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ABSTRACT

A Versatile Simulation Tool for
Virtual Implementation of Proportional Integral and Derivative (PID) Controllers.
(May 2007)
Indu Ramamurthi, B.E., National Institute of Technology, Nagpur, India

Chair of Advisory Committee: Dr. Shankar P. Bhattacharyya

This thesis proposes an interactive software tool that can be used to compute complete
sets of Proportional Integral Derivative (PID) Controllers from knowledge of the plant
transfer function/frequency response data. This is based on research results and
algorithms developed by Bhattacharyya and others. Until these research results were
published, it was not known if a nominal system could be stabilized using PID
Controllers, and current PID Controller designs are carried out using ad hoc tuning rules.
By using simulations, engineers can best plan for and observe the stabilizing effect each

of the variables has on system performance in a realistic environment.

The software application developed calculates and optimizes complete stabilizing sets of
PID Controllers for a rational Linear Time Invariant (LTI) system, and has been
developed for analytical models of plants with and without time delay. Further, these
PID Controller sets are optimized to project subsets simultaneously satisfying multiple

performance index specifications. Sets of PID Controllers that stabilize a system are also



calculated automatically from knowledge of the frequency response of the plant. It
allows the user ease of design and the ability to customize the final solution while

permitting full control over source parameters.

This thesis includes an introduction to the algorithms that have been developed for plant
stabilization, a complete description of the graphical user interface, the simulation of the

algorithms performed using LabVIEW, and a summary of future work.
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CHAPTER |

INTRODUCTION

The thesis proposes a novel approach to the problem of stabilizing any given plant using
PID Controllers. Recent research results indicate that complete sets of PID Controllers
that stabilize a system can be estimated from the Transfer Function / Frequency
Response Data of a Linear Time Invariant System. For the first time an interactive
software has been developed that automates research results and makes it accessible to
all, by minimizing complex parameters that engineers have to comprehend to solve the
problem of stabilization. The solution to the algorithms requires a good insight into
control systems, and having a simulation interface allows the engineer to arrive at the

solution with minimal knowledge of how the algorithm actually works.

A. Background

Several control strategies have been developed over the last several decades, but most
control systems in the world are operated by PID (Proportional — Integral - Derivative)
Controllers. More than 95% of the Controllers used in process control applications are of
the PID type. Some of the reasons that PID Controllers are so widely used in the industry
are its simple structure (fixed, low order), robustness to modeling errors, relatively good

tracking and disturbance rejection.

This thesis follows the style of IEEE Transactions on Industrial Electronics.



B. Research Brief

The primary objective of the thesis was to develop a versatile design tool for analyzing
and verifying the stability of Linear Time Invariant systems. The result was the
simulation tool. The software has been developed in LabVIEW because of its elaborate
GUIs, and its data acquisition capabilities, which will prove very useful if the system is
turned into an online one. The thesis introduces the control system algorithms, and how
they have been automated, to allow the user full control over system parameters. Chapter
Il describes the necessity of having a Graphical user interface, and the advantages of
simulation and interface integration. A brief about the algorithms are presented in the
first section of Chapters Ill, IV and V, followed by an explanation of the “Block
Diagram” — where the code and calculations are outlined, the “Front Panel” - the User
Interface of the software tool, and an example to show the research results. Chapter VI
summarizes the research results, and proposes recommendations for future work, and

outlines a scheme for the hardware implementation of the above.

C. Results

Bhattacharyya and others developed Control System algorithms for the following:
(i) Complete sets of PID Controllers for Continuous time rational plants of arbitrary
order

(i) Compute complete sets of PID Controllers for model free systems



(iii) Compute complete sets of PID Controllers in first and arbitrary order Continuous

LTI systems with time delay

A Dbrief overview of the above mentioned research results and an illustrative example are
provided. Further, optimization of stabilizing sets of PID Controllers to project subsets
simultaneously satisfying multiple performance index specifications has also been

developed.



CHAPTER Il

LabVIEW - THE SIMULATION TOOL

A. Introduction

A Graphical User interface allows the user control over important input and output and
simultaneously ensures that there is no over configuring. It provides the user ease of
design and control. The manipulation of a simulation model might be straightforward for
the engineer who devises it, but sharing of the functionality with other engineers might
prove difficult. Though it is natural for the designer to distinguish between the necessary
inputs and the default parameters, the same is not true for a secondary user, and both
would benefit from an interface that shows all the relevant inputs and outputs, hiding
unnecessary parameters, especially when extensive coding is essential. In the
simulations accomplished as part of the thesis, extensive codes were written with several

default parameters to ensure smooth automated flow of the program.

B. LabVIEW as the User Interface

The solution proposed for the problem of stabilization of a plant using a PID Controller

is to determine complete sets ofk,, &, and k, in the closed loop which stabilize the

system. On solving the algorithms, the stabilizing sets are the solution of a linear

programming problem, which has been implemented in LabVIEW.



The inputs to the system are the transfer function (Numerator and Denominator) or the
frequency response data (model — free systems). The program computes the complete set

of k,values; as the user scans over the range ofk,, the program dynamically computes
ranges of k, and k, for each value of k. Any specific set of &, &, and &, values form

a stabilizing PID controller.

C. Inputs in LabVIEW Simulation

The input of the LabVIEW programs is the transfer function or the frequency response
data. In the latter case, the input is a file with the frequency response of the unstable
plant, and the number of right hand poles / zeros that the plant contains. Once the ranges
of k, k, and k, are finalized, the user can scan the range of &, and &, for a fixed

value of k,to get subsets of &, and k, which meets the user’s specs. In the time delay

case, the user also inputs the Time Delay of the system along with the transfer function.

The program deletes those ranges of &, and &, values in the stabilizing range that would

otherwise cause instability to the closed loop plant.

The program also gives the user a 3D graphical representation of the stabilizing sets of

k, k, and k,, which is very useful. Fig 2.1.1, Fig 2.1.2 and 2.1.3 show the Graphical

Input Interfaces for the Rational Time Invariant System, the Frequency Response



System, and the Linear Time Invariant System with Time Delay. The ranges that the

stabilizing set can extend to are also defined.

&
o 2 ¢ ¢ ¢

Fig. 2.1.1: Inputs to a Rational Linear Time Invariant System

(Numerator and Denominator Transfer Functions and Upper and Lower Limits)

Fig. 2.1.2: Inputs to the Model Free Case

(Frequency Response and Number of Right Hand Plant Poles)
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Fig. 2.1.3 Inputs to a Rational Linear Time Invariant System with Time Delay



(Numerator and Denominator, Time Delay Lo, and Upper and Lower Limits)

The input slides and knobs show the user the variable parameters, and the parameters he
can control, eliminating the confusion of sorting through the unnecessary constants and
algorithms. In this capacity, a user interface makes inputs easy to manipulate, and keeps

the user confines to the boundaries of simulation.

D. Outputs in LabVIEW Simulation

The program computes the range of &, values that stabilize the system. For a particular
value of £, the program computes the entire range &, -k, values that stabilize the plant.
It also gives the user a 3D plot showing the entire range of values on the &, - &, -k,

plot.

Fig.2.2.1 shows the stabilizing k ,range that is computed by software. Fig. 2.2.2 shows
the Stabilizing k,-k range that is calculated by solving sets of Linear Inequalities

forkpzl.
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CHAPTER Il

DELAY FREE RATIONAL TIME INVARIANT PLANT

A. Introduction

This result is based on an extension of the classical Hermite Biehler theorem for root

counting. The problem of stabilization is to determine the k,, k, and k, values which

would stabilize the Closed Loop system.
B. Theory

The system considered is G(s) where:

G(s) = % (3.1)

N (s) —Numerator, D(s)— Denominator, in the Laplace variable ‘s .
N(s)and D(s) are coprime polynomials

C(s) - PID controller where:

. k+k s+k,s*
C(s)=k, +%+de SRS (3.2)

N

k,,— Proportional Gain;
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k,— Integral Gain
k, — Derivative Gain.

The closed loop polynomial is shown in Fig. 3.1.

i) . sl

CONTROLLER PLANT

Fig 3.1: Closed Loop System with a PID Controller

The problem of stabilization is to determine thek ,, k,and k, values which will stabilize

the Closed Loop system. The closed loop polynomial given by:

O(s,k, k; k,) = sD(s) + (k; + k,s*)N(s)+ k,sN(s) (3.3)

The PID Controller stabilizes the system if for the calculated values of %,k andk,, the
closed-loop characteristic polynomial o(s k,. k. k,) is Hurwitz. Since all the three
parameters affect the even and even and odd parts of 5(s, k,, k;, k,) , @ new polynomial is

constructed where the even part depends on (&, &, ) and the odd part depends onk,, .

Defining:

N(s) = N,(s%) + 5N, (s°)
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D(s)=D,(s*) +sD,(s*)
N'(s) = N(=s) = N,(s*) = sN,(s*) (34)
n,m are the degrees of &(s,k,.k,k,) and N(s)respectively. Multiplying

o(s, k. k,, k,)with N'(s) & substituting s = jwand separating even and odd parts:

S(jo,k,.k.k, )N (jo) = p(o.k, k) + jq(o,k,)

p(o.k, k,) = py(@) + (k, —k,0°) p, (@)

q(@,k,) = q,(0) + k,q,(w) (3.5)

Hence:

p(®) =-0* (N (-0")D,(-0") - D,(-0*)N, (-o"))
p,(®) =N, (-0°)N,(-0°) + @°N,(-0")N,(-@°)
q,(®) = (D, (-@°)N,(-0") + @°D,(-0")N,(-0°))

q,(®) = o(N,(-0*)N,(-0") + @*N,(-0°)N, (-»°)) (3.6)

Here k,,k, appear in p(w,k;, k,) while k appears ing(w,k,), and does not depend on

k.ork,.Foragivenk,:

O=ay <@, <@,.<o, (3.7)
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are the real, non-negative, distinct finite zeros of ¢(w,k,)with odd multiplicities. A

sequence of numbers, iy,i,...J, are defined such that:

0 _{sgn[pl(:‘")(O)] If N (s) has a zero of multiplicity k, at the origin
\ =

¢ Otherwise
(3.8)
Where a e{-1,1}and
w
p, ()= — 242 __ (3.9)
(1+w?) ?
(i) For¢t=12,.,/-1:
0 If N'(jo,)=0
i, = ] (3.10)
a  Otherwise
a Ifn+miseven
(iii) 4, ={ (3.11)
If n+m is odd
Defining the string 7 : N — R as the following sequence of numbers:
I'={iy,0y,...., 0} (3.12)

Akp is the set of all possible strings 7 that can be generated to satisfy the requirements,

and y([7) is associated with any element / € Akp :
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For a given fixed k let 0=, <w <w, <..<w_, be the real, non-negative distinct
finite zeros of ¢, (@, k,) with odd multiplicities: @, = o and for each string 7 ={iy,i,..} in

4, .

P

Let »(7) is the imaginary associated with the string 7 defined by:
(1) =iy = 24+ 21, + ..+ (=724, +(-1)'3,1.(-1) " sgn[g(eo, &, )] (3.13)

The set ﬂp of feasible strings for the PID stabilization problem is defined as:

F, ={I e, |y(I)=n—((N(s)-r(N(s))} (3.14)

The PID stabilization problem with a fixed £, is solvable for a given plant with rational

transfer function, G(s) if and only if the following conditions hold:

(i)F,; is not empty, and there is at least one feasible string

(i) There exists a string

I={iy,ir,.}e F, (3.15)
and values of & and &, such that for all #=0,1,2.. for which

N (jw,)#0. p(w,k, k,)i >0, (3.16)

Where p(a,,k,, k,) is already defined.
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Also, if there exist values of & and &, such that the above condition is satisfied for the

feasible strings

L0y, I € F, (3.17)
Then the set of stabilizing (k;, k,) values corresponding to the fixed &, is the union of
(k. k,) values satisfying

plw,. &, k)i >0 forl,1,,.1I.. (3.18)

C. Block Diagram / Algorithm

The Numerator and Denominator of the Transfer Function are the inputs to the Block
“Initial Calculations,” where the signature, Numerator and Denominator order are

calculated.

The signature is given by:

n—((N(s)=rN(s)) (3.19)

The range of k, is varied from -100 to +100 in steps of 0.1, and at each point, the value
of g,(w k,)is estimated. If the real, non negative finite zeros of ¢, (w,k,)with odd

multiplicities is greater than or equals the minimum number of roots required according

to the signature, then that value of £ is a part of the stabilizing range for the plant. From
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here the complete stabilizing range of &, in a window of values is estimated. For higher

precision the range of values k , is scanned over can be controlled.

The user can also scan though the stabilizing range of &, and instantaneously observe
stabilizing ranges of %, -k,. The Block Diagram that computes this is shown in Fig.3.5.
Here, the stabilizing range of £, -k, at a specific value of £, is determined. The user can

determine the limits for the £, - k, range scan.

Hence, the inputs to the ki-kd range SubV1 are the Numerator, Denominator, Numerator

Order, Denominator Order, signature, and the specific value of &, that the user selects.
Using Eqn.3.18 inequalities are constructed to determine the stabilizing range of %, and

k, for the value of & that the user selects.

k, and k, are the unknowns in the inequality, and the sign of the inequalities are

determined by the value in the sign array, as given by Eqn.3.17. Hence, the equation has

been divided into the constant term and &, &, coefficient arrays. This is fed into a loop
that solves inequalities to estimate the & -4, ranges that simultaneously satisfy the

above inequalities for a particular value of &, .
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The Block diagram which is used to calculatek,, , k, & k, ranges is shown in Fig.3.2. The
SubVI “kp Co-Ordinates”, where the range of k, is shown in detail in Fig.3.3. In

Fig.3.4 Positive Real Roots are found for specific kp is calculated, which is essential in

computing the stabilizing ranges of &,, k,and £, . Fig. 3.6 denotes the front panel that

the user gets on opening the software tool, and Fig. 3.7 shows the 3-D graphical

representation of the complete stabilizingk,, k and k, set for the Transfer function

denoted in Fig. 3.6.

The advantage of using LabVIEW is that these complex mathematical calculations are
carried out instantaneously, and the output is a graphical representation of the calculated

ranges. So, as the user slides though the feasible &, range, the corresponding £ -

k, stabilizing ranges are graphically monitored.
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Fig. 3.7: Final 3-D Plot Showing Stabilizing Range for k, -k, -k,

Example:

For the plant defined by:
N(s)=s*+3s*+9
D(s)=s"+25>+3s+7s+14 , and

. k+k s+k,s*
C(s)=k, +£+kds=#
s s

22
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The closed loop polynomial is:

o(s k, k. k,)=sD(s)+ (k; + k,s*)N(s)+ k,sN(s), where:

D(s) = D, (%) + 5D, (s*)
N(s) = N,(s7) + N, (s7)

In the above case,

D,(jo) =o' -30° +14
D, (jo)=-2a"+7

N, (jw)=-30" +9
N,(jo) =~

Fig. 3.8 denotes the front panel of the software same results as generated by LabVIEW,

and Fig.3.9 shows the subsequent p,(w), p, (@) generated

Fig. 3.8: LabVIEW Generated Results for D, (jw), D, (j®),N,(j®), N, (jo)



24

And
N"(s)=N(-s) = N,(s*) = sN,(s°)

= (—4s+2)—s(s* +1)

o(s,k,, k;, k,)N"(s) =[s*(-12s° —180s* —183s” + 75) + (k, + k,5°)(—s° +14s* —175° + 4)]
+5[(—s® —65s° —246s* —225° +34) + k ,(—s° +14s* —175° + 4)]

S(jo.k, k. k)N (jo) =[p (@) + (k —k,0°) p, ()] + jlgy (@) + k,q,()]

(@) = -120° +1800° —1830w* — 750"
() =0® +140* +170° + 4
¢,(®) = -0’ + 650" —2460° + 220° + 340

7,(0) =o' +140° +170° + 40

o o Yo Jes Jo  fxs  fo  fs  Jo

L
i L0 TR RN =S R O R FR—.

Fig. 3.9: p,(w), p,(@) Generated from Fig. 3.8

When k, is fixed at -1.7:
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q(0,-1.7) = q,(0) + kg, (0) = -2.70" - 4.30° +22.80° 1170 .

Fig. 3.10 shows how LabVIEW computes g(w) and corresponding roots when &, =-1.7

Fig. 3.10: ¢(@) & Final Roots When k, =-1.7

Hence, the real, non-negative distinct finite zeros of ¢, (w,-1.7) with odd multiplicities

are @, =0,w, =0.781, w, =1.335

When k, is fixed at -1:

q(@,-1) = q,(v) + k,q,(0) = 450" —150° + 20° — 2w
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Fig. 3.11: g(w) & Final Roots When &, =-1

And the real, non-negative distinct finite zeros of ¢, (@, -1) with odd multiplicities are

, =0, =1.487 as shown in Fig. 3.11

Fig. 3.12: Conditions to be Met: Minimum Number of Roots & Signature

Since n+m =8as computed in Fig. 3.12, which is even hence the minimum positive real

roots of odd multiplicity other than zero that should be present = 2.



From the integer string generated in Fig. 3.13, the set 4,={-1,1,-1,1} satisfies the

signature = 6.

strings generated

g:'l:l -1 1 -1

i 0 0 |
! 0 0 0 0 0 0
f;:l 0
: 0 0 0 0 0 0
0 0 0 0 0 0 v
< y

Fig. 3.13: Strings of Integers Satisfying Inequalities

-1-1-1,-1 {1-1,-1,-1}
{L-1-13 {L,-1-11

{-1-11-1 {1,-11-1
-1-113  {,-113

{-11-1-3 {11-1-1
-11,-13  {41-13
-111,-3 {11-3
{-11,1,1 L1113

Since /(N (s))—r(N(s)) =—6and
(=1)""sgn[g (0, D] =1,

It follows from 4.3 that every string
1 ={ig,i by, i, 0,3 € F,

Needs to satisfy

iy — 2, + 21, — 2i; +i, =—6
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Hence, the stabilizing (k;, k,) values corresponding to k, = —1.7 must satisfy the string

of inequalities:

rp1(a’o) + (k, =k, @) py (@) > 0
) pi(@)+(k =k, ) p, () <0

Po(@,) +(k; —k,@;) p,(,) >0
LP1(0)3) +(k, _kda):)pz (0,) <0

Substituting for @, @, @,and @, in the above expressions, we obtain from Fig.3.14, the

Final Coefficient Array, from which stabilizing ranges of (%, k,)are computed

o o Jaswe e 1

E O T e

£ T —

Fig. 3.14: Final Coefficient Array

k, <0

81k, —31.5066k, < 29.96
19.01k, —33.8774k, <59.933
-k, <1

These linear inequalities are solved to find the stabilizing ranges of & .k, & k,
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The stabilizing range of &, values:

S(s,k, k. k,)k, e (~1.87,1.556) L (0.316,0.533) .

By sweeping over different & values in this interval and following the procedure, the
complete set of (k,, k,, k,)is Hurwitz. A simplified flowchart of the algorithm is shown

in Fig. 3.15

Input

Plant Transfer Function

A 4

Stabilizing Ranges of &,

For specific &,

Stabilizing Ranges of %, and &,

For specific &, and £,

A

PID Controller

Fig 3.15: Flowchart for a Linear Time Invariant System
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D. Final Program generated in LabVIEW

The front panel of the VI is shown in Fig.3.16. In this interactive program, the user is

able to navigate to the page of his choice. Once ranges of &,k and k, are determined,

the user can optimize these ranges with respect to performance index specifications.

After specifyingk, =1, the k;-k, range is shown on the right hand side. Page two
shown in Fig. 3.17 allows the user to scan through the & -k, range for a specific
k,value displaying instantaneously corresponding values of Gain Margin, Phase

Margin, Rise time, Peak time, Settling time and Overshoot. It also displays the Step
Response and Bode plots of the closed loop transfer function which gives the user an

idea of the stability of the system.

In the example shown in Fig.3.16, the transfer function used is:

N(s)=5-4s*+5+2
D(s) =s° +8s" +325° +46s5° + 465 +17 , and

Front panel of the VI where the k, —k, range is calculated for the value of & setto 1
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Page 1 | Page 2 | Page 3 | Page 4 | Page 5 | Page & | Page 7 | Page & | Page 9 | Page 10 | Page 11 | Page 12 | Page 13 | Page 14 | Page 15 | Page 16 |

specify x_upper, x_lower, v_upper, v_lower
o' . - - -
Menu Ring iy L 4 Hson | sm 500 o
HELR ¥ T T T T
Page 1 - Select Kp K5 ' . . = =
i t
Murn arder(m) I u.mera o . : :
Iy U A A A A
- B 1 -4 1 0 0 0
Selection of Menu done 8 2 JI| JI| JI| J”
=
DCNE Denom arder g Denominataor
oy i i i i i i
g DS g Tl e [efse  [of ot o
Ki- Kd Graph Pt [
6,0+
Kprange
1.0+
=)
e
0.0-
L0+ I I I I | | | 1
-00 -0 -0 -40 -20 00 20 40 &0

kp walue

¢ Cusord | 1.0 = ®| B0
=

I I I I I I I I I I I I I I
0005 1.0 1.5 20 25 30 35 40 45 5.0 55 60 65 7.0
Selection of kp done

Ki
mas valle -
42 l:l.“‘<s>m‘CsL:|rsorD ' T.S ' ;.4 ‘ : ® |
i alue ﬂ ﬂ
8.4

Fig. 3.16: Front Panel of the LabVIEW Program for &, Generation

Fig. 3.17 shows Page2 of the VI where for a specific value inside the Ki-Kd plane for a

specific value of Kp, corresponding Gain Margin, Phase Margin, Rise Time, Peak Time,

Settling Time and %Overshoot values are computed
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Fig. 3.17: Page 2 of the LabVIEW Program for &, & k, Generation

Fig. 3.18 shows Page 3 of the VI that allows the user to comb through the range of

acceptable Ki-Kd space for a specific value of Kp and displays the range of Ki-Kd

values that would stabilize the system till the User defined Gain Margin value
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Page 1 | Page 2 Page 3 | Page 4 | Page 5 | Page & | Page 7 | Page & | Page 9 | Page 10 | Page 11 | Page 12 | Page 13 | Page 14 | Page 15 | Page 16 |

Menu Ring 2
; ; Ki - kd Graph 4 Plot D
Page 3 - Select Gain Margin =~ I Selection of Menu done . E
6.0
L[
(orar 2
1.0- HELF .
0.0
-1.0-) [ [ [ [ [ [ [ 1
-10.0 -0 -6.0 -40 -20 00 2.0 4.0 &0 2
Kp walue
# Cursorl 1.0 - ® I
=
1
step size for ld step size For ki
5 4 6 i
Gain Margin{dg) 4\ ! .r6 . - Edmeli Mo el 8.0 ] I ] I ] I ] I ] I ] I ] )
3. 7 0.0 05 10 1.5 20 25 3.0 35 4.0 45 50 55 6.0 65 7.0
L S _ g 2- -8 Ki
R
0 0 1 20 - S =g -
. ~
:’_j 1 o’ M0 0 10 Cursors: | % |y | = ® |
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- @ ? T
Page 1 | Page 2 |

Cursors: E | ¥ { = ® I
< Cursord 0.0 0.0

< o]

Fig. 3.18: Generation of Stabilizing &, & k, Subsets for Specific Gain Margin

Fig. 3.19 shows Page 4 of the VI that allows the user to comb through the range of
acceptable Ki-Kd space for a specific value of Kp and displays the range of Ki-Kd

values that would stabilize the system till the User defined Phase Margin value



34
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Fig. 3.19: Generation of Stabilizing &, & k£, Subsets for Specific Phase Margin

Fig. 3.20 shows Page-5 of VI that indicates all the points in the Ki-Kd space that is

stable for a specific Kp value when the system has the user-defined Rise Time
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Fig. 3.20: Generation of Stabilizing &, & k, Subsets for Specific Rise Time

Fig. 3.21 shows Page-6 of the VI that indicates all the points in the Ki-Kd space that is

stable for a specific Kp value when the system has the user-defined Peak Time
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Fig. 3.21: Generation of Stabilizing &, & k, Subsets for Specific Peak Time

Fig. 3.22 shows Page-7 of the VI that indicates all the points in the Ki-Kd space that is

stable for a specific Kp value when the system has the user-defined Settling Time



Page 1 | Page 2 | Page 3 | Page 4 | Page 5 | Pages Page? |Pages | Page 9 | Page 10 | Page il | Page1z | Page1s | Page 14 | Page1s | Page 16 |

Menu Ring + Selection of Menu done HELP Ki-Kd Graph 7 FEE® E
Page 7 - Select Settling time T l 6.0
Kp range &
1.0
0.0-
1.0-

] i i i i
-io.0 -850 -60 40 -20 00 20 40 60
Kp value

# Cursard 1.0 - ® l
—

step size for kd 3

A step size for ki 4 o [
Settling time r? 6 4 6 X ) X J X X ) X
ks I ks i’ i
[ W -
T 5 2o & . =
0 50 100 1AL o w Selection of Kp done Cursors: B | ¥ | =
j_) 40 i’ S i N Y DoNE < Cursord 1.1 -2.4 —
Ll ]
j 0.25 :,l 0,125
Gt & i e i) Selection of Settling time and Step Sizes done Select an option from the meny <~ l
_ presqse of pain poinl noga isfying criteria r
i -DONE
Page 1 | Page 2 | -

Cursors: B | ¥ | = ® I
£ Cursar 0.0 0.0

< o

Fig. 3.22: Generation of Stabilizing &, &k, Subsets for Specific Settling Time

Fig. 3.23 shows Page-8 of the VI that indicates all the points in the Ki-Kd space that is

stable for a specific Kp value when the system has the user-defined % Overshoot
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Fig. 3.23: Generation of Stabilizing &, & k, Subsets for Specific Overshoot
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Page three to page seven allow the user to scan over the desired k,-k, range and find

subsets within stabilizing rages that satisfy performance index specifications. Pages 8 to

14 are to allow the user to scan over more precise areas on the , -k, plane for a specific

k,value. Fig. 1.6 shows the front panel of the VI where the £, -k, plane is scanned with

respect to the Gain Margin. The precision of the scan in all the pages is user-defined.
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CHAPTER IV
PID CONTROLLER SYNTHESIS: FREE OF ANALYTICAL

MODELS

A. Introduction

Calculation of stabilizing sets of PID Controllers can be estimated from Raw Plant data,
i.e. knowledge of only the frequency response (Nyquist or Bode plot) of the plant and
the number of RHP poles. Hence, the complete set of PID Controllers that stabilizes a
LTI plant can be computed from the frequency response data. This data can be obtained
experimentally, and the number of unstable poles can be determined from physical
considerations. The algorithms give a good idea about the frequency rage over which
accurate information of plant frequency response is needed for PID control, and the
complete set of stabilizing gains. The result is really valuable when an accurate

analytical / state space model of the system cannot be constructed.

B. Theory

In a Linear Time Invariant Systems with an underlying transfer function P(S)with n

poles and m zeros, if the only information available to the user is:

(1) Knowledge of the frequency response magnitude and phase —
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P(jo), we[0,»).
(i)  Knowledge of the number of RHP poles - p, : If the plant has no jw poles or

zeros then the magnitude and its phase are well-defined for allw >0 .

P(jo)=|P(jo)|e" =B (@) + P () (4.1)

Where

|P( ja))| -magnitude of the plant

¢(w) - Phase of the plant, at the frequency @

The PID Controller is of the form:

ki ks +k,s?

C(s) = ST T>0 (4.2)

where T is assumed to be fixed and small.
C. Algorithm

(1) Find the relative degree n—m from the high frequency slope of the Bode
Magnitude plot, and z, from the net phase change from the Bode phase plot
as shown in the example in Fig. 4.3

(i)  Fix k, = k: and solve for



(iii)

(iv)
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K= P () + TP (w) __cos d(w)+ ol sin g(w)
P(jo)| [P(je)|

(4.3)

And let o, <w, <..<@_, denote the distinct frequencies which are the
solutions for Eqn.4.1

Set @, =0,m, =0 and determine all strings of integers i, e{+l, 0,—1} and

je {+1,—1} such that:

For n—meven:
{iy =20, + 20, + .t (=D 20+ (-D'iy (=D j=n-m+2z, +2 (4.4)
For n—modd:

{iy =20 +20, +.t (=D 20 + (D' 2i J.(-DT j=n-m+2z, 42 (45)

For the fixed k| :k; chosen in Step (ii) solve for the stabilizing (ki,K,)

from:

o, sing(w,) - T cos (@) 50 (4.6)
P(jo) ‘

k, — ko +

Fort=0,1,...
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D. Block Diagram

As shown in Fig.4.1, the data file is taken in through the data interface defined in
LabVIEW. There are three columns with the Frequency, Magnitude and Phase

information of the plant.

The blocks ““delete duplicates” and “Maq & Phase Conv” converts the data into the
format used in the rest of the program. The VI “slope & n-m” calculates the high
frequency slope and hence n-m that is used in the block “Min Intersections™ to calculate

the Minimum number of intersections required for a stabilizing range of k to exist. Fig.
4.2 shows the block diagram used to generate stabilizing (k;,k, ) values for a stabilizing
value of Kk generated in Fig. 4.1. The SubVI “Gen Eqn™ computes the equation defined

in Eqn 4.6 vs. wvalues.

In “Strings of Integers™ the values of @ that correspond to the stabilizing range of k is

calculated, and based on the number of positive, real non-zero roots, the complete sets of
strings of integers are defined. The sets of strings that satisfy the signature condition as
described in Eqn 4.4 and Eqn 4.5 are identified in the SubVI ““Linear Inequalities”.

These are then translated to the (k;,k,) co-ordinates in the SubVI “Ki-Kd All

Intersections™, to give the final range of (k;,k; ) values for a specific value ofk , .
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E. Example

Taking a set of frequency data points for the stable plant
P(jw)={P(jw),® < (0,60) Sampled every0.01}.

The Nyquist and Bode plots are shown in Fig. 4.3

Fig. 4.3 Input — The Nyquist and Bode Plots for Frequency Response Data
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The high frequency slope of the Bode magnitude plot is
—20db / decade

Thus n—-m=1.

The number of right hand plane zeros,

z,=2.

r

The required signature for stability is given in Eqn 4.4 and Eqn 4.5 is:
o(I)=(n-m)+2z, +2=1+2.2+2=7
Since n—m is odd,

{iy =21, + 20, + .o+ (=D 20, + (D' 20, (<D j=n-m+2z,+2=7

At least 4 terms are required to satisfy the above, hencel > 4.

In Fig. 4.4 all the possible Strings of Integers generated are shown

skrings
9” It -1 I -1 0
go [ I -1 | 0
0 0 0 0

Fig. 4.4: Strings of Integers Generated by LabVIEW
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(4.7)

(4.8)

As shown in Fig. 4.5 the Im(a),k;)zo graph used to compute sets of stabilizing kp

values is shown. From here values in Fig.4.6 can be computed and we observe that the

frequency range over which plant data needs to be accurately known for estimatingk,,,
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kiand k, is[0.38,0.57]. Also there are at the most three positive frequencies as

solutions, which satisfies:

i, —2i, +2i, - 2i, =7 (4.9)

Hence, k, must be chosen so that Im(a, k;) =0 has exactly three positive real zeros.
The range of k , that stabilizes the plant can be graphically determined by estimating the
range over which the minimum number of intersections Kk, makes is greater than or

equal to the minimum number of intersections as shown in Fig. 4.7.

'

Fixing k,=04 and computing the set of @'s that satisfies:

3 cos¢(a))+c.oT sin ¢(w) _04 (4.10)
IP(jo)|

The solution for wis:

{o,0,,0,} ={1.74,2.586,3.102} (4.11)

Since the requirementi, —2i, +2i, —2i, =7, the strings satisfying this requirement is

computed in 4.8

The solution of these inequalities gives the k;- k; co-ordinates for a specific value of k .
The stabilizing set of k;- k; values for k = 0.4 are shown in Fig 4.8 and the 3-D

Representation of the entire stabilizing set is depicted in Fig. 4.9.
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Ki, Kd Graph m I

& CursordD | 1,99574 -0.5404 ‘ ® |

Fig. 4.8: k; —k, Stabilizing Range for k = 0.4

The complete set of stabilizing PID gains for k, = 0.4 is shown in Fig. 4.8. And by

sweeping over k we have the entire set of stabilizing PID gains as shown in Fig. 4.9.
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Fig. 4.9: 3-D Stabilizing Set ofk ,, k;and k,



53

CHAPTER YV

PID STABILIZATION OF SYSTEMS WITH TIME DELAY

Owing to the complex nature of systems with time delay, a single delay in the feedback
loop representing delay in control actions or delayed measurements has been accounted
for. This is modeled as e " where L represents the time in seconds. The following
sections deal with First Order System and Arbitrary Order Systems with time delay. In
case of First Order Plants with time delay, the complete set of stabilizing PID
Controllers can be estimated. For Plants of higher order, sets of PID Controllers that
cause instability in the system when time delay is introduced are computed and deleted

from the stabilizing range that has also been computed in Chapter I11.

A. First Order Stable Plant

1. Theory

The system considered is a simple feedback control system where G(s) is given by:

K
e
1+Ts

G(s) = (5.1.1)

C(s) is the PID controller where:
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C(s)zkp+%+ k,s (5.1.2)
k, - Proportional Gain

k- Integral Gain

k, - Derivative Gain.

When the time-delay of the plant, L =0, then the closed loop characteristic equation of

the system is:
5(s) = (T +kk,)s* + L+ kk,)s + Kk; (5.1.3)

Closed loop stability in a second order polynomial is equivalent to all the coefficients
having the same sign. Assuming the steady State gain k of the plant is positive these

conditions are:

K, >—%,ki >0 And k, >—% (5.1.4)
OR
k, < —%,ki <0And k, < —% (5.1.5)

When the time delay of the system is not zero, the Closed loop characteristic polynomial

is defined as:
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5(s) = (kk; +kk s +Kkys*)e™ +(1+Ts)s (5.1.6)
The quasi polynomial is:

5 (s) =e"5(s) = kk; +kk s +Kkys* + (1+Ts)se" (5.1.7)

Substituting s = jwand separating the real and imaginary parts:
S, (w) = kk, —kk,@” — @sin(Lw) - T »* cos(Lw) (5.1.8)

0,(w) = oKk, + cos(Lw) - T wsin(Lo)] (5.1.9)

In an Open-Loop Stable Plant whereT >0, and assuming k >0 andL >0,

The imaginary part of 8 (jw) has only simple real roots if and only if:

—% <k, < %Ealsin(al)—cos(al)} (5.1.10)

Where ¢ is a solution of the equation:

tan(a):—_l_TTa (5111)

in the interval (0, 7).

Defining z=Lw

For each value of k_ in the range, the necessary and sufficient conditions on k; and

k, for the roots of &, (Lw)and ¢, (L) to interlace are the following set of inequalities:
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k,>0

k, >mk. +b,

k, <m,k; +b, (5.1.12)
ky >m;k; +b,

k, <m,k +Db,

Where the parameters m; and b, for j=1,2,3,.. are given by:
m; =m(z;)

b, =b(z))
2
And m, EL—Z
Z

b(z) E—k—l'z[sin(z)+thcos(z)} (5.1.13)

2. Algorithm / Block Diagram

Fig. 5.1.1 shows the algorithm that is used to calculate ranges of k ,k;and k;. The
SubVI “kp-SubVI” calculates the stabilizing range of k as per Eqn 5.1.10. “Feasible

2’s” is the SubVI that is used to determine precise o values that are used to calculate the

range of kiand k,. Within the “k;-k, coeffs” block, values of m(z;) and b(z;)are

determined. These values are routed to the “Inequality Solver” SubVI where the final

k- k, co-ordinates are determined.
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Also, for each set of values in the stabilizing range the corresponding Gain and Phase

Margin values are estimated.

3. Example

In the transfer function G(s) = %e“ , the plant parameters are defined as :
+Ts

k=1, T =2secondsand L =4 seconds

The quasi-polynomial is computed to be:

8 (s) =k; +k,s+kys” +(25° +5)e”

The solution to the general case has been implemented in LabVIEW, and the following

results are obtained:

The solution to the equation tan(a) = —%a is obtained in the interval (0, 7).

Here, a, = 2.4556. Hence, the imaginary part of & (s) has only simple roots if and only

if —1<k, <1.5515. This example is shown in Fig 5.1.2 and Fig. 5.1.3. The 3-D

representation of the stabilizingk, k,and Kk, set is shown in Fig.5.1.4

pri
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Fig. 5.1.4: 3D Representation of Stabilizingk,,, k;and k,
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B. Open Loop Unstable Plant

1. Theory

For

> 0.5 the imaginary part of & (jw) have simple real roots if and only if:

1T . 1
E[I%S'n(%)—cos(%)}< K, <_E (5.2.1)
Where ¢ is the solution of the equation:

tan(a) = _TTT“ (5.2.2)

in the interval (0, z) .

In the special case of

T V4

—=1,a ==. 523
‘L‘ o 2 ( )
For T <0.5, the roots of the imaginary part of 5" (jw) are not all real.

Similar to Section 5.1

Defining z=Lw
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For each value of k in the range, the necessary and sufficient conditions on k; and

k, for the roots of 6, (Lw)and &, (Lw) to interlace are the following set of inequalities:

k<0

k, <mk; +b

k, >mk, +b, (5.2.4)
k, <mgk; +b,

k, >m,k +Db,

Where the parameters m;and b, for j=1,2,3,.. are given by:
m; =m(z;)

bj Eb(zj)
2
And m, EL—Z
Z

b(z) E—k—l'z[sin(z)+TIzcos(z)} (5.2.5)

2. Algorithm / Block Diagram

The block diagram and the SubVI’s are similar to those built in Section 5.1. The only
difference is in the “Inequality Solver” SubVI, where the inequality signs are reversed

as given by Eqn 5.2.2.

The final Front Panel of the V1 is given in Fig 5.2.1 and Fig. 5.2.2
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C. Stabilization of arbitrary LTI Systems with Time Delay
1. Theory

The feedback system, G(s) with a time delay of L seconds is given by:

_ -Ls _w -Ls
G(s)=G,(s)e ™ = D(s)e (5.3.1)

Where N (s)and D(s) are polynomials with real coefficients. The PID controller is given

by the following transfer function:

_ k,s*+k s+k

C(s)=Kk, K ks=—{—2 1 (5.3.2)
S S

To determine the set of (k ,k;,k, ) that stabilize the closed loop system:

H(s) =C(s)G(s) =C(s)G,(s)e ™ = H,(s)e™" (5.3.3)

Where:

Hy =C(s)Gy(8)

_kys®+k s+k N(s)
- S D(s)




N(s
=(k,s? +kps+ki)£

sD(s)
= (kys® +k s +k)R;(s)

N (s)

AndR,(s) = D(s)

The Phase and Magnitude conditions are given by:

arg[ (k —k,0° + jK, )R, (jo) |- Lo =7
And
|k — k0" + jk,0)R, (jo)| =1

These conditions are reduced to:

z+arg{[ (k —k,@*)+ k0 |Ry(jo)|

L(wk, ki k)=
@
k,—k,0" =+ ;_2—(kpa))2
|R0(ja))|
M ( L o)*

)=t k,
“TRo(jo)

It can also be rewritten as:
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(5.3.4)

(5.3.5)

(5.3.6)

(5.3.7)

(5.3.8)



k, —k,0® = +/M (@)
@ Vvalues having M (@) > 0only need to be considered when computing S,

After Substitutions,

7r+arg{[i«/M (@) + ik,o] Ro(ja))}

L(@,k, Kk, k) = L() =
w

2. Algorithm / Block diagram

The following steps are followed for ease of developing the final software:

1. Compute S, - The complete set of k , k;and k; in the delay free system.

2. Find S, defined as:

Sy :{(kp’ki’kd)e R| "msaw%(kdsz +:§(:)ki)N(s)§Zl}

Ifdeg[N(s)]>deg[D(s)]-1,S, = R®, which means S, =¢

Ifdeg[N(s)] <deg[D(s)]-1S, =¢

|

Where a,, b, are the leading coefficients of D(s)and N(s)respectively.

Ifdeg[N(s)] =deg[D(s)]-1,then

a
S, ={(kp,ki,kd)eR3||kd|2 b—q

q-1
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(5.3.9)

(5.3.10)

(5.3.11)
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3. Compute S, =S,\S,

4. Forafixed k,, determine the set S, as follows:

(a) Determine the sets Q"and S/, :

7z+arg{[«/M (@) + ik, Ro(ja))} n

Q =10|w>0&M(w)>0&L(w)=

@

Sk, = (k) 1, ky) 2 Sy, &3 e Q7 such that k —k, 0" =M () ]

(5.3.12)

Where S:,kp is a set of straight lines in the (k;, k) space.

(b) Determine the sets Q"and S, -

7 +arg{[ - M (@) + jk,0 |Ry(jo) n

Q =Jo|lo>0&M(w)20&L(w) =
@

Si, = {(ki,kd)|(ki,kd) €Sy, &3weQ such that k —k,” =—M(a)}
(5.3.13)
5. Compute
Sii, =Stk USLy,
And

Sai =Su VS, (5.3.14)
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6. By sweeping overk_ , we will have the complete set of PID Controllers that

o
stabilizes all the plants with delay up to L :
Sq ZPSR,kp (5.3.15)
The complete set of stabilizing k; and k, for a specific value k , S;is computed as
shown in Chapter Ill. The sets that are deleted from this set is calculated from the steps
outlined above. The first step is to findW, Q andQ". This is shown in Fig. 5.3.1.
From the complete set of x and y Co-Ordinates (k; and k, Co-Ordinates), the Plant

Transfer Function, Time Delay (L,) and the k, cursor position are fed into the

SubVI /M (@) .

Fig. 5.3.2 shows the Block Diagram of the SubVI in detail. R;(s)is estimated as shown
in Egn 5.3.4, in the SubVI “array value”. M (w) is then calculated for a fixed value of

k, per Eqn.5.3.8. For each value of @, these values are fed into the SubVI “ws, Lw &

Mw’s. Within this block the values of L(w) Corresponding to +/M () is calculated,
and tested to satisfy the condition: L(w)<L,. If this condition is false, then the roots

cause instability, hence only those values of @are finally put into the array that satisfies
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the above condition, and corresponding to each selected value of ware the values of

L(w) and M (w) associated with it, as are the outputs of the SubVI.

Fig. 5.3.3 computes final columns of probable k, and k, Co-Ordinates and provides

values to the Block diagram shown in Fig. 5.3.4 where the second part of the
calculations for estimating the stable set for an arbitrary order system with time delay is

computed.

The inputs to this block are the previously calculated values - (M (@), Q andQ", Kk,
and k, Co-Ordinates from the delay free plant. The sets S/, and S, are estimated from

the Eqn 5.3.12 and Eqgn 5.3.13. Each of the estimated values are fed in one at a time, and

the SubVI *“coln caln” determines if that value of (k; ,k, ) causes instability or not.

The output is an array with the Co-Ordinates of (k; ,k, ) that causes instability, and these

sets of lines are deleted from the original set of (k; , k, ) without time delay.

The Front Panel of the VI is shown in Fig. 5.3.5 and Fig. 5.3.6. In Fig. 5.3.5, the
Transfer Function of the plant and the time delay of the plant are entered as the inputs.

The (k; ,k,) range is computed for the Delay Free System, and the corresponding sets

that cause instability are deleted from this range. The final result is shown in Fig.5.3.7
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CHAPTER VI

OPTIMIZATION OF STABILIZING SETS OF PID CONTROLLERS

A. Introduction

PID Controller sets are optimized to project subsets that are based on user requirements.
The program has been developed to allow the user to streamline the controller sets based
on the performance index specifications of Gain Margin, Phase Margin, Rise Time, Peak
Time, Settling Time and Overshoot. This a very useful result as the user is now able pick

points in the PID Controller sub-space that fulfils his requirements.

B. Performance Index Specifications

Gain Margin — The change in open loop gain required to make the system unstable

Phase Margin - The change in open loop phase shift required to make a closed loop
system unstable.

Rise Time — The time taken by the system to rise from 10% to 90% of its output value
Peak Time — Time taken by the system to reach its maximum overshoot point

Settling Time — Time taken for system transients to decay to a small value. The measure
used in the program is 1%

Overshoot — The maximum amount the system overshoots its final value divided by its

final value (expressed as a percentage)
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C. Algorithm

The program scans over a user-defined grid of k; -k, values for a specific value of k_,

and captures final subsets that meet the user performance index specifications.

The user can also comb the k;-k,plane at a specific k, value to find subsets that

simultaneously satisfy performance index specifications.

D. Final Program - Front Panel of the VI

Fig. 6.1 shows the tool that is used to scan the k;-k, plane for a subset satisfying the

performance index at a value chosen by the user. In Fig. 6.1 Gain Margin is chosen and
the value is set to 1dB. The magnified result is shown in Fig. 6.2. Page 2 of the VI is
shown in Fig. 6.3. Here also, the user can chose among all the performance indices
available to him. In this case, Phase Margin is set to 30 deg. The upper Left Hand Side
shows the result of the scan completed. In Fig. 6.4 the combined result of pages 1 & 2,
i.e. all the points that satisfy both the criterion encountered so far is shown. Similarly
Page 3 offers users the complete set of Performance Indices to choose to scan, and
displays the final comprehensive result on the Lower Right Hand Corner as shown in

Fig. 6.5. This result is magnified in Fig. 6.6.
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Fig. 6.3: Front Panel of VI — Page 2
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Fig. 6.5: Front Panel of VI — Page 3
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Fig. 6.6: Combination of Gain Margin = 1dB, Phase Margin = 30 deg & Peak Time =
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CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A. Summary

The primary objective of the thesis was to present an overview of a software tool that
has been developed based on of Control System algorithms that are very useful in
gauging the stability of systems. The thesis presented a very practical and novel
approach to the computation of complete sets of stabilizing Proportional, Integral and

Derivative Controllers when information available is of different kinds.

Further, the use of an automated software eliminates the necessity of an in — depth
understanding of the subject, and is made accessible to engineers with a basic

understanding of the Control System problem they need to solve.

B. Future Work

A very useful and practical application of the developed software is in the industry,
where the frequency response of the system can be used in calculating complete ranges
of Proportional, Integral and Derivative gains that stabilize the system. Compact RIO is

an instrument that can be programmed to get the frequency response from a motor drive.
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It can also function as a PID Controller. Compact R1O can be remotely monitored by the
LabVIEW software.
Hence, the following can be used to stabilize the system in closed loop after getting the

open loop frequency response of the system, eg: A DC Motor Drive

Get Open Loop frequency response from the DC Motor Drive

Compact RIO will generate complete stabilizing sets of Proportional Gains in

real time

User selects values of Proportional gains from the entire range generated by the

LabVIEW program

Embed the values in the PID Controller (Compact RIO) to stabilize the System

Compact Rio allows collection of data, calculations and implementation to be carried out
real time. Once the values of the PID Controller are established, values are set in the PID
Controller and the user can see the system stabilized in real time using the values he

selects.

Once the setup is complete, control can be established remotely though internet. Hence,
the user can remotely run the utility containing the program get the frequency response
data set online, select the values of Proportional Gains he wants, and view the stabilizing

effect.
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