. "Some Variability Statistics of Available Wind Power." Sandia Laboratories, Albuquerque, New Mexico, SAND78-1735, March 1979.
- Richmond, Samuel B. <u>Statistical Analysis</u>, 2nd edition. New York: The Ronald Press Co., 1964.
- Runkles, J. R. "Critical Issues in the 80's: Water." In <u>Texas Agriculture</u> in the 80's: The Critical Decade, Texas Agricultural Experiment Station, B-1341, December 1980.
- Schneider, A. D., J. T. Musick and D. A. Dusek. "Efficient Wheat Irrigation with Limited Water." <u>Transactions of the ASAE</u> 12(1969):23-26.
- Shipley, John. "Economic Considerations in the Irrigation of Grain Sorghum and Corn, Texas High Plains." Texas Agricltural Experiment Station, TA-13840, December 1977a.
- Shipley, John. Texas A&M Research and Extension Center, Amarillo, Texas. Personal Communication, December 1977b.
- Shipley, John L. and D. W. Goss. "Impact of Energy Cost on Irrigated Production: High Plains of Texas." Western Journal of Agricultural Economics 3(1978):193-203.
- Shipley, John and Cecil Regier. "Water Response in the Production of Irrigated Grain Sorghum, High Plains of Texas." Texas Agricultural Experiment Station, MP-1202, June 1975.
- Shipley, John and Cecil Regier. "Corn Yield Response to Limited Irrigations, High Plains of Texas." Texas Agricultural Experiment Station, PR-3379, March 1976.
- Skold, Melvin D. "Farmer Adjustments to Higher Energy Prices: The Case of Pump Irrigators." Natural Resource Economics Division, Economic Research Service, U.S. Department of Agriculture, ERS-663, November 1977.
- Sprott, J. Michael, R. D. Lacewell, G. A. Niles, J. K. Walker and J. R. Gannaway. "Agronomic, Economic, Energy and Environmental Implications of Short-Season, Narrow-Row Cotton Production." Texas Agricultural Experiment Station, MP-1250, February 1976.
- Texas Crop and Livestock Reporting Service. Texas Cotton Statistics. U.S. Department of Agriculture, Austin, 1974-1978.
- Texas Crop and Livestock Reporting Service. Texas Field Crop Statistics. U.S. Department of Agriculture, Austin, 1974-1978.

- Texas Crop and Livestock Reporting Service. <u>Texas Small Grains</u>
 <u>Statistics</u>. U.S. Department of Agriculture, Austin, 1974-1978.
- Texas Crop and Livestock Reporting Service. Texas County Statistics. U.S. Department of Agriculture, Austin, $\frac{1979}{1979}$.
- Texas Department of Water Resources. "Fact Sheet on the Economy of the Texas High Plains." Planning and Development Division, pamphlet, May 1981.
- Texas Water Development Board. Continuing Water Resources and Development for Texas. Planning Series Report P34, May 1977.
- Traudt, Jon. "Estimating WECS Costs." <u>Wind Power Digest</u>, Spring 1979, pp. 16-18.
- Ulich, W. L. "Power Requirements and Efficiency Studies of Irrigation Pumps and Power Units." Texas Tech University, Department of Agricultural Engineering, 1968.
- Undersander, D. J. Texas A&M Research and Extension Center, Amarillo, Texas. Unpublished corn research data, 1979.
- U.S. Department of Commerce. Local Climatological Data. National Oceanic and Atmospheric Administration, Environmental Data Service, Washington, D.C., monthly.
- Valentine, James H., Arthur Onken, Charles D. Welch and Grant W. Thomas. "Crop Fertilization on Texas High Plains Soils." Texas Agricultural Extension Service, Fact Sheet L-742.
- Watts, Myles J. and Glenn A Helmers. "Inflation and Machinery Cost Budgeting." Southern Journal of Agricultural Economics 11(1979):83-88.
- Wyatt, A. Wayne, Ann E. Bell and Shelly Morrison. "Analytical Study of the Ogallala Aquifer in Deaf Smith County, Texas." Texas Department of Water Resources, Report 213, July 1977.

APPENDIX A

THE LINEAR PROGRAMMING MATRIX FOR A

100 ACRE SOUTHERN HIGH PLAINS FARM

WITH A 40 KILOWATT WIND SYSTEM

Definitions of Linear Programming Activities and Restraints Columns (Activities or Enterprises)

Dryland crop production:

Cols. 1-4 DRYL

Cols 5-8 COTN = cotton

GRSO = grain sorghum

WHET = wheat

Irrigated crop production:

Cols. 1-4 CORN = corn

COTN = cotton

GRSO = grain sorghum

WHET = wheat

Col. 5 number of post-plant irrigations

Col. 6 A or B = two activities have the same yield, 0 otherwise

Col. 7 relative rank in yield among all activities of the given crop and the given number of post-plant irrigations

Col. 8 H

Pre-plant irrigations:

Cols. 1-2 PP

Cols. 3-6 crop code (see above)

Col. 7 month

Col. 8 first, second or third 10-day critical water period in a month

Wind power, electricity and water:

Cols. 1-6 SLKWAT = slack water

FRELEC = wind-generated electricity

BYELEC = electricity purchase

SLELEC = electricity sale

IRELEC = irrigation fuel

Col. 7 month

Col. 8 critical water period

The model printout shows this complete structure for one critical water period.

Other electricity sales:

Cols. 1-7 SLELECO = sale of electricity during time

for well repairs and maintenance

Col. 8 cash flow period

Seed purchases:

Cols. 1-4 crop code

Cols. 5-8 SEED

Other input purchases:

Cols. 1-8 INSECT_ = insecticide in cash flow period

(Col. 7)

FERTAPP = custom application of fertilizer
in cash flow period (Col. 8)

NITROGEN_ = nitrogen in cash flow period

(Col. 8)

PHOS_ = phosphorous in cash flow period
(Col. 5)

DIESELP_ = diesel in cash flow period

(Col. 8)

GASOLNP_ = gasoline in cash flow period

(Col. 8)

Custom harvest, hauling and drying:

Cols. 1-8 CORNCOMB = combining corn

GRSOCOMD = combining dryland grain sorghum

WHTCOMBD = combining dryland wheat

WHTCOMBI = combining irrigated wheat

COTNSAHL = stripping and hauling cotton

COTNGING = ginning cotton

CORNHAUL = hauling corn

GRSOHAUL = hauling grain sorghum

WHETHAUL = hauling wheat

CORNDRYG = drying corn

Cash flow:

Cols. 1-7 BORROWP = borrowing

INVSTRP = accumulating surplus cash

Col. 8 cash flow period

Crop sales:

Cols. 1-4 SELL

Cols. 5-8 CORN = corn

COTN = cotton lint

CTSD = cotton seed

GRSO = grain sorghum

WHET = wheat

GRAZ = wheat grazing

Other activities:

Cols. 1-8 OBJCOL = cash transfer column

IRRGVC2 = per horsepower cost of engine
 repairs

Right hand side:

Cols. 1-3 RS1

Rows (Restraints)

Objective function:

Cols. 1-4 OBJ1

Accounting rows:

Cols. 1-8 TOTWATER = total water pumped

ELIRRG_ = irrigation fuel required in

month (Cols. 7-8)

ELSOLD = total electricity sales

WATER = water pumped in month (Col. 6)

and critical water period (Col. 7)

Land and labor restraints:

Cols. 1-8 LAND = cropland restraint

RMAXLAB = labor restraint in cash flow

Pre-plant irrigation transfers:

Cols. 1-4 PREP

Cols. 5-8 crop code (see above)

Wind power, electricity and water:

Cols. 1-6 FWATER = water restraint

IRFUEL = irrigation fuel transfer

period (Col. 8)

UELECT = wind-generated electricity

transfer

SELECT = requires sale of electricity in
 proportion to unused pumping
 capacity

Col. 7 month

Col. 8 critical water period

Seed requirements:

Col. 1 R

Cols. 2-5 crop code

Cols. 6-8 SED

Other input requirements:

Cols. 1-8 RINSECT_ = insecticide in cash flow period

(Col. 8)

RHERB = herbicide in cash flow period

(Col. 6)

RNITROG = nitrogen in cash flow period
(Col. 8)

RPHOS__ = phosphorous in cash flow period

(Col. 6)

RDIESEL__ = diesel in cash flow period
(Col. 8)

RGASOLN = gasoline in cash flow period
(Col. 8)

Harvesting, hauling and drying requirements:

Cols. 1-8 RCCCORNN = combining corn

RCCGRSOD = combining dryland grain sorghum

RCCGRSOI = combining irrigated grain sorghum

RCCWHETD = combining dryland wheat

RCCWHETI = combining irrigated wheat

RCSHCOTN = stripping and hauling cotton

RGINCOTN = ginning cotton

RHAULCRN = hauling corn

RHAULGRS = hauling grain sorghum

RHAULWHT = hauling wheat

RDRYCORN = drying corn

Cash flow:

Cols. 1-7 RCASHFL = total cash flow

ACCTGCF = cash flow exclusive of carryovers,

electricity and capital costs.

Col. 8 cash flow period

Yield transfers:

Cols. 1-5 RSELL

Cols. 6-8 CRN = corn

COT = cotton lint

CTS = cotton seed

GRS = grain sorghum

WHT = wheat

GRZ = wheat grazing

Other transfers:

Cols. 1-8 IRRIGVC1 = per acre-foot irrigation variable cost (non-fuel)

IRRIGVC2 = per engine horsepower irrigation variable cost (non-fuel)

MPSX-VEM7	EXECUTOR.	HPSX HELEASE	I HOD LEVEL				PAGE	13 - 81/145	
	DRYLCOIM	ORYLGRSO	DRYLWHET	CORNZGIF	CORNZAZF	CORNZER	CORNZACE	CCRNZB4F	1
BOUND	LOWER	LOWER	1.OVER	LOVER	LOWER	LOWER	LOWER	L CWER	ONODA
TOTESTED	•	•	•	1.25000	1.25000	1.25000	1.25000	1.25000	TOTWATER
WATERVI		•	•	.33300	•	•	•	•	WATERTI
WATER72	•	-	•		.33300	.33300	•33300		WATER 72
WATER73	•	•	•	.33300	433300	•	•		WATERTS
WATERBI	•	•	•	•		•	DOEEK*	00555	TATERS.
WATERB3	•	•		•	•	DDEEE.		00000	CONT.
LAND	1.00000	1.00000	1.00000	00000-1	000001	000001	00000.	00000-1	DDEDCTON
PREPCORN	•	•	•	00000-1	1 *00000	00000*1	00000	00000	FWATFRY
FWATER71	•	•	•	00555	•	•	•	• •	TREUELT
IRFUEL 71	•	•	•	•33300		PORKE.	00242	•	F WATER 72
FWATER72	•	•	•	•	00000	DOCCE.	00000		TRFUEL 72
I RF UEL 72		•	•		CONTRACT.			•	FWATER73
FWATERIJ	•	•	•	COPPE.	COPPE -	•	•	•.	IRFUEL 73
INFUEL 73	•	•	• ,		•	•	.33300	00666	FWATER83
FEATERS	•	•	•	•	•	•	.33300	.33300	IRFUELBI
IMPORTAL	•	• 1				.33300	•	.33300	FWATERRO
	•				•	00665.	•	.33300	IRFUEL 83
SEATORICOS SEANORIOS SEANORIOS SEANORIOS SEATO		00004	25000	1.03000	1.03000	1.03000	1.03000	1.03000	RHAXLAB1
MAAALAGE				1.47000	1.47000	1.47000	1.47000	1.47000	RHAXI AB2
SHANLADA		0000	00001"	.44000	.44000	.44000	.44000	.44000	RMAKL AB3
404 174 18	12000	12000	.51000	1.04000	1.04000	1.04000	1.04000	1.04000	RMAXL AB4
EST X WEST	12000	•12000	. 75000	.24000	-24000	*24006	.24000	.24000	RMAXI. ABS
BMAX1 ARE	00006*	•	.25000	. 62000	.82000	.82000	.82000	.82000	RMAXLAB6
BCDRNSED		•	•	11.50000	11.50000	11.50006	11.50000	11.50000	RCORNSED
RCOTNSED	15.00000	•		•	•	•	•	•	RCOTNSED
RGHSOSED	•	3.75000		•	•	•	•	•	RGRSUSED
RWHET SED	•	•	*80000	•	•	•	•	• -	RWHETSED
RINSECTZ	•	•	•	15.00000	15.00000	13.0000	15.00000	00000.51	RINSECTE
NHERB2	00000-9		•	000000	00000	0.000.0	00000*6	00000*6	KHEROZ
RFERTAP2	1.00000	1.00000	•	1.00000	1-00000	1.00000	1.00000	00000	MFERIARE
RFERTAPA	•	•	1.0000	•	•		•	. , .	AT EX EX
RNITROGE	20000022	20.0000	•	93.00000	77.00000	17.00000	13.00000	13,00000	ANI HOGE
RMITROGA	•	•	20.00000	•	•	•	•		BOLLOGO BOLLOGO
RPHOSS	20.0000	20.00000	•	20.0000	46.00000	46.00000	00000	00000	DO TESEL 1
MOTESEL 1	1.14000	2 1 7 9 0 0 0	•	4.46000	4.46600	00004.4	00000	00000000	BOTESEL 2
ROTESELZ	1.04000		•	2*03000	5.03000	000000	00000	00000	BOTESEL 3
ROIESEL3	2.07000	1.63000	•	00016*	000.6			•	RDIESELA
MOTESELA	•	•	1.32000	•	•	• ,		• •	ROIESELS
MOLESELS	•	•	2.48000	. 4.000	7.47000	3.47000	3.47000	3.47000	RDIESEL6
MUTESELD	00066.2	•			02005	50000	.80000	.50000	RGASOLNI
MENSOLVE MANAGENS	00000		00000	. 50000	50000	.50000	.50000	. 50000	RGASOLNZ
			25000	. 50000	.50000	.50000	.50000	. 20000	RGA SOLN3
BAACA NA	00000		00000	. 50000	.50000	.50000	.50000	.50000	RGASOL NO
BCASOL NO	25000	.25000	.50000	* 50000	*20000	.2000.	20005	. 50000	RGA SOL NS
RGASCLNG	.25000		.50000	.25000	-25900	• 52000	*25000	-25000	RGASOLNO
RCCCORNA		•	•	03.10000	16,80000	76.80000	73,00000	13.00000	RCCCORNA
RCCGRSDD	•	1.09000	•	•	•	•	•	•	MCCGR SGB
RCC WHETO	•	•	1.00000		•	•	•	•	DISHCOTA
RCSHCOTH	9.56060	•	•	•	•	•	•	•	אר טיזי כייי

MPSX-VIM7	EXECUTOR.	MPSX MELEASE	I MOD LEVEL	•			PAGE	13 - 81/145	
BOUND	DRYLCOIN	ORYLGRSO Lower	DRYLWHET 1.OVER	CORN201F LOVER	CORNZA2F Lover	CORNZB2F LOVER	CORNZA4F LOWER	CCANZB4F LOWER	11
TOTABLE	•	•	•	1.25000	1.25000	1.25000	1.25000	1.25000	TOTWATER
MATERI	•		•	.33300	•	•		•	WATER71
WATER 72	•	-	•	•	*33300	133300	.33300	•	WATERTZ
WATER73	•	•	•	*33300	.33300	•	•	•	WATER 73
WATERBI	•	•	•	•	•	•	13300	*33300	WATERBI
WATER83	•	•	•	•	•	00000	•	.33300	WATER 83
LAND	00000* 1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	LAND
PREPCORN	•	•	•	1.00000	1.00000	1.00000	1.00000	1.00000	PREPCORN
FWATER71	•		•	00EEE*	•	•		•	FWATER71
IMP UEL 71		•	•	.33300	•	•	•	•	IRFUEL71
FWATER72	•	•	•	•	•33300	00EEE+	.33300	•	F WA YER 72
IRFUEL 72	•	•	•	•	.33300	.33300	.33300	•	IRFUEL 72
FWATER73	•	•	•	00000	.33300		•	•	FWATERTS
I MF VEL 73	•	•	•	.33300	•33300	•	•	•	IRFUEL 73
FWATERBI	•	•	•		•	•	.33300	. 33300	FWATERBI
IMFUELBI	•	•	•	•	•	•	00666.	•33300	IRFUELBI
FWATER83	•	•	•	•	•	133300	•	.33300	FWATERBU
INFUELB3	•	•	•	•	•	33300	•	00000	I RF UFL 83
RMAXLABI	.43000	.56000	.25000	1.03000	1.03000	00000-1	1.03000	1.03000	RMAXL ABI
RMAXLAB2	.45000	.65000	.25000	1.47000	1.47000	1.47000	1.47000	1.47000	RMAXI, A92
RMAXL AB3	00006.	.86000	1 3000	. 44000	.44000	.44000	.44000	00044.	RMAXLABS
RMAXLAB4	•12000	.12000	.51000	1.04000	1.04000	1.04000	1.04000	1.04000	RMAXL AB4
RMAXLABS	.12000	.12000	15000	.24000	.24000	.24006	*54000	.24000	RMAXE ABS
RHAKL AB6	•96000	•	-25000	. 82000	. 82000	. 62000		*B2000	RMAXLABS
PCORNSED	•	•	•	11-50000	11.50000	11.50008	11.50000	11.50000	RCORNSED
RCOTNSED	00000-51	•	•	•	•	•	•	•	RCOTNSED
RGRSOSED	•	3.75000	•	•		•	•	•	RGRSUSED
RWHET SED	•	•	•80000	•	•	•	•		MENE SED
HINSECT 2	•	•	•	15.0000	15.0000	20000-51	000000.51	00000.51	HINSECIZ
NHERB2	6.00000	•	•	0.0000	00000*6	000000	00000*6	00000-6	WINE MSZ
MFERTAP2	1.00000	00000-1	•	1.00000	1.00000	1.0000	1-00000	1.00000	RFERIAPZ
REGIAPA	•	•	1.0000	•	•	•	•	•	H-FRIAD
RNITROGS	26.00000	20.0000	•	83.00000	77.00000	17.00006	13.00000	13.00000	2004 ING
MNI TROGA	•	•	20.0000	•	•	•	•		POR INA
SS CHAR	20.00000	20.00000	•	20000.05	00000*9*	000000	00000	00000	20000
MOIESELI	00001.1	2.79000	•		00000				RDIESEL 2
		000000	• •	000000	00000	90000	00020	. 97000	ROTESEL3
BUTTE SEL			00025.1	•	•		•	•	RDIESEL 4
E.145.9108			2.48000		•	•	•	•	ROTESELS
ROTESELS	2.53000		•	3.47000	3.47000	3.47000	3.47000	3.47000	RD TESEL 6
RGASOLN:	00000	. •	.50000	. 50000	.50000	. 50000	.50900	.50000	RGASOLNI
RGASOLN2	.50000	. 5000	.50000	• 50000	*50000	.50000	.50000	.50000	RGASOLNZ
RGASOLNS	.84000	.84000	.25000	.50000	•50000	.50000	•20000	.50000	RGASOLN3
RGASOLN4	.25000	.25000	.50000	. 5000	*50000	. 20000	.50000	.20000	RGASOLN4
ROASOLNS	*25000	,25000	.50000	.50000	*20000	-50000	. 50000	. 50000	RGA SOL NS
RGASCLN6	*25000	•	.50000	.25000	•25500	.25000	.25000	.25000	RGASOLNO
RCCCORNA	•	•	•	030116	16.80000	76.80000	13.00000	73.00000	HCCCORNA
MCC GR SOO	•	1.0000	•	•	•	•	•	•	
ACC WHE TO	•	•	1.00000	•	•	•	•	•	DISHEID
RCSHCOTN	9.50000	•	•	•	•	•	•	•	MC 37. UT

81/145	14F 1****2		PUB WHAULGRN	RHA UL WHT	_	100 RCASHFLI	100 RCASHFL2	100 RCASHFL3	100 RCASHFL4	100 RCASHFLS	100 RCASHFL6	90 ACCTGCF1	100 ACCTGCF2	900 ACCTGCF3	100 ACCTGCF4	100 ACCTGCFS	100 ACCTGCF6	100- RSELLCRN	RSELLCOT	RSELLCTS	RSELLGRS	RSELLWHT	RSELLGRZ	
1 41	CORNZBAF	•	.3.00000	•	73.00000	_	6.62000	000E0*E	E.48000	1.47000	00066-5	12.60000	9-82000	000E0*E (5.48000	1.47000	00066"3	-000000-t	•	•	•	•	•	1.04666
PAGE	CORN 244F Lover	•	.3.0000	•	73.00000	12.0000	9.82000	3.03000	5.48000	1-47000	5.9900	12.00000	9.82000	3.03000	5.48000	1.47000	5.99000	13.00000=	•	٠	•	•	•	1,08000
	CORNZB2F Lower	•	000000	•	76.80000	12-00004	9.82000	3.03000	5.45000	1.47000	5.99000	12,00000	9-82000	3.03000	8.48000	1-47000	5.99008	76.800 CO-	•	•	•	•	•	00046-1
	CORNZÁZF LOWER	•	00000.07	•	76.80000	12.00000	9.62000	3.03000	5.48000	1.47000	5.99000	12.00000	9.82000	3.03000	5.48000	1.47000	5.99000	76.80000-	•	•	•	•	•	2046.1
	CORNZOIF		90001.59	•	83.10000	12.00000	9.82000	3.03000	5.48000	1.47000	5.99000	12.00000	9,82000	3.03000	5.48000	1.47000	5.99008	93.10000-	•	•	•	•	•	20040.1
EASE 1 MOD LEVEL 7	DRYLWHET LOVER	•	• •	15.00000	•	1.53000	1.52000	. 19000	3.51000	5.33000	1.52000	1.53000	1.52000	. 79000	3.51000	8.33000	1.52000	•	•	•	•	18.00000	11.25000-	
MPSK RELEAS	DRYLGRSD LOWER	•	13.00000	•	•	3,92000	5.02000	5.94000	. 73000	.74000	•	3.92000	5.02000	5.94000	.73000	.74000	•			•	15.00000=	•	•	
. EXECUTOR.	ORYLCDTN LOVER	9.50000		•	•	3+10000	3.10000	6.22000	7.73000	.74000	6.12000	3,10000	3.10000	6.22000	7.73000	.74000	6.12000	•	-00000-002	-16700-	•	•	•	. '
. APSXIVEN.	GNAGE	RGINCOIN	RHAULGRS	RHAULWHT	RORYCORN	RCASHFL 1	RCASHFL2	RCASHFL 3	RCASHFLA	RCASHFLS	RCASHFL 6	ACCTGCF1	ACC16CF2	ACCT GCF 3	ACCTGCF4	ACCTGCFS	ACCT GCF6	RSELLCRN	RSELLCOT	RSELLCTS	RSELLGRS	RSELLNHT	RSELLGRZ	1001001

MPSX-VIM7.	" EXECUTOR.	MPSK RELEASE	E 1 MOO LEVEL				PAGE	15 - 61/145	
BIGUND	COÁN301F LOVER	CORN302F LOWER	CORN303F LOVER	CORN30AF LOVER	CORN309F LOVER	COPN306F Lower	CORN307F LOWER	CORN300F Lever	21 BOUND
TOTWATER	1.56300	1.58300	1.58300	1.58308	1.58300	1.59300	1.58300	1+58300	TOTWATER
WATERTI	•	•	•	.33300	*33300	•	•	.33300	WATER71
WATER72	00666.	000000	00666.		.33300		.33300	.33300	WA TER 72
WATER73	.33300	00EEE*	•	•	•	33300	.33300		WATERTS
MATERBI	.33300	•	.33300	.33300	433300	933300	•	•	VATERBI
WATER83	•	.33300	00EEE*	.33300	•	93390	•	.33300	WATERBS
WATERS!	•		•	•	•	•	.33300	•	WATERGI
LAND	000001	1.00000	1.00000	1.00000	****	00000-1	1.00000	1.00000	LAND
PREPCORN	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	PREPCION
FWATER71	•	•	•	.33300	33300	•		.33300	FWATERT
IRFUEL 7.1	•	•	•	.33300	•33300	•		.33300	1RF UEL 71
FWATERTZ	93300	.33300	00886.	•	00000	•	*33300	.33300	FWATER72
INFUEL 72	00000	00000	00000	•	*33300	•	00000	.33300	IRFUEL72
FWAYER73	00656	00000	•	•	•	00000	00000	•	FRATERTS
IRFUEL73	00666	433300	•	•	•	00666	*33390	•	IRFUEL73
FWATERS	.33300	•	93300	• 33300	•33300	133300	•	•	FWATERBI
IRFUELBI	09886	•	00000	00666	.33300	.33300	•	•	1RFUEL 81
FWATERBU	•	00886	00666	00000	•	.33300	•	.33300	FWATER83
IMFUEL83	•	00666.	00000	00000	•	00000	•	.33300	TRFUEL 03
FWATER91	•	•	•	•	•	•	DONES .	•	FWATER91
IMPUEL91	•	•	•	•	•		00266	•	IRF UEL 91
MAXLABI	1 - 03000	00000	00000	00060*	00000	00000	00060.1	1.03060	RMAXL ABI
RMAXLABZ	0004.1	1.47000	0004.	0004*1	00024-1	0004*1	0004.1	1.47000	RMAXLABZ
RMAXLABS	00000	0000	0000	00000	000**	00000	0000	000**	RMAXIL ABJ
MMAXLAS+	1.44000	1.44000	00000	1.44000	00000	90044-1	000001	000***1	RMAXLAB*
RMAXLABS	*24000	*24000	24000	.24000	*24000	24000	.64000	.24000	RMAXLABS
RMAXLABS		00028.	00200		.2 4000	. 10000	. 82000		RMAXLAB6
STORY SED	00000	000000	0000	00000	0000000	00000	00000	00000	RCORNSED DESCRIPTION
	000000	0000000	0000000	00000		00000	06000.51	00000-51	RINSECTE
	00000	00000	00000	00000	00000		00000	00000.	KHEHBZ
PATER TRACES	00000	00000-101			000000	000000	000001	00000	STERING
2001100						00000			200211400
001E9E1	0000000	00000	000000	00000	000000	00000.4	00000.4	00000-50	PPHUSE DOTEST 1
RDIESFLZ	00000	5.03000	00000	00000	0000000	90000	000000	00000	ROTESELS
RO LE SEL 3	.97000	.97000	.97000	.97000	.97000	.97000	.97000	.97000	RO LESEL 3
ROTESEL6	3.47000	3.47000	3.47000	3.47000	3.47000	3.47008	3.47000	3.47000	RDIESELS
RGASOLNI	.50000	. 50000	• 50000	.50000	•50000	.50000	.50000	.50000	RGASOLNI
RGASOLNZ	-30000	.50000	.5000	. 50000	.50000	.50000	.50090	*20000	RGASOLNZ
RGA SOL N3	.50000	.50000	*50000	. 50000	.50000	. 50000	.50000	.50000	RGASOLN3
RCASOL NA	.50000	*50000	. 50000	. 50006	•30000	.50006	.50000	.50000	RGASOLNA
RGASOL NS	.50000	.50000	.50000	. 50000	.50000	. 50000	.50000	.50000	RGASOLMS
RGABOLN6	*25000	.25000	.25000	.25000	*25000	-25000	.25000	.25000	RGA SOL'N6
MCCCCGNN	115.80000	107.00000	101.10000	96.80000	91.20000	90.60096	89-40000	66.8000	RCCCORNA
RHACECRN	115.80000	107.00000	101.70000	98.80000	91.20000	90009.06	89.40000	86.80000	RHAULCRN
ROFYCORN	115-80000	167.00000	101-10000	98.80000	91.20000	90.60000	00004*60	86.80000	RDRYCORN
PCASHFL1	12.00000	12.0000	12.00000	12.00000	12.00000	12.00000	12.00000	12.00000	RCASHIFL1
RCASHFL 2	0.62000	9-82000	9.62000	9-82900	9.82000	9-82000	9.82000	9.82000	RCA SHFL 2
ACASMEL 3	000000	0006 D*E	00060*6	000E0 E	00050*5	0 0 0 0 0 ° E	3.03900	3.03000	RCASHFLE
ACASMIL 4	0.000.	00000	00000	00000	00000	00000	0.0000	00000	RCASHFL4
MCA3MPL3	0004**1	1.47000	1004	900.4-1	1 • • • 1000	000/1-1	0001 *·F	1.47000	NCA SHFLS

IN IN-KEGH	MPSX-VIM7 EXECUTOR.	MPSX RELEASE	: 1 MOD LEVEL	-			PAGE	16 - 81/145	
BOUND	CORN301F Lover	CORN302F Lower	CORN303F Lower	CORN304F Lower	CORN305F LOWER	CORN306F LOVER	CORN307F LOWER	CORN308F ECWER	22 BOUND
RCASHFL6 ACCTGCF2 ACCTGCF2 ACCTGCF4 ACCTGCF4 ACCTGCF6 RSELLCRN	6.00000 12.00000 9.02000 1.40000 1.47000 115.00000	5.99000 12.00000 9.82000 3.83000 1.47000 5.99000 1.50000 1.50000	5.95000 5.62000 3.62000 1.48000 1.47000 1.98000	42.000000 9.020000 9.02000 1.04000 1.04000 1.00000 1.00000	5.99000 12.00000 9.82000 1.48000 1.47000 91.20000	12.00000 9.82000 3.00000 1.48000 1.48000 90.60000	8.999999 9.829999 8.98299 8.48999 8.487999 8.487999	5.990000 6.820000 7.82000 7.82000 1.47000 5.99000 88.80000	RCASHFL6 ACCTGCF1 ACCTGCF2 ACCTGCF4 ACCTGCF6 ACCTGCF6 RSELLCRN

* * RPSX-VIEV * *	7 EXECUTOR.	MPSX RELEASE	1 MOD LEVEL				PAGE	17 - 81/145	
!	CORN401F	CORN402F	COFNABBE	CORNSOIF	CORNSOZE	CORNEGSE	CORN504F	CORNEGIF	3
BOOM	LOWER	LOWER	LOWER	LOVER	LOWER	LOVER	LONER	LCVER	BOUND
TOTWATER	1.91700	1.91700	1.91700	2,25000	2.25000	2.25000	2.25000	2,58300	TOTWATER
WATERTI	•	•	+33300	.33300	00EEF*	*33300	•	*33300	WATER71
NATER72	•33300	00666	•33300	*33300	00EEE*	*33300	*33300	00EEE*	WATER72
WATER73	-33300	.33300	133300	*33300	•	.33300	*33300	• 33300	WATER73
WATERBI	93300	33300	* #3300	93300	33300	.33300	00EEE*	*33300	WATERBI
MATERBA		.33300	•	.33300	00000	•	.33300	*33300	WATER83
WATERSI	00888.		•	•	00000+	33300	DUEEE.	.33300	WATERGI
E AND	000000	00000*1	00000.	00000-1	1.00000	00000-1	00000-1	1.00000	LAND
SEATED VE	00000	00000			00000	00000	00600*1	00000*1	PREPCORN
I RF UEL 7.1					000000	00000	• .	00000	TOFICE
FWATER72	,33300	33300	*33300	*3330	933300	00000	33300	000000	FWA TERT2
INFUEL 72	933300	•33300	.33300	.33300	433300	.33300	.33300	00555	IRFUEL 72
FWATER73	.33300	.33300	*33300	.33300	•	.33300	*33300	*33300	FWATER73
IRFUEL 73	.33300	.33300	*33300	.33300	•	133300	*33300	00EEE*	TRFUEL 73
FWATERBI	.33300	.33300	00000	.33300	00000	*33300	.33300	133300	FVATERBI
TRFUELB	.33300	00000	00000	.33300	*33300	.33300	.33300	.33300	IRFUELBI
FWATER83	•	.33300	•	.33300	00EEE*	•	.33300	.33300	FWATERBS
IRF VEL 83	•	.33300		,33300	.33300	•	.33300	.33300	IRFUEL®3
FWATER91	933300	•	•	•	•33300	*33300	*33300	.33300	FWATER91
IRFUEL91	00000	•	•	•	.33300	.33308	.33300	00£££*	IRFUEL 91
RMAXLABI	1.63000	1.03000	1.03000	1.03000	1.03000	1.03000	1.03000	1.03000	RMAXLABI
RMAXL AB2	1.47000	1.47000	1.47000	1.47000	1.47000	1.47000	1 - 4 7000	1.47000	RMAXI, AB2
RMAXLAB3	00000	44000	.44000	.44000	. 4 4000	44000	. 44000	***	RMAXLAB3
RMAXLABA	-44000	00000	1.84000	2.24000	1.84000	1.84000	1.84000	2.24000	HMA XLAB4
RMAXLABS	00049.	24000	.24000	.24000	.64000	.64000	.64000	.64000	RMAXL ABS
RMAXIL AB6	. 22000	.82000	-82000	. 62000	-82000	. 82000	.82000	• 62000	RMAKL ABS
ACURASEO Beneficia	00000001	00000:51	00000001	15.70000	15-70000	15-70004	15-70000	17.20000	#CORNSED
MINSECTZ	00000.51	15.00000	15.0000	13.00000	15.00000	12.0000	15.0000	15.00000	RI NSECT2
MILE BA	000000	00000	00000	900000	00000*6	0000000	00000*6	00000*6	RMERMS
ON TOTAL	00000-161					00000	00000	000000	X
	00000121	000000		000000	00000000	00000.67	00000	136.00000	Zana inde
POLESEL		4.46000	00000	000000	000000	000000	00000	0000000	200111
ROTESELZ	000000	5.03000	S. 63.000	5.03600		000000		000000	BUTESELS
ROTE SEL 3	.97000	.97000	.97000	97000	000.	90000	91000	00046	RDIESELB
ROTESEL 6	3.47000	3.47000	3.47000	3.47000	3.47000	3.47000	3.47000	3.47000	RDIESEL6
RGASOLNI	•30000	.50000	.50000	. 50000	.50000	.50000	.50000	.50000	RGASOLNI
RGASOLN2	.50000	.5000	.50000	.50000	.50000	.50000	.50000	.50000	RGASOLNZ
REASOLNS	.50000	.3000	00008.	.5000	.50000	.50000	*2000	.50000	RCA SOLN3
RGASOLN4	*\$0000	.50000	.50000	. 50000	.50000	.5000	-50000	.50000	RGASOLNA
RGASOLNS	.50000	.5000	.50000	. 50000	-20000	.50000	*50000	.50000	RGASOLNS
RGASCL NG	.25000	.25000	•25000	•25000	+25000	-25000	.25000	*25000	RGASULNG
MUCCORK	125.90000	122-10000	119.60000	146.40000	137.20000	136.00004	131.80000	147-70000	RCCCORNN
RHAUL CRN	125.90080	122.10000	119.60000	146.4000	137.20000	136.00000	131.80000	147.70000	RHAULCRN
HORYCORN	125.90000	122.10000	119.60000	146.40000	137.20000	136.00000	131,80000	147.70000	RDRYCORN
RCASHFL !	12.00000	12.00000	12.00000	12.00000	12.00000	12.00000	12.00000	12.00000	RCA SHFL1
RCASHFL 2	9-82060	9.82000	9.62000	9.62000	9.82000	9.62000	9.82000	9.82000	RCASHFL.2
RCASHFL 3	3.03000	3.03000	3.03000	3.03000	3.03000	3,03000	3+03000	3.03000	RCASHFL3
RCASHEL &	7.48000	9.48000	5.48000	11.48000	9.48000	9.48000	0.000	11.48000	RCASHFL 4
MCASHFLS	3.47000	1.47000	1.47000	1.47600	3.47000	3.47000	3.47000	3.47000	RCASHFLS

· · · · · · · · · · · · · · · · · · ·	. EXECUTOR.	**************************************	1						
BOWNO	CORN40 LF LOWER	CORN402F Lover	CORN403F LOWER	CORNSO1F LOBER	CORN502F LOVER	CORNSO3F Lower	CORNSO4F LOWER	CCRN601F Lower	32 BOUND
	5.99000	5,99000	5.99000	5.99000	5.99000	5.99000	00066-5	9.99000	ACASHFL 6
	12.00000	12.00000	12.00000	12.00000	12,00000	12.00000	12,00000	12.00000	ACCTGCF1
	9.82000	9.82000	5.82000	9.8200	9.82000	9.82000	9.82000	9.82000	ACCTGCF2
	3.03000	3.03000	3.03000	3.03001	3.03000	3.03000	3.03000	3.03000	ACCTGCF3
	7.48000	9.48000	9.48000	11.48000	9.48000	9.48000	9.48000	11.48000	ACCT6CF4
	3.47000	1.47000	1.47000	1.47000	3.47000	3.47000	3.47000	3.47000	ACCT GOF 5
	9.99000	5.99000	5.99000	9.99000	5.99000	5.9900 8	5.99000	5.99000	ACCTGCF6
	125.90000-	122.10000-	-00009-611	146.40008-	137.20000-	136,00000	131.60000-	147.70000-	RSELLCRN
IRRIGUCI	1.91700	1.91700	1.91700	2.25000	2.25000	2.25004	2.25000	2.58300	IRR IGVC1

· · KE WALKERS	EXECUTOR.	NPSX RELEASE	E P PCD LEVEL	•			PAGE	19 * 81/145	
GHOOR	COTNOOIF Lower	COTNIOIF LOVER	COINIO2F Lover	COTNI 03F Lover	COTN201F LOVER	COTN202F LOWER	GRSD001F Lower	GRS0101F Lever	GNUOB
•					•	,	•		
TOTWATER	.58330	.91700	00/15*	00216	0.005Z* I	1.25000	.56330	00/160	TOTALER
WATEROS	•			• 33300	•	000000	•	•	SATERON SAN
# # # # # # # # # # # # # # # # # # #	•		933300	• .	00000	00267	• 1	•	WATERN.
WATERRS.	• ,						• •	33300	WATERBE
TOWN TOWN	0,000,1	0000001	00000	1.00000	00000	1.00000	0000001	000001	CNAI
PREPCOTA	000001		1.00000	1.0000	1-00000	1.00000	•	•	PREPCOTN
PREPGRSD	•		•	•	•		1.00000	1.00000	PREPGRSU
FWATER63	•	. •	•	+33300	•	33300	•	•	FWATER63
IRFUEL63	•	•	•	33300	•	.33300			IRFUEL63
FWATER72	•	•	00EEE*	•	*33300	•	•	•	FWATERT
IMFUEL 72	•	•	.33300	•	+33300	•	•	•	TRFUEL 72
FVATERBL	•		•	•	*33300	00£££*	•	•	FWATERBI
IRFUEL BI	•	.33300	•	•	*33300	.33300	•	•	IRF UEL 91
FUATER82	•	•	•	•	•	•	•	.33300	FWATEROZ
IRFUELB2	•	•	•	•	•	•	•	.33300	IRFUELBZ
RNAXLABI	•65000		.65000	.65000	•65000	.65000	-62000	•62000	RMAXL ABI
RMAXLAB2	1.21000	1.21000	1.21000	1.21000	1.21000	1.21000	.76000	.76000	RMAXL AB2
RMAXLAB3	1.67000	1.0700	1.07000	1.47000	1.07000	1.47000	.73000	.73000	RMAXLABB
RMAXL AB4	.12000	.52000	.52000	•1500	.92000	*52000	.51000	• 1000	RMAXL AB4
RMAXLABS	.12000	.12000	-12000	.12000	•12000	.12000	.12000	.12000	RMAXLABS
RMAXLAB6	.67000	•67000	.67000	•67000	•67000	•67000	.55000	.35000	RMAXL AB6
RCOINSED	20.0000	20,00000	20.00000	20.00000	20 -00000	20.00006	•	•	RCOTNSED
RGRSOSED	•	•	•	•	•	•	3.60000	1.20000	RGRSOSED
RINSECT3	•		•	•	•	•	2*00000	2.00000	RINSECTS
RHERBZ	6.00000	6.0000	6.00000	6.00000	6.00000	6.00000	•	• 1	RHERBS
RHERES	•	•	-	•	•	•	6-95000	6.95000	RHERBB
RFERTAP 2	1.00000		1.00000	000001	1.00000	1.00000	1.00000	1.00000	RFERTAP2
RNITROGS	22.00000		25.00000	24.00000	31.00000	31.00000	45.00000	10.00000	RNI TROGZ
RPH052	22.00000		25.00000	24.00000	31.00000	31.0000	30.00000	40.00000	RPH052
ROIESEL I	2.40000		2.40000	2.40000	2.40000	2.40000	2.27000	2.27000	ROTESELI
RDIESELZ	1.55000	-	1.55000	1.55600	.55000	1.55000	2 *53000	2.53000	ROIESELZ
RDIE SEL 3	2,72000	2.72000	2.72000	2.72000	. 2.72000	2.72000	2.97000	2.97000	RDIESELJ
RDIESELA	•		•	• ;	•	•	1.40000	1-40000	ROTESEL
POTESEL6	2.26000		2.26000	2.26000	2.26000	2.26000	2.26000	2.26000	ROIESELS
RGASOCNI	20000		00000	20008	00000	20000	00005*	00000	RGASOLMI
RCASOL NO	00008*		00005*	20005	00006	00000	00000	00000-	HCASOLNC DCASOLNC
EN JOS Y DE	00048		000#8	00048	00046.	00048*	00056	00056	MCASULKS
RGASOLNA	•25000		.25000	*25000	-25000	.25008	255000	00062*	HOASOLNS
MCASCL NO	•25000	•	*25000	00052	*25000	22000	00002*	00062*	KCASO NO
BCASG No	.50000	12000	00006*	* 20000	*2000	00006*	00062	00003.	ACASOLNO ACCORDA
PCCGRSDI	•		•				000000-62	00001*6*	DC CETTON
MCSHCOTN	00056-61	-	22.33000	21.42000	20020-02	00056-12	•	•	TO THE DE
Mela Color	19.95000	00000**2	22.33000	10024412	00000000	00066-17	00.8000	45.10000	PHAIR CO.
AND OLCKS				•	• •	• •	000000	0000000	DCA SMELL
MCASHILL I	00066			00066*	00055	00000	00000	000000	e Lineary
RCASHFL2	10000		00001.		00001.	00000	0006246	00067-0	DCACMER 1
RCASMFL 3	20064 - 2		1.79000	00064.6	00063-1	30067.4	000000	000000	DCA SHELL
RCASHFL 4	0000F-01	13.23000	3.23000	00062.11	00001-01		24000	000047	RCASHFLS
TO A STATE S	00047.4	0.047.	4.7.000	4.77000	00077.4	4.17000	00070-4	4.03000	RCA SHELLS
ロートのドンと	200111		222 L P	>>>	>>> +	>>> P	***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	42 BOUND	ACCTGCF1 ACCTGCF2 ACCTGCF4 ACCTGCF6 ACCTGCF6 RSELLCTS RSELLCTS RSELLCTS
20 - 81/145	GR SO 10 (F	6.23000 5.29000 5.58000 6.58000 4.03000 6.10000
PAGE	GRSOOOIF LOVER	8.23000 5.29000 3.56000 4.56000 6.3300 29.60000
	COTN202F LOWER	4.99000 7.16000 9.79000 14.10000 4.77006 508.00006 4.25000
	COTN201F LOWER	4.99000 7.16000 7.79000 16.10000 4.77000 590.000001 1.25000
•	COTNIO3F LOWER	4.99000 7.16008 9.79008 11.23000 .74000 4.77000 .37700-
E I MOD LEVEL	COIN102F LOWER	4.95000 7.16000 7.79000 13.23000 7.74000 4.77000 4.77000 4.77000
MPSX RELEASE	COTNIOIF	4.99000 7.16000 7.19000 13.23000 .74000 817.00000 .43200 .91700
NPSX=VIN7 EXECUTOR*	COTNODIF LOVER	4.99000 7.16000 7.79000 10.36000 .74000 4.0.000000- .35100-
. TH IN-XSUN.	BOUND	ACCTGCF1 ACCTGCF3 ACCTGCF3 ACCTGCF4 ACCTGCF6 ACCTGCF6 ACCTGCF6 RSELLCOT RSELLCTS RSELLGTS RSELLGTS

. MPSX-VIH7.	. EXECUTOR.	MPSX RELEASE	E 1 MOD LEVEL				PAGE	21 - 61/145	
BOUND	GR SO 10 2F Loyer	GR SO 10 3F Lower	GRSD201F Lover	6ASO202F Lower	GRSG203F Lover	GRSD204F Lover	GR SO 30 IF LOVER	GR SO 302F LOVER	5l BOUND
	00110	40110.	00050-1	1.25000	1.25000	1.25000	1.58300	0.58300	TOTWATER
WATERY				•	00000	•	.33300	•	WATER 71
WATER73	.33300	•	.33300	.33300	•	•	.33300	*33300	WATERTS
WATER82	•	•	.33300		.33300	.33300	00656.	.33300	WATER82
WATER83	•	*33300	•	.33300	•	+3330#	•	.33300	WATER83
LAND	1.00000	1.00000	1.00000	1.00000	00000*	1.00000	.00000	1.0000	LAND
PREPGRSO	1-00000	1.00000	1.0000	1.00000	1.0000	1.00000	00000-1	1.00000	PREPGRSO
FUATER71	•	•	•	•	00000	•	00000	•	- WATERY
IRFUEL 7.1	•	•	•	•	00000	•	00000		187 001.71
FWATER73	.33300		00000	00256	•	•	00000	00000	FORTING 94
IRFUEL 73	33300	•	DOMMIN .	00666		97566	00555	00000	FWATERBZ
FERST 63	•		00111	• •	00000	90000 ·	33300	.33300	I RF VEL 62
FWATEDRY	•	00000		33300	•	93390		.33300	FWATERB3
TREUELAS		00000	. •	33300	. •	00000		.33300	IRFUEL 83
RMAXLABI	.62000	.62000	.62000	.62000	.62000	.62006	.62000	.62000	RMAXL ABI
RMAXLAB2	.76000	.76000	.76000	. 76008	.76000	.76000	.76000	.76000	RMAXLAB2
RMAXLABB	.73000	.73000	.73980	.73000	.73000	.73000	*73000	.73000	RHAKL ABB
RMAXLAB4	.91000	.91000	1.31000	1.31000	1.31000	1.31000	1.71000	1.71000	RMA XLAB4
PHAXLABS	.12000	.12000	.12000	12000	12000	12000	.12000	.12000	RMAXL ABS
RMA XL. AB6	.33000	.55000	.55000	.5500	+55000	.55004	.55000	• 55000	RMAXE AB6
RGRSUSED	7.20000	7.20000	6.75000	B.75008	8.75000	6.75000	10.30000	10.30000	RGRSOSED
RINSECTS	8.00000	5.00000	5.00000	5.00000	9.00000	8.00000	5.00000	3.00000	RINSECTS
PHER 8.3	6.95000	6.95000	6.93090	6.95000	6.95000	0.056.9	6.95000	E.95000	RMERB3
RFERTAP 2	1.00000	00000-1	1.00000	1.0000	1.00000	000001	1.00000	1.00000	RFERT AP 2
RNI TROG2	57,00000	54.0000	88.00000	84-0000	00000	78.00000	106.0000	00000.001	RNITRUGZ
RPHOSS	30.0000	36.00000	40.0000	40.0000	40.0000	40.0000	43.00000	000000	RPHUSZ physics *
ROLESELI	2.27000	2.27000	2.27000	00078.8	2.2.7000	00072.5	000000000000000000000000000000000000000	0001242	ROTESELZ
MOTESELZ	2.53000	2.53000	000000	2.07000	2.01000	0000010	0.07000	2.47000	PDIESEL 3
More Sel. 3	00000	00000	1.40000	1-40000	1.40000	1-40006	1.40000	1.40000	ROTESELA
POTE SELA	0.0000	2.26000	2.26000	2.26000	2,26000	2.26000	2.26000	2.26000	RO LE SEL 6
RGASOL NI	20000	.50000	00000	. 5000	.50000	. 50000	.50000	.50000	RGASOLNI
RGASOLNA	00000	. 50000	*5000	50000	.50000	.50000	*50000	. 50000	RGA SOLNZ
RGASOL N3	23000	.59000	00065*	20065	.59000	00065*	.59000	.59000	RGASOLN3
#GASOLN4	-25000	.25000	.25000	-25000	*25000	.25000	.25000	.25000	RGASOL NA
REASOLNS	.25000	.25000	.25000	.2500	•25000	.25000	•25000	.25000	RGASOLNS
RGASOLN6	•25000	.25000	.25000	.25000	*25000	.25000	.25000	00052*	Reason No
PCCGRS01	38,40000	36.70000	53.70000	51.90000	20.40000	48.90000	63.00000	60.50000	ACCERSOI
RHAUL GRS	36.40000	36.70000	53.70000	21.90000	20.40000	48.90000	000000.69	00000000	RHAUCURS
RCASHFL I	8.23000	0.23000	6.23000	8.23000	8.23000	8.23000	0.005.8	E*23000	KCASHFE F
RCASHFL 2	5.29000	5.29000	2.29000	5,29000	5.29000	0.0062.5	00062-6	00052**	DCACHEL 1
RCASEFL 3	2*63000	5.63000	5.63000	00050*6	0000000		0000000	0000000	DCASHELA
#CASHFL4	2.58000	5.58000	1.5000	00000-	00080.	00000	00000	00000	DCACHE &
RCASHFL5	30044	00000	00000			000FC- 4	00000	00000-0	RCASHFL6
MCASHILD ACCTOCATE			00000			00000	F - 2 3000	A.23000	ACCTGCF
ACC 1 CO 1 1	1.29600	2.2000	E 25000	2.29000	5.29000	5.29000	5.29000	5.29000	ACCT GCF2
ACCT OCF 3	9.63000	5.63000	5.63000	5.63900	5 - 6 3000	5.63000	5.63000	E.63000	ACCTGCF3
ACCT GCF4	5.58000	5.58000	7.56000	7.58000	7.58600	7.58000	9.56000	9.58000	ACCTGCF4
ACCTGCF 5	. 74000	.74000	.74000	.74666	.74000	.7400€	.74000	.74000	ACCTGCF5

	52 BOUND	ACCTGCF6 RSELLGRS IRRIGVCI
22 - 81/145	GRS0302F LOWER	4.03000 60.50000 1.58300
PAGE	GR SØ 301F L. OVER	4.00000 61.00000 1.58300
	GRSO204F LOVER	4.03000 48.90000 1.25000
	GRSG203F Lower	4.03000 50.40000- 1.25000
•	GRSD202F Lover	4.03000
1 NOD LEVEL	GRSO201F Lower	4.03000 53.70000- 1.25000
HPSX RELEASE 1	GRSO103F LOWER	4.03000 36.70000-
MPSX-VIM7 EXECUTOR.	GRSD102F Lover	4.03060 38.40000 1700
. MPSX-VIM7.	0N008	ACCTGCF6 RSELLGRS IRRIGVCI

HPSX-V1 H7	EXECUTOR.	MPSX RELEASE	E I MOD LEVEL	•			PAGE	23 - 81/145	
BOUND	GRSD401F Lower	WHE TOO IF LOVER	WHET TOTE Lower	WHET102F Lover	WHETTO3F Lover	WHET 104F Lover	WHET 201F LOVER	WHET202F Lover	61 BOUND
TOTVATER	1.91700	0 m m m m	.91700	.91700	.91700	.91700	1.25000	1.25000	TOTWATER
WATER32	•	•	•	•	•	.33300	•	*33300	WATER 32
WATER42	•	•	•	*33300	•	•	93300	•	WATER42
WATERSI	•	•	00000		•	•	00000°	00565	WATERSI
WATERSS	•		•	•	000000		•	•	WATERSU
NATER71	*33300	•	•	•	•	•	•	•	WATERFI
MATERTS	00000	•	•	•	•	••	•	•	WATERPO
MATERB2	93866	•	•	•	•	•	•	•	WATER82
TATERS 3	00000	•	•						LAND
DOFFORD									PREPARED
PREPARET		1.00000	1.00000	1.00000	1.00000	1.0000	1.00000	1.00000	PREPWHET
FWATER32			•	•	•	.33300	•	.33300	FWATER32
IRFUEL 32	. •	. •	•	•	•	.33300	•	.33300	IRF UEL 32
FWATER42	•	•	•	.33300	•	•	*33300	•	FWATER 42
IRFUEL 42	•	•	•	*33300	•	•	.33300	•	IRFUEL42
FWATERS1	•	•	00000	•	•	•	.33300	00EEE*	FWATERSI
INFUEL 51	•	•	OOMER.	•	•	•	.33300	*33300	IRFUELSI
FWATER53	•		•		933300	•	•	•	FWATERSS
(RFUELS3	•	•	•	•	00666	•	•	•	TRFUEL 53
FWATERTI	.33300	•	•	•	•	•	•	•	FWATERTI
INFUEL 71	133300	•	•	•	•	•	•	•	IRF UEL 71
FWATER73	00000	•	•	•	•	•	•	•	FWATER73
IRFUEL 73	33300	•	•	•	•	•	•	•	TRF UEL 73
FWATER82	00000	•	•	•	•			•	FWATEREZ
IRFUELB2	0086.	•	•	•	•		•	•	THE GELBS
FWATERBJ	00666	•	•	•	•	•	•	•	
THE UELOS	000000				•	. 2500.0	. 25020	ייייייייייייייייייייייייייייייייייייייי	DWAY ARE
EMAXLADI	00000	28000	00000		00052	5000g-	00000	00000	RMAXLAB2
DWAXI ART	0001	13000	000E	1000	00068	00001	.83000	.53000	RMAXLABS
RMAXLAB4	2.11000	1.54000	1.54000	1.54000	1.54000	0.0400	1.54000	1.54000	RMAKLA84
RMAXLABS	.12000	.25000	.25000	.25000	.25000	.2500¢	.25000	.25000	RMAXLA85
RMAXLAB6	.55060	.25000	.25000	.25600	*25000	*25006	.25000	.25000	RMAXLAB6
AGRSDSED	11.90060	•	•	•	•	•	•	•	RGRSOSED
MINNET SED	•	1.25000	1.25000	1.25000	1.25000	1.25000	1.50000	1.50000	RWHETSED
MINSECT3	00000-5	•	•	•	•	•	•	•	A RESECTS
RINSECTS	•	4.92000	4.92000	4-92000	4.92000	4.92000	4.92000	4.92000	RINSECTS
RHERBI	6.95000						• 6		DHEODA
Kriek 04		3+20000	200000	3.3000	00000	30000	200000		CHEEDT AP2
OFFICTADA			- 0000	1,0000			00000	00000	RFERTAPA
SUBTROG2	118.00000		•	•	•	•	•	•	RNITROGZ
RMITHUGA	•	33.00000	51.00000	48.00000	39.0000	36.0000	64.00000	64.00000	RNI TROG&
BPHCS2	49.00000	•			•		•	•	RPHUS2
RPHUSA	•	11.00000	17.00000	16.0000	13,00000	12.00000	22.00000	22,00000	RPH0\$4
ROIESEL 1	2.27000	•	•	•	•		•	•	ROJE SEL 1
MOTESELZ	2.53000	•	•	•	•	•	•	•	ROIESEL 2
ROTESELS	2.970€€								ROIESELJ ROIESELJ
ROIESELS	2.2600					• •	•	; ; ;	ROIESELG

	62 BOUND		RGASOLNI	RGA SOL NZ	RGA SOL N3	RGASOL NA	RGA SDLNS	RGASOLN6	RCCGR SO!	RCCWHETD	ACC WHET !	PHA18 COS	OHAIR WAY		ACASHILL See Sing S	KCA SHIFT Z	RCASHFL3	RCA SHFL4	RCASHFL 5	RCASHFL6	ACCTGCFI	ACCTGCF2	ACCTGCF3	ACCT GCF4	ACCTGCFS	ACCTGCF6	RSELLGRS	RSELLWHT	RSELL GRZ	IRRIGUCE
24 - 81/145	WHET202F Lower		•20000	. 50000	.25000	.50000	• 50000	.50000	•	1.00000	21.50000	•	41.50000			000000	2.19000	15.22000	1.53000	1.52000	1.53000	3.52000	2.79000	15.22000	1.53000	1.52000	•	41.50000-	23.18000-	1.25000
PAGE	WHET201F COWER	6	00000*	.50000	.25000	.50000	*20000	.50000	•	00000	22.00000	•	42.00000	0.0000	00000		00064.2	00022.01	00066-1	1.52000	1.53000	3.52000	2.79000	15.22000	1.53000	1.52000	•	42.00000-	23.40000-	1.25000
	WHET104F LOWER	. 6000	2000	30000	00000	00000	.30000	.50000	•	90000*	4.90006	•	24.90000	1-53006	3.52006	2000	00000	00027-61	100001	1.52006	000ES-1	3.52000	00064	15.22000	1.53000	1.52000		24.90000=	-300 L-S	.91706
	WHET: 03F LOWER	00000	0000	00000	0000		00000	00000		00000-1	2.90000	•	25.90000	1.53000	1.52000	2.79000	1000000	4 - 4 3000		00026-1	00000	000000	0005	15.22000	1 *33000	1.52000	. •	25.90000-	100091-91	.91700
	WHET102F Lower	.5000		00086	00000					200001	90002*21	•	32.2000	1.53000	3.52006	. 79006	15.22000	1.53000	1.42000		2000			00027-01	00056-1	1.52008	•	32.2000		90/16*
I MOD LEVEL 7	MMET101F LONEA	.80000	20000	.25000	50000	00000	20000		00000	00000	100007*51	•	33.20000	1.53000	1.52000	2,79000	15.22000	1.53000	00000	00049-1	1.42000	2.76000		000771	000000	1.52000	•	100002.55		>
MPSX RELEASE	WHETOOIF Lover	20000	. 50000	.25000	. 50000	. 50000	.50000		1.00000	0.000		•	22.80000	00064-1	1.52000	. 79000	15.22000	1.53000	1.52000	1.53000	1.52000	79000	15.22000	. 6.700.0		000224		14.76000=	000000))
MPSX=V1M7 EXECUTOR.	GRSO+01F Lower	-50000	.50000	• 59000	.25000	•25000	.25000	69.00000	•	•	49,000,04		• •	9.23000	5.29000	5.63080	11.58000	.74000	4.03000	8.23000	5,29000	5.63000	11.58000	.74000	00000	69.00000			1.91760)
MPSX=V1K7.	BOUND	RGASOLN1	RGASOLN2	RGASOL NJ	RGASOLNA	RGASOLNS	MGASOLNG	RCC 6RSD I	RCCWHETO	RCCWHET3	RHAULGRS	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		11111111	RCASHFL2	RCASHFL3	RCASHFL4	RCASHFLS	ACASHFL6	ACCTECFI	ACCTGCF2	ACCT GCF3	ACCT GCF4	ACC1 GCF 5	ACCTGCEA	RSELLGRS	RSELL WHI	RSELLGRZ	IRR I GVC 1	•

MPSX-V1M7	. EXECUTOR.	MPSX RELEASE	1 PCD LEVEL 7				PAGE	25 - 81/145	
	WHET 203F	WHE T 2A 4F	WHE T 284F	WHE T301F	WHET 302F	WHETADSF	PPCORN22	PPCORN23	71
BOUND	LOVER	LOWER	LOVER	LOVER	LoveR	LOVER	LOWER	LOVER	ADUND
TOTWATER	1.25000	1.25000	1.25000	1.58300	1.58300	1.91700	•	•	TOTWATER
WATER22	•	•	•	•	•	•	.58330	•	WAT ER 22
WATER23	•	•	•	•	•	•	•	.58330	WATER23
WATER32	•	.33300	•	•	000000	00EE*	•	•	WATER 32
MATER42	•	•33300	00EEE*	00666.	•	133300		•	WATER42
WATERSI	.33300	•	•	.33300	00000	00655		•	WATERSI
WATERSJ	.33300	•	00000	00886	00000	00000	•	•	WATER 53
LAND	1.0000	1.00000	00000-1	1.00000	1 *00000	1.00006			LAND
					•	•	-00000-	-000000	
	00000	0000						•	Fire tribbe
FERTER 22	•	•	•	• •	• •			. •	IRFUEL 22
FWATER23		• •			•	•		.58330	FWATER23
IRFUEL 23	•	•	•	•	•	•	•	OCEBS.	IRF UEL 23
FWATER32	•	00000		•	.33300	*33300	•	•	FWATER32
IRFUEL 32	•	93300	•	•	.33300	.33300	•	•	IRF UEL 32
FYATER42	•	00000	00000	.33300	•	•33300	•	•	FWATER42
TRF UEL 42	•	.33300	QQEEE*	.33300	•	00EEE+	•	•	IRFIJEL42
FWATERSI	.33300	•	•	.33300	.33300	933300		•	FWATERSI
IRF VEL 51	.33300	•	•	.33300	.33300	.33300	•	•	I RFUEL SI
FWATERS3	*33300	•	.33300	*33300	*33300	00666.	•	•	FWATER53
INFUEL 53	*33300	•	• 13300	93300	*33300	•33300	•	•	IRFUEL 53
RMAXLAB1	.25000	•25000	.25000	.25000	•25000	.25000	. 70000	. 70000	HMAXL ABI
RMAXLAB2	*25000	1.05000	.65000	.63000	.65000	-02000	•	•	THAXLA82
RMAXLAB3	.93000	00001	00063.	00000	00260	00000	•	•	RMAXE AB3
RMAXLAB4	1.54060	1.54000	00043.	00045	1.54000	1.54000	•	•	KMAXLAB4
MAXLABS	.25000	25000	.25000	0002*	00052.	25000	•	•	HAAXLAGS
DMAXLA86	22000	.25000	22000	00052	00000	90062	•	•	DAME TO CO
RWHE I SED	00000-1	00006.1		00000	00000		• ,	•	DINSECTS
MINSECTS	00026*		00000	90926	00000	90000	•	•	OMEDBA
	000000		000000	00000	00000	000000	• •	•	BFFGT APA
A COURT PAGE	20000		20000	14.0000	00000.04	78.0000		. ,	PNT TOTICA
HOHORA	00000-01	00000.41	00000	200000	26.0000	20.00000	. •	•	RPHOS
NOTE SFL 4	6.44000	6.44000	6.44000	6.44000	6.44000	6.44000	•	•	RDIESELA
RGASOLN1	.50000	. 50000	.50000	- 50000	.50000	*5000	•	•	RGASOLNI
RGASOLN2	.50000	.50000	00000	. 50000	.50000	20005*	•	•	RGA SOL'NZ
RGASOLNO	.25000	.25000	,25000	.25006	.25000	.25006		•	RGASOLNE
RGASOLNA	.50000	. 50000	.50000	. 50000	.50000	•50000		•	RGA SOLN4
RGASOLNS	.50000	• 50000	.50000	. 50000	•20000	.50000	•	•	RGASOLNS
RGASOLN6	.50000	. 50000	.50000	.50000	•20000	•2000		•	PGASDLN6
RCCWHETD	1.00000	1.00000	1.0000	1.00000	1.00000	90000-1	•	•	RCCWHETD
RCC WHET!	18-10000	15.10000	13.10000	28-30000	25.90000	20.000	•	•	RCCWHETI
RHAULWHT	38.10000	35.10000	35.10000	48.3000	45.90000	# B . # B O O G	•		RHAUL WHY
ACASHFL I	1.53000	1.53000	00000	000mm	1.53000	30000	•	•	RCASHFL 1
RCASHFL2	1.52000	5.12000	3.52000	3.52009	3.52000	5.52000	•	•	RCASHFLZ
RCASHFL3	4.79000	. 79000	2.79000	10064.4	4.79000	20064	•	•	RCASH-L.3
RCASHFL4	15.22000	15.22000	15.22000	15.22000	15.22000	15.72000	•	•	RCASHFLA DCASHFLA
FCASHFLS OCASHFLS	000000	00000	00063*1	00000	0000001	00000		•	DCASHELS
ACCTOFF	00025-1	1.52000	1.12000	000001	00025-1	300511	• •		ACCTECFI
* ***	>>>>	>>>>) > > n	>>>>	200	, , , , , , , , , , , , , , , , , , , ,	•	,	,

	7****2 BOUND	ACCTGGF2 ACCTGGF3 ACCTGGF4 ACCTGGF5 ACCTGGF5 ACCTGGF6 RSELLWHT
26 - 81/145	PPCORN23 Lower	•••••
PAGE	PPCORN22 Lower	
	WHET 40 LF LOVER	1 - 5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	WHET 302F Loner	3.52000 15.22000 1.52000 1.52000 45.90000 25.66000
•	WHET301F LOWER	3.52006 4.7900 15.22000 1.53000 1.53000 46.30000 26.24000 1.58300
1 MCO LEVEL	WMET284F Lower	3.52000 2.79000 15.22000 1.53000 1.53000 2.63000 2.030000 1.25000
MPSX RELEASE 1	WHET2A4F LOVER	5.52000 .79000 15.22000 1.53000 1.55000 20.30000 1.25000
. EXECUTOR.	WHET203F Lower	1.52000 4.7900 15.22000 1.5300 1.52000 38.10000- 21.65000- 1.25000
MPSX=VIM7	QNPOQ	ACCTGCF2 ACCTGCF3 ACCTGCF4 ACCTGCF6 ACCTGCF6 ACCTGCF6 ASELLWHT RSELLGR2 IRRIGVC1

. MPSX-VIRT.	. MPSX-VINT EXECUTOR.	MPSX REL	EASE 1 MOD LEVEL 7	E 7			}		
	PPCDRN31 LOVER	PPCORN32 Lower	PPCCRN33 Lower	PPCOTN31 LOWER	PPCOTN32 LOWER	PPCOTN33 LOWER	PPCOTN41 LOVER	PPCOTN42 LCWER	BOUND
MATERNI MATERNI MATERNI MATERNI MATERNI PREPCORN FWATERNI IRFUELNI FWATERNI IRFUELNI FWATERNI IRFUELNI IRFUELNI IMFUELNI IMFUELNI IMFUELNI IMFUELNI	1.0000 330 58330 58330 58330 58330 58330 58330 58330 58630 5				10000 10000	9EE995		. 56330 . 56330 . 56330	WATER 31 WATER 41 WATER 41 WATER 41 WATER 42 PREPCORN FWATER 32 FWATER 32 IRFUEL 32 FWATER 43 IRFUEL 32 FWATER 43 IRFUEL 41 IRFUEL 42 IRFUEL 43 IR

MPSX-VI N7	. EXECUTOR.	MPSX RELEASE S	S NOD LEVEL 7				PAGE	20 - 61/145	
	0000000	PPGRS023	PPGRSG31	PPGRS032	PPGRSU33	PPWHETER	PPWHET83	PPWHE 191	91
BOUND	LOVER	LOVER	LOWER	LOWER	LOVER	LONER	LOWER	LOWER	BOUND
		•	•	•	•		•	•	WATER22
NA IERES	7	C 所 所 饭 的 *		•	•	•	•	•	WATER 23
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		.58330	. •	•	•	•	•	WATERSI
CE 82 441	•			. 58330	•	•	•	•	NA TER 32
FEGILA			•		.56330	•	•	•	WATER 33
MATERIAL		•		•	•	.68336	•	•	WATER82
			. •	•	•	•	*58330	•	MATEROX
	•				•	•	•	.58330	WATER91
DOCUMENT	100000	-00000-1	-00000-1	1.00000-	1.00000-	•	•	•	PREPGRED
DOCUMENT		•	•	•	•	1.0000	1.00000	-00000° I	PREPWHET
FuATER22	.58330	•	•	•	•	•	•	•	FWATER22
IRFUEL 22	.56330	•	•	•	•	•	•	•	IRFUEL 22
FWATER23		. 58330	•	•		•	•	•	FWATER23
IRFUEL 23	. •	. 56330	•	•	•	•	•	•	IRF UEL 23
FWATER31		•	.56330	•	•	•	•	•	FWATERUS
IRFUEL 31	•	•	.56330	•	•	•	•	•	TRF UEL 31
FWATER 32		•	•	.58330	•	•	•	•	FWATER 32
IRFUEL 32	•	•	•	. 56330	•	•	•	•	IRFUEL32
FEATFREE	•	•	•	•	ORRUS.	•	•	•	FMATERBU
IRFUEL 33	•	•	•	•	.58330	•	•	•	IRFUEL 33
FWATER 82		•	•		•	. 56336	•	•	FUATEROZ
I MFUEL 82	•	•		•	•	. 56336	•	•	IRF UEL 82
FREERS			•	•	•	•	*58330	•	FEATERES
1051161 63		•	•	•	•	•	.58330	•	1RFUEL 03
FWATFDOI	, ,		•	•	•	•	•	.58330	FWATER91
10616			. •	•	•	•	•	.58330	I RFUEL91
	20000	00002		•	•	•	•	•	RMAXLABI
DMAKE ARD			,70000	.70000	. 70000	•	•	•	RHAXLAB2
ANAL AND				•	•	.70000	.70000	•	RMAXLABA
-	•	•	,				1	00000	OMAXI ABS

. MPSX-VIM7.	.MPSX-VIM7 EXECUTOR.	MPSH REL	EASE 1 MOD LEVEL 7				PAGE	29 - 81/145	
BOUND	P.P.WHET92 LOVER	PPWHE193 LOVER	FRELECII	SLELEC11 LOWER	FREL EC12	SLELEC12 LOWER	FRELECT3	SLELECI3 LOWER	10f
		•		90000	•	90006.	•	00006*	ELSOLD
EL 31.E.D	04147				•	•	•	•	WATER92
MATERIO A	,	. 58330	•	•	•	•	•	•	WATER93
	-0000001	-00000 1	•	•	•	•	•	•	PREPAMET
	•	•	.00000-1	1.00008	•	•	•	•	UELECT11
		. 1		•	1.00000-1	1.00000	•	•	UELECT 12
	•	• 1		•	•	•	-00000-1	1.00000	UELECT13
CELECT 13	OF F82.			•	•	•	•	•	FWATER92
TORIE 03		•		•	•	•	•	•	IRFUEL 92
FWATERS		.56330		•	•	•	•	•	FWA TER93
INFUEL93	•	.58330	•	•	•	•	•		INFUEL93
RMAXLABS	. 70000	. 70000	•	•	•	•	•	•	CONTRACTO
				10000		-82706-	•	100/200	こしきかてノン

. TH I V-X SAM	MPSX-VINT EXECUTOR.	MPSX REI	LEASE I NOD LEVEL 7	•			PAGE	30 - 81/145	
BOUND	FRELEC21	SLELEC21 LOVER	SLKWAT22 LOVER	FRELEC22	BYELEC22 Lower	SLFLEC22 Lower	[RELEC22 Lower	SLKWAT23 Lower	111 Bgund
							000001	•	EL IRRG02
EL IMAGO2	•	•	•	•	•	•		ı	FI MIN SO2
E BEIVEON	•	•	•	•	000001	•	•	•	
		00000	•	•	•	.90006	•	•	ELSON.
	100000		•	•	•	•	•	•	DECECIZI
UELECTZI				,	•	•	•	•	F NATER 22
FWATER22	•	•	00000-1	•	•		+005 E	•	IRFUEL 22
IRFUEL 22	•	•	•	•	•		000001	•	UELECT22
UELECT22	•		•	-000000			•		SELECT22
SELECT22	•	•	1.00000	•	•	1267101	• 1	00000	F WATER23
FWATER23		•		•	•	•	, ,	1.00000	SELECT23
SELECT 23	•	•	•		•	->	•		RCASHEL 1
		-4444		•	00060	-10/20	•	•	

-	271 BOUND	EL SOLD	RCORNSED	DCOTNSED	4	RCASOSED	RETEL SED	RCA SHFL2	RCASHFL 3	RCASHFL4	RCASHFL5	RCASHFL 6	ACCTGCF2	ACCTGCF3		ACCI SCHO
46 - 81/145	WHETSEED LOWER	•		• •	•	•	1.00000-	•		•	7.50000	•	•	•		00000
PAGE	GRSOSEED LOWER	•		• .		100000*	•	•	.50000	•	•	•	•	.50000		•
	COTNSEEC	•		. 0000		•	•	•	.45000	•	•	•	•	00054		•
	CORNSEED	,	10000		•	•	•	00006*	•	•	•	•	00006		•	•
	SLELEC 06	00000		•	•	•	•	•	•	•		-02700-		• •	•	•
1 MCD LEVEL	SLELECOS	0		•	•	•	•	•	•	•	.C2700**			,	•	•
MPSX RELEASE	SLELEC04	0000		•	•	•	•	•	. •	-02700-				•	•	•
MPSX*VINT. EXECUTOR.	SLELEC03	4		•	•	•	•	•	-02760			•	•	•	•	•
. * MPSX~VINT.	QNIDE		ELSULU	MCORNSED	ACOINSED	RGASOSED	RMHFTSED	BCASHF1 2	DCASHEL 3	DCASHE! A	ACASHEL 4	TO FOREIGN		3 170 170	ACCI GCF 3	ACC16CFS

. MPSX-VINT.	.MPSX-VINT EXECLTOR.	MPSX RELEASE 1	1 HOD LEVEL 1	•			PAGE	47 - 01/145	
BOUND	INSECT2 LOWER	INSECTS	ENSECTS LORGE	HERB2 Lover	HERB3 LOWER	HERBA LOWER	FERTAPP2 Lover	FERTAPP4 Lower	281 BOUND
				,		•	•	•	RINSECT2
RINSECT	1000001	•	•	•	•	,		,	P ICENTO
RINSECT3	•	1.00000-	•	•	•	•	•	•	
RINSECTS	•	•	1.00000-	•	•	•	•	•	
0.000		•	•	1.00000-	•	•	•	•	RHERDA
	•	•	•		-00000-1	•	•		RHERBS
MANERA	•	•	•	• ,		-00000-1	•	•	RHERB4
RHERB4	•		•	•	•	, , , ,	-00000-1		RF ERT AP 2
MFERTAP2		•	•	•	•	•		-00000	DEFERTADA
RERTAP 4	•	•	•	•	•	•	•		
DC ASHEL 2	1.00000	•	•	1.00000	•	•	2.00000	•	HCASHTLE.
		00000-1	•	•	000001	•	•	•	RCASHEL 3
MCA SHITE S	•)))	• 1	. 1	•	1.00000	•	2.00000	RCASHFL4
RCASHIL4	•	•		•	•		•	•	RCASHFL 5
MCASHFL 5	•		00000.1	•	•	•	00000		CHUCKECHES TO A COLUMN
ACCTGCF 2	1.00000		•	1.0000	•	•	20000	•	# 100 A CO
ACCT GCF 3	•	1.00000		•	1.00000	•	•		ACCTOC S
ACC T GCF4	•	•	•	•	•	1.0000	•	00000	
*****		•	00000	•	•	•	•	•	7111111

. HPSX-VINT.	.MPSX-VIM7 EXECUTOR.	MPSX	RELEASE MOD LEVEL 7				PAGE	48 - 81/145	
	NI TROGN2	NITROGNA	PHOSS	PH054	DIESELPI	DIESELPZ	DIESELP3	DIESELP4	291
BOUND	LOWER	LOWER	LOVER	LOWER	LOVER	LOWER	LONER	LONER	BOUND
ANS TROG2	-000000	•	•	•	•	•	•	•	RNI TROG2
BN 1 1064	•	-00000-1	•	•	•	•	•	•	RNITROG4
RPH052			1.00000	•	•	•	•	•	RPH052
RPH054	•	•	•	1.00000	•	•	•	•	RPHOS4
ROIESEL 1	•	•	•	•	-000000*1	•	•	•	RDIESELI
ROIESEL 2	•	•	•	•	•	1.00006-	•	•	ROIESELZ
ADIESEL3	•	•	•	•	•	•	1.00000-	•	ROJESEL3
RDIESELA	•	•	•	•	•	•	•	-000001	ROIESELA
RCASHFL!	•	•	•	•	1.00000	•	•	•	RCASHFL 1
RCASHFL 2	*24000	•	.23000	•	•	1.0000€	•	•	RCASHFL2
ACASHFL 3	•	•	•	•	•	•	1.00000	•	RCA SHIFL 3
RCASHFL 4	•	.24000	•	.23000	•	•	•	1.00000	RCASHFLA
ACCT GCF I	•	•	•	•	1 -00000	•	•	•	ACCTGCF1
ACCT GCF 2	.24000	•	.23000	•	•	1.00000	•	•	ACCTGCF2
ACCTGCF 3		•	•	•	•	•	1.00000	•	ACCT GCF3
ACCT GCF 4	•	.24000	•	.23000	•			1.00000	ACCTGCF4

. KPSX-VIMY.	.MPSX-VIMT EXECUTOR.	MPSX RELEASE I	I MOD LEVEL 7				PAGE	49 - 81/145	
	DIESELPS	DIESELP6	GASOLNPI	GASOLNP2	GASOLNP3	GA SOLNP 4	GASOLNPS	GASOLNP6	301
BOUND	LOWER	LOVER	LOVER	LOWER	LOVER	LOVER	LOWER	LOWER	BOUND
2 138 3100	-00000-1	•	•	•	•	•	•		RD1ESELS
BOTE SEL S		1.00000	•	•	•	•	•	•	RDIESELG
)))) ;	1.60000=	•	•	•	•	•	RGASOLNE
BEACOLNS	• •			1.00000-	•	•	•	•	RGASOL NZ
TOTAL NAME OF THE PARTY OF THE	•		•	•	1.00000	•	•	•	RGASOLN3
	• •	, (•	•	1.00000-	•	•	RGASOLN4
	•	• 1			•	•	-000000-1	•	RGASOL NS
	• •			•	•	•	•	1.00000	RGA SOLN6
DCASME! 1			1.65000		•	•	•	•	RCASHFL 1
BCASHEL 2		. •	•	0.050.1	•	•	•	•	RCA SHIFL 2
DCACLES 2	. (, (. •	•	1.05000	•	•	•	RCASHFL 3
OCACHELA	• •			•	•	1.05000	•	•	RCASHFL4
OCASHELS	00000	. (•	•	•	1.05000	•	RCA SHFL 5
DCACMER A	•	00000		. •	•	•	•	1.05000	RCASHIFL 6
	•))))	1.05000	•	•	•	•	•	ACCTGCF1
	•	• •	•	1.05000	•	•	•	•	ACCT GCF2
	• .	• •			0.0000	•	•	•	ACCTGCF3
ACCT 607.5	•	• •	• •	•	•	1.05006	•	•	ACCTGCF4
		• (, ,			•	1.05000	•	ACCT GCF5
ACCTOCT 2		50000				•	•	1.05000	ACCTGCF6

.THINSX-VEHT.	MPSX-VIM7 EXECUTOR.	MPSX REI	EASE I HOD LEVEL 7				PAGE	50 - 61/145	
	CORNCONB	GRSDCOMD	GRSOCOMI	WHICOMBD	NH TCGNB1	COTNSAME	COTNGING	CORNHAUL	311
BOUND	LOVER	Lower	LOWER	LOVER	LOVER	LOVER	L OWER		GNOOD
MUCCCORN	-00000	•	•	· •		•		•	RCCCORNN
arrenson		-000001	•	•	•	•	•	•	RCCGRSOD
RCCGRS01	•	•	-00000-1		•	•	•	•	RCC GR SO!
RCCUHETD	. •	•	•	1.00000-	•	•	•	•	RCCWHETD
RCCWHETI	•	•	•	•	-00000-1	•	•	•	RCCWHET !
RCSHCOTN		•	•	•	•	1 .00000-	•	•	RC SHCOIN
BGCNCOIN		•	•	•	•	•	1.00000-	•	RG I NCDI N
RHAUL CRN		•	•	•	•	•	•	-00000-1	RHAULCRN
RCASHFL 3	•	•	•	10.0000	. 1 0000	•	•	•	RCASHFL 3
RCASHFL 5	.25000	9.00000	.35000	•	•	•	•	.15000	RCASHFL5
ACASHFI 6			•	•	•	1.50006	2.00000	•	RCASHFL6
ACC16CF3		•	•	10.0000	.10000	•	•	•	ACCT GCF 3
ACCTGCFS	.25000	00000	.35000	•	•	•	•	.15000	ACCTGCF5
	1			•	•	2.50000	000000	•	ACCT6CF6

. * MPSX=VIN7	MPSX=VINT EXECUTOR.	X SG X	RELEASE 1	NOD LEVEL 7				PAGE	51 - 81/145	81/145	
BOUND	GR SDHAUL LOWER	MHETHAUL		CGRNDRY G LOVER	BORROVP! LOWER	BURROVP 2 Lover	BORROWP:	BORROWP4 LOWER	BORS	BORROWPS	321 BOUND
900	-00000-	•		•	•			•	•		RHAUL GRS
			.0000		•	•	•	•	٠		RHAUL WHT
MANUTARY OF THE PROPERTY OF TH	• •			1.0000-	• •	•	•	•	•		RDRYCORN
	•				-00000-1	•	•	•	•		RCASHFL 1
	•	•			1.02330	-00000	•	•	•		RCA SHFL 2
RCASHFLZ OCACUTE 3	•		0000			1.02330	1.0000	•	•		RCASHFL3
RCASINE S	•	:)			•	1.02330	1.00000	•		RCA SHFL&
				12000		. •	•	1.02330	-	-00000	RCASHFL.5
OCASHILS OCASHE &		• •				•	•	•	-	1.02330	RCASHFL6
ACCTGCFG		12	12000	•			•	•	•		ACCTGCF 3
,		1									

. * MPSX=VI N7.	MPSX-VINT. EXECUTOR.	MPS X REI	LEASE 1 MOD LEVEL 7				1 2 1	70	,
	BORHOWP6 LOUER	INVSTRP1 LUMER	INVSTRP2 Lover	INVSTRP3 Lower	INVSTRP4 LOWER	[NYSTRPE LOWER	INVSTRP6 LOWER	SELLCORN LOWER	331 GOUND
		,			•		•	•	RCASHFL1
RCASHFL L	•	1.00000	•		•		•	•	RCASHFL 2
RCASHFL2	•	1.00000	00000	•	•	•	• •		RCASHFL3
RCASHFL 3	•	•	1000001	00000	• •	•	•	•	RCASHFL4
RCASHFL4			•	-00000-1	00000	10000	• •	48000	RCASHFL 5
RCASHFL5		•	•	•		-0000	1.00000	•	RCASHFL6
RCASHFL6	-00000*1	•	•	•	•		-00000-1	•	RCASHFL 7
RCASHFL7	1 + 02330	•	•	•	•	• •	•	2.48000=	ACCTGCF5
ACC T GCF 5	•	•	•	•	•	•	,	1-00000	RSELLCRN

. THIN X - NINY .	MPSX-VIN7 EXECUTOR.	MPSX	ELEASE ! MOD LEVEL ?				7 X GE	c+1/10 + FG	
BOUND	SELLCOIN	SELLCT SD Lower	SELLCRSD Lower	SELLWHET	SELLGRAZ Lover	OBJCOL LOWER	IRRGVCI Lower	FRGVC2 LOWER	341 80UND
:			•	•	•	1.00000	•	•	1000
1700	•	•		-00000	-00000-		•	•	RCASHFL 3
MCAGH-L G	•	•	• .	7		•	,	•	A 1940
RCASHFLS	•	•	4.02000-	•	•	•		•	
BCASHFL 6	-53300-	-00000	•	•			.77308	1.50000	RCASHFLD
OC AS HEL 7		•	•	•	•	1.00000	•	•	RCASHFL 7
* # 10 F 10				3.00000	-00000-1	•	•	•	ACCT GCF 3
	•	•	4.52000	•	•		•	•	ACCTGCFS
ACCTOCIO				•	• (.77308	1.50000	ACCTGCF6
ACCTGCFB	-00566		•	•	,	•			107 1130
RSELLCOT	1.00065	•	•	•	•	•	•	•	
DAME I CTS	•	1.00000	•	•	•	•	•	•	2777
2021			1.00000	•	•	•	•	•	RSELL GRS
		• •		00000	•	•	•	•	RSELLWHT
	•	. ,			1.00000	•	•	•	R SELL GR Z
MOLLICA:	•	•	•	,		1	F00000-1	•	199167
100 Page	•	•	•	•	•	•		•	

.. MPSX=V1M7.. EXECUTOR. MPSX RELEASE 1 MCD LEVEL 7

	RS1	
BOUND		BOUND
LAND	100.00060	LAND
FWATER22	20.86861	FWATER22
FWATER23	20.86861	FWATER23
FWATER31	20.86861	FWATER31
FWATER32	20.86861	FWATER32
FWATER33	20.86861	FWATEREE
FWATER41	20.86861	FWATER41
FWATER42	20.86861	FWATER42
FWATER51	20.86861	FWATER51
FWATER53	20.86861	FWATER53.
FWATER62	20.86861	FWATER62
FWATER63	20.86861	FWATER63
FWATER71	20.86861	FWATER71
FWATER72	20.86861	FWATER72
FWATER73	20.85861	FWATER73
FWATER81	20.86861	FWATER81
FWATER82	20.86861	FWATER82
FWATER83	20.86861	FWATERE3
FWATER91	20.86861	FWATER91
FWATER92	20.86861	FWATER92
FWATER93	20.86861	FWATER93
RMAXLAB1	76.09375	RMAXLA81
RMAXLA82	133.43750	RMAXLAB2
RMAXLAB3	145.31250	RMAXLAB3
RMAXLAB4	149.21875	R#AXLA84
RMAXLAB5	119.37500	RMAXLAB5
FMAXLAB6	91.25000	RMAXLAB6
IRRIGVC2	60.00000	IRRIGVC2

APPENDIX B

AN EXAMPLE OF THE SIMULATION

MODEL COMPUTER OUTPUT

The simulation model generates 20 stochastic estimates of the annual value of wind power. Sample output from the simulation model is shown on the following two pages. The first, as an example, shows the results from one of the 20 simulations. The second is a table summarizing the results of all 20 simulations.

として、「大きつによる	GENERATED	5506.65	4918.20		7316.83	6449.49	6177.97	4043.36	4073.16	5353,31	4718.07	4634.88	3943, 31	65578.81
	SOLD	4955,98	4426.38	3800 • 93	4703,02	5804.54	4913.87	2633,37	2816.23	4817,98	4246.25	4171.38	3548.97	50838.90
	PURCHASED	00.0	00.0	11431.26	6628.71	00.0	4475.42	7602.56	7775.94	00.00	00.00	00.00	00.0	37913.89
CCCONTAIN CECONICIN CECONICIN ELECTRICINY	USED	00.0	00.0	15651.70	8720.00	00.0	5193,56	8720.00	8720.00	00.0	00.0	00.0	00.0	47005,25
	MONTE		ď	m	4	ស	ø	_	ဆ	Ō	10	11	12	TOTAL

NET PROFIT = 14842.29

		PURCHASED	ELECHRICITY ELECTRICITY ELECTRICITY PURCHASED SOLD GENERATED	ELECTRICITY GENERATED
MAXIMUM	15040.05	3926E.67	54719.17	70953.50
MON NO.	14795.27	36174.59	50084.71	65220.67
#EAN	14908.58	37566.66	52442,95	67708.25
STO. DEV.	60.93	718,22	1321.00	1708.03

APPENDIX C

AN EXAMPLE OF THE TEMPORAL MODEL COMPUTER OUTPUT

ITEM	UNIT	VAL UE
CORN PRICE	\$/BU.	3.060
COTTON LINT PRICE	\$/L8.	0.0
COTTON SEED PRICE	\$/TON	0.0
GRAIN SORGHUN PRICE	S/CWT.	5.520
WHEAT PRICE	\$/BU.	3.140
ELECTRICITY PURCHASE PRICE	\$/KWH	0.050
ELECTRICITY SELLING PRICE	\$/KWH	0.030
CIESEL FUEL PRICE	\$/GAL.	1.000
GASOLINE PRICE	\$/GAL.	1.050
NITROGEN PRICE	\$/LB.	0.240
PHOSPHOROUS PRICE	\$/LB.	0.230
CROPLAND ACRES	ACRES	144.000
LAND CONTRIBUTING TO IRRIGATION	ACRES	393.000
YEAR 1 SATURATED THICKNESS	FEET	225.000
YEAR 1 LIFT	FEET	200.000
BEGINNING SATURATED THICKNESS	FEET	250.000
BEGINNING WELL YIELD	GPM	600.000
WECS RATED GUTPUT	KW	60.060
WECS CUT=IN SPEED	MPH	13.000
WECS RATED SPEED	MPH	32.000
WECS CUT-OUT SPEED	MPH	45.000
WECS HUB HEIGHT	FEET	65.600
FLANNED YEARS OF ANALYSIS	YEARS	20.000

51.79 36.49 0.00

49.55

49.55

ACTIVITY L	EVELS				
CORNSO2F		97	GRS0101F	11.96	GRS0202F
GRSD203F	39.		GRSG301F	1.97	GRS0401F
PPCORN33	1.9		PPGRSD22	27.84	PPGRS023
PPGRS031	51.		PPGRSD32	13.12	PPGRS033
PPGRS031	51.5		PPGRSC32	13.12	PPGRS033
IRRIGATION	WATER		ACRE-FEET	5	WODAH
			PUMPED	F	RICE
	WATER2	2	16.24		0.0
	WATER2	3	0.00		0.0
	WATERS	1	30.05		=2.59
	WATER3	2	7.65		0.0
	WATER3	3	30.05		-2.59
	WATER4	1	0.0		0.0
	WATER4	2	C • C		0.0
	WATER5	1	0.0		0.0
	WATER5	3	0.0		0.0
	WATER6	2	0.0		0.0
	WATERO	3	0.0		0.0
	WATER7	1	26.72		0.0
	WATER?	2	0.66		0.0
	WATERT:	3	30.05		91.90
	WATER8	1	0.66		0.0
	WATER8	2	30.05		77.10
	WATERS	3	30.05		2.89
	WATER9	1	0.66		0.0
	WATER9	2	0.0		0.0
	WATER9	3	0.0		0.0
FOR IRR	-		PURCHASED	CEN	ERATED
FUR INK	MONTH	2	6254.63		369.27
	MONTH	3	24698.06		112.40
	MONTH	4	0.0	• .	0.0
	MONTH	5	0.0		0.0
	MONTH	5 6	0.0		0.0
			23590.37	4	372.03
	MONTH	7 8	25308.92		215.59
	MONTH	9	264.21	<u>.</u>	43.57
	PUNIT	7	FOASET		
CROPL AND			ACRES	:	SHADOW
			CROPPED		PRICE
			144.00		2.21
			= -		

ACTIVITY L	FVFI S					
CORN502F		97	CRS0101F	11.96	GRS0202F	51.79
GRS0203F	39.		GRSC301F	1.97	GRS0401F	36.49
PPCORN33	1.		PPGRS022	27.84	PPGRS023	0.00
PPGRSC31	51.		FPGRS032	13-12	PPGRS033	49.55
PPGRS031	51.	-	PPGRSG32	13.12	PPGRS033	49.55
					,	,,,,,,,
IRRIGATION	WATER		ACRE-FEET	5	SHADO W	
			PUMPED	F	RICE	
	WATER2	2	16.24		0.0	
	WATER2	3	0.00		0.0	
	WATERS	1	30.05		=2.59	
	WATER3	2	7.65		0.0	
	WATER3	3	30.05		-2.59	
	WATER4	i	0.0		0.0	
	WATER4	2	0.0		0.0	
	WATER5	l	0.0		0.0	
•	WATER5	3	0.0		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER7	1	26.72		0.0	
	WATER7	2	0.66		0.0	
	WATER 7	3	30.05		91.90	
	WATER8	1	0.66		0.0	
	WATERS:	2	30.05		77.10	
	WATERS.	3	30.05		2.89	
	WATER9	1	0.66		0.0	
	WATER9	2	0.0		0.0	
	WATER9	3	0.0		0.0	
	-					
ELECTRICIT			DUDCHASED	CENE	CATED	
FOR IRR	MONTH	2	PURCHASED 6400.55		ERATED 869.27	
	MONTH	3	25306.67	-	12.40	
	MONTH	4	0.0	• •	0.0	
	MONTH	5	0.0		0.0	
	MONTH	6	0.0		0.0	
	MONTH	7	24106.40	3.	372.03	
	MONTH	8	25854.84		215.58	
	MONTH	9	270.10		43.57	
		-				
CROPL AND			ACRES	5	SHADOW	
			CROPPED		PRICE	
			144.00		2.60	

SUMMARY FOR YEAR 3

ACTIVITY L	EVELS					
CORNSO2F	1.9	7	GRSC101F	11.96	GRS0202F	51.79
GRSQ203F			GRSC301F	1.97	GRS0401F	36.49
PPCOFN33	1.9		PPGRSU22	27.84	PPGRS023	0.00
PPGR S031	51.5		PPGRS032	13.12	PPGRS033	49.55
PPGRSC31	51.5	_	PPGRSD32	13.12	PPGRS033	49.55
PPGKSUSI	31.40	2	PPGK3032	13112	FF 0113033	4,000
IRRIGATION	WATER		ACRE-FEET	5	HADOW	
			PUMPED	F	PRICE	
	WATER22		16.24		0.0	
	WATER23		0.00		0.0	
	WATERSI		30.05		~2.59	
	WATER32		7.65		0.0	
	WATERSS		30.05		-2.59	
	WATER41		0.0	•	0.0	
	WATER42		00		0.0	
	WATERS 1		0.0		0.0	
	WATER53	}	0.0		0.0	
	WATER62		0.0		0.0	
	WATER63	3	C.O		0.0	
	WATER71		26.72	-	0.0	
	WATER72	!	0.66		0.0	
	WATER73	}	30.05		91.90	
	WATERSI		0.66		0.0	
	WATER82	;	30.05		77.10	
	WATER83	3	30.05		2.89	
	WATER91		0.66		0.0	
	WATER92	2	0.0		0.0	
	WATER93	l .	0.0		0.0	
	<u>.</u> .					
ELECTRICI			545544555	CEN	FOATED	
FOR IRR		^	FURCHASED 6513.70	-	ERATED 369.27	
	MONTH	2		· ·	112.40	
	MONTH	3	25779.00 0.0		0.0	
	MONTH	4 5	0.0		0.0	
	MONTH	5 6	0.0		0.0	
		_	24506.57	- Ta	372.03	
	MONTH	7 8	26278.20	-	215.58	
	MONTH	9	274.67	٠.	43.57	
	MUNIT	7	214401			
CROPLAND			ACRES	1	SHADOW	
· · · · · ·			CROPPED	f	PRICE	
			144.00		2.90	

ACTIVITY L						
CORN502F		97		11.96		51.79
GRS0203F	39 •		GRSG301F	1.97		36.49
PPCOFN33		97		27.84	PPGRS023	0.00
PPGRS031	51.			13.12	PPGRSC33	49.55
PPGRS031	51.	52	PPGRS032	13.12	PPGRS033	49.55
IRRIGATION	WATER		ACRE-FEET		SHADOW	
			PUMPED		PRICE	
	WATER2	2	16.24		0.0	
	WATER2		0.00		0.0	
	WATERS	1	30.05		*2.59	
	WATER3	2	7.65		0.0	
	WATERS	3	30.05		-2.59	
	WATER4	1	0.0		0.0	
	WATER4	2	0.0		0.0	
	WATER5	1	0.0		0.0	
	WATER5	3	0.0		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER7	1	26.72	-	0.0	
	WATER7	2	0.66		0.0	
	WATER7	3	30.05		91.90	
	WATER8	1	0.66		0.0	
	WATER8	2	30.05		77.10	
	WATERS	3	30.05		2.89	
	WATER9	1	0.66		0.0	
	WATER9	2	0.0		0.0	
	WATER9	3	0.0		0.0	
ELECTRICI'	ry					
FOR IRR			PURCHASED	GEN	ERATED	
	MONTH	2	6630.20	1:	369.27	
	MONTH	3	26265.08	7	112.39	
	MONTH	4	0.0		0.0	
	HTHOM	5	0.0		0 • 0	
•	MONTH	6	0.0		0.0	
	MONTH	7	24518.57	3	372.03	
	MONTH	8	26714.07	3	215.59	
	HONTH	9	279.37		43.57	
COOR AND			ACRES		SHADOW	
CROPL AND			CROPPED		PRICE	
			144.00	:	3.20	
			144100		3120	

A # T T W T T W	EMELO					
ACTIVITY I		~ ~	60661016	11 04	CDEDOOSE	£1 70
CORN 502F	 -	97		11.96	GRS0202F	51.79
GRS0203F			GRSC301F	1.97	GRS0401F	36.49
PPCORN33	1.5			27.84	PPGRSO23	0.00
PPGRS031	51.	_	PPGRS032	13.12	PPGRS033	49.55
PPGRS031	51.3	52	FPGFS032	13.12	PPGRS033	49.55
IRRIGATIO	N WATER		ACRE-FEET	5	SHADOW	
			PU₩PED	F	PRICE	
	WATER2	2	16.24		0.0	
	WATER2		0.00		0.0	
	WATER3	-	30.05		-2.59	
	WATER3	_	7.65		0.0	
	WATER3		30.05		*2.59	
	WATER4		0.0		0.0	
	WATER4		0.0		0.0	
	WATER5		0.0		0.0	
	WATERS:		0.0		0.0	
	WATER6	-	0.0		0.0	
	WATER6	_	0.0		0.0	
	WATER?		26.72		0.0	
	WATER7		0.66	0.0		
	WATER7		30.05		91.90	
	WATERS		0.66		0.0	
	WATERS		30.05		77.10	
	WATERS:		30.05		2.89	
	WATER9		0.66		0.0	
	WATER9	_	0.0		0.0	
	WATERS		0.0		0.0	
•	MATERY.	.	0.0		3.0	
ELECTRICI'	TY					
FOR IRR	IGATION		PURCHASED	GEN	ERATED	
	MONTH	2	6750.19	13	369.27	
	MONTH	3	26765.74	73	112.40	
	HTHOM	4	0.0		0.0	
	MONTH	5	0.0		0.0	
	MONTH	6	0.0		0.0	
	MONTH	7	25342.93	33	372.03	
	MONTH	8	27163.01	3:	215.59	
	HONTH	9	284.22	·	43.57	
CROPL AND			ACRES		SHADOW	
			CROPPED		PRICE	

144.00 3.52

ACTIVITY L	EVELS					
CORN502F	1.9	7	GRSC101F	4.38	GRS0202F	53.68
GRS0203F	49.3		GRSC301F	1.97	GRS0401F	32.70
PPCORN33	1.9		PPGRSD22	27.84	PPGRS031	50.44
PPGRSQ32	15.2		PPGRS033	48.47		0.0
1 (0.0002	••••					
IRRIGATION	WATER		ACRE-FEET	•	SHADOW	
			PUNPED	•	PRICE	
	WATER2	2	16.24		0.0	
	WATER2	3	0.0		0.0	
	WATER3	L	29.42		-2.64	
	WATER3	2	8.92		0.0	
•	WATER3	3	29.42		-2.64	
	WATER4	l	0.0		0.0	
	WATER4	2	0.0		0.0	
	WATER5	l	0.0		0.0	
	WATERS.	3	0.0		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER7	i	28.€2		0.0	
	WATER7	2	0.66		0.0	
	WATER7	3	29.42		91.87	
	WATER8	L	0.66		0.0	
	WATER8	2	29.42		77.07	
	WATER8	3	29.42		2.86	
	WATER9	1	0.66		0.0	
	WATER9	2	0.0		0.0	
	WATER9	3	0.0		0.0	
ELECTFICIT	•					
FOR IRR			PURCHASED	GEN	ERATED	
1011 11111	MONTH	2	€€44.79		398.31	
4	MONTH	3	27129.17	7.	264.88	
	MONTH	4	0.0		0.0	
	MONTH	5	0.30		-0.30	
	MONTH	6	0.0		0.0	
	MONTH	7	26272.98	3	519.77	
	MONTH	8	26984.65	3	216.06	
	HTHOM	9	288.88		43.90	
CROPL AND			ACRES		SHADOW	
			CROPPED		PRICE	

144-00

ACT TU TTW 1	EVELO					
ACTIVITY L				16 70	COCOOACE	74 41
CORNSO2F	16.3		-	16.38	GRS0202F	34.41
GRS0203F				16.38	GRSO401F	34.65
PPCORN23	0.0	_	PPCCRN33	16.38	PPGRS022	26.27
PPGR SO31	48.7			12.41	PPGRS033	32.40
PPGRS031	48 • 7	78	PPGRS032	12.41	PPGRS033	32.40
IRRIGATION	N WATER		ACRE-FEET	5	SHADOW	
			PUMPED	F	PRICE	
	WATER2	2	15.32		0.0	
	WATER2		0.00		0.0	
	WATER3		28.45		=2.73	
	WATER3	-	7.24		0.0	
	WATER3	_	28.45		-2.73	
	WATER4		0.0		0.0	
	WATER4	2	0.0		0.0	
	WATER5	1	0.0		0.0	
	WATERS:	3	0.0		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER7	1	28.45		8.84	
	WATER7	2	5.45		0.0	
	WATER7	3	28.45	1	102.12	
	WATERS	1	5.45		0.0	
	WATERS:	2	28.45		87.33	
	WATERS	3	28.45		13.12	
	WATER9	1	5.45		0.0	
	WATER9	2	0.0		0.0	
	WATER9	3	0.0		0.0	
ELECTRICI FOR IRR			PURCHASED	CEN	ERATED	
FUR IRR	MONTH	-	6493.72		364.92	
	MONTH	_	25783.97		110.51	
	MONTH	4	3.30	•	-3.30	
	MONTH	5	0.0		0.0	
	MONTH	6	0.53		-0.53	
	MONTH	7	28112.16	3:	867.69	
	MONTH	8	28494.50		485.36	
	MONTH	9	2418.03		379.31	
	MW14111		2-10400			
CROPLAND			ACRES	:	SHADOW	
			CROPPED	!	PRICE	
			136.24		0.0	

ACTIVITY I	LEVELS					
CORN502F	24.	30	GRSC101F	24.30	GRS0202F	24.30
GRS0301F	24 •	0E	GRS0401F	33.90	WHET301F	2.05
PPCOFN33	24	30	PPGFS022	25.46	PPGRSO31	47.09
PPGR S032	11.	44	PPGRS033	22.80	PPWHET92	2.05
PPGR\$032	11 •	44	PPGRS033	22.80	PPWHET92	2.05
IRRIGATIO	N WATER		ACRE-FEET	;	SHADOW	
			PUMPED	F	PRICE	
	WATER2	2	14.85		0.0	
	WATER 2	3	0.0		0.0	
	WATERS	1	27.47		-2.83	
	WATER3	2	6.67		0.0	
	WATER 3	3	27.47		-2.83	
	WATER4	1	0.0		0.0	
	WATER4	2	0.68		0.0	
	WATERS	1	0.68		0.0	
	WATERS	3	0.68		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0 • 0		0.0	
WATER71		27.47		28.68		
WATER72		8.09				
	WATER7	3	27.47		114.31	
	WATERS	1	8.09		0.0	
	WATERS	2	27.47		99.51	
	WATERS	3	27.47		29.13	
	WATER9	1	8.09		0.0	
	WATER9	2	1.19		0.0	
	WATER9	3	C • O		0.0	
ELECTRICI	TY					
FOR IRR	I GAT ION		PURCHASED	GEN	ERATED	
	MONTH	2	6366.47	1:	369.49	
	MONTH	3	25015.30	7	074.52	
	MONTH	4	277.27		77.46	
	MONTH	5	567.86		141.60	
	MONTH	6	0.0		0.0	
	MONTH	7	26780.54		048.85	
	MONTH	8	29180.63		648.76	
	MONTH	9	4163.95		671.71	
CDOD: AND	•		ACOTE		SHADOW	
CROPL AND			ACRES CEOPPED		PRICE	
			133.14	1	0.0	
			133114		V 10	

ACTIVITY LEVELS CORN 502F
GRSO301F 24.87 GRSC401F 29.80 WHET301F 5.52 PPCORN33 24.87 PPGRSD22 25.49 PPGRSD31 45.41 PPGRSD32 12.97 PPGRSD33 20.54 PPWHET92 5.52 PPGRSD32 12.97 PPGRSD33 20.54 PPWHET92 5.52 IRRIGATION WATER ACRE—FEET SHADOW PRICE WATER22 14.87 0.0 WATER23 0.0 0.0 WATER31 26.49 =2.93 WATER32 7.57 0.0 WATER33 26.49 =2.93 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER42 1.84 0.0 WATER51 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER53 1.84 0.0 WATER63 0.0 0.0
PPCGRN33
PPGRS032 12.97 PPGRS033 20.54 PPWHET92 5.52 PPGRS032 12.97 PPGRS033 20.54 PPWHET92 5.52 IRRIGATION WATER ACRE—FEET SHADOW PRICE WATER22 14.87 0.0 WATER23 0.0 0.0 WATER31 26.49 =2.93 WATER32 7.57 0.0 WATER33 26.49 =2.93 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER53 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
PPGRSG32 12.97 PPGRSG33 20.54 PPWHET92 5.52 IRRIGATION WATER ACRE—FEET SHADOW PRICE WATER22 14.87 0.0 WATER23 0.0 0.0 WATER31 26.49 -2.93 WATER32 7.57 0.0 WATER33 26.49 -2.93 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER51 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER63 0.0 0.0
IRRIGATION WATER ACRE-FEET SHADOW PUMPED PRICE WATER22 14.87 0.0 WATER23 0.0 0.0 WATER31 26.49 -2.93 WATER32 7.57 0.0 WATER33 26.49 -2.93 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER42 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER63 0.0 0.0
PUMPED PRICE WATER22 14.87 0.0 WATER23 0.0 0.0 WATER31 26.49 =2.93 WATER32 7.57 0.0 WATER33 26.49 =2.93 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER42 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER53 1.84 0.0 WATER63 0.0 0.0
WATER22 14.87 0.0 WATER23 0.0 0.0 WATER31 26.49 =2.93 WATER32 7.57 0.0 WATER33 26.49 =2.93 WATER41 0.0 0.0 WATER41 0.0 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER31
WATER31 26.49 =2.93 WATER32 7.57 0.0 WATER33 26.49 =2.93 WATER41 0.0 0.0 WATER42 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER32 7.57 0.0 WATER33 26.49 =2.93 WATER41 0.0 0.0 WATER42 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER32 7.57 0.0 WATER33 26.49 =2.93 WATER41 0.0 0.0 WATER42 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER41 0.0 0.0 WATER42 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER42 1.84 0.0 WATER51 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER51 1.84 0.0 WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER53 1.84 0.0 WATER62 0.0 0.0 WATER63 0.0 0.0
WATER62 0.0 0.0 WATER63 0.0 0.0
WATER63 0.0 0.0
WATER71 26.49 28.43
WATER72 8.28 0.0
WATER73 26.49 114.49
WATER81 8.28 0.0
WATER82 26.49 99.70
WATER83 26.49 29.10
WATER91 8.28 0.0
WATER92 3.22 0.0
WATER93 0.0 0.0
ELECTRICITY
FOR IRRIGATION PURCHASED GENERATED
MONTH 2 6446.06 1421.46
MONTH 3 24821.15 7210.20
MONTH 4 758.48 214.02
MONTH 5 1558.21 386.78
MONTH 6 0.87 =0.87
MONTH 7 28328.55 4080.70
MONTH 8 28732.09 3677.55
MONTH 9 5224.25 861.24
CROPLAND ACRES SHADOW
CROPPED PRICE
134.80 0.0

ACTIVITY L	EVELS					
CORN502F	25 •	44	GRSC101F	25.44	GR S0202F	25.44
GRSO3C1F	25.	44	GRSC401F	25.75	WHET301F	8.95
PPCORN23	0.	00	PPCCRN33	25.44	PPGRS022	25.52
PPGRS031	43.	74	PPGRS032	14.49	PPGRS033	18.31
PPWHET92	8.	95	PPWHET93	0.00		0.0
IRRIGATION	WATER		ACRE-FEET	•	SHADO W	
			PUMPED		PRICE	
	WATER2	2	14.89		0.0	
	WATER2	3	0.00		0.0	
	WATERS	1	25.51		-3.05	
	WATERS.	2	8.45		0.0	
	WATERS:	3	25.51		-3.05	
	WATER4	1	0 • 0		0.0	
	WATER4	2	2.98		0.0	
	WATER5	l	2.98		0.0	
	WATER 5	3	2.98		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATERT	1	25.51		28.18	
	WATER7	2	8.47		0.0	
	WATER7	3	25.51		114.69	
	WATER8	1	E.47		0.0	
	WATER8	2	25.51		99.89	
	WATER8	3	25.51		29.07	
	WATER9	1	8.47		0.0	
	WATER9	2	5.22		0.0	
	WATER9	3	0.00		0.0	
ELECTRICIT	Y					
FOR IRRI	GATION		PURCHASED	GEN	ERATED	
	MONTH	2	6524.81	1	478.39	
	HTHOM	3	24625.53	7:	353.17	
	MONTH	4	1238.92	;	362.95	
	MONTH	5	2547.75	4	656.00	
	MONTH	6	0.87		-0.87	
	MONTH	7	27874.38	4	114.74	
	MONTH	8	28280.87	3	708 • 25	
	MONTH	9	6291.91	1	067.82	
CROPLAND			ACRES	:	SHADOW	
			CROPPED	!	PRICE	
			136.44		0.0	

ACT IV ITY	LEVELC					
	25.	00	C05C101E	25.99	CDCD2A2E	25 00
CORN502F GRSO301F	25. 25.		GRSG101F GRSE401F	21.76	GRS0202F	25.99 12.33
PPCOFN33	-			25.55	WHET301F	42.10
			FPGRS022	-	PPGRS031	
PPGR S032	-		PPGPSC33	16.11	PP#HET92	12.33
PPGRS032	15.	98	PPGRS033	16.11	PPWHET92	12.33
IRRIGATIO	N WATER		ACRE-FEET	9	SHADOW	
			PUMPED		PRICE	
	WATER2	2	14.90	•	0.0	
	WATER2		0.0		0.0	
	WATERS	_	24.56		=3.16	
	WATER3	_	9.32		0.0	
	WATERS		24.56		-3.16	
	WATER4		0.0		0.0	
	WATER4	_	4.11		0.0	
	WATER5	_	4-11		0.0	
	WATER5	_	4.11		0.0	
	WATER6	_	0.0		0.0	
	WATERS	_	0.0		0.0	
	WATER7	1	24.56		27.97	
	WATER7	_	8.66		0.0	
	WATER7	3	24.56	!	114.79	
	WATERS	1	8.66		0.0	
	WATERS	2	24.56		99.99	
	WATER8	3	24.56		29.01	
	WATER9	1	8.66		0.0	
	WATER9	2	7.19		0.0	
	WATER9	3	0.0		0.0	
ELECTRICI	TY					
FOR IRR	IGAT ION		PURCHASED	GENI	ERATED	
	MONTH	2	6561.97	1 9	536.98	
	HTHOM	3	24252.07	79	506.75	
	MONTH	4	1712.88		518.17	
	HTNOM	5	3522.66	•	939.43	
	MONTH	6	0.0		0.0	
	MONTH	7	27245.42		151.14	
	MONTH	8	27655.56		740.99	
	HTMOM	9	7331.18	13	280.91	
CROPLAND			ACRES		SHADOW	
CHUFLAND			CROPPED		PRICE	
			138.06	•	0.0	
			12010		010	

ACTIVITY I	LEVELS					
CORNEO2F	26.	54	GRSG101F	26.54	GRS.0202F	26.54
GRSD301F	26.	54	GRS0401F	17.83	WHET301F	15.66
PPCOFN23	0.	00	PPCCRN33	26.54	PPGRS022	25.57
PPGRS031	40.	48	PPGFSO32	17.45	PPGRS033	13.94
PPWHET92	15.	66	PPWFET93	0.00		0.0
IRRIGATION	WATER		ACRE-FEET		SHADOW	
			PUMPED	F	PRICE	
	WATER2	2	14.92		0.0	
	WATER2	3	0.00		0.0	
	WATERS	1	23.€1		-3.29	
	WATERS	2	10.18		0.0	
	WA TER 3	3	23.61		-3.29	
	WATER4	1	0.0		0.0	
	WATER4	2	5.21		0.0	
	WATER5	1	5.21		0.0	
	WATER5	3	5.21		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATERT	1	23.61		27.69	
	WATER7	2	8.84		0.0	
	WATER7	3	23.61	1	114.98	
	WATER8	1	8.84		0.0	
	WATER8	2	23.61	j	100.19	
	WATER8	3	23.61		28.97	
	WATER9	1	8.84		0.0	
	WATER9	2	9.13		0.0	
	WATER9	3	0.00		0.0	
ELECTRICI						
FOR IRR	IGATION		PURCHASED	GEN	ERATED	
	MONTH	2	6640.89	10	501.08	
	MONTH	3	24047.57	76	569.09	
	MONTH	4	2193.62	•	587.30	
	MONTH	5	4523.25	12	238.59	
	MONTH	5	0 • 0		0.0	
	HTMOM	7	26785.68	4	189.24	
	HTMOM	8	27198.97	3	775.95	
	MONTH	9	8416.39	15	312.99	
CROPL AND			ACRES	:	SHADOW	
			CROPPEC	ı	PRICE	

139.65

ACTIVITY	LEVELS					
CORN502F	27.	80	GRSC101F	27.C8	GRS0202F	27.08
GRS0301F	27.	80	GRSG401F	13.95	WHET301F	18.94
PPCORN33	27.	80	PPGRS022	25.60	PPGRSC31	38.89
PPGRS032	18.	90	PPGRS033	11.81	PPWHET92	18.94
PPGR 5032	18.	90	FPGRS033	11.81	PPWHET92	18.94
IRRIGATIO	N WATER	!	ACRE-FEET	4	SHADOW	
			PUMPED	F	PRICE	
	WATER2	2	14.93		0.0	
	WATER2	3	0.0		0.0	
	WATERS	1	22.68		-3.43	
	WATERS	2	11.03		0.0	
	WATERS	3	22.68		=3.43	
	WATER4	1	0.0		0.0	
	WATER4	2	6.31		0.0	
	WATER5	1	6.31		0.0	
	WATER5	3	6.31		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER 7	1	22.68		27.40	
	WATER?	2	9.02		0.0	
	WATER7	' 3	22.68	1	115.18	
	WATER8	11	9.02		0.0	
	WATERS	2	22.68	1	100.39	
	WATERS	Ε	22.68		28.93	
	WATERS	1	9.02		0.0	
	WATER9	2	11.05		0.0	
	WATER9	3	0.0		0.0	
ELECTRICE	TY					
FOR IRR	IGATION	ı	PURCHASED	GEN	ERATED	
	MONTH	2	6722.39	10	567.29	
	MONTH	3	23840.53	78	341.23	
	MONTH	4	2678.60	ŧ	364.76	
	MONTH	5	5526.39	15	560.32	
	MONTH	6	1.69		-1.69	
	MONTH	7	26322.54	42	230.88	
	MONTH	8	26740.82	36	312.60	
	HTHOM	9	9515.50	17	757.67	
CROPL AND			ACRES	3	SHADO W	
			CROPPED	ſ	PRICE	

141.22

ACTIVITY						
CORN502F	_		GRSC101F	27.61	GRS0202F	27.61
GRS0301F	27.	61	GRSC401F	10.14	WHET301F	22.17
PPCORN33	27.	61	PPGRS022	25.63	PPGRS031	37.32
PPGRS032	20 •	33	PPGRS033	9.70	PPWHET92	22-17
PPGRS032	20.	33	PPGRS033	9.70	PPWHET92	22.17
IRRIGATIO	N WATER		ACRE-FEET	:	SHADOW	
			PUMPED	ŧ.	PRICE	
	WATER2	2	14.95		0.0	
	WATER2	3	0.0		0.0	
	WATERS	1	21.77		-3.57	
	WATER3	2	11.86		0.0	
	WATERS	3	21.77		-3.57	
	WATER4	1	0.0		0.0	
	WATER4	2	7.38		0.0	
	WATER5	1	7.38		0.0	
	WATER5	3	7.38		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0 . 0	
	WATERT	1	21.77		27.16	
	WATER7	2	9.20		0.0	
	WATER 7	3	21.77	1	115.28	
	WATER8	1	9.20		0.0	
	WATER8	2	21.77	1	100.48	
	WATER8	3	21.77		28.85	
	WATER9	1	9.20		0.0	
	WATER9	2	12.93		0.0	
	WATER9	3	0.0		0.0	
ELECTRICE	TY					
FOR IRR	IGATION		PURCHASED	GENE	ERATED	
	MONTH	2	6754.09	17	739.68	
	HTHOM	3	23448.40	80	26.42	
	MONTH	4	3138.48	10	56.33	
	MONTH	5	6488.33	15	901.29	
	HTROM	6	2.56		-2.56	
	MONTH	7	25686.57	42	274.64	
	MONTH	8	26108.71	.38	352.50	
	MONTH	9	10552.53	26	020.02	
CROPLAND			ACRES	•	SHADOW	
			CROPPED	1	PRICE	
			142.77		0.0	

ACTIVITY :	EVELS					
ACTIVITY (CDCC101C	20 21	CRECORDE	20 21
CORNSO2F	28 • : 28 • :		GRSC101F	28.21	GRS0202F	28.21 24.91
GRSD301F			GRSC401F	6.24	WHET301F	
PPCORN23	0.		PPCCRN33	28.21	PPGRS022	25.63
PPGRS031	35.		PPGFSC32	21.91	PPGRS033	7.57
PPWHET92	24 *	91	PPWHET93	0.00		0.0
IRRIGATIO	U WATED		ACRE-FEET	4	SHADOW	
**************************************	, #F!EK		PUMPED		PRICE	
	WATER2	2	14.95	•	0.0	
	WATER2	_	0.00		0.0	
		_				
	WATER3	_	20.87		-3.72	
	WATERS.		12.78		0.0	
	WATERS		20.87		-3.72	
	WATER4		0.0		0.0	
	WATER4		8.29		0.0	
	WATER5	-	8.29		0.0	
	WATERS	3	8.29		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER7	1	20.87		43.09	
	WATER7	2	9.39		0.0	
	WATER7	3	20.87	;	113.39	
	WATERS	1	9.39		0.0	
	WATERS	2	20.87		98.60	
	WATER8	3	20.87		35.88	
	WATER9	1	9.39		0.0	
	WATER9	2	14.53		0.0	
	WATER9	3	0.00		0.0	
						•
ELECTRICI'	TY					
FOR IRR	EGAT ION		PURCHASED	GENI	ERATED	
	MONTH	2	6776.20	14	317.33	
	HTNDM	3	23088.82	8:	240.39	
	MONTH	4	3529.52	1:	237.62	
	MONTH	5	7305.24	2:	229.04	
	MONTH	6	0.63		-0.63	
	MONTH	7	25061.42	4:	323.68	
	MONTH	8	25488.67	3	896.43	
	HTHOM	9	11470.23	2:	279.42	
CROPL AND			ACRES	\$	SHADOW	
			CROPPED	4	PRICE	

144.00

ACTIVITY I	EVELS					
CORN502F	29.	1 1	GRSC101F	29.11	GRS0202F	29.11
GRS0301F	29 .	11	GRS0401F	1.79	WHET301F	25.76
PPC0FN23	0.0	00	PPCCRN33	29.11	PPGRS022	25.56
PPGR 5031	34.3	26	PPGRS032	24.16	PPGRS033	5.15
PPWHET92	25.	76		0.0		0.0
IRRIGATIO	WATER		ACRE-FEET	\$	SHADOW	
			PUMPED	ŧ	RICE	
	WATER2	2	14.91		0.0	
	WATER2	3	0.00		0.0	
	WATER3	1	19.58		-3.89	
	WATER3	2	14.09		0.0	
	WATER3	3	19.98		=3.89	
	WATER4	1	0.0		0.0	
	WATER4	2	8.58		0.0	
	WATER5	1	8.58		0.0	
	WATERS:	3	8.58		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATERT	1	19.98		41.65	
	WATER7	2	9.69		0.0	
	WATER7	3	19.98	1	13.73	
	WATERS	1	9.69		0.0	
	WATER8	2	19.98		98.93	
	WATERS:	3	19.98		35.32	
	WATER9	1	9.69		0.0	
	WATER9	2	15.03		0.0	
	WATER9	3	0.0		0.0	
ELECTRICI	- •					
FOR IRR			PURCHASED	-	ERATED	
	MONTH	2	6827.08		391.44	
	MONTH	3	89.080ES	_	532.75	
	MONTH	4	3683.65	_	333.35	
	MONTH	5	7624.43	24	109.57	
	MONTH	6	3.06		-3.06	
	MONTH	7	24657.50		385.27	
	HONTH	8	25090.52		952.25	
	MONTH	9	11999.71	24	457.47	
COOOL AND			10000		CHADOM	
CROPLAND			ACRES		SHADOW	
			CROPPED	,	PRICE	

144.00

ACTIVITY (_E VELS					
CORN 401F	1.	54	CORNSO2F	29.49	GRS0101F	29.49
GRS0202F	27.	95	GRS0301F	27.95	WHET301F	27.58
PPCORN23	0.	00	PPCCRN33	31.03	PPGRS022	25.40
PPGRS031	32 •	79	PPGRSO32	25.44	PPGRS033	1.76
PPWHET92	27.	58		0 • 0		0.0
IRRIGATION	N WATER		ACRE-FEET	:	SHADOW	
			PUMPED	•	PRICE	
	WATER2	2	14.81		0.0	
	WATER2	3	0.00		0.0	
	WATERS	1	19.13		-4.07	
	WATERS	2	14.84		0.0	
	WATERS	3	19.13		-4.07	
	WATER4	1	0.0		0.0	
	WATER4	2	9.18		0.0	
	WATER5	1	9.18		0.0	
	WATER5	3	9.18		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER7	1	19.13		55.00	
	WATER7	2	10.33		0.0	
	WATER7	3	19.13		99.59	
	WATER8	1	10.33		0.0	
	WATERS	2	19.13		129.25	
	WATER8	3	19.13		79.39	
	WATER9	i	10.33		0.0	
	WATER9	2	16.09		0.0	
	WATER9	3	0.0		0.0	
ELECTRICI	TY					
FOR IRR	EGATION		PURCHASED	GE N	ERATED	
	MONTH	2	80.5033	1	963.04	
	MONTH	3	22660.69	8	754.54	
	MONTH	4	3940.12	1	494.72	
	MONTH	5	£176.51	2	693.18	
	MONTH	6	0.0		0.0	
	MONTH	7	24267.55	4	482.17	
	MONTH	8	24709.90	4:	039.82	
	MONTH	9	12889.12	2	744.75	
CROPL AND			ACRES	:	SHADOW	
			CROPPED	ł	PRICE	

144.00

ACTIVETY	LEVELS					
CORN401F	4.	11	CORNEO2F	29.52	GRSD101F	29.52
GRS0202F	25.	40	GRSC301F	25.40	WHET301F	30.05
PPCORN23	0.	00	PPCGRN31	2.27	PPCORN33	31.35
PPGRS022	25 •	18	PPGFS031	29.08	PPGRS032	26.07
PPWHET92	30.	05		0.0		0.0
IRRIGATIO	N WATER		ACRE-FEET		SHADOW	
		_	PUMPED	F	PRICE	
	WATER2		14.69		0.0	
	WATER2		0.00		0.0	
	WATERS	1	18.29		=4.25	
	WATERS	2	15.20		0.0	
	ERSTAW	3	18.29		-4.25	
	WATER4	i	0.0		0.0	
	WATER4	2	10.01		0.0	
	WATER5	1	10.01		0.0	
	WATER5	3	10.01		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0 • 0		0.0	
	WATER7	1	18.29		54.25	
	WATER7	2	11.20		0.0	
	WATER7	3	18.29		99.53	
	WATERS	1	11.20		0.0	
	WATER8	2	18.29	1	129.89	
	WATER8	3	18.29		79.68	
	WATER9	1	11.20		0.0	
	WATER9	2	17.53		0.0	
	WATER9	3	0.0		0.0	
ELECTRIC!						
FOR IRR			PURCHASED		ERATED	
	MONTH	2	6758.73		36.05	
	MONTH	3	22074.63		930.80	
	MONTH	4	4289.06		703.06	
	MONTH	5	8915.55	30	068.70	
	MONTH	6	0.0		0.0	
	MONTH	7	23997.91		509.21	
	MONTH	8	24452.68		154.44	
	MONTH	9	14079.58	31	122.22	
CROPL AND			ACRES		SHADOW	
			CROPPED		PRICE	
			CHOPPED	7	71.106	

144.00

ACTIVITY L	EVELS					
CORN401F	6.0	65	CORNSO2F	29.54	GRS0101F	29.54
GRS0202F	22.	89	GRS0301F	22.89	WHET301F	32.48
PPCORN31	6.	26	FPCCRN33	29.93	PPGRS022	24.96
PPGRS031	23.	68	FPGRS032	26.68	PPWHET92	29.93
PPWHET93	2.	55		0 • C		0.0
IRRIGATION	WATER		ACRE-FEET	•	SHADOW	
			PUMPED	· ·	PRICE	
	WATER2	2	14.56	·	0.0	
	WATER2		0.0		0.0	
	WATER3	1	17.46		=4.45	
	WATER3	2	15.57		0.0	
	WATER3	3	17.46		-4.45	
	WATER4	1	0.0		0.0	
	WATER4	2	10.82		0.0	
	WATER5	1	10.62		0.0	
	WATER5	3	10.82		0.0	
	WATER6	2	0.0		0.0	
	WATER6	3	0.0		0.0	
	WATER7	1	17.46		53.49	
	WATER7	2	12.05		0.0	
	WATER7	3	17.46		99.47	
	WATER8	1	12.05		0.0	
	WATER8	2	17.46		130.52	
	WATERS	3	17,46		79.96	
	WATER9	1	12.05		0.0	
	WATER9	2	17.46		-2.62	
	WATER9	3	1.49		0.0	
ELECTRICIT	ГЧ					
FOR IRR	GAT ION		FURICHASED	GENI	ERATED	
	MONTH	2	6712.59	2	112.70	
	HTHOM	3	21477.59	9:	120.36	
	HTMOM	4	4629.49	1	926.00	
	HTNDM	5	9635.07	3	475.90	
	MONTH	6	2.22		-2.22	
	MONTH	7	23721.27	4	747.12	
	HTNOM	8	24190.13		278.26	
	MONTH	9	15259.30	3:	E27.62	
CROPLAND			ACRES	;	SHADOW	
			CROPPED	i	PRICE	

144.00

ACTIVITY I	LEVELS					
CORN401F	9.	4	CORNSO2F	29.57	GRS0101F	29.57
GRS0202F	20 •	2	GRS0301F	20.42	WHET301F	34.88
PPCOFN23	0.0	00	PPCCRN31	10.17	PPCORN33	28.54
PPGR \$022	24.		FPGRS031	18.37	PPGRS032	27.29
PPWHET92	28 • 9	54	PPWHET93	6.34		0.0
IRRIGATION	N WAIER		ACRE-FEET		SHADOW	
		_	PUMPED	•	PRICE	
	WATER2		14.44		0.0	
	WATER2	_	0.00		0.0	
	WATER3	-	16.65		-4.67	
	WATER3		15.92		0.0	
	WATER3	_	16.65		=4.67	
	WATER4	_	0.0		0.0	
	WATER4	2	11.61		0.0	
	WATERS:	-	11.61		0.0	
	WATERS:	-	11.61		0.0	
	WATER6		0.0		0.0	
	WATER6	3	0.0		0.0	
•	WATER7		16.65		52.29	
	WATER?	2	12.89		0.0	
	WATERT:	3	16.65		99.43	
	WATERS	1	12.89		0.0	
	WATERS:	2	16.65	;	131.65	
	WATERS.	3	16.65		80.51	
	WATER9	1	12.89		0.0	
	WATER9	2	16.65		-2.75	
	WATER9	3	3.70		0.0	
ELECTRICI'	TY					
FOR IRR	IGATION		PURCHASED	GENI	ERATED	
_	MONTH	2	6714.69	2	197.76	
	MONTH	3	21054.16	9:	325.03	
	MONTH	4	4998.37	2	170.43	
	MONTH	5	10423.45	3	914.15	
	MONTH	6	2.21		-2.21	
	MONTH	7	23613.70	4:	895.25	
	MONTH	8	24096.74		412.20	
	MONTH	9	16547.61	39	967.16	
COOP MA			10000		CUANCW	
CROPL AND			ACRES		SHADGW	
			CROPPED	1	PRICE	

144.00

YR.	IRR.	WATER	WELL	IRRIGATION FUEL	ELEC. NET
	ACRES	PUMPED	AIEFD 4	**********	SCLD RETURNS
			f	PURCHASED WIND GEN	•
1	144.	203.	800.	80116. 15113	. 74251. 12112.
2	144.	203.	800.	81939. 15113	• 74251• 11916 •
3	144.	203.	800.	83352. 15113	. 74251. 11842.
4	144.	203.	800.	64807. 15113	• 74251• l1765•
5	144.	203.	800.	86306. 15113	. 74251. 11686.
6	144.	203.	783.	87521. 15443	. 73954. 114 9 9.
7	1.36.	210.	757.	91306. 16204	. 73269. 11251.
8	133.	214.	731.	94352. 17032	. 72523. 10923.
9	135.	215.	705.	95870. 17851	. 71787. 10568.
10	136.	216.	679.	97385. 18740	. 70986. 10213.
11	138.	217.	654.	98282. 19674	. 70146. 9893.
12	140.	218.	629.	99806. 20674	• 69246. 9541.
1.3	141.	219.	604.	101348. 21733	. 68293. 9190.
14	143.	220.	580.	102180. 22868	· 67271 · 8910 ·
15	144.	221.	556.	102721. 24023	. 66232. 8597.
16	144.	219.	532.	102967. 24959	• 65389 • 8273•
17	144.	219.	509.	103447. 26172	. 64298. 7921.
18	144.	221.	487.	104568. 27624	• 62990• 7548•
19	144.	223.	465.	105628. 29186	• 61585. 71 7 9.
20	144.		443.		. 60061. 6769.
				AT 3% DISCOUNT	
PRES	SENT V	ALUE OF		AT 5% DISCOUNT	
PRES	SENT V	ALUE OF	RETURNS	AT 10% DISCOUNT	RATE 91307.12

APPENDIX D

PHYSICAL RESULTS FROM TEMPORAL ANALYSIS

Physical Results from Temporal Analysis a of a Wind Energy System: Southern High Plains, Farm Situation 2^{b} , Constant Electricity Price^c Table D-1.

	Item		Unit	With Wi	With Wind Power	Without Wind Power	ind Power
				Year 1	Year 20	Year 1	Year 20
Crop Acreage: Crop	Post-Plants	Ranke					
Cotton	0	-	acres		28.80		28.80
Cotton	П	2	acres	37.33	32.86	37.33	32.86
Cotton	2	, ,	acres	25.34		25,34	
Cotton	2	2	acres	37,33	32.86	37,33	32.86
Grain Sorghum	4	ī	acres		6.21		6.21
Cropland Shadow Price	, Price		dollars	256,50	179.41	254.33	173.81
Irrigation Characteristics: Well Yield	cteristics:		ÇPM .	556	291	556	291
Number of Limiting Seasonal Water Periods	ting Seasonai	Water	number	2	œ	2	œ
Range of Shadow Prices	* Prices		dollars	3.31-237.51	67.75-231.58	5,38-237,51	30.41-268.91
Electricity: Required for Irrigation Wind Generated	crigation		КМН	47071	51783	47071	51783
Sold			KWH	50330	44307		

 $^{\rm a}_{\rm 1985}$ simulated crop prices (see Table 13) are used in all temporal analyses.

^bFarm situation 2 has initial saturated thickness of 175 feet, initial lift of 175 feet, 100 acres of cropland and a 40 KW wind machine.

Constant electricity price of \$.05 per KWH.

 $^{\mathrm{d}}$ Refers to the number of post-plant irrigations applied.

^eRefers to the relative yield ranking among all activities of the given crop and the given number of post-plant irrigations.

Physical Results from Temporal Analysis a of a Wind Energy System: Southern High Plains, Farm Situation 4b , Constant Electricity Price c Table D-2.

Item			Unit	Wich Wi	With Wind Power	Without W	Without Wind Power
				Year 1	Year 20	Year 1	Year 20
Crop Acreage: Crop	Post-Plants	Rank					
Cotton	0 1 2	T 7 F	acres	53,76	20.01 61.99	53,76	20.01 61.99
Cotton	7 7	7	acres	53.76	61,99	36.49 53.76	61,99
Cropland Shadow Price	adow Price		dollars	254.09	226.72	251.83	224.51
Irrigation Cha Well Yield Number of Li	Irrigation Characteristics: Well Yield Number of Limiting Seasonal Water	later	MdO	800	550	800	550
Periods Range of Shadow Prices	adow Prices		number dollars	2 3.29-234.89	3 65,03-228,93	2 5.44-234.89	3 27.69-266.27
Electricity: Required for Irrigation Wind Generated Sold	. Irrigation ed		KWH KWH KWH	76055 13735 75491	84352 18768 70961	76055	84352

al985 simulated crop prices (see Table 13) are used in all temporal analyses.

 $^{
m b}_{
m Farm}$ situation 4 has initial saturated thickness of 225 feet, initial lift of 200 feet, 144 acres of cropland and a 60 KW wind machine.

Constant electricity price of \$.05 per KWH.

dRefers to the number of post-plant irrigations applied.

eRefers to the relative yield ranking among all activities of the given crop and the given number of post-plant irrigations.

Physical Results from Temporal Analysis $^{\rm a}$ of a Wind Energy System: Northern High Plains, Farm Situation 4b , Constant Electricity Price $^{\rm c}$ Table D-3.

Item		Unit	With Wind Power	id Power	Without	Without Wind Power
			Year 1	Year 20	Year 1	Year 20
Crop Acreage:						
	Post-Plants ^d Rank ^e					
Corn 4		acres		9.14		9.14
Corn 5	2	acres	1.97	29.57	1.97	29.57
Grain Sorghum 1	1	acres	11.96	29.57	11,96	29.57
Grain Sorghum 2	2	acres	51.79	20.42	51.79	20.42
Grain Sorghum 2	m	acres	39.83		39,83	! :
Grain Sorghum 3		acres	1.97	20.42	1.97	20.42
Grain Sorghum 4	1	acres	36.49		36.49	1
Wheat 3	1	acres		34.88		34.88
Cropland Shadow Price		dollars	2.21	16.50	2.78	10.90
Urrigation Characteristics: Well Yield Number of Limittus Gassonal Dates	:: 1040	GPM	800	443	800	443
Periods	1	number	m	7		7
Range of Shadow Prices		dollars	2.81-91.90	52, 29-131, 65	4.28-93.28	48.88-141.86
Electricity: Required for Irrigation Wind Generated		КМН	95229 15113	138331	95229	138331

 $^{\mathrm{a}}$ 1985 simulated crop prices (see Table 13) are used in all temporal analyses.

 $^{
m b}_{
m Farm}$ situation 4 has initial saturated thickness of 225 feet, initial lift of 200 feet, 144 acres of cropland and a 60 KW wind machine.

Constant electricity price of \$.05 per KWH.

 $^{\mathsf{d}}$ Refers to the number of post-plant irrigations applied.

eRefers to the relative yield ranking among all activities of the given crop and the given number of postplant irrigations.

Physical Results from Temporal Analysis $^{\rm a}$ of a Wind Energy System: Southern High Plains, Farm Situation 4 $^{\rm b}$, Increasing Electricity Price Table D-4.

Item	E		. Unit	With Wind Power Year 1 Yea	d Power Year 20	Without Wind Power Year 1 Year	ind Power Year 20
Crop Acreage: Crop	Post-Plants ^d	Rank ^e					
Cotton Cotton Cotton	0 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2	acres acres acres	53.76 36.49	20.01 61.99	53.76 36.49	20.01 61.99
Cotton	2	2	acres	53.76	61.99	53.76	66.19
Cropland Shadow Price	adow Price		dollars	254.09	195.47	251.83	189.39
Irrigation Cha Well Yield Number of Li	Irrigation Characteristics: Well Yield Number of Limiting Seasonal Water	Water	GPM	800	550	800	550
Periods Range of Shadow Prices	adow Prices		number dollars	2 3.29-234.89	3 6.19-171,42	2 5.44-234.89	3 13.10-177.62
Electricity: Required for I Wind Generated	ectricity: Required for Irrigation Wind Generated Sold		КИН КИН КИН	76055 13735 75491	84352 18768 70961	76055	84351

 $^{\mathrm{a}}_{\mathrm{1985}}$ simulated crop prices (see Table 13) are used in all temporal analyses.

 $^{
m b}_{
m Farm}$ situation 4 has initial saturated thickness of 225 feet, initial lift of 200 feet, 144 acres of cropland and a 60 KW wind machine.

CInitial electricity price of \$.05 per KWH and increasing by \$.005 annually.

dRefers to the number of post-plant irrigations applied.

Refers to the relative yield ranking among all activities of the given crop and the given number of post-plant irrigations.

Physical Results from a Temporal Analysis $^{\rm a}$ of a Wind Energy System: Southern High Plains, Farm Situation $^{\rm 2b}$, Increasing Electricity Price $^{\rm c}$ Table D-5.

Item			Unit	With Wind Power	d Power	Without W	Without Wind Power
				Year 1	Year 20	Year 1	Year 20
Crop Acreage:	•						
Crop	Post-Plants ^d Ranke	Ranke					
Cotton	0	-	acres		28.09		28.13
Cotton		7	acres	37.33	32.87	37.33	32.92
Cotton	2	1	acres	25,34		25.34	
Cotton	2	2	acres	37,33	32.87	37.33	32.92
Cotton	Dryland		acres		5.31		6.02
Grain Sorghum	3	-	acres		0.86		
Cropland Shadow Price	v Price		dollars	256,50	89.48	254.33	89.48
Irrigation Characteristics: Well Yield	steristics:		GPM	556	291	556	292
Number of Limiting Seasonal	tng Seasonal						
Water Periods	•		number	2	œ	2	7
Range of Shadow Prices	v Prices		dollars	3.31-237.51	14.73-180.04	5.38-237.51	21,85-195,33
Electricity:							
Required for Irrigation	rigation		KWH	47071	46318	47071	45445
Wind Generated			KWH	9154	14606		
Sold			KWH	50330	45423		

 $^{\mathrm{a}}_{\mathrm{1985}}$ simulated crop prices (see Table 13) are used in all temporal analyses.

bearm situation 2 has initial saturated thickness of 175 feet, initial lift of 175 feet, 100 acres of cropland and a 40 KW wind machine.

CInitial electricity price of \$.05 per KWH and increasing by \$.005 per KWH annually.

defers to the number of post-plant irrigations applied.

Refers to the relative yield ranking among all activities of the given crop and the given number of post-plant irrigations.

Physical Regults from Temporal Analysis^a of a Wind Energy System: Northern High Plains, Farm Situation 4^b, Increasing Electricity Price^c Table D-6.

ırem	Unit	With Wi	With Wind Power	Without	Without Wind Power
Crop Acreage:				iear r	rear 20
Crop Post-Plantsd Ranke	au i				
Corn 5 2	acres	1.97		1 97	
Crain Sorgnum 1 1	acres	11.96	57.53	11.96	41 25
Crain Sorgnum 2 2	acres	51.79	57,53	51.79	77.14
Crain Sofgnum 2 3	acres	39.83		39.83	77.75
Grain Sorghum 3 1	acres	1.97		1,97	16.63
	acres	36.49		36.49	1
orarii sorgiidii Dryland	acres		28.94	•	44.88
Cropland Shadow Price	dollars	2.21	29.87	2.78	29.87
Irrigation Characteristics: Well Yield	СРМ	800	510	OUX	r U
Number of Limiting Seasonal) †	000	51.5
water Periods Range of Shadow Prices	number dollars	3 2,89-91.90	3 7.44-60 53	3	2
Electricity:				07.66-07.6	39.36-47.33
Required for Irrigation Wind Generated Sold	KWH KWH	95229	73723	95229	68423
	E MA	TC74/	13/37		

 $^{
m a}_{
m 1985}$ simulated crop prices (see Table 13) are used in all temporal analyses.

bFarm situation 4 has initial saturated thickness of 225 feet, initial lift of 200 feet, 144 acres of cropland and a 60 KW wind machine.

CInitial electricity price of \$.05 per KWH and increasing by \$.005 per KWH annually.

 $^{\mathsf{d}}_{\mathsf{Refers}}$ to the number of post-plant irrigations applied.

^eRefers to the relative yield ranking among all activities of the given crop and the given number of post-plant irrigations.