Continuous Commissioning®
of Public Schools

Gary Napper, CEM
Guanghua Wei, PE
W. Dan Turner, PE, PhD
Juan-Carlos Baltazar-Cervantes, PhD

Dayu Dong, PhD
Li Song, PhD
Ik-Seong Joo, PhD

Texas A&M University
Bes-Tech Inc.
Introduction

- Austin ISD Capital Improvements Bond Programs
- CC® assessment started in June 2004
- Two elementary schools and one high school were selected
- Began CC® in April 2004
- Minor retrofits were performed in one school
Pickle Elementary School and St. John’s Community Center

- Built in 1999 with 116,000 ft² of area
- 10 single-duct VAV units
- 101 terminal boxes
- One 400 ton chiller and one 60 ton chiller
- One dual-cell cooling tower with VFDs
- 18 heating water heaters
- Most of the AHUs operate from 6:00 AM to 7:00 PM, Monday through Friday
Galindo Elementary School

- Built in 1986 with 83,000 ft2 of area
- 8 single-duct VAV units, with a heat recovery unit attached to each AHU at the outside air intake
- 80 terminal boxes
- Two 250 ton chillers
- One cooling tower with VFDs
- One 3.5 MBtu/hr boiler
- Most of the AHUs operate from 6:00 AM to 4:00 PM, Monday through Friday
Akins High School

- Built in 2000 with 300,000 ft² of area
- 12 single-zone constant volume AHUs
- 30 RTUs
- 8 HRUs that provide 100% fresh air to classrooms
- Two 300 ton chillers
- Two 3.0 MBtu/hr boilers
- CW pumps are equipped with VFDs
- Most of the AHUs operate from 7:00 AM to 8:00 PM, Monday through Friday
Problems Identified

- Some key sensors were found to be in error
 - The outside air relative humidity sensor reading at Pickle ES was constantly fluctuating between 1% and 99%
 - A failed space relative humidity sensor caused the AHU and the chiller plant to be constantly energized
 - One AHU duct static pressure sensor failed and was showing -0.2 inch of static pressure
 - Many CO₂ sensors were reading higher than actual
Problems Identified (cont’d)

- Time schedules for many units can be improved
- Excessive heating in the terminal boxes was observed at Galindo ES during the cooling season
- Outdoor air and relief air flow rates were almost twice as much as the amount required at Galindo ES and Akins HS
- Relief air fans released more air than the supply air fans supplied at Akins HS
The chillers at Galindo ES were always enabled
Constant and extremely high hot water loop ΔP setpoint was causing simultaneously heating and cooling at Akins HS
The existing outside air temperature enable setpoints at Pickle ES for the hot water system ranged from 75°F to 115°F
CC® Measures Implemented

- Calibrated/replaced sensors
- Adjusted time schedules to eliminate unnecessary runtimes
- Optimized the economizer cycle operation
- Disabled the heat wheel of the HRU during economizer mode
- Adjusted minimum OA intakes
- Reset AHU DAT setpoints based on outside air temperature and fan speed
CC® Measures Implemented

- Reset AHU static pressure setpoints
- Terminal box minimum airflow settings were adjusted lower based on actual space needs
- Optimized chiller start/stop sequence
- Reset CHW loop ΔP setpoint based on outside air temperature or maximum chilled water valve position
- Reset CW temperature setpoint based on ambient web-bulb temperature
CC® Measures Implemented

- Optimized hot water heater start/stop setpoints
- Reset hot water loop ΔP setpoint based on outside air temperature
- Reset hot water loop supply temperature setpoint based on outside air temperature
Minor Retrofits Performed

- VFDs were installed on several large constant volume AHUs at Akins HS
- Adjusted the fan pulleys to balanced HRUs supply and exhaust air flows
Savings From CC®

- Developed a baseline model
 - Based on utility bills and outside air temperature
- Savings determination
 - Difference between baseline estimate and actual utility bills
 - Utility rates of $0.054 - $0.081/kWh, $5.68-7.95/kW, and $5.82 - $13.0/Mcf
 - Savings were determined from June 2005 Through October 2006
Savings From CC®

![Graph showing energy savings](image)

- **Average Electricity Use [kWh/day]**
- **Average Tdb [°F]**

- **Red dots**: Pre_CC Baseline
- **Blue circles**: Post_CC Elec Use

Energy Systems Laboratory
Savings From CC®

Billed Average Gas Use [CCF/day] vs. Billed Period Average Tdb [°F]

- Pre-CC Gas Use
- Post_CC Gas Use

Energy Systems Laboratory

Bes-Tech
Savings From CC®

Energy Systems Laboratory
Savings From CC®

- Savings of 10-14% of total utility bills are achieved
- $110,000 in energy savings were achieved in 16 months, based on actual utility bills and price
Questions?