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ABSTRACT 

 

A Versatile Simulation Tool for  

Virtual Implementation of Proportional Integral and Derivative (PID) Controllers.  

(May 2007) 

Indu Ramamurthi, B.E., National Institute of Technology, Nagpur, India 

Chair of Advisory Committee: Dr. Shankar P. Bhattacharyya 

 

This thesis proposes an interactive software tool that can be used to compute complete 

sets of Proportional Integral Derivative (PID) Controllers from knowledge of the plant 

transfer function/frequency response data. This is based on research results and 

algorithms developed by Bhattacharyya and others. Until these research results were 

published, it was not known if a nominal system could be stabilized using PID 

Controllers, and current PID Controller designs are carried out using ad hoc tuning rules. 

By using simulations, engineers can best plan for and observe the stabilizing effect each 

of the variables has on system performance in a realistic environment. 

 

The software application developed calculates and optimizes complete stabilizing sets of 

PID Controllers for a rational Linear Time Invariant (LTI) system, and has been 

developed for analytical models of plants with and without time delay. Further, these 

PID Controller sets are optimized to project subsets simultaneously satisfying multiple 

performance index specifications. Sets of PID Controllers that stabilize a system are also 
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calculated automatically from knowledge of the frequency response of the plant.  It 

allows the user ease of design and the ability to customize the final solution while 

permitting full control over source parameters.  

 

This thesis includes an introduction to the algorithms that have been developed for plant 

stabilization, a complete description of the graphical user interface, the simulation of the 

algorithms performed using LabVIEW, and a summary of future work.  
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CHAPTER I 

INTRODUCTION 

 

The thesis proposes a novel approach to the problem of stabilizing any given plant using 

PID Controllers. Recent research results indicate that complete sets of PID Controllers 

that stabilize a system can be estimated from the Transfer Function / Frequency 

Response Data of a Linear Time Invariant System. For the first time an interactive 

software has been developed that automates research results and makes it accessible to 

all, by minimizing complex parameters that engineers have to comprehend to solve the 

problem of stabilization. The solution to the algorithms requires a good insight into 

control systems, and having a simulation interface allows the engineer to arrive at the 

solution with minimal knowledge of how the algorithm actually works.  

 

A. Background 

 

Several control strategies have been developed over the last several decades, but most 

control systems in the world are operated by PID (Proportional – Integral - Derivative) 

Controllers. More than 95% of the Controllers used in process control applications are of 

the PID type. Some of the reasons that PID Controllers are so widely used in the industry 

are its simple structure (fixed, low order), robustness to modeling errors, relatively good 

tracking and disturbance rejection.  

 
This thesis follows the style of IEEE Transactions on Industrial Electronics. 
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B. Research Brief 

 

The primary objective of the thesis was to develop a versatile design tool for analyzing 

and verifying the stability of Linear Time Invariant systems. The result was the 

simulation tool. The software has been developed in LabVIEW because of its elaborate 

GUIs, and its data acquisition capabilities, which will prove very useful if the system is 

turned into an online one. The thesis introduces the control system algorithms, and how 

they have been automated, to allow the user full control over system parameters. Chapter 

II describes the necessity of having a Graphical user interface, and the advantages of 

simulation and interface integration. A brief about the algorithms are presented in the 

first section of Chapters III, IV and V,  followed by an explanation of the “Block 

Diagram” – where the code and calculations are outlined, the “Front Panel”  - the User 

Interface of the software tool, and an example to show the research results. Chapter VI 

summarizes the research results, and proposes recommendations for future work, and 

outlines a scheme for the hardware implementation of the above. 

 

C. Results 

 

Bhattacharyya and others developed Control System algorithms for the following: 

(i) Complete sets of PID Controllers for Continuous time rational plants of arbitrary 

order  

(ii) Compute complete sets of PID Controllers for model free systems  
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(iii) Compute complete sets of PID Controllers in first and arbitrary order Continuous 

LTI systems with time delay 

 

A brief overview of the above mentioned research results and an illustrative example are 

provided. Further, optimization of stabilizing sets of PID Controllers to project subsets 

simultaneously satisfying multiple performance index specifications has also been 

developed. 
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CHAPTER II 

LabVIEW – THE SIMULATION TOOL 

 

A. Introduction 

 

A Graphical User interface allows the user control over important input and output and 

simultaneously ensures that there is no over configuring. It provides the user ease of 

design and control. The manipulation of a simulation model might be straightforward for 

the engineer who devises it, but sharing of the functionality with other engineers might 

prove difficult. Though it is natural for the designer to distinguish between the necessary 

inputs and the default parameters, the same is not true for a secondary user, and both 

would benefit from an interface that shows all the relevant inputs and outputs, hiding 

unnecessary parameters, especially when extensive coding is essential. In the 

simulations accomplished as part of the thesis, extensive codes were written with several 

default parameters to ensure smooth automated flow of the program.  

 

B. LabVIEW as the User Interface 

 

The solution proposed for the problem of stabilization of a plant using a PID Controller 

is to determine complete sets of ,  and  in the closed loop which stabilize the 

system.  On solving the algorithms, the stabilizing sets are the solution of a linear 

programming problem, which has been implemented in LabVIEW.  

pk ik dk
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The inputs to the system are the transfer function (Numerator and Denominator) or the 

frequency response data (model – free systems). The program computes the complete set 

of values; as the user scans over the range of , the program dynamically computes 

ranges of  and  for each value of . Any specific set of 

pk pk

ik dk pk pk , ik  and  values form 

a stabilizing PID controller.  

dk

 

C. Inputs in LabVIEW Simulation 

 

The input of the LabVIEW programs is the transfer function or the frequency response 

data. In the latter case, the input is a file with the frequency response of the unstable 

plant, and the number of right hand poles / zeros that the plant contains. Once the ranges 

of pk , ik  and  are finalized, the user can scan the range of dk  ik  and  for a fixed 

value of to get subsets of  and which meets the user’s specs. In the time delay 

case, the user also inputs the Time Delay of the system along with the transfer function. 

The program deletes those ranges of  and  values in the stabilizing range that would 

otherwise cause instability to the closed loop plant. 

dk

pk ik dk

ik dk

 

The program also gives the user a 3D graphical representation of the stabilizing sets of 

pk , ik  and , which is very useful. Fig 2.1.1, Fig 2.1.2 and 2.1.3 show the Graphical 

Input Interfaces for the Rational Time Invariant System, the Frequency Response 

dk
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System, and the Linear Time Invariant System with Time Delay. The ranges that the 

stabilizing set can extend to are also defined. 

 

Fig. 2.1.1: Inputs to a Rational Linear Time Invariant System 

(Numerator and Denominator Transfer Functions and Upper and Lower Limits) 

 

 

 

Fig. 2.1.2: Inputs to the Model Free Case  

(Frequency Response and Number of Right Hand Plant Poles)  

 

 

 

Fig. 2.1.3 Inputs to a Rational Linear Time Invariant System with Time Delay 
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(Numerator and Denominator, Time Delay L0, and Upper and Lower Limits) 

 

The input slides and knobs show the user the variable parameters, and the parameters he 

can control, eliminating the confusion of sorting through the unnecessary constants and 

algorithms. In this capacity, a user interface makes inputs easy to manipulate, and keeps 

the user confines to the boundaries of simulation.  

 

D. Outputs in LabVIEW Simulation 

 

The program computes the range of  values that stabilize the system. For a particular 

value of , the program computes the entire range  -  values that stabilize the plant. 

It also gives the user a 3D plot showing the entire range of values on the -  -  

plot. 

pk

pk ik dk

pk ik dk

 

Fig.2.2.1 shows the stabilizing range that is computed by software. Fig. 2.2.2 shows 

the Stabilizing - range that is calculated by solving sets of Linear Inequalities 

for . 

pk

ik dk

1=pk
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Fig. 2.2.1: Range for the Linear Time Invariant Plant with the Transfer Function 
Shown in Fig. 2.1.1 

pk

 
 
 

 

 

Fig. 2.2.2: Stabilizing - Range Forik dk 1=pk . 

 

 

 

 

 



 9

CHAPTER III 

DELAY FREE RATIONAL TIME INVARIANT PLANT 

 

A. Introduction 

 

This result is based on an extension of the classical Hermite Biehler theorem for root 

counting. The problem of stabilization is to determine the , and values which 

would stabilize the Closed Loop system. 

pk ik dk

 

B. Theory 

 

The system considered is  where: ( )G s

 

)(
)()(

sD
sNsG =                                                                                                                  (3.1) 

−)(sN Numerator, Denominator, in the Laplace variable‘s’. −)(sD

( )N s and are coprime polynomials ( )D s

( )C s - PID controller where: 

 

2

( ) i p di
p d

k k s k skC s k k s
s s

+ +
= + + =                                                                            (3.2) 

pk – Proportional Gain;  
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ik – Integral Gain  

dk  – Derivative Gain. 

The closed loop polynomial is shown in Fig. 3.1. 

  

Fig 3.1: Closed Loop System with a PID Controller 

 

The problem of stabilization is to determine the , and values which will stabilize 

the Closed Loop system. The closed loop polynomial given by: 

pk ik dk

2( , , , ) ( ) ( ) ( ) ( )p i d i d ps k k k sD s k k s N s k sN sδ = + + +                                                       (3.3) 

  

The PID Controller stabilizes the system if for the calculated values of  and , the 

closed-loop characteristic polynomial 

,p ik k dk

( , , , )p i ds k k kδ is Hurwitz. Since all the three 

parameters affect the even and even and odd parts of ( , , , )p i ds k k kδ , a new polynomial is 

constructed where the even part depends on ( ) and the odd part depends on . ,i dk k pk

Defining: 

 

2 2( ) ( ) ( )e oN s N s sN s= +  
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2 2( ) ( ) ( )e oD s D s sD s= +  

* 2( ) ( ) ( ) ( )e oN s N s N s sN s= − = − 2                                                                                (3.4) 

,n m  are the degrees of ( , , , )p i ds k k kδ  and respectively. Multiplying ( )N s

( , , , )p i ds k k kδ with  & substituting *( )N s s jω= and separating even and odd parts:  

 

*( , , , ) ( ) ( , , ) ( , )p i d i d pj k k k N j p k k jq kδ ω ω ω ω= +  

2
1 2( , , ) ( ) ( ) ( )i d i dp k k p k k pω ω ω= + − ω  

1 2( , ) ( ) ( )p pq k q k qω ω= + ω

2

2

                                                                                           (3.5) 

 

Hence: 

 

2 2 2 2
1( ) ( ( ) ( ) ( ) ( ))e o e op N D D Nω ω ω ω ω ω= − − − − − −  

2 2 2 2
2 ( ) ( ) ( ) ( ) ( )e e o op N N N Nω ω ω ω ω= − − + − −ω

2

2 )

 

2 2 2 2
1( ) ( ( ) ( ) ( ) ( ))e e o oq D N D Nω ω ω ω ω ω ω= − − + − −  

2 2 2 2
2 ( ) ( ( ) ( ) ( ) ( )e e o oq N N N Nω ω ω ω ω ω ω= − − + − −                                                   (3.6) 

 

Here appear in ,i dk k ( , , )i dp k kω  while appears inpk ( , )pq kω , and does not depend on 

or . For a given : ik dk pk

  

0 1 20 ... l 1ω ω ω ω −= < < <                                                                                               (3.7) 
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are the real, non-negative, distinct finite zeros of ( , )pq kω with odd multiplicities. A 

sequence of numbers,  are defined such that: 0 1, ,... li i i

 

If has a zero of multiplicity k at the origin *( )N s n
(i)       

( )
1

0

sgn[ (0)]n

f

kp
i

α

⎧⎪= ⎨
⎪⎩ Otherwise 

                                                                                                                                       (3.8)    

 Where { 1,1}α ∈ − and 

    1
1 ( )

2 2

( )( ) :
(1 )

f m n

pp ωω
ω

+=
+

                                                                                              (3.9) 

 

(ii)   For : 1, 2,.., 1t l= −

   
0

ti α
⎧

= ⎨
⎩

                                                                                                                (3.10) 
If  *( )tN jω = 0

Otherwise 

 

(iii) 
0li
α⎧

= ⎨
⎩

                                                                                                                  (3.11) 
If n  is odd m+

If  is even n m+

 

Defining the string as the following sequence of numbers: :I N R→

0 1 0: { , ,..., }I i i i=                                                                                                            (3.12) 

pkA is the set of all possible strings I that can be generated to satisfy the requirements, 

and ( )Iγ is associated with any element
pkI A∈ , 
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For a given fixed let pk 0 1 20 ... l 1ω ω ω ω −= < < < <  be the real, non-negative distinct 

finite zeros of ( , )f pq kω with odd multiplicities: lω = ∞  and for each string 0 1{ , ..}I i i=  in 

pkA . 

 

Let ( )Iγ is the imaginary associated with the string I defined by: 

1 1
0 1 2 1( ) : [ 2 2 .. ( 1) 2 ( 1) ].( 1) sgn[ ( , )]l l l

l l pI i i i i i q kγ − −
−= − + + + − + − − ∞                             (3.13) 

The set *
pkF of feasible strings for the PID stabilization problem is defined as: 

* { | ( ) ( ( ( )) ( ( )))}
p pk kF I A I n l N s r N sγ= ∈ = − −                                                            (3.14) 

 

The PID stabilization problem with a fixed is solvable for a given plant with rational 

transfer function, if and only if the following conditions hold: 

pk

( )G s

 

(i) *
pkF  is not empty, and there is at least one feasible string 

(ii) There exists a string  

0 1{ , ,..}
pkI i i F= ∈                                                                                                          (3.15) 

and values of and such that for all ik dk 0,1, 2..t =  for which 

*( ) 0tN jω ≠ ( , , ) 0t i d tp k k i. > ,                                                                                 (3.16) ω

Where ( , , )t i dp k kω is already defined. 
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Also, if there exist values of and such that the above condition is satisfied for the 

feasible strings 

ik dk

*
1 2, ,..

ps kI I I F∈                                                                                                              (3.17) 

Then the set of stabilizing values corresponding to the fixed is the union of 

values satisfying  

( , )i dk k pk

( , )i dk k

( , , ) 0t i d tp k k iω >  for 1 2, ,.. sI I I .                                                                                  (3.18) 

 

C. Block Diagram / Algorithm 

 

The Numerator and Denominator of the Transfer Function are the inputs to the Block 

“Initial Calculations,” where the signature, Numerator and Denominator order are 

calculated.  

 

The signature is given by: 

)))()((( srNsNln −−                                                                                                   (3.19) 

 

The range of  is varied from -100 to +100 in steps of 0.1, and at each point, the value 

of 

pk

),( pf kq ω is estimated. If the real, non negative finite zeros of ),( pf kq ω with odd 

multiplicities is greater than or equals the minimum number of roots required according 

to the signature, then that value of is a part of the stabilizing range for the plant. From pk
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here the complete stabilizing range of in a window of values is estimated. For higher 

precision the range of values is scanned over can be controlled. 

pk

pk

 

The user can also scan though the stabilizing range of  and instantaneously observe 

stabilizing ranges of - . The Block Diagram that computes this is shown in Fig.3.5. 

Here, the stabilizing range of - at a specific value of is determined.  The user can 

determine the limits for the - range scan. 

pk

ik dk

ik dk pk

ik dk

 

Hence, the inputs to the ki-kd range SubVI are the Numerator, Denominator, Numerator 

Order, Denominator Order, signature, and the specific value of that the user selects. pk

Using Eqn.3.18 inequalities are constructed to determine the stabilizing range of and 

for the value of that the user selects. 

ik

dk pk

 

ik  and are the unknowns in the inequality, and the sign of the inequalities are 

determined by the value in the sign array, as given by Eqn.3.17. Hence, the equation has 

been divided into the constant term and coefficient arrays. This is fed into a loop 

that solves inequalities to estimate the -  ranges that simultaneously satisfy the 

above inequalities for a particular value of . 

dk

ik dk

ik dk

pk
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The Block diagram which is used to calculate , &pk ik dk  ranges is shown in Fig.3.2.  The 

SubVI “kp Co-Ordinates”, where the range of  is shown in detail in Fig.3.3. In 

Fig.3.4 Positive Real Roots are found for specific kp is calculated, which is essential in 

computing the stabilizing ranges of , and . Fig. 3.6 denotes the front panel that 

the user gets on opening the software tool, and Fig. 3.7 shows the 3-D graphical 

representation of the complete stabilizing , and set for the Transfer function 

denoted in Fig. 3.6. 

pk

pk ik dk

pk ik dk

 

The advantage of using LabVIEW is that these complex mathematical calculations are 

carried out instantaneously, and the output is a graphical representation of the calculated 

ranges. So, as the user slides though the feasible range, the corresponding -

stabilizing ranges are graphically monitored. 

pk ik

dk
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Fig. 3.2: Overall Block Diagram to Compute Stabilizing Ranges of kp, ki & kd  



 
18Fig. 3.3: kp Co-Ordinates SubVI, Computes De(-ω2), Do(-ω2), Ne(-ω2), No(-ω2) 
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 Fig. 3.4: Positive Real Roots Are Found for Specific kp
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Fig. 3.5: ki – kd Range for Fixed kp



 
21

Fig. 3.6: Front Panel of Linear Time Invariant System– Page 1 
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Fig. 3.7: Final 3-D Plot Showing Stabilizing Range for  p ik k k− − d

 

Example:  

 

For the plant defined by: 

3 2( ) 3 9N s s s= + +  

4 3 2( ) 2 3 7 14D s s s s s= + + + +  , and 

2

( ) i p di
p d

k k s k skC s k k s
s s

+ +
= + + =  
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The closed loop polynomial is: 

 

2( , , , ) ( ) ( ) ( ) ( )p i d i d ps k k k sD s k k s N s k sN sδ = + + + , where: 

 

2 2( ) ( ) ( )e oD s D s sD s= +  

2 2( ) ( ) ( )e oN s N s sN s= +  

In the above case, 

 

4 2

2

2

2

( ) 3 1

( ) 2 7

( ) 3 9

( )

e

o

e

o

D j

D j

N j

N j

ω ω ω

ω ω

ω ω

ω ω

= − +

= − +

= − +

= −

4

 

Fig. 3.8 denotes the front panel of the software same results as generated by LabVIEW, 

and Fig.3.9 shows the subsequent 1 2( ), ( )p pω ω generated 

 

Fig. 3.8: LabVIEW Generated Results for ( ), ( ), ( ), ( )e o e oD j D j N j N jω ω ω ω   
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And  

* 2( ) ( ) ( ) ( )e oN s N s N s sN s= − = − 2

2

 

           2 2( 4 2) ( 1)s s s= − + − +

 

* 2 6 4 2 2 6 4 2( , , , ) ( ) [ ( 12 180 183 75) ( )( 14 17 4)]p i d i ds k k k N s s s s s k k s s s sδ = − − − + + + − + − +  

                                    8 6 4 2 6 4 2[( 65 246 22 34) ( 14 17 4)]ps s s s s k s s s+ − − − − + + − + − +

* 2
1 2 1( , , , ) ( ) [ ( ) ( ) ( )] [ ( ) ( )]p i d i d pj k k k N j p k k p j q k qδ ω ω ω ω ω ω= + − + + ω

2

 

 

8 6 4
1( ) 12 180 183 75p ω ω ω ω= − + − − ω  

6 4 2
2 ( ) 14 17 4p ω ω ω ω= + + +  

9 7 5 3
1( ) 65 246 22 34q ω ω ω ω ω= − + − + + ω  

7 5 3
2 ( ) 14 17 4q ω ω ω ω= + + + ω  

 

 

Fig. 3.9: 1 2( ), ( )p pω ω Generated from Fig. 3.8 

 

When  is fixed at -1.7: pk
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7 5 3
1 2( , 1.7) ( ) ( ) 2.7 4.3 22.8 11.7pq q k qω ω ω ω ω ω− = + = − − + − ω . 

 

Fig. 3.10 shows how LabVIEW computes ( )q ω and corresponding roots when 1.7pk = −  

 

Fig. 3.10: ( )q ω & Final Roots When 1.7pk = −  

 

Hence, the real, non-negative distinct finite zeros of ( , 1.7)fq ω − with odd multiplicities 

are 0 1 20, 0.781, 1.335ω ω ω= = =  

 

When  is fixed at -1: pk

7 5 3
1 2( , 1) ( ) ( ) 45 15 2 2pq q k qω ω ω ω ω ω− = + = − − + − ω  
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Fig. 3.11: ( )q ω & Final Roots When 1pk = −  

 

And the real, non-negative distinct finite zeros of ( , 1)fq ω − with odd multiplicities are 

0 10, 1.487ω ω= =  as shown in Fig. 3.11 

 

 

Fig. 3.12: Conditions to be Met: Minimum Number of Roots & Signature 

 

Since as computed in Fig. 3.12, which is even hence the minimum positive real 

roots of odd multiplicity other than zero that should be present = 2.  

8n m+ =
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From the integer string generated in Fig. 3.13, the set ={1A 1,1, 1,1}− − satisfies the 

signature = 6. 

 

 

Fig. 3.13: Strings of Integers Satisfying Inequalities  

 

1

{ 1, 1, 1, 1} {1, 1, 1, 1}
{1, 1, 1,1} {1, 1, 1,1}

{ 1, 1,1, 1} {1, 1,1, 1}
{ 1, 1,1,1} {1, 1,1,1}

{ 1,1, 1, 1} {1,1, 1, 1}
{ 1,1, 1,1} {1,1, 1,1}
{ 1,1,1, 1} {1,1,1, 1}
{ 1,1,1,1} {1,1,1,1}

A

− − − − − − −⎧
⎪ − − − −⎪
⎪ − − − − −
⎪ − − −⎪= ⎨ − − − − −⎪
⎪ − − −
⎪

− − −⎪
⎪ −⎩

 

 

Since and ( ( )) ( ( )) 6l N s r N s− = −

=1( 1) sgn[ ( ,1)] 1l q−− ∞ , 

It follows from 4.3 that every string 

*
0 1 2 3 4 1{ , , , , }I i i i i i F= ∈  

Needs to satisfy  

0 1 2 3 42 2 2i i i i i− + − + = −6  
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Hence, the stabilizing (  values corresponding to , )i dk k 1.7pk = − must satisfy the string 

of inequalities: 

 

2
1 0 0 2 0

2
1 1 1 2 1

2
2 2 2 2 2

2
1 3 3 2 3

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

i d

i d

i d

i d

p k k p

p k k p

p k k p

p k k p

ω ω ω

ω ω ω

ω ω ω

ω ω ω

⎧ + − >
⎪

+ − <⎪
⎨

+ − >⎪
⎪ + − <⎩

 

 

Substituting for 0 1 2, ,ω ω ω and 3ω in the above expressions, we obtain from Fig.3.14, the 

Final Coefficient Array, from which stabilizing ranges of are computed ( , )i dk k

 

Fig. 3.14: Final Coefficient Array 

 

0
81 31.5066 29.96
19.01 33.8774 59.933

1

i

i d

i d

d

k
k k

k k
k

<⎧
⎪ − <⎪
⎨ − <⎪
⎪− <⎩

 

 

These linear inequalities are solved to find the stabilizing ranges of  dip kkk &,
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The stabilizing range of values: pk

( , , , ) ( 1.87,1.556) (0.316,0.533)p i d ps k k k kδ ∈ − ∪ .  

 

By sweeping over different values in this interval and following the procedure, the 

complete set of ( , is Hurwitz.  A simplified flowchart of the algorithm is shown 

in Fig. 3.15  

pk

, )p i dk k k

 

Fig 3.15: Flowchart for a Linear Time Invariant System 

 

 

 

 

 

 

Stabilizing Ranges of pk  

Plant Transfer Function 

Stabilizing Ranges of ik  and dk  

 Input 

For specific pk   

For specific ik  and dk  

PID Controller 
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D. Final Program generated in LabVIEW 

 

The front panel of the VI is shown in Fig.3.16. In this interactive program, the user is 

able to navigate to the page of his choice. Once ranges of ,  and are determined, 

the user can optimize these ranges with respect to performance index specifications. 

After specifying , the -  range is shown on the right hand side. Page two 

shown in Fig. 3.17 allows the user to scan through the -  range for a specific 

value displaying instantaneously corresponding values of Gain Margin, Phase 

Margin, Rise time, Peak time, Settling time and Overshoot. It also displays the Step 

Response and Bode plots of the closed loop transfer function which gives the user an 

idea of the stability of the system. 

pk ik dk

1=pk ik dk

ik dk

pk

 
In the example shown in Fig.3.16, the transfer function used is: 
 
 

3 2( ) 4 2N s s s s= − + +  

5 4 3 2( ) 8 32 46 46 17D s s s s s s= + + + + +  , and 

Front panel of the VI where the ik kd− range is calculated for the value of set to 1  pk
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Fig. 3.16: Front Panel of the LabVIEW Program for kp Generation 

 

Fig. 3.17 shows Page2 of the VI where for a specific value inside the Ki-Kd plane for a 

specific value of Kp, corresponding Gain Margin, Phase Margin, Rise Time, Peak Time, 

Settling Time and %Overshoot values are computed 
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Fig. 3.17: Page 2 of the LabVIEW Program for &  Generation ik dk

 

Fig. 3.18 shows Page 3 of the VI that allows the user to comb through the range of 

acceptable Ki-Kd space for a specific value of  Kp and displays the range of Ki-Kd 

values that would stabilize the system till the User defined Gain Margin value 
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Fig. 3.18: Generation of Stabilizing &  Subsets for Specific Gain Margin ik dk

 
Fig. 3.19 shows Page 4 of the VI that allows the user to comb through the range of 

acceptable Ki-Kd space for a specific value of  Kp and displays the range of Ki-Kd 

values that would stabilize the system till the User defined Phase Margin value 
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Fig. 3.19: Generation of Stabilizing &  Subsets for Specific Phase Margin ik dk

 
 
Fig. 3.20 shows Page-5 of VI that indicates all the points in the Ki-Kd space that is 

stable for a specific Kp value when the system has the user-defined Rise Time  
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Fig. 3.20: Generation of Stabilizing &  Subsets for Specific Rise Time ik dk

 

Fig. 3.21 shows Page-6 of the VI that indicates all the points in the Ki-Kd space that is 

stable for a specific Kp value when the system has the user-defined Peak Time 
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Fig. 3.21: Generation of Stabilizing &  Subsets for Specific Peak Time ik dk

 

Fig. 3.22 shows Page-7 of the VI that indicates all the points in the Ki-Kd space that is 

stable for a specific Kp value when the system has the user-defined Settling Time 
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Fig. 3.22: Generation of Stabilizing &  Subsets for Specific Settling Time ik dk

 

Fig. 3.23 shows Page-8 of the VI that indicates all the points in the Ki-Kd space that is 

stable for a specific Kp value when the system has the user-defined % Overshoot  
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Fig. 3.23: Generation of Stabilizing &  Subsets for Specific Overshoot ik dk

 
 
Page three to page seven allow the user to scan over the desired -  range and find 

subsets within stabilizing rages that satisfy performance index specifications. Pages 8 to 

14 are to allow the user to scan over more precise areas on the - plane for a specific 

value. Fig. 1.6 shows the front panel of the VI where the - plane is scanned with 

respect to the Gain Margin. The precision of the scan in all the pages is user-defined.  

ik dk

ik dk

pk ik dk
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CHAPTER IV 

PID CONTROLLER SYNTHESIS: FREE OF ANALYTICAL 

MODELS 

 

A. Introduction 

 

Calculation of stabilizing sets of PID Controllers can be estimated from Raw Plant data, 

i.e. knowledge of only the frequency response (Nyquist or Bode plot) of the plant and 

the number of RHP poles. Hence, the complete set of PID Controllers that stabilizes a 

LTI plant can be computed from the frequency response data. This data can be obtained 

experimentally, and the number of unstable poles can be determined from physical 

considerations. The algorithms give a good idea about the frequency rage over which 

accurate information of plant frequency response is needed for PID control, and the 

complete set of stabilizing gains. The result is really valuable when an accurate 

analytical / state space model of the system cannot be constructed.  

 

B. Theory  

 

In a Linear Time Invariant Systems with an underlying transfer function with  

poles and  zeros, if the only information available to the user is: 

( )P s n

m

 

(i) Knowledge of the frequency response magnitude and phase –  
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            ( )P jω , . [ )0,ω∈ ∞

(ii) Knowledge of the number of RHP poles - rp  : If the plant has no jω poles or 

zeros then the magnitude and its phase are well-defined for all 0ω ≥ . 

            ( )( ) ( ) ( ) ( )j
r iP j P j e P jPϕ ωω ω ω= = + ω                                                       (4.1) 

 

Where  

( )P jω  -magnitude of the plant 

( )φ ω - Phase of the plant, at the frequency ω  

The PID Controller is of the form: 

 

2

( ) , 0
(1 )

i p dk k s k s
C s T

s sT
+ +

=
+

>                                                                                    (4.2) 

where T is assumed to be fixed and small. 

 

C. Algorithm  

 

(i) Find the relative degree n m−  from the high frequency slope of the Bode 

Magnitude plot, and  from the net phase change from the Bode phase plot 

as shown in the example in Fig. 4.3 

rz

(ii) Fix and solve for  *
pk k= p



 41

                 *
2

( ) ( ) cos ( ) sin ( )
( )( )

r i
p

P TP Tk
P jP j

ω ω ω φ ω ω φ ω
ωω

+ +
= − = −                                     (4.3) 

And let 1 2 ... l 1ω ω ω −< < <  denote the distinct frequencies which are the 

solutions for Eqn.4.1 

(iii) Set 0 0, lω ω= = ∞  and determine all strings of integers { }1,0, 1ti ∈ + − and 

{ }1, 1j∈ + −  such that: 

 

            For even: n m−

{ }1 1
0 1 2 12 2 .... ( 1) 2 ( 1) .( 1) 2 2l l l

l l ri i i i i j n m z− −
−− + + + − + − − = − + +              (4.4) 

For odd: n m−

{ }1 1
0 1 2 1 12 2 .... ( 1) 2 ( 1) 2 .( 1) 2 2l l l

l li i i i i j n m z− −
− −− + + + − + − − = − + +r

p

        (4.5) 

 

(iv) For the fixed chosen in Step (ii) solve for the stabilizing ( ) 

from: 

*
pk k= ,i dk k

 

2
2 sin ( ) cos ( ) 0

( )
t t t t

i d t t
Tk k i

P j
ω φ ω ω φ ωω

ω
⎡ ⎤−

− + >⎢ ⎥
⎣ ⎦

                                          (4.6) 

For  0,1,...t =
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D. Block Diagram  

 

As shown in Fig.4.1, the data file is taken in through the data interface defined in 

LabVIEW.  There are three columns with the Frequency, Magnitude and Phase 

information of the plant.  

 

The blocks “delete duplicates” and “Maq & Phase Conv” converts the data into the 

format used in the rest of the program. The VI “slope & n-m” calculates the high 

frequency slope and hence n-m that is used in the block “Min Intersections” to calculate 

the Minimum number of intersections required for a stabilizing range of to exist. Fig. 

4.2 shows the block diagram used to generate stabilizing ( ) values for a stabilizing 

value of generated in Fig. 4.1. The SubVI “Gen Eqn” computes the equation defined 

in Eqn 4.6 vs. 

pk

,i dk k

pk

ω values.  

 

In “Strings of Integers” the values of ω that correspond to the stabilizing range of  is 

calculated, and based on the number of positive, real non-zero roots, the complete sets of 

strings of integers are defined. The sets of strings that satisfy the signature condition as 

described in Eqn 4.4 and Eqn 4.5 are identified in the SubVI “Linear Inequalities”. 

These are then translated to the ( ) co-ordinates in the SubVI “Ki-Kd All 

Intersections”, to give the final range of ( ) values for a specific value of . 

pk

,i dk k

,i dk k pk



 
43Fig.4.1: Block Diagram Part 1- Frequency Response Data 

 



 
44Fig.4.2: Block Diagram Part 2 - Frequency Response Data 
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E. Example  

 

Taking a set of frequency data points for the stable plant 

( ) : { ( ), (0,60)P j P jω ω ω= ∈  Sampled every .  0.01}

The Nyquist and Bode plots are shown in Fig. 4.3 

 

 

Fig. 4.3 Input – The Nyquist and Bode Plots for Frequency Response Data 
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The high frequency slope of the Bode magnitude plot is  

20 /db decade−   

Thus .  1n m− =

The number of right hand plane zeros,  

2rz = .  

 

The required signature for stability is given in Eqn 4.4 and Eqn 4.5 is: 

( )( ) 2 2 1 2.2 2 7rn m zσ Π = − + + = + + =                                                                      (4.7) 

Since  is odd, n m−

{ }1 1
0 1 2 1 12 2 .... ( 1) 2 ( 1) 2 .( 1) 2 2 7l l l

l l ri i i i i j n m z− −
− −− + + + − + − − = − + + =                     (4.8) 

 

At least 4 terms are required to satisfy the above, hence .  4l ≥

In Fig. 4.4 all the possible Strings of Integers generated are shown 

 

Fig. 4.4: Strings of Integers Generated by LabVIEW 

 

As shown in Fig. 4.5 the *Im( , ) 0pkω =  graph used to compute sets of stabilizing kp 

values is shown. From here values in Fig.4.6 can be computed and we observe that the 

frequency range over which plant data needs to be accurately known for estimating , pk
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ik and  is[0.38 . Also there are at the most three positive frequencies as 

solutions, which satisfies: 

dk , 0.57]

0 1 2 32 2 2i i i i− + − = 7                                                                                                      (4.9) 

 

Hence, must be chosen so that pk *Im( , ) 0pkω =  has exactly three positive real zeros.  

The range of that stabilizes the plant can be graphically determined by estimating the 

range over which the minimum number of intersections  makes is greater than or 

equal to the minimum number of intersections as shown in Fig. 4.7. 

pk

pk

 

Fixing  and computing the set of 0.4pk = 'sω  that satisfies: 

cos ( ) sin ( ) 0.4
( )

T
P j

φ ω ω φ ω
ω

+
− =                                                                                    (4.10) 

 

The solution for ω is: 

1 2 3{ , , } {1.74,2.586,3.102}ω ω ω =                                                                                 (4.11) 

Since the requirement , the strings satisfying this requirement is 

computed in 4.8 

0 1 2 32 2 2i i i i− + − = 7

 

The solution of these inequalities gives the - co-ordinates for a specific value of .  

The stabilizing set of - values for 

ik dk pk

ik dk 0.4pk = are shown in Fig 4.8 and the 3-D 

Representation of the entire stabilizing set is depicted in Fig. 4.9. 



 
48Fig. 4.5: Front Panel of VI – Graph Used to Compute Sets of Stabilizing kp Values 

 



 
49Fig. 4.6: Graph Showing Stabilizing ki & kd for Specific kp Generated in Fig. 4.5 
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Fig. 4.7:  Graph of kp vs. ω Generated by LabVIEW  
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Fig. 4.8: ik kd− Stabilizing Range for 0.4pk =  

 

The complete set of stabilizing PID gains for 0.4pk =  is shown in Fig. 4.8. And by 

sweeping over we have the entire set of stabilizing PID gains as shown in Fig. 4.9. pk
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Fig. 4.9: 3-D Stabilizing Set of , and  pk ik dk
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CHAPTER V 

PID STABILIZATION OF SYSTEMS WITH TIME DELAY 

 

Owing to the complex nature of systems with time delay, a single delay in the feedback 

loop representing delay in control actions or delayed measurements has been accounted 

for. This is modeled as where L represents the time in seconds. The following 

sections deal with First Order System and Arbitrary Order Systems with time delay. In 

case of First Order Plants with time delay, the complete set of stabilizing PID 

Controllers can be estimated. For Plants of higher order, sets of PID Controllers that 

cause instability in the system when time delay is introduced are computed and deleted 

from the stabilizing range that has also been computed in Chapter III. 

Lse−

 

A. First Order Stable Plant 

 

1. Theory 

 

The system considered is a simple feedback control system where is given by: ( )G s

 

( )
1

LskG s e
Ts

−=
+

                                                                                                        (5.1.1) 

( )C s is the PID controller where: 
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( ) i
p

kC s k k s
s

= + + d                                                                                                    (5.1.2) 

pk - Proportional Gain 

ik - Integral Gain  

dk - Derivative Gain.  

 

When the time-delay of the plant, L =0, then the closed loop characteristic equation of 

the system is: 

 

2( ) ( ) (1 )d ps T kk s kk s kkδ = + + + + i                                                                            (5.1.3) 

 

Closed loop stability in a second order polynomial is equivalent to all the coefficients 

having the same sign. Assuming the steady State gain  of the plant is positive these 

conditions are: 

k

 

1 ,p ik k
k

> − > 0  And d
Tk
k

> −                                                                                   (5.1.4) 

OR                                                                         

1 ,p ik k
k

< − < 0 And d
Tk
k

< −                                                                                     (5.1.5) 

 

When the time delay of the system is not zero, the Closed loop characteristic polynomial 

is defined as: 
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2( ) ( ) (1 )Ls
i p ds kk kk s kk s e Tsδ −= + + + + s

2

                                                                  (5.1.6) 

The quasi polynomial is: 

*( ) ( ) (1 )Ls Ls
i p ds e s kk kk s kk s Ts seδ δ= = + + + +                                                       (5.1.7) 

 

Substituting s jω= and separating the real and imaginary parts: 

2 2( ) sin( ) cos( )r i dkk kk L T Lδ ω ω ω ω ω= − − − ω

]

                                                        (5.1.8) 

( ) [ cos( ) sin( )i pkk L T Lδ ω ω ω ω ω= + −                                                                      (5.1.9) 

 

In an Open-Loop Stable Plant where , and assuming  and , 0T > 0k > 0L >

The imaginary part of *( )jδ ω  has only simple real roots if and only if: 

 

1 1 1
1 1 sin( ) cos( )p

Tk
k k L

α α α⎡− < < −⎢⎣ ⎦
⎤
⎥                                                                       (5.1.10) 

Where 1α is a solution of the equation:   

tan( ) T
T L

α α= −
+

                                                                                                   (5.1.11) 

in the interval (0, )π . 

 

Defining z Lω=  

For each value of in the range, the necessary and sufficient conditions on  and 

for the roots of 

pk ik

dk ( )r Lδ ω and ( )i Lδ ω to interlace are the following set of inequalities: 
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1 1

2

3 3

4 4

0i

d i

d i

d i

d i

k
k m k b
k m k b
k m k b
k m k b

>
> +
< +
> +

< +

2                                                                                                            (5.1.12) 

Where the parameters jm and jb for j =1,2,3,.. are given by: 

)( jj zmm ≡  

)( jj zbb ≡  

And 2

2

z
Lm j ≡  

⎥⎦
⎤

⎢⎣
⎡ +−≡ )cos()sin()( zz

L
Tz

kz
Lzb                                                                              (5.1.13) 

 

2. Algorithm / Block Diagram 

 

Fig. 5.1.1 shows the algorithm that is used to calculate ranges of , and . The 

SubVI “kp-SubVI” calculates the stabilizing range of as per Eqn 5.1.10. “Feasible 

z’s” is the SubVI that is used to determine precise 

pk ik dk

pk

ω values that are used to calculate the 

range of and . Within the “ coeffs” block, values of  and are 

determined. These values are routed to the “Inequality Solver” SubVI where the final 

- co-ordinates are determined.  

ik dk ik - dk ( )jm z ( )jb z

ik dk

 



 
57Fig. 5.1.1:  Block Diagram of a First Order Stable Plant with Time Delay 
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Also, for each set of values in the stabilizing range the corresponding Gain and Phase 

Margin values are estimated. 

 

3. Example  

 

In the transfer function ( )
1

LskG s e
Ts

−=
+

, the plant parameters are defined as : 

1=k , 2=T seconds and 4=L seconds 

 

 The quasi-polynomial is computed to be: 

s
dpi essskskks 422* )2()( ++++=δ   

 

The solution to the general case has been implemented in LabVIEW, and the following 

results are obtained:  

 

The solution to the equation αα
3
1)tan( −= is obtained in the interval ),0( π . 

Here, 4556.21 =α . Hence, the imaginary part of has only simple roots if and only 

if . This example is shown in Fig 5.1.2 and Fig. 5.1.3. The 3-D 

representation of the stabilizing , and set is shown in Fig.5.1.4  

)(* sδ

5515.11 <<− pk

pk ik dk
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        Fig. 5.1.2: Front Panel of the LabVIEW Program for Stable First Order System, for kp Generation 
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Fig. 5.1.3: Front Panel of the LabVIEW Program for Stable First Order System, for ki & kd Generation 
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Fig. 5.1.4: 3D Representation of Stabilizing , and  pk ik dk
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B. Open Loop Unstable Plant 

 

1. Theory 

 

For 0.5T
L
>  the imaginary part of *( )jδ ω have simple real roots if and only if: 

 

1 1 1
1 sin( ) cos( ) p

T k
k L k

α α α⎡ ⎤− < <⎢ ⎥⎣ ⎦
1

−                                                                         (5.2.1) 

 

Where 1α is the solution of the equation: 

 

tan( ) T
T L

α α= −
+

                                                                                                    (5.2.2) 

 in the interval (0, )π .                                                                   

In the special case of 

1T
L
= , 1 2

πα = .                                                                                                           (5.2.3) 

For 0.5T
L
≤ , the roots of the imaginary part of *( )jδ ω are not all real. 

 

Similar to Section 5.1  

Defining z Lω=  
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For each value of in the range, the necessary and sufficient conditions on  and 

for the roots of 

pk ik

dk ( )r Lδ ω and ( )i Lδ ω to interlace are the following set of inequalities: 

 

1 1

2

3 3

4 4

0i

d i

d i

d i

d i

k
k m k b
k m k b
k m k b
k m k b

<
< +
> +
< +

> +

2                                                                                                              (5.2.4) 

Where the parameters jm and jb for j =1,2,3,.. are given by: 

)( jj zmm ≡  

)( jj zbb ≡  

And 2

2

z
Lm j ≡  

⎥⎦
⎤

⎢⎣
⎡ +−≡ )cos()sin()( zz

L
Tz

kz
Lzb                                                                             (5.2.5) 

 

2. Algorithm / Block Diagram 

 

The block diagram and the SubVI’s are similar to those built in Section 5.1. The only 

difference is in the “Inequality Solver” SubVI, where the inequality signs are reversed 

as given by Eqn 5.2.2. 

 

The final Front Panel of the VI is given in Fig 5.2.1 and Fig. 5.2.2 



 
64Fig. 5.2.1: Front Panel of the LabVIEW Program for Unstable First Order System, for kp Generation 

 



 
65

 

Fig. 5.2.2: Front Panel of the LabVIEW Program for Unstable First Order System, for ki & kd Generation   
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C. Stabilization of arbitrary LTI Systems with Time Delay 

 

1. Theory 

 

The feedback system,  with a time delay of L seconds is given by: ( )G s

 

0
( )( ) ( )
( )

Ls LsN sG s G s e e
D s

−= = −                                                     (5.3.1) 

 

Where and are polynomials with real coefficients. The PID controller is given 

by the following transfer function: 

( )N s ( )D s

 

2

( ) d pi
p d

k s k s kkC s k k s
s s

+ +
= + + = i                                                    (5.3.2) 

 

To determine the set of ( ) that stabilize the closed loop system: , ,p i dk k k

 

0 0( ) ( ) ( ) ( ) ( ) ( )Ls LsH s C s G s C s G s e H s e− −= = =                                       (5.3.3) 

Where:  

  0 0( ) ( )H C s G s=

                =
2 ( )

( )
d p ik s k s k N s

s D
+ +

s
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                = 2 ( )( )
( )d p i

N sk s k s k
sD s

+ +  

                =                                         (5.3.4) 2
0( )d p ik s k s k R s+ + ( )

And 0
( )( )
( )

N sR s
sD s

= .  

 

The Phase and Magnitude conditions are given by: 

 

2
0arg ( ) ( )i d pk k jk R j Lω ω ω ω⎡ ⎤− + − = −⎣ ⎦ π   

And  

2
0( ) (i d pk k jk R jω ω ω− + =) 1                                                              (5.3.5) 

 

These conditions are reduced to: 

  

{ }2
0arg ( ) ( )

( , , , )
i d p

p i d

k k jk R j
L k k k

π ω ω
ω

ω

⎡ ⎤+ − +⎣ ⎦=
ω

                                       (5.3.6) 

2
2

0

1 ( )
( )

i d pk k k
R j

2ω ω
ω

− = ± −                                                    (5.3.7) 

2
2

0

1( ) ( )
( )

pM k
R j

ω ω
ω

= −                                                     (5.3.8) 

 

It can also be rewritten as: 
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 2 ( )i dk k Mω ω− = ±                                                                 (5.3.9) 

ω  values having ( ) 0M ω ≥ only need to be considered when computing  LS

After Substitutions, 

{ }0arg ( ) ( )
( , , , ) ( )

p

p i d

M jk R j
L k k k L

π ω ω ω
ω ω

ω

⎡ ⎤+ ± +⎣ ⎦= =                                 (5.3.10) 

 

2. Algorithm / Block diagram 

 

The following steps are followed for ease of developing the final software: 

 

1. Compute  - The complete set of , and in the delay free system. 0S pk ik dk

2. Find defined as: NS

 

( )
2

3 ( ) (
, , | lim 1

( )
d p i

N p i d s

k s k s k N s
S k k k R

sD s→∞

⎧ ⎫+ +⎪ ⎪= ∈⎨ ⎬
⎪ ⎪⎩ ⎭

)
≥                         (5.3.11) 

If [ ] [ ] 3deg ( ) deg ( ) 1, NN s D s S R> − = , which means RS φ=  

If [ ] [ ]deg ( ) deg ( ) 1, NN s D s S φ< − =  

If [ ] [ ]deg ( ) deg ( ) 1N s D s= − ,then 

( ) 3

1

, , | q
N p i d d

q

a
S k k k R k

b −

⎧ ⎫⎪ ⎪= ∈ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

 

            Where ,  are the leading coefficients of and respectively. qa 1qb − ( )D s ( )N s
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3. Compute  1 0 \ NS S S=

4. For a fixed , determine the set pk , pR kS as follows: 

 

(a) Determine the sets +Ω and , pL kS + : 

{ }0

0

arg ( ) ( )
| 0 & ( ) 0 & ( )

pM jk R j
M L L

π ω ω ω
ω ω ω ω

ω
+

⎧ ⎫⎡ ⎤+ +⎪ ⎪⎣ ⎦Ω = > ≥ = ≤⎨ ⎬
⎪ ⎪⎩ ⎭

 

{, ,( , ) | ( , ) &
p pL k i d i d N kS k k k k S ω+ += ∉ ∃ ∈Ω such that }2 ( )i dk k Mω ω− =  

                                                                                                                      (5.3.12) 

Where , pL kS + is a set of straight lines in the ( space. , )i dk k

 

 (b) Determine the sets −Ω and , pL kS − : 

{ }0

0

arg ( ) ( )
| 0 & ( ) 0 & ( )

pM jk R j
M L L

π ω ω ω
ω ω ω ω

ω
−

⎧ ⎫⎡ ⎤+ − +⎪ ⎪⎣ ⎦Ω = > ≥ = ≤⎨ ⎬
⎪ ⎪⎩ ⎭

 

{, ,( , ) | ( , ) &
p pL k i d i d N kS k k k k S ω− −= ∉ ∃ ∈Ω such that }2 ( )i dk k Mω ω− = −  

                                                                                                                      (5.3.13) 

5. Compute  

, , ,p p pL k L k L kS S S+ −= U   

And  

, 1, \ ,p pR k k L kS S S=
p
                                                                                         (5.3.14) 



 70

 

6. By sweeping over , we will have the complete set of PID Controllers that   

stabilizes all the plants with delay up to : 

pk

0L

, p
p

R R
k

S S= U k                                                                                                   (5.3.15) 

 

The complete set of stabilizing  and for a specific value , is computed as 

shown in Chapter III. The sets that are deleted from this set is calculated from the steps 

outlined above. The first step is to find

ik dk pk 0S

( )M ω , −Ω and +Ω . This is shown in Fig. 5.3.1. 

From the complete set of x and y Co-Ordinates (  and Co-Ordinates), the Plant 

Transfer Function, Time Delay ( ) and the cursor position are fed into the 

SubVI

ik dk

0L pk

( )M ω .  

 

Fig. 5.3.2 shows the Block Diagram of the SubVI in detail. 0 ( )R s is estimated as shown 

in Eqn 5.3.4, in the SubVI “array value”. ( )M ω is then calculated for a fixed value of 

per Eqn.5.3.8. For each value of pk ω , these values are fed into the SubVI “ws, Lw & 

Mw’s. Within this block the values of ( )L ω Corresponding to ( )M ω± is calculated, 

and tested to satisfy the condition: 0( )L Lω ≤ . If this condition is false, then the roots 

cause instability, hence only those values of ω are finally put into the array that satisfies 
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the above condition, and corresponding to each selected value of ω are the values of 

( )L ω and ( )M ω associated with it, as are the outputs of the SubVI. 

 

Fig. 5.3.3 computes final columns of probable  and Co-Ordinates and provides 

values to the Block diagram shown in Fig. 5.3.4 where the second part of the 

calculations for estimating the stable set for an arbitrary order system with time delay is 

computed. 

ik dk

 

The inputs to this block are the previously calculated values - ( )M ω , and−Ω +Ω ,  

and Co-Ordinates from the delay free plant. The sets 

ik

dk , pL kS + and , pL kS − are estimated from 

the Eqn 5.3.12 and Eqn 5.3.13. Each of the estimated values are fed in one at a time, and 

the SubVI “coln caln” determines if that value of (  , ) causes instability or not.  ik dk

 

The output is an array with the Co-Ordinates of (  , ) that causes instability, and these 

sets of lines are deleted from the original set of (  , ) without time delay. 

ik dk

ik dk

 

The Front Panel of the VI is shown in Fig. 5.3.5 and Fig. 5.3.6. In Fig. 5.3.5, the 

Transfer Function of the plant and the time delay of the plant are entered as the inputs. 

 The (  , ) range is computed for the Delay Free System, and the corresponding sets 

that cause instability are deleted from this range. The final result is shown in Fig.5.3.7 

ik dk



 
72Fig. 5.3.1: Block Diagram Part 1 for Arbitrary Order Time Delay System 
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Fig.5.3.2: Block Diagram Showing  



 
74Fig.5.3.3 Columns Calculation 
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Fig. 5.3.4: Block Diagram Part 2 for Arbitrary Order Time Delay System 
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Fig. 5.3.5: Front Panel of Time Delay System of Arbitrary Order - Page 1 
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Fig. 5.3.6: Front Panel of Time Delay System of Arbitrary Order - Page 2 
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Fig. 5.3.7: Complete Set with (  , ) Lines Causing Instability Removed ik dk
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CHAPTER VI 

OPTIMIZATION OF STABILIZING SETS OF PID CONTROLLERS 

 

A. Introduction 

 

PID Controller sets are optimized to project subsets that are based on user requirements.  

The program has been developed to allow the user to streamline the controller sets based 

on the performance index specifications of Gain Margin, Phase Margin, Rise Time, Peak 

Time, Settling Time and Overshoot. This a very useful result as the user is now able pick 

points in the PID Controller sub-space that fulfils his requirements.  

 

B. Performance Index Specifications 

 

Gain Margin – The change in open loop gain required to make the system unstable 

Phase Margin - The change in open loop phase shift required to make a closed loop 

system unstable. 

Rise Time – The time taken by the system to rise from 10% to 90% of its output value 

Peak Time – Time taken by the system to reach its maximum overshoot point 

Settling Time – Time taken for system transients to decay to a small value. The measure 

used in the program is 1%  

Overshoot – The maximum amount the system overshoots its final value divided by its 

final value (expressed as a percentage) 
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C. Algorithm 

 

The program scans over a user-defined grid of ik kd−  values for a specific value of , 

and captures final subsets that meet the user performance index specifications.  

pk

The user can also comb the - plane at a specific value to find subsets that 

simultaneously satisfy performance index specifications.  

ik dk pk

 

D. Final Program - Front Panel of the VI 

 

Fig. 6.1 shows the tool that is used to scan the - plane for a subset satisfying the 

performance index at a value chosen by the user. In Fig. 6.1 Gain Margin is chosen and 

the value is set to 1dB. The magnified result is shown in Fig. 6.2. Page 2 of the VI is 

shown in Fig. 6.3. Here also, the user can chose among all the performance indices 

available to him. In this case, Phase Margin is set to 30 deg. The upper Left Hand Side 

shows the result of the scan completed. In Fig. 6.4 the combined result of pages 1 & 2, 

i.e. all the points that satisfy both the criterion encountered so far is shown. Similarly 

Page 3 offers users the complete set of Performance Indices to choose to scan, and 

displays the final comprehensive result on the Lower Right Hand Corner as shown in 

Fig. 6.5. This result is magnified in Fig. 6.6.   

ik dk
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Fig 6.1: Front Panel of VI – Page 1 
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Fig. 6.2: Result Showing Subset with Gain Margin = 1dB 
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Fig. 6.3: Front Panel of VI – Page 2 
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Fig. 6.4: Combination of Gain Margin = 1dB, Phase Margin = 30 deg 
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Fig. 6.5: Front Panel of VI – Page 3 
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Fig. 6.6: Combination of Gain Margin = 1dB, Phase Margin = 30 deg & Peak Time = 

10secs 
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

A. Summary 

 

The primary objective of the thesis was to present an overview of a software tool that 

has been developed based on of Control System algorithms that are very useful in 

gauging the stability of systems. The thesis presented a very practical and novel 

approach to the computation of complete sets of stabilizing Proportional, Integral and 

Derivative Controllers when information available is of different kinds.  

 

Further, the use of an automated software eliminates the necessity of an in – depth 

understanding of the subject, and is made accessible to engineers with a basic 

understanding of the Control System problem they need to solve. 

  

B. Future Work 

 

A very useful and practical application of the developed software is in the industry, 

where the frequency response of the system can be used in calculating complete ranges 

of Proportional, Integral and Derivative gains that stabilize the system. Compact RIO is 

an instrument that can be programmed to get the frequency response from a motor drive. 
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It can also function as a PID Controller. Compact RIO can be remotely monitored by the 

LabVIEW software.  

Hence, the following can be used to stabilize the system in closed loop after getting the 

open loop frequency response of the system, eg: A DC Motor Drive  

• Get Open Loop frequency response from the DC Motor Drive  

• Compact RIO will generate complete stabilizing sets of Proportional Gains in 

real time  

•  User selects values of Proportional gains from the entire range generated by the 

LabVIEW program  

•  Embed the values in the PID Controller (Compact RIO) to stabilize the System  

 

Compact Rio allows collection of data, calculations and implementation to be carried out 

real time. Once the values of the PID Controller are established, values are set in the PID 

Controller and the user can see the system stabilized in real time using the values he 

selects.  

 

Once the setup is complete, control can be established remotely though internet. Hence, 

the user can remotely run the utility containing the program get the frequency response 

data set online, select the values of Proportional Gains he wants, and view the stabilizing 

effect. 
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