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ABSTRACT 

 

Control Strategies and Motion Planning for Nanopositioning Applications with Multi-Axis 

Magnetic-Levitation Instruments. 

(May 2007) 

Huzefa Shakir,  

B. Tech. (Honors), Indian Institute of Technology, Kharagpur 

Chair of Advisory Committee: Dr. Won-jong Kim 

 

This dissertation is the first attempt to demonstrate the use of magnetic-levitation 

(maglev) positioners for commercial applications requiring nanopositioning. The key objectives 

of this research were to devise the control strategies and motion planning to overcome the 

inherent technical challenges of the maglev systems, and test them on the developed maglev 

systems to demonstrate their capabilities as the next-generation nanopositioners. Two maglev 

positioners based on novel actuation schemes and capable of generating all the six-axis motions 

with a single levitated platen were used in this research. These light-weight single-moving 

platens have very simple and compact structures, which give them an edge over most of the 

prevailing nanopositioning technologies and allow them to be used as a cluster tool for a variety 

of applications. The six-axis motion is generated using minimum number of actuators and 

sensors. The two positioners operate with a repeatable position resolution of better than 3 nm at 

the control bandwidth of 110 Hz. In particular, the Y-stage has extended travel range of 5 mm × 5 

mm. They can carry a payload of as much as 0.3 kg and retain the regulated position under 

abruptly and continuously varying load conditions.  
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This research comprised analytical design and development, followed by experimental 

verification and validation. Preliminary analysis and testing included open-loop stabilization and 

rigorous set-point change and load-change testing to demonstrate the precision-positioning and 

load-carrying capabilities of the maglev positioners. Decentralized single-input-single-output 

(SISO) proportional-integral-derivative (PID) control was designed for this analysis. The effect 

of actuator nonlinearities were reduced through actuator characterization and nonlinear feedback 

linearization to allow consistent performance over the large travel range. Closed-loop system 

identification and order-reduction algorithm were developed in order to analyze and model the 

plant behavior accurately, and to reduce the effect of unmodeled plant dynamics and inaccuracies 

in the assembly. Coupling among the axes and subsequent undesired motions and crosstalk of 

disturbances was reduced by employing multivariable optimal linear-quadratic regulator (LQR). 

Finally, application-specific nanoscale path planning strategies and multiscale control were 

devised to meet the specified conflicting time-domain performance specifications. All the 

developed methodologies and algorithms were implemented, individually as well as collectively, 

for experimental verification. Some of these applications included nanoscale lithography, 

patterning, fabrication, manipulation, and scanning. With the developed control strategies and 

motion planning techniques, the two maglev positioners are ready to be used for the targeted 

applications. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background and Motivation 

Manufacturing and manipulation at nanoscale is one of the major research-and-

development focus areas in the application of the nanotechnology and has significant economic 

and societal impacts 1  [1]. Commonly used nanopositioning devices include scanning probe 

microscopes (SPMs) and atomic force microscopes (AFMs). In industry, linear motors and 

servomotors are still popular for microscale positioning. Finer positioning is achieved using 

separate actuators such as piezoelectric actuators.  The key role of a precision positioning system 

is to load, position, and orient an object, and regulate or track its position at desired levels 

without getting affected by external process and measurement noises. This requires high 

positional accuracy, large travel range, and simultaneous generation of multi-degree-of-freedom 

(DOF) motions and high control bandwidth. Most of the conventional methods have several 

limitations due to which they cannot meet these demanding performance requirements. This 

situation calls for the development of high-precision positioning methodologies and application-

specific tools [2].  

Magnetic levitation has been demonstrated to meet these stringent requirements. The 

main benefit of magnetic levitation over other prevailing technologies is its non-contact nature 

while in operation, i.e., the forces are applied to the moving part without any mechanical contact. 

                                                      

This dissertation follows the format of IEEE Transactions on Mechatronics. 

1 National Nanotechnology Initiative [Online]. Available: http://www.nano.gov/html/research/nnigc.html. 
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Thus there is no friction, hysteresis, or backlash. Due to the absence of friction, the moving part 

can be modeled as a pure mass. This maglev technology is suitable for clean-room or vacuum 

environments since it does not require any lubricants or generate wear particles. Furthermore, 

without complex mechanical elements, the fabrication cost can be substantially reduced.  

Several research groups have been working on a variety of concepts using magnetic 

levitation to meet the demanding requirements of nanopositioning. However, most of the results 

available in literature focus primarily on the design and fabrication aspects of maglev positioners. 

Very little attention has been given to the commercialization aspect of this powerful technology, 

which is capable of replacing most of the prevailing positioning methods. In this dissertation, an 

attempt has been made to demonstrate the use of maglev positioners for commercial application.  

Control strategies and motion planning have been devised to overcome the inherent 

shortcomings of this technology. Accordingly, it centers around three key terms – maglev 

nanopositioners, control strategies, and commercial applications requiring precision positioning.  

 

1.2 Review of Prior Art 

1.2.1 Magnetic Levitation 

Maglev technology has been demonstrated successfully for nanopositioning applications. 

It uses electromagnetic force for levitation as well as propulsion and has been found to be very 

useful for precision motion control. Several research groups developed multi-axis precision 

positioning devices using this technology. Kim et al. [3], Shan et al. [4], Holmes et al. [5], and 

Hajjaji et al. [6] have done pioneering work in high-precision magnetic levitation. Kim et al. 

constructed a 6-DOF high-precision planar maglev stage using a concentrated-field magnet 

matrix, which generates a constant 3-D magnetic field for actuation [3, 7, and 8]. The magnet 
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matrix was constructed by the superimposition of two orthogonal Halbach magnet arrays. This 

maglev stage demonstrated a position resolution of 20 nm at a 100-Hz control bandwidth with a 

planar travel range of 160 mm × 160 mm .The maximum velocity of this stage was 0.5 m/s at a 

0.5 m/s2 acceleration, which implies an enhanced throughput in precision manufacturing. Verma 

et al. [9] and Gu et al. [10] demonstrated the use of a multi-axis maglev nanopositioner for 

precision manufacturing and manipulation applications which is capable of carrying and 

orienting a payload up to 0.3 kg with a position resolution better than 2 nm and with a total 

nominal power consumption of 1 W. 

Similar work has been pursued by other research groups in related applications. A 

maglev scanning stage that is capable of a 0.6-nm three-sigma horizontal position noise was 

fabricated and demonstrated by Holmes et al. [5]. The stage utilizes four levitation linear motors 

to suspend and servo the moving element throughout its 25 mm × 25 mm × 0.1 mm range of 

travel. Position feedback is provided by three plane-mirror interferometers and three capacitance 

probes. The suspended platen of 12 kg mass is floated in oil to enhance the stage’s disturbance 

rejection and to reduce power dissipation in the actuators. Jung and Baek designed and 

demonstrated a 6-DOF maglev positioner with self-stability for 5 DOFs [11]. It has a moving 

mass of 173 g and had a position resolution of 0.5 µm in 32-mm-wide x-y planar motion and a 

0.45-µm resolution in z motion. The development and motion control of a large-travel ultra-

precision magnetic suspension stage was presented by Menq et al. [4, 12]. Galburt et al. [13, 14] 

developed an apparatus adapted to align a wafer in a microlithography system. It consists of a 

monolithic stage, a sub-stage, an isolated reference structure, and force actuators and sensors. 

In yet other set of applications, Hollis et al. developed a maglev fine motion wrist with 

programmable compliance [15, 16]. The floater carries an end effector which may be used as a 

tool. The control unit changes the forcer coil current patterns as the fine motion device 
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approaches its final position in order to provide selected compliance in one or more DOFs. An 

optical pickup apparatus with a magnetic circuit was developed by Kano [17] which has an 

application in an optical-type recording and reproducing apparatus. Khamesee et al. 

demonstrated the application of magnetic levitation in a micro-robotic system used for 

transportation and assembly of miniature parts in hazardous environment [18]. This microrobot 

can be remotely operated in 3 DOFs in an enclosed environment by transferring magnetic energy 

and optical signals from outside. A dual-axis repulsive maglev guiding system was developed 

using permanent magnets [19]. This system uses a modified voice-coil motor, a passive carrier, 

and an active track. 

 

1.2.2 Precision-Motion-Control Strategies 

A. System Identification 

System identification is necessary in order to get an accurate plant model and 

subsequently to prove the effectiveness of the developed control strategies. In the case of a 

maglev system, this is crucial as well as challenging because of the inherently unstable nature of 

magnetic levitation. Thus, the system identification needs to be performed in closed loop. There 

are a few results reported in literature on closed-loop identification. Kuo et al. used system 

identification to validate their proposed mathematical model as well as parameter variations due 

to changing air gaps for the ultra-precision motion control of a magnetic-suspension stage [12]. 

Dejima et al. used step responses with PID controller in order to identify the parameters of the 

plant transfer function (TF) [20]. Villota et al. constructed additive uncertainty models by using a 

zero-mean white-noise random signal as a reference input for system modeling [21]. 

In this research, an attempt has been made to carry closed-loop identification a step 

further in order to obtain a reliable and complete plant model. The Box-Jenkins (BJ) method 
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with a closed-loop framework and a known controller structure is used to obtain the closed-loop 

TF [22, 23, and 24]. It is assumed that the measurable part of the input is known precisely and 

that noisy observations of the output are available. A parametric plant and noise model is then 

identified simultaneously from the sampled input-output signals. The advantage of using this 

frequency-domain approach is that the identified model neither requires any guess-work for 

parameter estimation nor depends upon the initial conditions or operating point, at least for a 

linear time-invariant (LTI) plant. 

 

B. Classical Methods in Motion Control 

A number of researchers have been working on various problems associated with motion 

control systems such as maglev, servomotors, AFM, etc. The problems of particular interest are 

precision positioning, system bandwidth, parameter variations, actuator nonlinearities, external 

disturbances, and sensor noise. Endo et al. used a combination of a feedforward controller and a 

robust feedback controller for digital tracking of high-speed poisoning systems [25]. The 

feedforward controller anticipates and compensates for the closed-loop dynamics and the 

feedback controller compensates mechanical nonlinearities, parameter variations, and 

disturbances. Feedforward control was also used by Yasuda et al. to suppress microvibrations in 

precision machines, for example, for semiconductor manufacturing [26]. This feedforward signal 

was not generated online but was computed in advance from the response to the direct 

disturbance and a TF from control input to the controlled output.  Kuo et al. proposed a 

parameter variation model in conjunction with a reduced-order observer to compensate the 

joined effect of disturbance, modeling error, and cross-coupling [27]. Hajjaji and Ouladsine built 

a nonlinear control model for long-range movement of a maglev system and tested it by real-

time control implementation [6]. Sebastian and Salapaka demonstrated the effectiveness of an 
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H∞ control to improve the positioning speed and precision of AFM for imaging of biological 

samples, while eliminating the undesirable nonlinear effects of the actuator [28]. The AFM was 

actuated by a piezoelectric stack and its motion was sensed by a linear variable differential 

transformer. Noise levels are also significant in precision positioning systems since the reliability 

of the sensor data relies on that. Particularly, if the data is read using an analog device and 

digitized for further processing, a measurement uncertainty component is incurred from 

quantization. This uncertainty can be reduced by oversampling and averaging multiple 

measurements [29].  

 

C. Multivariable Control 

Since only one moving part generates all the motions its dynamics is coupled in 6 DOFs. 

Thus a multivariable LQR is a natural choice to regulate the position of the platen, the moving 

part. Kim et al. have designed a multivariable optimal control of a 6-DOF maglev stage with 

large motion capabilities [3]. Nakashima et al. designed a servosystem for suppressing natural 

vibrations of a maglev system using the closed-loop identification and H∞ control theory [30]. 

Becerril-Arreola, et al. performed nonlinear set-point stabilization for the control of a 3-DOF 

maglev system [31]. 

There are many research results on macroscopic time-optimal control especially in path 

planning in robotics [30, 32, and 33]. However, no significant literature is available for 

manufacturing applications at nanoscale. I designed and implemented a multivariable LQR for 

the lateral modes (x, y and the angle about the z-axis) of the maglev stage to reduce the coupling 

among the axes [34]. Although I have used well-established classical and modern control 
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techniques to design the controllers, the designed methodologies enable path planning and 

motion control at nanoscale. 

 

D. Multiscale Control 

A problem of continuing interest in feedback control is handling the performance 

specifications of a controller to meet given time-domain characteristics, some or all of which 

may be conflicting in nature. In particular, the desired performance specifications may require (1) 

fast response (in rise and settling times) with little or no overshoot (2) large travel range with 

nanometer-level position resolution. Fast response is important in applications like a 

manipulator’s pick-and-place operations near a wall, filling a tank with fluid in minimum time 

without spilling over, and temperature control in hazardous environment. Fine position 

resolution and high accuracy are required in applications like microstereolithography, 

nanopositioning, and scanning and imaging of nanoscale phenomena. In these applications, 

however, there is a notable trade-off between the position accuracy and the process throughput, 

particularly in the applications requiring large travel ranges. High position accuracy can be 

achieved for large travel if the scan speed is kept very slow. However, in commercial 

applications like semiconductor manufacturing, high position resolution as well as throughput is 

important. I use the term multiscale control throughout this paper in order to emphasize the fact 

that such control is capable of meeting such conflicting time-domain performance specifications 

and providing desired performances in both nanoscale and macroscale operations. 

Despite the advancement in the control theory over the last few decades, this problem of 

dealing with conflicting time-domain performance specifications remains open. One reason is 

that there is no analytic relationship between the system parameters and the time-domain 

transient-response characteristics for systems of the order higher than two [35]. Even with the 



 

 

8

conventional optimal-control techniques, the problem cannot be completely solved. The 

controllers tuned for load changes tend to produce large overshoots for reference tracking 

whereas those tuned for reference tracking would result in sluggish recovery from load 

disturbances. This fact will be further demonstrated using an example of maglev positioner in 

Chapter VII (Fig. 7.2). A detailed description of the conventional optimal PI control and the 

difficulties associated with it is also given in Chapter VII. 

Several methods were suggested in literature to achieve time-domain performance 

specifications using various control techniques. Deodhare and Vidyasagar [36] and Phillips and 

Seborg [37] gave the conditions for non-overshooting feedback control systems for linear 

systems. Vidyasagar [38] and Jayasuriya and Dharne [39] described the conditions for non-

overshooting and non-undershooting responses based on the number of non-minimum-phase 

plant zeros. Moore and Bhattacharyya [35] and Darbha and Bhattacharyya [40] proposed 

controller synthesis based on a zero-placement method to achieve non-overshooting step 

responses and sign-invariant impulse responses, respectively. Datta et al. [41] and Ho [42] 

designed fixed-order constant-gain, PI and PID controllers, which met the specified time-domain 

characteristics. Among other techniques to reduce the overshoot are set-point filtering, in which 

the set-point is filtered before it enters the feedback loop; model-following approach, in which 

the objective is to make the plant output follow the output of a reference model as closely as 

possible; anti-reset wind-up; and ramping the set-point to its new value in small increments [43, 

44].  

Some of these methods are based on several assumptions, like open-loop stability of the 

plant, a pre-specified relationship between the zeros and poles of the plant, or a strictly proper 

SISO plant [36, 37, 38, and 39]. The developed control methods also have several limitations. 

Some of them require solving a partially finite convex programming problem while others 
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involve searching for a solution over the entire set of the stability region, which may be 

unbounded [42]. Furthermore, the synthesized controllers may be of a very high order and thus 

affect the overall robust stability of the closed loop [45]. This motivates the need to develop 

multiscale-control schemes that can satisfy the time-domain performance specifications in a 

unified way. It turns out that by relieving the constraint of overshoot from strictly non-

overshooting to sub-optimally overshooting, the problem under discussion may be much 

simplified. Suitable modifications of the existing optimal control techniques can provide 

significant improvements in time-domain performances. Besides, if full-state feedback is 

available, the excellent stability margin of optimal control is an added advantage. 

 

1.2.3 Applications of Motion Control in Industry 

A. Semiconductor Manufacturing 

Precision positioning stages plays a vital role in the semiconductor manufacturing 

industry. Some of the key requirements of wafer stages used for lithography, also known as 

steppers or step-and-repeat aligners, are (1) multi-axis high-resolution positioning capability, (2) 

repeatability, (3) large travel, (4) high throughput, and (5) excellent disturbance-rejection 

capabilities for defect-free wafers. Nikon’s NSR-S610C is the industry’s first scanner for 45 nm 

mass production and development of 32 nm devices2. This high-accuracy positioning is achieved 

with the tandem stage, shown in Fig. 1.1, which is designed for high volume manufacturing and 

provides optimized performance and efficiency for immersion lithography. The exposure stage 

processes wafers at very high rates, while the calibration stage is used for calibrations during 

                                                      

2 Nikon Precision Inc. [Online]. Available: http://www.nikonprecision.com/products/nsr_s610c.html. 
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wafer exchange. The tandem stage enables throughput ≥130 wafers per hour, and delivers wet-

dry overlay matching equivalent to dry system performance. 

However, the shrinking feature sizes, increased wafer sizes, demanding overlay accuracy, 

and competitive throughput requirements introduce significant design challenges in 

semiconductor manufacturing. Most of the traditional wafer handling systems mainly consist of 

pneumatic, hydraulic, and mechanical/electromechanical devices. Such systems are complex in 

design, and expensive and time-consuming to produce and maintain [46]. Therefore, a reliable 

low-cost positioning system for precision manufacturing processes requiring clean-room, 

extreme-temperature, or vacuum environments is the key for the microelectronics manufacturing, 

packaging, and high-precision inspection industries.  

 
 

 

Fig. 1.1. Tandem stage operation for Nikon’s NSR-S610C lithography equipment (Source: 
Nikon Precision Inc.) 

 
 
B. Microstereolithography 

Microstereolithography (µSTL) is another application requiring high-accuracy 

positioning for the manufacture or prototyping of small scale objects. Classical stereolithography 

(STL) processes use separate motion control stages for x-y and z axis motions as shown in Fig. 
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1.2(a).  These motion control stages are driven by servo motors with a position resolution about 

0.5 µm. Another schematic shown in Fig. 1.2(b) uses a laser beam deflected by a pair of low-

inertia-galvanometric mirrors and focused by a dynamic lens to solidify photopolymer [47]. This 

methodology works well for objects on the order of a few hundred micrometers. However, beam 

defocusing becomes problematic for smaller objects. An alternate approach is to keep the laser 

beam fixed and use a high-precision positioning stage to generate x-y motions for scanning [48]. 

Beluze et al., Zhang et al., and Jiang et al. have used this kind of x-y stages for µSTL [49, 50, 

and 51]. Ikuta et al. showed the capability of such stages for the mass integrated harden polymer 

STL process [52]. However, in all these processes, the minimum achievable part size is limited 

by the position resolution of the stage being used. In the work presented herein, I have 

demonstrated that this limitation in positioning can be easily overcome with our maglev stage. 

 
 

 

Fig. 1.2. A typical µSTL setup with (a) separate x-y and z precision motion stages [50], and (b) 
galvanometric mirror for scanning [52] 

 

(a)  (b) 
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C. SPM Based Scanning, Imaging and Nanomanipulation 

The development of the Scanning Probe Microscope (SPM) initiated a variety of atomic-

level profiling and characterizing instruments. SPM measures and images the specimen’s 

surfaces on a fine scale, down to the level of molecules and groups of atoms. It is based on the 

concept of scanning an extremely sharp tip with a 3–50 nm radius of curvature, across the object 

surface. The tip is mounted on a flexible cantilever, allowing the tip to follow the surface profile. 

SPMs are primarily operated in the contact mode, wherein there is physical contact between the 

sample and the cantilever tip and a very small constant force is maintained between the two [53]. 

While scanning the area of sample, the tip is deflected. The sensor system consisting of a laser 

diode and a position sensitive detector (PSD) senses this deflection indicating the height of the 

sample at that point. By following a raster pattern, the sensor data forms an image of the probe-

surface interaction. The schematic of the contact mode operation is shown in the Fig. 1.3. 

 

 

Fig. 1.3. Schematic for Atomic Force Microscopy3 

                                                      

3 Soft Matter Physics – Atomic Force Microscopy [Online].  
Available: http://www.uni-leipzig.de/~pwm/kas/afm/AFM.html. 
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Although their primary application was topographical imaging, SPMs have become the 

prime tools for nanomanipulation over the last decade [54]. Three most common SPM 

techniques are Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), and 

Near-Field Scanning Optical Microscopy (NSOM). Currently most of the atomic-level 

positioning and profiling is accomplished by AFMs and STMs [55, 56]. As an example, the 

Dimension 3100 SPM4 of Veeco Instruments utilizes automated AFM and STM techniques to 

measure surface characteristics for semiconductor wafers, lithography masks, magnetic media, 

biomaterials, etc.  

Most of the actuation units in micro/nanopositioning devices are based on piezoelectric 

materials [56, 57]. These actuators have become a standard solution in positioning applications 

where the displacement must be small.  However, there are certain challenges with the 

piezoelectric actuation systems. (1) The motion capability of these devices is usually limited to 

linear motions with a short travel range of around 100 µm. (2) The hysteresis in piezoelectric 

materials reduces the repeatability in positioning, sometimes precluding closed-loop operation 

[54, 58]. (3) A slow creeping motion after a large voltage step results in a significant positioning 

error [59]. (4) The accuracy is greatly influenced by thermal drift under temperature variation. (5) 

The voltage required to operate piezoelectric actuators can be as high as several hundred volts. 

 

D. Nanopatterning 

Nanopatterning is a direct-write nanofabrication technique, which plays an important 

role in areas such as sensor patterning, miniaturization of biological assays, and creation of 

nanoelectronic components. Dip-pen-nanolithography is one such application, which is 

                                                      

4 Veeco Instruments, Applications of AFM [Online].  
Available: http://web.mit.edu/cortiz/www/nanomechanics.html.  
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essentially the process of writing stable nanoscale patterns of molecular ink onto a sample 

substrate via a coated stylus tip (for example, a STM probe). Nanoink uses NSCRIPTORTM (Fig. 

1.4), a dedicated scanning probe lithography system, for dip-pen-nanolithography (DPN) process 

[60]. This system employs separate stage and scanner for large and small range motions. The 

DPN stage is driven by seven motors – two for x-y sample puck translation, one for camera lens 

zoom, one for 10× lens focus, and three for z-axis leveling and z tip-approach. The x-y sample 

translator motors have a minimum 3 µm step size, 25 mm × 25 mm travel, and maximum 2.5 

mm/s slew rate. Scanning is performed with a tripod stack piezoelectric configuration, i.e., 

independent x-y-z piezos. These piezoelectric actuators have a 90-µm travel range in x-y and 8 

µm in z with a position resolution of 10 nm in x-y.  

 

 

Fig. 1.4. (a) Nanoink’s NSCRIPTORTM  for DPN (b) Schematic of the stage [60] 

 

They also require periodic calibration and linearization. This arrangement has several 

apparent shortcomings. The scanning stage requires intensive maintenance and suffers losses due 

(a) (b) 
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to friction from its contact-type mechanisms. It is also not suitable for clean-room operations. 

Piezos, on the other hand, have very limited travel range and are suitable only for microscale 

scanning operation, not for alignment. They also require periodic calibration and linearization 

because of hysteresis and creep phenomena.  

 

1.3 Contributions of This Dissertation 

Despite all the benefits of the magnetic levitation over other prevailing nanopositioning 

techniques, it has several inherent technical challenges: (1) the maglev systems are open-loop 

unstable. (2) the nonlinear relationship between current and displacement may not allow large 

travel ranges, (3) since only a single moving part generates all the motions, its dynamics is 

coupled in 6 DOFs, and (4) due to the absence of any damping or restricting force on the moving 

part, the overshoots to commanded steps are large. Furthermore, the performance of the stage 

depends on the accuracy of sensing. In our case, for instance, use of high-resolution laser-

interferometer sensors results in a root-mean-square (rms) noise level of as good as 2 nm for 

lateral modes. However, the capacitive gauge resolution used for vertical modes is limited by the 

associated analog-to-digital converters (ADCs) to about 200 nm peak-to-peak. 

In addition to these, the working of maglev stages has been demonstrated in literature 

mostly with the basic closed-loop control. When put in conjunction with a practical application, 

the control requirement may be more stringent. Various potential applications of the maglev 

nanopositioning device include µSTL, microscale rapid prototyping, dip-pen-nanolithography, 

scanning/imaging, ultrafine machining, manufacture of nanoscale structures, atomic level 

manipulation, nanoscale vibration isolation for delicate instruments, seismic motion detection 

and so on. These applications require tasks like loading, isolating, positioning, orienting, 

fabricating, or assembling the objects to be manipulated at nanoscale precision. In such 
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applications, this maglev stage can be used as the positioning device, and the task to be 

performed can be done with a fixed tool. In these applications, the presence of external forces in 

the form of payload variation or mass fluctuation is inevitable. For instance, in µSTL, the mass 

of the substrate may vary as the photopolymer is solidified. Similarly, in scanning applications, 

there may be abrupt changes in external forces coming on the positioner during contact-mode 

operation. Consequently, the maglev stage needs to be tested rigorously for set-point changes 

and load-changes and application-specific control strategies and motion planning need to be 

devised to demonstrate its use as precision positioning device in any of these applications. 

 

1.3.1 Objectives 

With reference to the above requirements, the objectives of my research are as follows. 

1. To perform, as preliminary analysis, rigorous set-point change and load-change testing 

to demonstrate the precision-positioning and load-carrying capabilities of the maglev 

stages. 

2. To accurately model the plant dynamics, analytically as well through system 

identification, for reliable and effective control designs and motion planning.  

3. To devise control and motion planning strategies for using the maglev stage in 

conjunction with the practical applications with the following objectives.  

(a) The control schemes and motion planning should be application-specific. 

(b) They should be able to overcome the above-listed technical challenges of the 

maglev systems. 

(c) They should be able to meet the specified time-domain performance 

specifications, some of which might be conflicting in nature. 
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(d) To demonstrate the effectiveness of the developed methods in terms of stability, 

transient and steady-state behavior, and closed-loop criteria. 

4. To demonstrate the use of maglev stages for several industry-relevant applications.  

 

1.3.2 Dissertation Overview 

The dissertation consists of eight chapters. Motivation and contributions of the work 

presented were reported in this chapter. It also provided a review of the prior art, trends in 

motion control in precision positioning and prevailing technologies in industry with an emphasis 

on applications such as semiconductor manufacturing, µSTL, SPM-based scanning, imaging and 

nanomanipulation, and nanopatterning. Benefits and technical challenges associated with the 

maglev technology and maglev positioning systems were discussed and key objectives for the 

research were identified in the light of these discussions. 

Chapter II provides an overview of the two maglev positioners, namely the ∆- and Y-

stage. The developed maglev instruments will be compared in terms of their characteristics and 

performance specifications. Mechanical design and sensing schemes will be described for the 

both the positioners. The need for developing a feedback linearization scheme, which is one of 

the key objectives concerning limitations of the maglev positioners, will also be discussed. 

Details of the design and experimental setup to characterize the behavior of nonlinearities and 

results of the feedback linearization will be addressed. 

In Chapter III, we discuss preliminary analysis and testing of the maglev positioners. 

This includes analytical plant modeling, decoupled SISO PID control and testing results for the 

two maglev positioners. This elementary analysis is based on several assumptions, such as a 

pure-mass model for the plant, negligible cross-talk among the axes, linear actuator behavior and 
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so on. The limitations of these assumptions and simplified models will be analyzed, and 

motivation for developing advanced control schemes and motion planning will be discussed. 

Performances of the two positioners will be tested in terms of their precision-positioning and 

load-carrying capabilities.  

A systematic procedure for modeling, linearization, and multivariable optimal control of 

the two maglev positioners will be discussed in Chapter IV. The modeling and controller-design 

procedures are the same for both the positioners, except for the differences in their dimensional 

parameters. The equations of motion will be derived using the Euler-angle methodology and 

linearized about an operating point to derive state-space equations. The performance of this 

multivariable control will be analyzed and compared with that of six decoupled SISO controllers 

used earlier in Chapter III. The effect of adding the integrators to eliminate the steady-state error 

will also be addressed and the performance of the LQR controller with different weight matrices 

will be compared.  

Another key objective of this research is to have a working space as large as the 

designed travel range itself, which implies that the performance of the positioner must be 

uniform throughout the working space. System identification is necessary in order to analyze and 

model the plant behavior accurately and to subsequently develop effective control strategies. It is 

also required to reduce the effect of unmodeled dynamics and nonlinearities in the actuators 

which may not be modeled precisely using analytical methods. The identification of the plant 

and coupling TFs for the Y-stage will be discussed in Chapter V. Closed-loop system 

identification techniques with known controller dynamics and a persistently excited signal will 

be used and an order-reduction algorithm will be described. Several test results will be presented 

to demonstrate the accuracy of the identified TF models. 
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Chapter VI addresses nanoscale path planning and motion control with the two maglev 

nanopositioners to test their performances when put in use for any practical applications such as 

µSTL, DPN, and scanning applications for imaging and manipulation of nanoscale surface 

phenomena. Motion trajectories of practical importance will be identified, along with the 

challenges in optimal path planning to meet the nanoscale motion-control objectives. Key 

control parameters in path planning will be determined, and control design methodologies will 

be proposed to satisfy the positioning requirements. The proposed methodologies, individually 

and collectively, will be implemented.  

Finally in Chapter VII, three multiscale control schemes will be presented to meet the 

conflicting time-domain performance specifications: (1) a controller-switching technique that 

employs two controllers designed to meet two conflicting performance objectives and are 

switched in the course of operation, (2) an integral-reset scheme, which resets the integral term 

in the control law when a new reference point is reached, and (3) a reduced-order model-

following approach, that uses a dynamic reference model with an objective to make the plant’s 

output track the model’s output as closely as possible. These control schemes will be analyzed in 

detail. Simulation and experimental verification of the proposed control methods will be 

presented. The three methods will be compared in terms of their dynamic and steady-state 

behavior and the ability to meet the desired objectives. In particular, the third method, being 

most effective among the three, will be analyzed in further details including closed-loop stability, 

initial state uncertainties, and input and output sensitivities. 

Chapter VIII concludes this dissertation with a summary of significant achievements and 

contributions, and a list of suggestions for next few tasks which can be accomplished with the 

developed methodologies and further improvements in the performance of the two maglev 

positioners. 
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CHAPTER II 

MAGLEV STAGE CHARACTERIZATION 

 

2.1 Introduction 

In this chapter, a detailed overview of the two maglev positioners is given. The 

developed maglev instruments are compared in terms of their characteristics and performance 

specifications. The underlying mechanical design and fabrication, electrical system setup, and 

elementary testing for the ∆-stage was done by Gu [61]. He also developed a use interface for the 

real-time control of the maglev positioners. Precision assembly for the ∆-stage and mechanical 

design, fabrication, and precision assembly for the Y-stage was done by Verma [62]. In this 

chapter, the mechanical design and sensing schemes of the two maglev positioners are revisited 

briefly. The need for developing a feedback linearization control scheme to reduce the effect of 

actuator nonlinearities in the large travel-range motion is also explained. Details of the design 

and experimental setup to characterize the behavior of nonlinearities and results of the feedback 

linearization are presented. 

 

2.2 ∆ and Y Maglev Positioners 

Fig. 2.1(a) shows a photograph of the ∆-maglev stage. “∆” refers to the shape of the 

single-moving levitated platen, which consists of a triangular aluminum part and six single-axis 

actuators [63, 64]. The compact maglev stage uses the minimum number of actuators required 

for 6-DOF motion. Each vertical actuator consists of a cylindrical magnet and a coil, and each 
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horizontal actuator consists of two cylindrical magnets and a coil. Prevailing precision 

positioning devices like STMs and AFMs are able to position in the travel range of 100 µm in 3 

DOFs. However, this ∆-maglev stage is capable of motion control in all 6 DOFs with the travel 

ranges of 300 µm in the x-, y-, and z-translations and 3.5 mrad in the x-, y-, and z-rotations. The 

position resolution is better than 2 nm at 48-Hz control bandwidth for lateral motion control [9, 

10, and 65]. 

Fig. 2.1(b) shows a photograph of the Y-maglev stage [66]. “Y” refers to the shape of the 

levitated single-moving platen. The Y-stage possesses several competitive advantages over the ∆-

stage in terms of travel range, simplicity in mechanical design, and power consumption. 

1. Larger travel range: This second-generation Y-stage has the planar travel range more 

than 15 times wider (5 × 5 mm) than that of the ∆-stage. Due to sensor specifications, 

this Y-stage is currently limited to move 500 µm in the z-axis and 3.5 mrad in rotation. 

However, the mechanical design of the stage makes it capable to rotate about 87.3 mrad 

(5°) and translate about 7 mm in z with appropriate sensors. 

2. Fewer components: The Y-stage is based on a novel actuation mechanism in which 

forces in two perpendicular directions are generated by a single magnet (Refer to Section 

2.3.2-B for details). This mechanism reduces the number of magnets three times 

compared to that in the ∆-stage. 

3. No mechanical restriction: The platen of the Y-stage can be removed from the stage 

frame easily without disturbing any stationary parts. This facilitates easy loading and 

unloading of objects on the platen for various applications, which is an added advantage 

over the nanomanipulator developed by Culpepper and Anderson [67] and the ∆-stage 

[65]. 



 

 

22

 

Fig. 2.1. Photographs of the (a) ∆-stage and (b) Y-stage showing major platen components, 
sensors and actuators 

 

Table 2.1 summarizes and compares the specifications of the two maglev positioners in 

terms of their single-part moving elements, actuators, and motion capabilities. 

Plane mirror 
Permanent 
magnets 

Capacitance 
sensors 

Actuator coils 

Laser  
interferometers 

Platen 

(a) 

(b) 
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2.3 Mechanical Design 

Fig. 2.1 shows different components of the two maglev positioners. The triangular part 

at the center in Fig. 2.1(a) and the Y-shaped part in Fig. 2.1(b) are the single-moving platens. The 

platens carry permanent magnets for actuation and plane mirrors for horizontal motion sensing. 

The details of the platen design and precision assembly are described in the following sections. 

Effective packaging is important for any assembly. All parts were designed and 

assembled in such a way that (1) the platens must be close enough to all coils for sufficient force 

generation, (2) the bottom surfaces of the platens must be in the sensing range of all capacitance 

probes, and (3) the HeNe laser beams from the interferometers should not be blocked by other 

assembly components. 

Since the platen is the only moving part in each of the two maglev stages, its design is 

very crucial with the following considerations: (1) the vertical actuators must continuously apply 

vertical forces to balance the platen’s weight against gravity at a predetermined levitated height, 

Table 2.1.  Summary of the two maglev-stage specifications 

Property ∆-stage Y-stage Units 
Moving Elements    
DOFs 6 6  
Mass 0.212 0.267 kg 
Size 80 × 69 × 17.5 115 × 127 × 12.7 mm 
Actuation    
Number of coils 6 6  
Number of magnets 9 3  
Power consumption 1.0 0.8 W 
Motion Capabilities    
Position resolution 2 3 nm 
Travel range (translation) 0.3 × 0.3 × 0.5 5 × 5 × 0.5 mm 
Travel range (rotation) 3.5 × 3.5 × 3.5 3.5 × 3.5 × 3.5 mrad 
Maximum payload 0.3 0.2 kg 
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(2) the platen should be light in weight to maintain the coil currents in the actuators low, and (3) 

the moving and stationary structures should be stiff enough to exhibit a high natural frequency. 

 

2.3.1 Platens 

A. Platen for the ∆-Stage 

The core of the platen is made of pocket-milled single-piece aluminum to reduce its 

mass and to keep its natural frequency high without sacrificing stiffness. There is no iron part in 

the assembly, which makes the actuators operable at high bandwidth without magnetic saturation 

or hysteresis. The parts attached to it are three horizontal magnet assemblies, three vertical 

magnet assemblies, three plane mirrors, and a set of aluminum, viscoelastic, and constraint 

layers on top. The assembly of these three layers adds passive damping to the system to 

minimize the structural vibrations and improve the stability. The bottommost aluminum layer, 

called the top plate, covers the pockets of the platen. It was attached to the platen using four 

screws, three at the corners and the fourth at the center. The total mass of the moving part is 

0.212 kg. 

The horizontal and vertical actuator assemblies will be described in details in the next 

subsection. There are three arms protruded on the sides of the platen to hold the magnet 

assemblies for horizontal actuation. Since the magnetization directions of the magnets are 

parallel to the sides of the triangular platen, these units generate horizontal force parallel to the 

sides of the platen. Each of the three vertical actuator assemblies consists of a cylindrical magnet 

and a cylindrical aluminum mount with three holes potted together. Each assembly is mounted 

on the platen using three set-screws. 
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Three plane mirrors were mounted on the platen for horizontal motion sensing. These 

plane mirrors act as the reflectors for the laser interferometers. The bottom surface of the platen 

was machined and ground to be flat within 2.54 µm as this surface would be used as the target by 

the capacitance gauges to sense the vertical displacements of the platen. 

 

B. Platen for the  Y-Stage 

The platen core was machined from single-piece aircraft-grade 7075 aluminum. It was 

pocket-milled in the center leaving the ribs on the edge to reduce the weight while keeping the 

high stiffness and natural frequency. The three ends of the Y-shaped platen core have a width of 

25.4 mm and a height of 12.7 mm to match the side dimensions of the magnet. A small hole was 

drilled and tapped in the center of platen for a screw to hold a grounding wire for the capacitance 

gauges. The bottom surface of this Y-platen was also ground to achieve a surface roughness of 

2.54 µm like that of the ∆-stage. The three cuboid-shaped permanent magnets were attached at 

the three ends of the platen core with the square faces on the top and bottom being the N and S 

poles, respectively. Three plane mirrors were then attached at one of the side faces of the 

magnets for horizontal motion sensing.  

 

2.3.2 Actuators 

A. Actuator Units for ∆-Stage 

The six-axis motion generation by the platen for the ∆-stage is achieved by the 

application of a combination of independent force components acting through six unit actuators. 

Each horizontal-actuator unit consists of two cylindrical permanent magnets attached together 

with an aluminum spacer between them placed inside a doughnut-shape current-carrying coil. 



 

 

26

Each vertical-actuator unit consists of one permanent magnet and a current-carrying coil 

identical to those in a horizontal-actuator unit. The assembly of the magnets and spacer is 

attached to the moving platen, while the six current-carrying coils are fixed to the stationary base 

plate. 

Schematics of the assemblies of the horizontal and vertical actuators are shown in Fig. 

2.2. The coil generates the N or S pole based on the direction of the current governed by the 

right-hand rule. Depending on its magnetization direction, an attractive or repulsive force is 

applied on the magnet. A magnet-coil air gap of 504 µm limits the total achievable travel range 

of the platen. 

 

 

Fig. 2.2. Schematics of (a) the horizontal-actuator unit and (b) the vertical-actuator unit for the 
∆-stage 

 

The primary benefit of this maglev stage apart from its precision positioning and load-

carrying capabilities is the nominal power consumption by the actuators. The average nominal 

(a)  (b)  
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current in each vertical actuator is 0.7 A, so the power consumption with the coil resistance of 

0.6 Ω is only around 1 W in the entire actuation system to levitate the platen against gravity. 

Assuming the coils to be point sources of heat, this power consumption would increase the 

temperature of the base plate by a maximum of 0.2°C. Furthermore, this heat is transferred to the 

platen only through convection since there is no mechanical contact between the base plate and 

the platen. Since this maglev stage is intended to be used as a nanopositioner, even small 

changes in the dimensions due to thermal expansion may be significantly detrimental. The small 

power consumption leads to lesser heat generation and thermal-expansion error due to Joule 

losses. Hence, a consistent and repeatable positioning performance can be ensured. Thus for all 

practical purposes, the thermal expansion errors due to heat losses may be safely ignored. The 

characterization of these actuators was described in detail in [63]. The detailed specifications of 

the actuating units in the ∆-stage are given in Table 2.2. 

 

 

Table 2.2.  Properties of the actuators 

 Property ∆-stage Y-stage Units 
Permanent magnet Size Ø 11.7 25.4 × 25.4 mm 
 Height 9.5 12.7 mm 
 Material NdFeB NdFeB - 
 Energy product 400 280 kJ/m3 
Coil Wire gauge AWG#24 AWG#24 - 
 Material Copper Copper - 
 Turns 179 679V 

561H - 

 Resistance 0.6 5.5V 
5.9H Ω 

 Inner dimension Ø 12.2  10 × 10V 
20 × 20H mm 

 Outer dimension Ø 32.5 35 × 35V 

40 × 40H mm 

 Thickness 9.6 17.5 mm 
V: Vertical actuator 
H: Horizontal actuator 
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B. Actuator Units for Y-Stage 

The working of the Y-stage is based on a novel 2-axis electromagnetic-force generation 

scheme, which generates forces on a single permanent magnet in two perpendicular directions 

using a horizontal and a vertical current-carrying coil [66]. The terms “vertical coil” and 

“horizontal coil” are used to designate the coils which generate vertical and horizontal actuation, 

respectively. Fig. 2.3 shows a cross-sectional view of each actuator unit. The maglev stage is 

comprised of three such actuating units with three permanent magnets attached to ends of the Y-

shaped platen and two fixed square-shaped coils per magnet as shown in Fig. 2.1(b). The 

magnetic-field lines generated by the permanent magnet are also shown in Fig. 2.3. The 

directions of the currents in flow are assumed clockwise in the vertical coil and counterclockwise 

in the horizontal coil, seen from the top.  

 

Fig. 2.3. Cross-sectional view of the novel two-axis actuator used in the Y-stage [66] 
 

The magnetic flux generated by the magnet is shared by the two coils, one right below 

and another on the side of the magnet. The magnitude and directions of currents in the coils 

govern the forces exerted on the magnet following the Lorentz-force law. In the vertical coil, the 

direction of the magnetic-field lines is normal to the direction of current flow and towards the 

center of the coil on all the four sides of the coil (neglecting the corner effect). Thus the J × B 
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Lorentz force on the coil is vertically downwards on all the four sides of the square. The equal 

electromagnetic reaction force is applied vertically upwards on the moving magnet since the coil 

is fixed in a stationary frame. Similarly, in the horizontal coil the direction of the magnetic-field 

lines is approximately downwards in all the four sides. Thus, the effective force on the coil is to 

the right following the right-hand rule, and on the magnet, to the left. To change the magnitude 

and directions of the vertical and horizontal forces, appropriate changes are made in the 

magnitude and directions of current flow in the corresponding coils. In this manner the forces 

can be generated in the two perpendicular directions independently on a single moving magnet. 

The detailed specifications of the actuating units in the Y-stage are given in Table 2.2. 

While it retains all the advantages of the ∆-stage as regards the precision-positioning and 

load-carrying capabilities and nominal power consumption, the Y-stage also exhibits several 

additional benefits over its first generation counterpart owing to this new actuation scheme. (1) It 

makes the mechanical design of the maglev stage very simple to manufacture and assemble, (2) 

there is no mechanical constraint on the platen to separate it from the actuator assembly, and (3) 

since there are only three magnets used to generate actuation forces in all the six directions, the 

structure of the platen is simple.  

 

2.4 Sensing 

2.4.1 Laser Interferometry 

The horizontal-plane position and velocity sensing for real-time control is done by laser 

interferometer system from Agilent shown in the Fig. 2.4. The laser interferometer metrology 

arrangement for the Y-stage is shown in the Fig. 2.5.  The arrangement is similar for the ∆-stage 

with the only exception in the placement of the mirrors on the platen. It has two mirrors placed 
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on one side and the third one on another side 60° apart. The interferometer arrangement is also 

modified accordingly.  

 

 

Fig. 2.4. Laser interferometer and receiver for horizontal motion sensing 
 

 
The primary components of this interferometry system are He-Ne laser head (5517D), 

three plane interferometers (10706B), three receivers (10780C), three laser axis boards (10897B) 

for x- and y-translation and z-axis rotation, a 33% beam splitter (10706A), a 50% beam splitter 

(10701A), a beam bender (10707A), and two plane mirrors for non-orthogonal beam-bending. 

The laser head is the source of orthogonally polarized HeNe laser at a wavelength of 632.99 nm. 

The beam power output is 180 µW – 1 mW. The beam from laser head is distributed into three 

parts of equal intensity using beam-splitters and directed by beam benders and mirrors so that 
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each beam falls normally on the platen mirrors. The receiver senses the reflected beams from 

mirrors and transmits the data to the laser-axis boards, which provide position and velocity 

information. The laser axis board gives 35-bit position data at a 10-MHz refresh rate.  It also 

provides 24-bit velocity data.  This is an added benefit since differentiating position data to get 

velocity is usually troublesome due to the high-frequency noise present in the sensed data. 

 

 

Fig. 2.5. Interferometry system for the Y-stage [62] 
 
 

The schematic of the high-stability plane-mirror interferometry is shown in the Fig. 2.6. 

This interferometer uses the dual-pass method and provides 0.6-nm resolution over a travel range 

of 40 m. The incident beam consists of a measurement beam and a reference beam with 

orthogonal polarizations. The reference beam gets internally reflected from the interferometer 
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and received by the laser receiver. The measurement beam falls normally on to the plane mirror 

mounted on the platen after one internal reflection through the interferometer and the mirror, gets 

received by the laser receiver. The optical path length changes by twice the amount the plane 

mirror moves [68]. Since the measurement beam and the reference beam have a common path, 

the thermal expansion of the interferometer optics causes the thermal measurement drift of up to 

12 times less compared to the value typically achieved by conventional plane mirror 

interferometers, hence the term high-stability [69]. The maximum velocity that this 

interferometer can sense is 0.5 m/s. The laser interferometric position sensing system gives only 

relative position data with respect to an initial position.  This requires initial position adjustment 

and subsequent initialization of the position data. 

 

 

Fig. 2.6. Schematic showing working principle of high-stability plane-mirror interferometer 
system [69] 

 

2.4.2 Capacitance Probes 

Three capacitance probes from ADE (2810), facing the bottom surface of the platens, 

were used for vertical position sensing as shown in the Fig. 2.7. The linear sensing range of these 
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probes is around 500 µm in a gap of 250 µm to 750 µm between the probe and the target surface. 

These probes have outer diameter and height of 20 mm and 18 mm, respectively, with a 10-mm 

active sensing area. Each probe measures probe-to-target distance by sensing the change in the 

capacitance between the two surfaces and converting it to a voltage signal. The outputs of the 

three probes are fed to the signal conditioning boards (ADE 3800), placed in the VME chassis. 

These ADE 3800 boards provide the analog signals with an output range of ±5.0 V. These boards 

have jumper settings and can change the output voltage swing. 

 

 

Fig. 2.7. Capacitance gauges for vertical motion sensing 
 
 

The analog signals are sampled and converted to digital data using 16-bit ADCs on 

Pentek 6102. Actual position and rotation values for z-translation and x- and y-axis rotation for 
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real-time digital control are obtained from this data using triangulation method. In order to avoid 

the aliasing of the sensor signals by higher-frequency noise contents, a set of first-order RC anti-

aliasing filters are used right before sampling by the ADCs. The bandwidth of the ADE 3800 

systems is set at 1 kHz.  Typical noise amplitude in the probe information is 50 nm peak-to-peak 

or more due to the noise in the Pentek ADC card. ADE recommends grounding the target, i.e., 

the platen, to reduce noise, so a wire attached to the platen was used to do this. 

 

2.4.3 Instrumentation Structure 

The schematic of instrumentation structure is shown in the Fig. 2.8 and is common to 

both the maglev positioners. The primary components of instrumentation are a Versa Module 

Eurocard (VME) PC (VMIC 7751), a digital signal processor (DSP) board (Pentek 4284), a 16-

bit data-acquisition board (Pentek 6102), and 3 laser-axis boards (Agilent 10897B). A VME 

chassis is used as a communication backbone among various instrumentation components. 

Details of these vital instrumentation components are given below. 

 

A. DSP Board (Pentek 4284) 

The Pentek 4284 board with a TMS320C40 DSP is employed for the all the foreground 

computing tasks in real-time control. It takes position and velocity inputs from the 10897B laser-

axis boards and Pentek 6102 data-acquisition board, user commands or predefined positions and 

trajectories from VME PC, samples the data, applies the control law, and generates the output 

commands via 16-bit digital-to-analog converters (DACs), also available on the data-acquisition 

board. All these tasks are accomplished in an interrupt service routine (ISR) called by an external 

interrupt every 200 µs. 
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Fig. 2.8. Schematic of the instrumentation for the two maglev positioners
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B. Data-Acquisition Board (Pentek 6102) 

The data-acquisition board contains 8 channels of 16-bit ADCs and 8 channels of 16-bit 

DACs with input/output (I/O) range of ±5 V. The 10-MHz 35-bit position and 24-bit velocity 

data from the laser axes board is received by the DSP via the VME bus. For vertical position 

sensing, 3 capacitance sensing probes (ADE 2810) with signal conditioning boards (ADE 3800) 

are used. The analog outputs of these boards are fed to a data-acquisition board on VME chassis 

after a 1-kHz low-pass anti-aliasing filter.  

 

C. Power Amplifiers 

The control outputs indicating desired coil currents are fed to transconductance 

amplifiers via the DAC. The output current from an amplifier is linearly proportional to the input 

voltage. Each amplifier consists of a differential amplifier to reject common-mode noise, a 

feedback amplifier to stabilize the current-control loop, and a power booster with a power 

operational amplifier (PA12A) by Apex. The output of amplifier causes flow of desired current 

in the coils for electromagnetic actuation. The output swing of the DACs is ±5V and the current 

limit in the coils is set at ±2.5 A. 

 

D. VME PC 

The VME PC is used to compile the C codes and download the executable file to the 

DSP. This VMIC 7751 VME PC has a Pentium III 733-MHz processor and 256 MB of RAM on 

it. Additionally, it has Swiftnet, Code Composer, Visual Studio, and a custom-designed user 

interface to operate the maglev positioners. Swiftnet is a software by Pentek that acts as a 

controller panel interface between the VME PC and the DSP board. It is a mandatory program to 
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run the PC for continuous communication for real-time commands while the stage is in operation. 

The Code Composer by Texas Instruments is used to compile the projects written in C language 

and link them to generate a DSP-executable code. The compiled code can be downloaded to the 

DSP via Swiftnet.  

 

E. User Interface 

The user interface is a graphical user interface (GUI) developed by Gu [61], one of Dr. 

Kim’s former graduate students, that interacts with the DSP for real time position inputs and 

trajectory-tracking during the operation. This communication between the DSP and the VME PC 

is established via a dual-port memory on the Pentek 4284 board. Primary functions of the user 

interface are listed below. 

1. It sends the user-defined reference input commands to the DSP. These commands 

include steps in single or multiple axes, and predefined trajectories. 

2. It sends system commands for initializing DSP and ADC and DAC boards, and setting 

initial reference values for the laser interferometer sensors.  

3. It displays the positioner’s status in real time. This includes input reference positions in 6 

axes, actual measured position values from the sensors, position errors, and calculated 

coil currents and the actuator forces for the 6 actuating coils.  

4. It snaps and records the data whenever required by the user in a text file for plotting 

and/or further analyses.  
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2.5 Feedback Linearization of Actuation Forces 

While modeling the actuators initially, we assumed that the force applied by the 

electromagnetic actuators was related to the coil current with a nominal force constant and not a 

function of position. However, if the translation of the permanent magnet is large, this current-to-

force conversion factor is no longer constant. This is not a problem for the ∆-stage since the total 

travel range is limited by the gap between the coil and the permanent magnet to 300 µm. In this 

range, the force-gap relationship remains linear and the force constant may be assumed constant. 

However, for the Y-stage, there is mo such mechanical constraint. The packaging of actuator 

units allows the travel range to be as large as 5 mm × 5 mm and hence, the force-gap relation is 

expected to be a nonlinear one. 

The nonlinear relations between force and coil-magnet gap for horizontal and vertical 

actuators were identified experimentally. The experimental setup is shown in Fig. 2.9. The 

magnet was fixed on one end of a precision load cell. The other end of the load cell was attached 

to a xyzφ manual positioning stage. The magnet was positioned in the 3 axes using the 

micrometers on the stage with respect to the coils at different positions and measured the load-

cell voltage output. The load cell was calibrated by subtracting the offset forces due to gravity 

with zero coil-current. The forces due to magnetic attraction with optical table and bolts etc. 

were also identified using a known load and the load-cell reading was adjusted accordingly. The 

forces generated by the vertical and horizontal actuators as a function of the distance between the 

coil and the permanent magnet are shown in Fig. 2.10(a) and (b), respectively. Evidently, the 

forces are nonlinear functions of the gap as expected.  

For a nonlinear system, controllers based on a linearized model at an operating point are 

only effective in a small neighborhood around that point. Out of this neighborhood the system 

performance often degrades rapidly. Two approaches to the problem of ensuring consistent 
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performance independent of the operating point have been reported in literature. One approach is 

the gain scheduling [70] where the nonlinear force-gap relationship of the electromagnetic 

actuation is successively linearized at various operating points with a suitable controller designed 

for each of these operating points. To ensure long travel ranges and still obtain good tracking 

performance, gain-scheduling controllers require the entire operating range to be broken into fine 

intervals and stored in large lookup tables of controller gains. 

An alternative to the gain scheduling approach is feedback linearization [71]. The 

approach can algebraically transform a nonlinear system dynamics into a linear one, based on 

which linear control design methods can be applied. Feedback linearization has been proved to 

be a very successful technique for such systems [72, 73, and 74]. French and Rogers used the 

approximate parameterization for adaptive feedback linearization [72]. Approximate state-

feedback linearization using spline functions was applied by Bortoff for single-input nonlinear 

systems [74]. A rotating inverted pendulum was used to demonstrate the improved performance. 

A similar approach was used to compensate for the nonlinearity of the maglev system. 

The calculation of the desired current to generate a particular force based on a quintuple 

integration [9] cannot be performed in real time because the force calculation evaluating the 

quintuple integrals is a very time-consuming process. Therefore I calculated the force at several 

points offline and used these values to estimate the force at other points. I used the “basic fitting” 

function in MATLAB to find an approximate second-order polynomial function that is closest to 

the experimental value. Fig. 2.10(a) (dashed line with circles) shows the experimental vertical 

force of the actuator with a 1-A coil current, and the approximate quadratic polynomial curve is 

given by 

4 2 24.7418 10 8.7132 10 6.7712v v vK g g= × − × +          (2.1) 

 



40 

 

 

Fig. 2.9. Experimental setup to determine the force-gap relationship for vertical and horizontal 
actuators 

 

 

Fig. 2.10. Experimentally determined values of force (o), quadratic fit (dashed line), and 
operating range (shaded region) to determine the force-gap relationship for (a) vertical 
and (b) horizontal actuators for a 1-A current 

 

magnet 
horizontal 
actuator 

load cell 

x-y-z-φ 
positioning stage 

vertical 
actuator 

0 1 2 3 4 5 6 7
0.5

1.0

1.5

2.0

2.5

gap, g
h
 (mm)

fo
rc

e 
(N

)

0 1 2 3 4 5
3

4

5

6

7

height, g
v
 (mm)

fo
rc

e 
(N

)

(a) (b) 



41 

 

where gv is the levitation gap [m] between the magnet and the top surface of the coil and Kv is a 

nonlinear current-to-force conversion factor [N/A] in the vertical actuator. Similarly for the 

horizontal actuation, I calculated forces from the actuator at different horizontal gaps (gh) 

between the coil and the magnet with the 1-A coil current. Fig. 2.10(b) (dashed line with circles) 

shows the experimental horizontal force at several gaps [m] with the 1-A coil current, and the 

approximate quadratic polynomial fit is given by 

4 2 21.3031 10 2.7161 10 2.2050h h hK g g= × − × +         (2.2) 

where Kh is a nonlinear current-to-force conversion factor [N/A] in the horizontal actuator. Fig. 

2.10 also shows the operating regions for the two actuators. For vertical actuation, the travel 

range is limited by the sensing range of capacitance gauges to 500 µm. In this small operating 

range, the force constant may be assumed constant. However, we do need feedback linearization 

for horizontal motion control where the travel range may be as large as 5 mm. Feedback 

linearization would also be needed for vertical motion control if we use the extended range 

motion sensors. 

The plant dynamics can now be modeled for horizontal motion control in the following 

nonlinear form. 

1 2

2 1
1 ( )f
m

=

=

x x

x x u
          (2.3) 

where x1 is the position vector, x2 is the velocity vector, m is the mass of the platen, and u is the 

coil current vector. 1( )f x  consists of the modal force transformation matrix and the current-to-

force conversion factors. Since the complete information on the force-gap relationship is 

available, the plant input u can be chosen as 

[ ] 1
1( )f −=u x v           (2.4) 
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to cancel the nonlinear term. The vector v in (2.4) is the control efforts from the linear controllers 

in the form of force [N]. This cancellation results in the following linear dynamic equation of 

motion. 

1 2

2
1
m

=

=

x x

x v
          (2.5) 

This feedback linearization utilizes the complete nonlinear description of the 

electromagnetic force and hence yields consistent performance largely independent of operating 

points. The block diagram shown in Fig. 2.11 represents the implementation of this feedback 

linearization approach through nonlinear compensation. The feedback linearization equations 

were implemented in a real-time C code to calculate the desired coil currents for a given value of 

force and position. 

 

 

Fig. 2.11. Block diagram representing the feedback linearization through nonlinear 
compensation 

 
 

Fig. 2.12(a) shows the experimental result of position regulation in x. Position resolution 

is clearly better than 3 nm. Fig. 2.12(b), (c), and (d), respectively show the response of the 

maglev stage to a reference step command of 5 mm in x and the perturbations in the other two 
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axes, namely y and φ (rotation about z) with and without using feedback linearization. As can be 

seen in Fig. 2.12(b), the overshoot decreased from 21.3% to 12.9% with feedback linearization. 

Feedback linearization also helps in reducing the effect of the stray torques acting on the 

levitated platen. These stray torques appear mainly due to the force imbalance when the magnet 

is substantially away from an operating point. They also come due to the difference in the plane 

of application of forces and center of mass (CM) of the platen. This will be discussed in further 

details in Section 3.1. Furthermore, in the absence of feedback linearization, the controller would 

keep applying equal current to all the three horizontal and vertical actuators. Due to the 

difference in the gap in individual coil-magnet pairs, however, the actual forces acting on the 

magnets would be different. This would result in an imbalance in the net force acting on the 

three magnets and there would be a net moment on the maglev platen. Other sources of stray 

torques include the asymmetry in the stage structure due to mirrors and other assembly errors. 

Feedback linearization is again capable of effectively mitigating this problem since it uses the 

actual position feedback to calculate the required current. Fig. 2.12(b) and (c) show that there 

were significant deviations from the commanded regulatory positions of y and φ if a constant 

force constant was used. Feedback linearization reduced this perturbation significantly. 
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Fig. 2.12. (a) Position regulation in x. (b) Response of the maglev stage to a reference step 
command of 5 mm in x and perturbations in (c) y and (d) φ with (solid line) and 
without (dashed line) feedback linearization 
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CHAPTER III 

PRELIMINARY ANALYSIS AND TEST RESULTS 

  

In this chapter, the plant modeling, control and testing results for the two maglev 

positioners are discussed. These results are based on decoupled SISO plant models with pure-

mass assumption. Accordingly, six individual controllers will be used for preliminary 

performance testing. The limitations of these assumptions and simplified models will be 

analyzed, and motivation for developing advanced control schemes and motion planning will be 

discussed. Performance of the two positioners will be tested in terms of their precision 

positioning and load carrying capabilities. With the results and motivations presented in this 

chapter, I will pursue further developments on the maglev systems in order to be able to use 

them for commercial applications. 

 

3.1 Dynamic Modeling and SISO PID control 

3.1.1 6-DOF Force Generation 

The actuation schemes of the two maglev positioners were discussed in the previous 

chapter. Both the stages use six linear actuators to generate 6-DOF motion, namely translations 

in x, y, and z and rotations about these axes, through appropriate combination of forces. Fig. 

3.1(a) and (b) respectively show the directions of forces generated by each of the linear actuators 

in the two stages and the axis conventions.  
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Fig. 3.1. Convention of the coordinate axes and the directions of forces generated by the unit 
linear actuators for (a) the ∆-stage and (b) the Y-stage. (c–h) Force generation using a 
combination of six actuator forces 

 

The conceptual modal force generation of the maglev system is depicted in Fig. 3.1(c−h), 

taking example of the Y-stage. Fig. 3.1(c), for instance, shows the directions of forces F5 and F6 

(b) (a) 

(c) (d) (e) 

(g) (h) (f) 
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to get an effective force in the x axis. Likewise, Fig. 3.1(d) depicts the force generation in the y-

axis using a combination of F4 in negative direction, and equal values of F5 and F6 in positive 

directions, so that the x components of F5 and F6 are cancelled. For rotation about z the three 

horizontal forces F4, F5 and F6 are applied in positive directions. In this way, by combination of 

these three horizontal forces, we achieve planar horizontal motion. Similarly, for vertical motion, 

suitable combinations of the three vertical forces F1, F2 and F3 give translation in z and rotations 

about x and y as shown in Fig. 3.1(f–h).  

 

3.1.2 Analytical Plant Modeling 

A. Mass and Inertia Tensors 

The mass m of the platen assembly was measured using a precision electronic balance. 

The total mass of the moving part for ∆-stage includes the platen, mirrors, vertical magnets, 

horizontal magnets, cover layer, damping layer, constraint layer, spacers, and screws. The 

structure of the Y-stage was relatively simple and the platen mass consists only of the Y-shaped 

aluminum core, three permanent magnets and three plane mirrors. The three permanent magnets 

contribute nearly 73% of the total platen weight. Other system parameters like CM, inertia 

matrix, and natural frequencies, were determined using a finite element (FE) model in 

SolidWorks. Details of these calculations are reported in [61]. Here I present the final values of 

mass and moment of inertia at the CM of the two stages in Table 3.1. The definition of each axis 

is shown in Fig. 3.1. 

For the ∆-stage, the off-diagonal terms are non-zero. This is due to asymmetry because 

of the mirrors. However, the products of inertia are less than 3% of the principal moments of 

inertia, and hence, they are neglected in the preliminary analysis. The Y-stage, on the other hand, 
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has more symmetrical structure due to the innovative design of the moving platen. Thus, the 

ideal SolidWorks model does not yield any off-diagonal terms and for preliminary analysis, the 

platen motion may be assumed decoupled in 6 DOFs [62]. It is to be noted, however, that the 

system does have coupling terms, as I will demonstrate in the Section 3.2.3. These coupling 

terms may be due to errors in the precision assembly of the platen components. In the Chapter V, 

closed-loop system identification will be used in order to identify these coupling terms in the 

form of transfer function. 

 

B. Plant TF Models 

In the absence of any mechanical contact between platen and the stationary parts, the 

analysis may be simplified by assuming that spring and damping effects are negligible. 

Accordingly, we model the plant as a pure mass. From Newton’s second law, the equation of 

motion for x-translation is given by 

( ) ( )xmx t f t=            (3.1) 

where ( )x t  is the perturbation of position of the platen in x from the operating point and ( )xf t  

is the modal force required in x to regulate its position. Subsequently, for vertical motion, ( )zf t  

Table 3.1.  Mass and moment of inertia for the two stages 

Property ∆-stage Y-stage 

Mass (kg) 0.2126 0.2670 
Moment of inertia 

xx xy xz

yx yy yz

zx zy zz

I I I
I I I
I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 × 10–6 kg.m2 

 
132.88 3.14 0

3.14 122.28 0
0 0 235.87

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 
340.37 0 0

0 340.37 0
0 0 653.61

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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refers to the actuator forces subtracted by the platen weight. Similarly, for rotation about x, the 

equation of motion is given by 

( ) ( )xxI t tψψ τ=           (3.2) 

where ( )tψ  is the perturbation of angular position of the platen about x from its operating point 

and ( )tψτ  is the modal torque required about x to regulate its position. The open-loop plant 

transfer functions are, therefore, given by 

( ) ( )
( ) 2

1
xx

X

X s
G s

msF s
= =          (3.3) 

and so on. 

This simplified plant model is good enough for testing and preliminary analysis. 

However, as we will see in the subsequent chapters, a double-integrator model like this poses 

several challenges in the advanced controller design. One such problem is a non-invertible 

system matrix in the state-space notation. System response, on the other hand, also gives some 

unexpected results. Since the integral action is assumed to be present inherently in the system 

model, theoretically there is no need for additional integrators in the controller. An optimal 

proportional control, for instance, does not have any integrators. So in simulation, the simple-

mass plant model such as (3.3) stabilized with a controller without any integrators would still 

give a zero steady-state error since the plant model itself has double integrator. But the actual 

plant, being type-0, would have non-zero steady-state error in its closed-loop response. Thus a 

more realistic model would be one with the spring constant and damping taken into account. In 

the ∆-stage, a viscoelastic layer was attached to the platen as we indicated in Section 2.3.1-A. 

This layer can be modeled as a spring and damper. The single-axis actuators also have negative 
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spring-constants. Similarly, in the Y-stage, there are negative spring-constant terms. In Chapter V, 

these terms will be identified using closed-loop system identification. 

 

C. Force Transformation 

The actuator forces and the forces required to generate motions along the coordinates 

axes (called the modal forces) are illustrated in Fig. 3.1. By suitably combining actuator forces, 

6-DOF motion can be generated. Modal force transformation is required in order to obtain the 

information of force required from the actuators in order to generate a desired motion along the 

coordinate axis. Using the geometric parameters defined in the Fig. 3.2(a), the modal force 

transformation matrix for ∆-stage is given by 

1

2

31 2 3

4

51 2 3

61 2 3

0 0 0 1 1 2 1 2

0 0 0 0 3 2 3 2
0 0 0
1 1 1 0 0 0

0 0 0
0 0 0

x

y

z z z

z

y y y

x x x

f F
f F

Fl l l
f F

Fl l l
Fl l l

φ

θ

ψ

τ

τ
τ

− −⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

       (3.4) 

Substituting the values of the parameters and inverting the matrix, we get 

1

2

3

4

5

6

0 0 0 0.3339 10.4990 18.177
0 0 0 0.3338 10.4990 18.177
0 0 0 0.3323 20.9970 0

0.6667 0 8.3132 0 0 0
0.3333 0.5774 8.3132 0 0 0
0.3333 0.5774 8.3132 0 0 0

x

y

z

fF
fF

F
fF

F
F

φ

θ

ψ

τ

τ
τ

− ⎡⎡ ⎤ ⎡ ⎤
⎢⎢ ⎥ ⎢ ⎥− − ⎢⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥

= ⎢⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥−
⎢⎢ ⎥ ⎢ ⎥

− −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎦

      (3.5) 

Similarly, for Y-platen, a combination of 6 actuator forces is used to achieve modal forces and 

torques in all axes at the platen CM through the following modal force transformation matrix. 
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Fig. 3.2. Axis convention and definition of parameters for modal force transformation for (a) 
the ∆-stage and (b) the Y-stage [62] 

(a) 

(b) 
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1

2

31 1 1

4

53 3

61 2 2

0 0 0 0 3 2 3 2
0 0 0 1 1 2 1 2
0 0 0
1 1 1 0 0 0
0 0 0 0

0 0 0

x

y

z

f F
f F

Fl l l
f F

Fl l
Fl l l

φ

ψ

θ

τ

τ
τ

⎡ ⎤⎡ ⎤ ⎡ ⎤−
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ − ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

       (3.6) 

The definitions of various forces and geometric parameters are shown in Fig. 3.2(b). Substituting 

these values and taking the inverse, we get 

1

2

3

4

5

6

0 0 0 0.3333 0 13.1761
0 0 0 0.3333 11.4103 6.5880
0 0 0 0.3333 11.4103 6.5880
0 0.6667 6.5883 0 0 0

0.5774 0.3333 6.5883 0 0 0
0.5774 0.3333 6.5883 0 0 0

x

y

z

F f
F f
F
F f
F
F

φ

ψ

θ

τ

τ
τ

−⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥−

=⎢ ⎥ ⎢⎢ ⎥
− −⎢ ⎥ ⎢⎢ ⎥

⎢ ⎥ ⎢⎢ ⎥−
⎢ ⎥ ⎢⎢ ⎥

− −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎦

      (3.7) 

The zeros in the diagonal sub-matrices reveal decoupling between vertical and 

horizontal modes which was intended in the design. However, due to the error in the assembly of 

actuators, the horizontal actuators are not located exactly in the same plane as that of the CM, 

and hence, there are unwanted couplings and stray torques, as we will see in Section 3.2.3. These 

couplings may be significantly reduced by using feedback linearization in the closed-loop 

control as demonstrated in Section 2.5. 

 

D. Displacement Transformation 

Modal displacement transformation is required in order to obtain the position 

information of the CM of the platen from the measurement data from sensors. This 

transformation comes from the sensor equations. Laser interferometry is used for horizontal 

motion sensing and was discussed on Section 2.4.1. It gives the position and velocity 
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measurements for x, y and φ. The translation in z and rotations about x- and y-axes are obtained 

from the measurements from three capacitance sensors fixed on the base plate through 

triangulation method. Fig. 3.3 shows the definitions of the geometric parameters used in the 

modal transformation. With these definitions, the displacement transformation matrix for the ∆-

stage was obtained as follows. 

21

12

13

21

12

3 1

1 1 1

2 2 2

3 3 3

0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

3 2 1 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

0 0 0 3 2 1 2 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1

y x

y x

y x

YL x
YL y

XL
YV
YV

V X
C Z Z
C Z Z
C Z Z

φ

⎡ ⎤∆⎡ ⎤
⎢ ⎥⎢ ⎥ −∆ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − −∆
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −= ⎢ ⎥⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

u
v
r
z
ψ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

      (3.8) 

Substituting the values of parameters and inverting the matrix, we get 

0 0.5774 1.1547 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

18.1818 0 0 0 0 0 0 0 0
0 0 0 0 0.5774 1.1547 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 18.1818 0 0 0 0 0
0 0 0 0 0 0 0.3234 0.4119 0.2648
0 0 0 0 0 0 45.2305 14.9638 30.2666
0 0 0 0 0 0 0 4

x
y

u
v
r
z

φ

ψ
θ

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ − −⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥ −⎢ ⎥⎣ ⎦

1

2

3

1

2

3

1

2

34.8833 44.8833

L
L
L

V
V
V
C
C
C

∆⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ∆⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ∆
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

(3.9) 



54 

 

 

Fig. 3.3. Axis convention and definition of parameters for modal displacement transformation 
for (a) the ∆-stage and (b) the Y-stage [62] 

(a) 

(b)
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Similarly, for Y-stage we get the following displacement transformation matrix. 

1
1

12

3 1

1 1

2 1

3
1

1
1

2
3 2

3
3 2

0 1 0 0 0 0 0 0

3 2 1 2 0 0 0 0 0 0

3 2 1 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 3 2 1 2 0 0 0

0 0 0 3 2 1 2 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1

lL x
lL y

L l
V l u
V l
V l
C d
C d d
C d d

φ

⎡ ⎤∆⎡ ⎤ ⎢ ⎥⎢ ⎥ − −∆ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥∆ −⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

v
r
z
ψ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

    (3.10) 

Substituting the values of parameters and inverting the matrix, we get 

0 0.5774 0.5774 0 0 0 0 0 0
0.6667 0.3333 0.3333 0 0 0 0 0 0

6.5928 6.5928 6.5928 0 0 0 0 0 0
0 0 0 0 0.5774 0.5774 0 0 0
0 0 0 0.6667 0.3333 0.3333 0 0 0
0 0 0 6.5928 6.5928 6.5928 0 0 0
0 0 0 0 0 0 0.3333 0

x
y

u
v
r
z

φ

ψ
θ

−⎡ ⎤
⎢ ⎥ −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥ = −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

1

2

3

1

2

3

1

2

3

.3333 0.3333
0 0 0 0 0 0 0 40.0128 40.0128
0 0 0 0 0 0 46.2000 23.1000 23.1000

L
L
L

V
V
V
C
C
C

∆⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ∆⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ∆
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

− ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(3.11) 

In these transformations, ∆L1, ∆L 2, and ∆L 3 are the changes in the optical paths of laser 

(Fig. 3.4), and V1, V2, and V3 are the horizontal velocity measurements, sensed by the laser 

interferometers, and C1, C2, and C3 are the vertical displacement measurements by the 

capacitance sensors.  
T

x y u v r zφ ψ θ⎡ ⎤⎣ ⎦  is the state vector representing the 

perturbations of the position and velocity of the platen from its operating point. 
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Fig. 3.4. Displacement of plane mirrors while motion in the (a) x, (b) y and, (c) φ [62] 
 

3.1.3 Decoupled SISO Control 

In the previous subsection, dynamic model of the two maglev stages were developed 

using decoupled 6-axis motions and identified modal force and displacement transformations for 

discrete-time closed-loop implementation of the controllers. In this section I describe the design 

of six individual PID controllers developed by Gu and Verma [61, 62] for preliminary motion-

testing of the platens. 

 

A. Sampling Frequency 

The controller is implemented on the DSP. The control loop is illustrated in the Fig. 3.5. 

Each control loop consists of (a) sampling the sensor data, (b) transforming it to the modal 

translation and rotation, (c) calculating the control outputs using the reference signal, (d) 

converting the controller output in the form of modal forces and torques to the plant input in the 

(a) (b) (c) 
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form of voltage across the six actuating coils, and (e) applying the designated output voltage to 

the maglev stage. This control loop repeats at the sampling frequency of the system. 

 

 

Fig. 3.5. Control loop for the real-time control of maglev system 
 

The selection of sampling frequency depends on a number of factors, viz., the sensor 

sampling rate, system resonant frequency, system bandwidth, and computing power. The 

sampling frequency must be higher than Nyquist frequency in digital control to avoid aliasing. A 

higher sampling frequency is preferred so that the discrete-time dynamics can emulate the 
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continuous time without much error. A typical choice of the sampling frequency could be around 

20 times the closed-loop bandwidth [75]. However, a high sampling frequency means less time 

per cycle for the DSP to complete all the designated calculations. The choice of sampling 

frequency requires a trade-off between these two conflicting conditions. Based on the system 

clock speed, the sampling frequency was decided to be 5 kHz. 

 

B. Controller TFs 

Magnetostatic levitation in free space is inherently unstable. This is because the 

permeability of any material is always greater than that of free space [76]. In order to stabilize 

and control the maglev system, six independent are required for each of the 6 axes with the 

assumption that the axes are decoupled. Gu and Verma designed SISO PID controllers with 

modified differential terms for preliminary testing of the two maglev positioners [61, 62]. I 

modified these controllers using MATLAB toolbox SISOTOOL and the plant models presented 

in the previous section. Each controller has a free pole at the origin of the s-plane to eliminate 

steady-state error. The differentiator term is modified by adding a pole at high-frequency to 

reduce the effect of high frequency noise amplification. For the ∆-stage, a controller was 

designed a phase margin (PM) of 50º at the crossover frequency 48 Hz. The discrete-time 

transfer function for this compensator with a 5-kHz sampling frequency and bilinear method of 

conversion is given by 

( ) ( )( )
( )( )

0.9984 0.9743
1 0.7970

K z z
G z

z z
− −

=
− −

      (3.12) 

The controller gain 61846K =  N/m for translational motion control. Its value for the rotational 

control about x-, y-, and z-axes were 38.655, 35.572, and 68.616 N-m/rad, respectively. 
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Modified PID controllers were designed for Y-stage in the same way. The controllers for 

horizontal motion control were designed with a PM of 70° at the crossover frequency of 110 Hz. 

The designed compensator is given by 

( ) ( )( )
( )( )

0.9978 0.9770
1 0.4271

K z z
G z

z z
− −

=
− −

      (3.13) 

The value of control gain K for x and y is 5.328 × 105 N/m and 1.304 × 103 N-m/rad for φ. For 

vertical motion control, a controller was designed with a PM of 70° at crossover frequency of 65 

Hz. The discrete-time compensator TF is given by 

( ) ( )( )
( )( )

0.9988 0.9886
1 0.6525

K z z
G z

z z
− −

=
− −

      (3.14) 

The value of K is 1.929 × 105 N/m for z and 2.458 × 102 N/m2 for ψ and θ. Experimental results 

presented in the following sections are obtained using these controllers. 

 

3.2 Set-Point Change Tests 

Several experiments were conducted to illustrate the nanoscale multi-axis motion control 

of the maglev devices in terms of position regulation, step responses, and multi-axis contouring. 

These results have been reported in detail in [62]. Here I present some of the experimental 

results to validate the values reported in the Table 2.1. Position regulation and step responses for 

horizontal motion were taken using the x-axis motion in both the stages. Since the performance 

of the y-axis is not much different from that of the x-axis, the corresponding results are omitted. 
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3.2.1 Regulation 

The experimental results on the position regulation for horizontal and vertical motion of 

the ∆-stage are shown in Fig. 3.6(a). Fig. 3.6(b) shows the position noise profiles of the Y-stage. 

The position noise is around 2 and 3 nm rms for horizontal motion for ∆- and Y-stage, 

respectively. Vertical motion noise is about the same for both the positioners and is around 50 nm 

rms. The position noise for the vertical motion is higher due to the capacitance sensor noise, 

ADC noise, and ADC quantization. Despite the noise in the vertical axes the horizontal motion 

profiles are relatively very quiet. 

 

 

Fig. 3.6. Position regulation in (a) the ∆-stage and (b) the Y-stage 
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3.2.2 Positioning 

Fig. 3.7(a) shows a 10-nm step response of the ∆-stage in the x-axis. The positional 

resolution is clearly better than 2 nm. Fig. 3.7(b) shows a 10-nm step response of the Y-stage in 

the x-axis. The position resolution is again maintained under 3 nm. The reason for the ∆-stage to 

have a better resolution is due to the viscoelastic and constraint layers provided in its mechanical 

design. These layers provide certain amount of damping to the external vibrations and hence the 

regulated response has a lower noise level compared to the Y-stage. In terms of position 

resolution, this improved noise performance translates into a smaller discernible step-size.  

 

 
Fig. 3.7. 10-nm step response of (a) the ∆-stage and (b) the Y-stage 
 

Figs. 3.8 and 3.9 respectively shows the step response of 250 µm in x with the ∆- and Y-

stages with coupled motions in the other axes. It may be observed that there is significant 

coupling in the system. This is primarily because of the factors discussed earlier in Section 3.1. 

The two plots were taken using the controllers given by (3.12)–(3.13). The control bandwidths 

for these two controllers were 48 Hz and 110 Hz, respectively. Since the masses of the two 

stages do not differ significantly, a faster response was expected from the Y-stage. A close 
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inspection of the x-axis responses of the two stages shows a contradiction. Further investigation 

of the two plots reveals that there are significant deviations of the closed-loop responses 

compared to the simulations. This has been shown in Fig. 3.10.  For the ∆-stage, although the 

rise and settling times match closely with the simulated responses, there is a significant 

difference in the overshoot. This is because the effect of damping present inherently in the ∆-

stage platen. This damping was not modeled as indicated earlier in the Section 3.1.2-B. Likewise, 

the Y-stage has several unmodeled dynamics which results in significant mismatch between 

simulation and experiment results. The source of these mismatches will be explored in details in 

Chapter V. These differences in the performances of the two positioners motivate the need to 

develop more accurate plant models for better controller design. 

 

 
Fig. 3.8. 250-µm step response of the ∆-stage with coupled motions in the other 5 axes 
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Fig. 3.9. 250-µm step response of the Y-stage with coupled motion in the other 5 axes 
 
 

 
Fig. 3.10. Simulated (dashed) and experimental (solid) responses to a 250-µm step with (a) the 

∆-stage and (b) the Y-stage 
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3.2.3 Multi-Axis Tracking 

In the real-time control code written in the C language as an ISR, a set of data points in 

more than one axis can be allocated with respect to time so that the platen can follow a multi-

axis trajectory. In Fig. 3.11(a), a commanded path of a 50-nm-radius circle, the response of the 

∆-stage and the position errors in the x- and y-axes are shown. Fig. 3.11(b) shows a 0.5-mm-

radius circular path traversed by the Y-stage and the position errors in the x-y plane. The motions 

of the platens were very close to a perfect circle in both the cases. These test results demonstrate 

the small multi-axis motion capabilities of the two maglev devices. Note that the time taken by 

the two platens to traverse the respective circular trajectories is also different. The nanoscale 

trajectory was traversed at a slower rate compared to the 0.5-mm one. This was necessary to 

obtain discernible results. The effect of speed on motion planning will be further emphasized in 

Chapter VI. In addition to its multi-axis contouring capabilities, Fig. 3.11(b) also demonstrates 

the larger travel range positioning capabilities of the Y-stage. Larger travel range is also 

demonstrated by a ramp response of 5 mm in the x-axis, which covers the entire travel range. 

The ramp response is shown in Fig. 3.12.  

It may be seen from Figs. 3.6(b), 3.9, 3.11(b), and 3.12 that although Y-stage 

demonstrates superior positioning capabilities in position regulation and small scale motion on 

the order of a few nanometers, the performance deteriorates on larger scales. In a 0.5-mm-radius 

circle, for example, the position error can be as large as 21 µm. Similarly, in ramp response, the 

3-nm position resolution can no longer be achieved. This is because of several reasons. Firstly, 

the plane of application of actuator forces is not perfectly aligned with the CM. This difference 

was not modeled while deriving the plant model for controller design, and thus results in 

undesired coupling forces and moments. Secondly, the plant model (3.3) was assumed linear and 

derived about an operating point (plant modeling and linearization will be covered in further 
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details in Chapter IV.) The actuator forces were calculated assuming that the perturbations in 

position from this operating point are small. However, as discussed in Section 2.5, the effect of 

actuator nonlinearities become significant as the coil-magnet gap changes, or in other words, as 

the platen position deviates significantly from the operating point. Thus, the position resolution 

is not comparable at millimeter- and nanometer-level precision. This motivates the need to 

develop advanced control schemes and motion planning methodologies in order to achieve 

identical performances on macroscale as well as nanoscale levels. These control schemes and 

motion and path planning methods will be discussed in the following chapters. 

 

 

Fig. 3.11. (a) 50-nm-radius circle traversed by the ∆-stage and errors in the x- and y-axes, and (b) 
0.5-mm-radius circle traversed by the Y-stage and errors in the x- and y-axes 
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Fig. 3.12. 5-mm ramp response by the Y-stage and error in the x-axis 
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stages were able to levitate and position additional payloads of 0.3 kg and 0.2 kg, respectively, 

on the platen. The additional payload increases the mass, keeping the system stiffness about the 

same, which lowers the natural frequency of the moving platen. Due to this lower natural 

frequency the rise time and the settling time are longer for the larger payloads as shown in the 

figure. The percentage overshoot was reduced as the payload increased. With the payloads more 

than the maximum, the positioner went out of the range of the laser interferometer sensors for 

horizontal motion sensing due to excessive rotations about the x- and y-axes. This is because of 

the fact that the dead-weights could not be placed exactly at the center of the platen. Hence, a 

step motion in z generates stray torques about the x- and y-axes. However, with the sensors 

capable of sensing large linear and rotational motions, the current actuator design would allow 

additional payloads of more than the maximum shown in Fig. 3.14. 

 

 

Fig. 3.13. Experimental setup to determine the payload capacity 
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Fig. 3.14. No-load (thick solid line) and load test with additional payloads of 50 g (thin solid 
line), 100 g (dashed line), 200 g (dash-dotted line), and 300 g (dotted line) with (a) the 
∆-stage and (b) the Y-stage 
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3.3.2 Performance under Abrupt Load Changes 

In the applications like contact-probe-based scanning, the instantaneous disturbance due 

to the engagement and disengagement of the probe tip with the specimen surface may be 

emulated as a disturbance resulting from abrupt load changes. In nano-indentation, a stiff AFM 

tip may be fixed to the base to make indents or scratches and write small letters or draw tiny 

shapes on a silicon substrate mounted on the moving platen. In such an application, the process 

of making indents with the cantilever tip may be treated as load disturbance. Although the 

disturbance is not expected to exceed more than a few milli-newtons in these applications, the 

maglev positioner demonstrates precision positioning under the abrupt load variations on the 

order of one hundred milli-newtons. 

To test the response of the two maglev stages for sudden load changes I used small 

cylinders as additional payloads. The experimental setup for this experiment for Y-stage is shown 

in Fig. 3.15. Fig. 3.16(a) shows the plots of the z-axis position and the control effort by the 

controller to recover the position of the ∆-stage when the two cylinders were taken off one at a 

time. The load removal generated perturbations in z. In the beginning of this experiment, the 

vertical actuators supplied the forces to precisely balance the weight of the platen and the 

payload. As soon as the additional payload was removed, the applied force instantaneously 

became greater than that is required to balance the weight of the platen and the payload. This 

excessive force gave the platen an instantaneous upward push, which was recovered by the 

controller over a period of 0.6 s. The maglev system’s dynamic behavior was found to be 

repeatable for the second load removal. It can be observed from Fig. 3.16(a) that the control 

effort in z decreased as soon as a cylinder was removed. The drop in the control effort was 

measured to be 0.14 N for first cylinder and 0.135 N for the second cylinder. The mass of each 
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cylinder was 14 g, i.e. its weight is 0.137 N. This shows that the error between the experimental 

control effort and the actual force is only around 2%. 

Fig. 3.16(b) shows the performance of the Y-maglev stage with abrupt load changes. 

Small 7.5-g cylinders were used in this case as additional loads. The performance of this stage 

was found to be similar to the previous one. It can be observed from Fig. 3.16(b) that the drop in 

the control effort as each cylinder was removed was approximately 0.07 N. This matches with 

the actual weight of the cylinders with an error of merely 5%. The difference in the nominal 

control effort in two cases is due to the larger mass of the Y-platen compared to the ∆-platen. The 

position response and control effort required for the Y-stage are noisier compared to the ∆-stage. 

This is partly because of the use of viscoelastic and constraint layers in the design of ∆-stage 

which provides damping. The use of different controllers in the two cases might also have 

resulted in the different performances. Nevertheless, the two positioners demonstrate the 

effectiveness in recovering from abrupt load changes within a short interval and without loosing 

stability, which was the central objective of these experiments. 

 

3.3.3 Performance under Continuously Varying Loads  

External forces may also appear in the form of continuous payload variation or mass 

fluctuation. For instance, in µSTL, the mass of the substrate varies as the photopolymer is 

solidified. In this subsection, the effectiveness of the maglev positioners to recover from such 

load variations is demonstrated. Apparently, the anticipated load variation in any of the practical 

applications working at micro- or nano-scale is much less than the demonstrated load capacity of 

the maglev stage under continuously varying loads. 
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Fig. 3.15. Experimental setup to determine the payload capacity under abrupt load changes 
 

 
Fig. 3.16. Position in z and control effort fz by the controllers under abrupt load changes with (a) 

the ∆-stage and (b) the Y-stage 
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To emulate the effect of the continuously varying mass in nanomanufacturing 

applications, I used a continuous flow of salt falling into a small bucket placed on the platen. The 

experimental setup is shown in Fig. 3.17. The z position of the ∆-platen and the corresponding 

control effort required are shown in Fig. 3.18(a). Fig. 3.18(b) shows the analogous results for the 

Y-platen. The platens were levitated at a height of 200 µm. From this initial steady-state position, 

the mass inflow was initiated and stopped intermittently. Since the rate of the mass change was 

almost constant, the control effort linearly increased in both the cases to balance the additional 

mass on the platen and to recover the vertical position of the platen to the steady state. However, 

there was a small steady-state error in the vertical position during the mass in-flow, which may 

be considered as a constant force disturbance. This is attributed to the fact that the plant poles are 

not located precisely at the origin in the complex plane. A detailed analysis of the actual plant 

model identified using closed-loop system identification will be given in Chapter V. Additionally, 

the controllers (3.12–3.14) for the two platens were designed with a single pole at the origin, to 

meet the zero-steady-state error requirement for the position inputs only. Accordingly, for ramp 

or acceleration/force inputs, the tracking error is not zero. However, immediately after the force 

disturbance was removed, the steady-state error became zero, which demonstrates the 

controllers’ effectiveness and the fast closed-loop dynamics. 
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Fig. 3.17. Experimental setup to determine the payload capacity under continuously varying 
loads 

 

 
Fig. 3.18. Position in z and control effort fz by the controller under continuously varying loads 

with (a) the ∆-stage and (b) the Y-stage 
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CHAPTER IV 

MULTIVARIABLE CONTROL 

 

4.1 Introduction 

In Chapter III, the preliminary testing results for the two maglev nanopositioners were 

presented with the decoupled SISO lead-lag controllers. These controllers gave good regulation 

and tracking performance with nanometer-precision positioning capabilities. However, for large 

scale motion, there was significant amount of coupling present in the system. This was apparent 

from Figs. 3.11(b) and 3.12. Even for steps as small as 250 µm, the effect of coupling in the 

other axes may be vividly seen (Figs. 3.8–3.9). This is because a single-piece moving part is 

used to generate all the 6-axis motions. Additionally, due to inaccuracies in the assembly of the 

actuator units relative to the platen, the plane of application of forces is not exactly aligned with 

the platen’s plane of CM.  

In this chapter, a systematic procedure for modeling, linearization, and multivariable 

optimal control of the two maglev positioners will be presented. The final state-space equations 

differ for the two positioners due to the differences in their physical parameters. However, the 

modeling and controller design processes are the same for both due to similar actuator 

placements and sensing methods. I will resume the use of decoupled lead-lag controllers for the 

vertical control. The system equations will be derived using the Euler angle methodology and 

linearized about an operating point. The performance of this multivariable control will be 

analyzed and compared with that of six decoupled SISO controllers. The effect of adding the 
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integrators to eliminate the steady-state error will also be discussed and the performance of the 

LQR controller with different weight matrices will be compared.  

 

4.2 Plant Modeling and Linearization 

Since the single-moving platen generates all the required motions, its dynamics is 

coupled in all the 6 DOFs. In order to understand the observed dynamic behavior and develop 

high-performance controllers, precise dynamic modeling is required. The full equations of 

motion are nonlinear because of the nonlinear current-force characteristics of the coil as well as 

the dependence of motion of the platen on the trigonometric functions of the angles of rotation 

with respect to the inertial frame. In this section, linearized state-space equations of motion of 

the platen are derived starting with the nonlinear equations of motion with no approximations, 

followed by linearization of those equations about an operating point.   

 

A. Euler Angles 

One can carry out the transformations from a given cartesian coordinate system to 

another (in this case, from the stationary frame, xyz to the body frame, x y z′ ′ ′ ) by means of three 

successive rotations performed in a specific sequence. The Euler angles are then defined as the 

three successive angles of rotation. The main convention that is followed in this chapter is the 

xyz convention which is commonly used in most engineering applications [77].  The sequence 

used in this convention is started by rotating the initial frame of axes, xyz, by an angle φ 

counterclockwise about the z-axis. The resultant coordinate system is called the ξηζ axes. Then, 

the second angle of rotation around the intermediate ξ-axis in the counterclockwise rotation is 

defined as θ. The new intermediate coordinate system thus obtained is called ξ η ζ′ ′ ′  axes. 



76 

 

Finally, the rotation by an angle ψ about the ξ ′ -axis in counterclockwise direction results in the 

desired x y z′ ′ ′  coordinate frame. The Euler angles φ, θ, and ψ thus completely specify the 

orientation of the x y z′ ′ ′  system relative to the xyz. The complete transformation matrix Ω can be 

obtained by multiplying the three rotation transformations. The inverse of this matrix gives the 

desired transformation from body to inertial frame and is given by  

1

cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

θ φ ψ θ φ ψ φ ψ θ φ ψ φ
θ φ ψ θ φ ψ φ ψ θ φ ψ φ

θ ψ θ ψ θ

−

− +⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥−⎣ ⎦

Ω .       

 

B. Linearized Equations of Motion 

The state variable to describe the general motions of the platen completely in 6 DOFs 

are chosen as follows. 

[ ]x Tx y z u v w p q rψ θ φ= .        (4.1) 

The first six states are the position (in m) and velocity (in m/s) components of the center 

of mass of the platen with respect to the origin of the inertial frame described in the inertial 

frame. The seventh, eighth, and ninth states are the Euler angles (in rad) and the last three states 

are the angular velocity (in rad/s) components of the platen described in the body frame. For 

small angular motions of the levitator, the Euler angles ψ , θ , and φ  can be considered as 

rotational angles around the x-, y-, and z-axes respectively. The angular velocity components 

described in the inertial frame are approximately the same as those described in the body frame 

in case of a small signal linearized equations of motion. However, for the time being, the angles 

are assumed to be large enough to treat unprimed and primed coordinates separately. We have 

the following kinematic relationships among the state variables. 

x u=           (4.2a) 
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y v=           (4.2b) 

z w=           (4.2c) 

sin sin sin cos
cos cos

p q rθ ψ θ ψψ
θ θ

⎛ ⎞ ⎛ ⎞′ ′ ′= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (4.2d) 

( ) ( )cos sinq rθ ψ ψ′ ′= −         (4.2e) 

sin cos
cos cos

q rψ ψφ
θ θ

⎛ ⎞ ⎛ ⎞′ ′= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        (4.2f) 

Using the conservation of linear momentum in the inertial frame, f vmΣ = , we get the following 

nonlinear equations of motion. 

( ) ( )
( )
cos cos sin sin cos cos sin1

cos sin cos sin sin
x y

z

f f
u

m f

θ φ ψ θ φ ψ φ

ψ θ φ ψ φ

⎧ + − ⎫⎪ ⎪⎛ ⎞= ⎨ ⎬⎜ ⎟ + +⎝ ⎠⎪ ⎪⎩ ⎭
     (4.3a) 

( ) ( )
( )
cos sin sin sin sin cos cos1

cos sin sin sin cos
x y

z

f f
v

n f

θ φ ψ θ φ ψ φ

ψ θ φ ψ φ

⎧ + + ⎫⎪ ⎪⎛ ⎞= ⎨ ⎬⎜ ⎟ + −⎝ ⎠⎪ ⎪⎩ ⎭
     (4.3b) 

{ }1 sin cos sin cos cosx y zw f f f g
m

θ θ ψ θ ψ⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

      (4.3c) 

where g is the acceleration due to gravity. From the Euler’s equation,  

Lτ ω L
bodyt

′∂⎛ ⎞ ′ ′Σ = + ×⎜ ⎟∂⎝ ⎠
.          (4.4) 

The angular momentum represented in the body frame is L Iω′ ′= , where  

I
xx xy xz

yx yy yz

zx zy zz

I I I
I I I
I I I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

           (4.5) 

and     
sin

cos cos sin
sin cos cos

p
q
r

ψ φ θ
ω θ ψ φ θ ψ

θ ψ φ θ ψ

⎡ ⎤′ −⎡ ⎤
⎢ ⎥⎢ ⎥′ ′= = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥′ − +⎣ ⎦ ⎣ ⎦

        (4.6) 
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Using the relations (4.4)–(4.6) component-wise, we get the following relations for the angular 

velocities. 

( )
( )

cos cos  sin sin cos cos sin  1
cos sin cos sin sin  

x y

xx z

p
I

τ θ φ τ θ ψ φ ψ φ

τ ψ θ φ ψ φ

⎧ + − ⎫⎛ ⎞⎪ ⎪′ = ⎨ ⎬⎜ ⎟
+ +⎝ ⎠⎪ ⎪⎩ ⎭

     (4.7a) 

( )
( )

cos sin  sin sin sin cos cos  1
cos sin sin sin cos

x y

yy z

q
I

τ θ φ τ θ ψ φ ψ φ

τ ψ θ φ ψ φ

⎧ + + ⎫⎛ ⎞⎪ ⎪′ = ⎜ ⎟⎨ ⎬⎜ ⎟ + −⎪ ⎪⎝ ⎠⎩ ⎭
     (4.7b) 

{ }1 sin cos sin cos cosx y z
zz

r
I

τ θ τ θ ψ τ θ ψ
⎛ ⎞

′ = − + +⎜ ⎟
⎝ ⎠

      (4.7c) 

Using the perturbation formulae and the physical parameters for the ∆-platen from Table 3.1 and 

[61], the full state equations for small linear and angular position variations around the operating 

point *x 0=  for the levitator can be obtained and are given by 

x x u
y x

A B
C

= +
= ,          (4.8) 

In (4.8), 1 2 3 4 5 6u
T

i i i i i i⎡ ⎤= ⎣ ⎦ , where 1 3i −  and 4 6i −  are the currents in the vertical and 

horizontal actuators, respectively as indicated in Fig. 3.1(a). The tilde (~) above the state 

variables indicates that they are small-signal variables about an operating point. 

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 9.8100 0 0 0 0
0 0 0 0 0 0 9.8100 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 4.1670 0 0 0
0 0 0 0 0 0 0 0 12.2462 0 0 0
0 0 0 0 0 0 2.3475 6.3487 0 0 0 0

A

⎡
⎢
⎢
⎢
⎢
⎢
⎢ −
⎢
⎢= ⎢
⎢
⎢
⎢
⎢
⎢ −
⎢
⎢
⎢ −⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎦

       (4.9) 
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 7.8921 3.9460 3.9460
0 0 0 0 6.8347 6.8347

3.9460 3.9460 3.9460 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

95.6987 95.6987 204.9965 0 36.5803 36.5803
191.5164 185.7671 0.2849 45.9008 22.9504 22.9504

0 0 0 287.2842 292.

B

− −
−

=

− − −
− − −

3654 297.4250

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

    (4.10) 

B matrix was obtained using the linearized relations between the modal force and the perturbed 

states, the force transformation matrix (3.5) and the force-to-current conversion contacts. For 

horizontal actuator, this constant is 0.596 A/N and for vertical actuator, it is 1.192 A/N. 

 

C. State-Space Equations for Lateral Control 

To design the multivariable optimal controller for the plant, the plant model derived 

above is decoupled into two modes, vertical and lateral. An LQR is designed for the lateral 

modes (x, y and angle around the z-axis, φ), keeping the decoupled SISO lead-lag controllers for 

the vertical modes (z, angle around the x-axis, ψ and angle around the y-axis, θ). The reason for 

this choice is that we do not need to differentiate the position data or build a state estimator for 

velocity feedback, as full state feedback is provided by the laser-interferometer electronics for 

the lateral control.  

The state vector for the lateral mode is given by [ ]px Tx y u v rφ= . The 

coupling terms between the vertical mode and the lateral mode for this choice of state vectors 

come due to the relations 9.81 ( )uu fθ= +  and 9.81 ( )uv fψ= − + . However, both θ  and ψ  
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have the maximum values on the order of 1.75 mrad and their influence on the velocities u  and 

v  are less than 1.5%. Thus, the effect of these coupling terms between the vertical and the 

horizontal modes can be neglected and the linearized small-signal lateral mode dynamics can be 

represented as follows: 

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 
0 0 0 0 0 0 7.8921 3.9460 3.9460
0 0 0 0 0 0 0 6.8347 6.8347
0 0 0 0 0 0 287.2842 292.3645 297.4250
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y y

uu
vv
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⎤
⎥
⎥ ⎡ ⎤

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

.    (4.11) 

All the open-loop poles are at the origin and hence the plant is not open-loop stable. This is 

because of the pure-mass assumption. A more accurate plant model with coupling TFs will be 

derived using a closed-loop system identification method in Chapter V. 

 

4.3 Linear Quadratic Regulation 

The dynamic system in (4.11) may be represented as follows. 

x x u
y x

p p p p p

p p p

A B
C

= +
= ,       (4.12) 

where xp and up are the state and the input vectors, respectively, and Cp is an identity matrix. 

Define the performance index as 

( )
0

0( ( ), ( ), ) ( ) ( ) ( ) ( )p p p p pJ x u u u x xT T T

t

t t R t t Q t dt
∞

⋅ ⋅ = +∫ .     (4.13) 

This time-invariant infinite-time regulator problem is a minimization problem to find an 

optimal control *
pu  to minimize J. The solution of this problem is well-known and can be found 

in texts on optimal control such as [78].  
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* 1
p pu xTR B P−= −        (4.14) 

where P is a positive-definite matrix that solves the algebraic Riccati equation, 

1 0T TPA A P PBR B P Q−+ − + = .       (4.15) 

The weight matrices were chosen to be 

( )6 6 6 3 3 32 10 2 10 2 10 1 10 1 10 1 10     Q diag ⎡ ⎤= × × × × × ×⎣ ⎦    (4.16a) 

[ ]( )0.1 0.1 0.1  R diag=          (4.16b) 

These values were obtained after a few design iterations, starting with using acceptable values of 

px  and pu  such that 21ii iiQ max x= , 21ii iiR max u=  in order to avoid actuator saturation 

and keep the state variables within the sensor limits. The optimal controller associated with the 

cost function defined above using the following values of weight matrices defined by (4.16) is 

given by 

3338.90 16.37 310.50 78.38 0.39 6.99
1626.60 2883.40 315.21 38.18 67.69 7.09
1626.30 2850.30 319.89 38.18 66.91 7.20

K
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

     (4.17) 

The closed-loop poles are placed at –50643, –965.44, –965.44, –44.77,–44.77, and –44.72 rad/s. 

Thus the closed-loop system has been stabilized. Since the controller is to be implemented 

digitally on a 320C40 DSP, we need the control gain in a discrete-time domain. The discrete 

feedback gain is calculated with the ‘lqrd’ function in MATLAB with sampling rate of 5 kHz. 

Figure 4.1 shows the position, control effort required and the velocity for a 50-µm step in the y-

direction.  

It can be observed from Fig. 4.1 that there was a steady-state error of about 2 µm. This is 

because of the fact that the traditional LQR does not have an integrator. With the pure-mass 

model without friction being used, the plant transfer function should have a double pole at the 
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origin of the s-plane theoretically. However in practice, the plant poles may not be located 

precisely at the origin, and consequently, there can be a non-zero steady-state error. To deal with 

this problem, the plant model was augmented with integrators to eliminate this steady-state error. 

In case of maglev positioners, we are interested in position-command tracking, so I use three 

integrators, each for x, y, and φ.  

 

 

Fig. 4.1. 50-µm step response in y with an LQR without integrators 
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Consider again the plant represented by the differential equations in state-space form 

defined by (4.12). Defining the new state vector ξ p  as 

ξ y xp p p pC= = ,        (4.18) 

we get the augmented system dynamics as 

0
0 0

0

x x
x u

ξξ
x

y
ξ

p p p p
p

p pp

p
p p

p

A B
C

C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦

⎣ ⎦

.       (4.19) 

To analyze the effect of the integrators and the weight matrices, I designed three 

different LQ controllers with the following set of Q and R.  

( )6 6 6 3 3 3 9 9 92 10 2 10 2 10 10 10 10 10 10 10  Q diag ⎡ ⎤= × × ×⎣ ⎦   (4.20a) 

[ ]( )1 1 1  R diag=           (4.20b) 

 

( )6 6 6 3 3 3 6 6 62 10 2 10 2 10 10 10 10 10 10 10  Q diag ⎡ ⎤= × × ×⎣ ⎦   (4.21a) 

[ ]( )0.1 0.1 0.1  R diag=          (4.21b) 

 

( )7 7 7 3 3 3 7 7 710 10 10 10 10 10 10 10 10  Q diag ⎡ ⎤= ⎣ ⎦     (4.22a) 

[ ]( )0.1 0.1 0.1  R diag=          (4.22b) 

Fig. 4.2 gives a comparison among the above three controllers. As the weight on the R matrix is 

reduced, the required control effort increases. So is the case when the weight on the integrators is 

emphasized since it takes larger control effort to reach the steady state faster. Furthermore, the 

settling time decreases as the weight on the position states is increased, but this increase also 
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results in larger control effort and higher speed. Thus there exists a trade-off between the 

tracking and the control effort requirement, which depends on the nature of application. 

 

 

Fig. 4.2. Effect of varying the weight matrices on system response – LQ control with pair (4.20) 
(dashed), (4.21) (solid) and (4.22) (dash-dotted) 
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of the rise time, settling time, damping and overshoot as compared with the LQR without 

integrators. Fig. 4.4 shows the 50-µm step response in x and y, and a 50-µrad step response in the 

φ-direction with the LQR with integrators. The three plots are almost identical, thus showing that 

the plant model is linear and consistent in all the three axes.  

 

 

Fig. 4.3. 50-µm step response in y with the LQR with integrators 
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Fig. 4.4. 50-µm step responses in x and y and 50-µrad step response in φ with the LQR with 
integrators 
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Fig. 4.5. Coupling reduction with multivariable optimal control – step response in x with 
coupled responses in y and rotation about z with LQR (solid) and decoupled SISO 
lead-lad control (dashed) 
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by 85.89% from 14.03 mm/s for the lead-lag control to 1.98 mm/s for the LQ control. The 

reduction in coupling in the other two axes, namely y and φ, is also commensurate to the 

reduction observed in the Fig. 4.5.  

 

 

Fig. 4.6. Reduction in control effort required with multivariable optimal control – step response 
in x with LQR (solid) and decoupled SISO lead-lag control (dashed) 
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steady-state using a 5% criterion against 43 ms in case of the lead-lag control. However, this 

time difference is insignificant for the practical applications that work at a much slower rate. 

This will be demonstrated in further details using some examples in Chapter VI. 

 

 

Fig. 4.7. Reduction in the peak velocities with multivariable optimal control – step response in 
x with LQR (solid) and decoupled SISO lead-lag control (dashed) 
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4.4 Summary 

In this chapter, primary focus was to reduce the coupling among the axes for two maglev 

nanopositioners. Multivariable optimal control is a natural choice for this purpose. Nonlinear 

equations of motion were derived using the Euler-angle approach, and a linearized plant model 

in state-space form was developed about an operating point. For position regulation, I designed 

and implemented a multivariable LQR for lateral dynamics, continuing to use the decoupled 

SISO lead-lag controllers for the vertical motion control. An augmented system was also 

designed with integrators to reduce the steady-state errors in the x-, y- and φ-axis. Step responses 

using the designed controllers without and with integrators were presented, and the performance 

of the controllers with different weight matrices was compared.  

A comparison between the multivariable LQ controller and the decoupled SISO lead-lag 

controller reveals a reduction in coupling by about 97%. The control effort required for a given 

step size was reduced by a factor of 10. The peak velocity was also found to be reduced by 

85.89%. It may be concluded from the experimental results that the objectives of reduction in 

coupling as well as the control effort requirement were met with the designed LQ control. 

However, the performance was found to be adversely affected in terms of settling time. In fact, 

there is inherently a trade-off between position accuracy and response time, which cannot be 

resolved using the traditional optimal control techniques discussed in this chapter. This issue of 

conflicting time-domain performance specifications will be addressed in Chapter VII. 

Conventional optimal PI techniques discussed in this chapter will be revisited to derive 

motivation for what will be called multiscale control. 
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CHAPTER V 

SYSTEM IDENTIFICATION 

  

5.1 Introduction 

As demonstrated in the Chapter III (Figs. 3.8 and 3.9), the developed maglev positioners 

have inherent coupling among the axes since a single part is used to generate all 6-axis motions. 

This problem is more prominent in the extended-range Y-stage since it allows large travel ranges 

and consequently more coupling. Since the rotational sensing range of the laser interferometers 

being used for the horizontal motion sensing is limited to 3.5 mrad, this cross-talk among the 

axes may result in the system instability due to loss of sensing data, in addition to producing 

undesired motions. One of the objectives of this research is to have a working space as large as 

the designed travel range, which implies that the performance of the positioner must be uniform 

throughout the working space. System identification is necessary in order to analyze and model 

the plant behavior accurately and to subsequently develop effective control strategies. It is also 

required to reduce the effect of unmodeled dynamics and nonlinearity in the actuators which may 

be difficult to model precisely using analytical methods.  

In case of maglev systems being used, system identification is not only crucial but also 

challenging because of their inherently unstable nature. Thus the system identification needs to 

be performed in closed loop. In this research, I carry closed-loop identification one step ahead of 

the traditionally used input-output identification techniques in order to obtain a more reliable, 

consistent, and complete plant model. The BJ method with a closed-loop framework and a 

known controller structure will be used to obtain the closed-loop TF [22, 23]. A plant TF will be 
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then derived from the identified closed-loop TF and controller TF. An order-reduction algorithm 

will be presented to obtain a TF which gives a close match in the frequency range of interest 

without loosing any significant plant dynamics. The entire analysis will be performed in discrete 

time in order to avoid any errors due to continuous-to-discrete-time conversion and vice versa. 

Continuous time TFs will be used only for order-reduction and performance analysis of the 

identified plant TFs. 

 

5.2 Analytical Model 

Elementary plant modeling performed for the maglev positioners was presented in 

Chapter IV using the Newtonian method with the Euler angles. The dynamic model for the 

horizontal mode of the positioners used in the current analysis remains the same in principle. 

This linearized analytical model is given by 

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

( )
( )

( )

( )
( )
( )

0 0
0 0
0 0

xx xy x x x x

yx yy y y y y

x y

X s G s G s G s F s H s E s
Y s G s G s G s F s H s E s

s G s G s G s s H s E s

φ

φ

φ φ φφ φ φ φΦ Τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

,       (5.1) 

where ( )X s , ( )Y s , and ( )sΦ  are the Laplace transforms of the perturbations of the horizontal 

positions and the yaw angle from their respective operating points; ( )xF s , ( )yF s , and ( )sφΤ  are 

the respective transforms of the plant inputs; ( )xE s , ( )yE s , and ( )E sφ  are the output noises; 

and ( )G s  and ( )H s  are plant and noise TFs, respectively. In an ideal linearized dynamic model, 

each diagonal term of the plant TF matrix could be considered as a double integrator,  

( ) ( ) 2

1
xx yyG s G s

ms
= = , ( ) 2

1

zz

G s
I sφφ = ,         (5.2) 
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where m is the mass of the platen and zzI  is the principal moment of inertia about the z-axis. The 

off-diagonal terms and noise TF terms might be ignored in an ideal model. 

 

5.3 Closed-Loop System Identification 

5.3.1 BJ Method 

System identification is required to validate the analytical model (5.1)−(5.2) and to 

identify the dynamic coupling among the axes due to the non-ideal actuators and mechanical 

structure of the positioner, and uncertainties in its assembly. Open-loop tests cannot be 

performed due to the inherently unstable nature of the maglev system. Subsequently, the 

identification of the experimental system is carried out on the closed-loop system after the 

maglev positioner is stabilized around the operating point with decoupled lead-lag controllers. 

The BJ identification method for this closed-loop framework with a known controller dynamics 

was used for each DOF [22, 23]. The schematic of this method is shown in Fig. 5.1. Since the 

system identification procedure is carried out in discrete time, the continuous-time model in (5.1) 

was transformed into difference equations using the zero-order-hold (ZOH) method and with a 

sampling frequency of 5 kHz. The discrete-time TF for x , for example, is given by 

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

x x
x x

x x

xx x x
x x

xx x xx x

B q C q
X k R k E k

A q D q

G q M q H q
R k E k

G q M q G q M q

= +

= +
+ +

               (5.3)  

under certain assumptions [22, 23, and 24], where ( )G q , ( )H q , and ( )M q  are rational TFs, 

( )R k  is the reference input signal, ( )M q  is the known controller TF, and 1q z−= . Due to the 



94 

 

chosen structure for the parameterization of the plant and noise models, namely the BJ method, 

the TFs ( )G q  and ( )H q  are parameterized independently. 

 

Fig. 5.1. Block diagram representing the BJ method for identification in closed loop with a 
known controller dynamics 

 

Since we have full control over the excitation signal, it is desired to use the signals that 

persistently excite the plant [24]. Thus, the model validation was performed with two different 

experiments using (1) a zero-mean, white-Gaussian noise (WGN) and (2) a chirp signal. In the 

first case, I applied a stochastic system identification methodology that uses a random reference 

input. A detailed treatment of stochastic modeling is covered in classical texts such as [79]. The 

random disturbance was generated in software using the “rand()” function in the C language. 

The magnitudes of the random signals were chosen to be linearly increasing from 0.1 to 10 µm. 

In a second experiment, I used a chirp signal with a magnitude of 1 µm, starting from DC and 

crossing 2500 Hz at 2 s. These numbers were chosen to excite the plant persistently without 

loosing stability. The total time of the excitation in both the cases was 2 s with a sampling rate of 

5 kHz. It is to be noted that these experiments were performed about the operating point, which 

is 0 0 0 0
T

x y φ⎡ ⎤ =⎣ ⎦ . Due to feedback linearization, the model is essentially position-invariant 

in the operating travel range. 
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The experimental results of the system identification using the two above-mentioned 

methods are presented in Fig. 5.2. The figure shows the closed-loop system responses to the two 

reference signals, the respective identified TFs, and the ideal closed-loop TFs. It is evident from 

the figure that the chirp signal gives a much better and neater fit to the identified TFs. Thus, I 

decided to pursue further analysis on system identification with the chirp signal using the BJ 

method. Another reason for choosing the chirp signal is that it meets the condition of persistent 

excitation on the reference input signal better than the stochastic signal. Besides, the stochastic 

modeling is based on the assumption that the signal is zero-mean WGN, and this theoretical 

assumption may not be applicable to the conducted experiment. 

 

Fig. 5.2. Closed-loop system frequency responses in x with (a) the stochastic input signal and (b) 
the chirp input signal – Bode magnitude plots of the analytical model (dashed line), 
the plant TFs from the FFTs of the input-output signals (thin solid line), and the 
identified TFs using the BJ method (thick solid line) 
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Fig. 5.3 shows the 1-µm chirp signal given in x, with frequencies ranging from DC to 

2500 Hz and the response of the system in x, y, and φ. The total time of excitation was 2 s. Figs. 

5.4 and 5.5 show similar plots with excitation in y and φ, the responses in the respective axes and 

the coupled responses. It may be seen from these plots that the plant follows the chirp signal 

closely in the low-frequency range, around [0, 50] Hz. It, however, amplifies the input in the 

intermediate-frequency range, and attenuates, in the high-frequency range. This is in agreement 

with the closed-loop TF identified in Fig. 5.2(b), which shows a resonance in the frequency 

range of [50, 250] Hz and a steep roll-off thereafter.  

It may be noted from Figs. 5.3 and 5.4 that coupling in x for excitation in y is more 

compared to coupling in y for excitation in x. This may be attributed to the fact that the forces in 

y which gets cancelled are the smaller (1 2× ) components of the actuator forces F5 and F6 (refer 

to Fig. 3.1). However, the canceling components for x for a desired effective motion in y come 

from the larger ( 3 2× ) components of the forces F5 and F6. Therefore, if there is any net non-

zero force in the coupling axes due to misalignments or modeling uncertainties, the effect of 

such a force will be more prominent in x compared to y. Contrarily, the coupling in φ is more for 

excitation in x compared to excitation in y. The reason for this may be explained as follows. The 

amount of canceling forces in φ is the same for both the cases. However, in case of x, 

components from two forces, namely F5 and F6, get cancelled, while in case of y, components 

from F4 and F5, and F6 get cancelled. Therefore, if there is any misalignment in the actuators or 

position of the maglev stage with respect to the actuators, the effect of such misalignments and 

modeling uncertainties will be averaged over two forces in case of x while three forces in case of 

y. Accordingly, the net coupling will be less in case of the y-excitation. Finally, from Fig. 5.5, it 

may be noted that the coupling in x and y is minimal for the excitation in φ, and the responses in 
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these two axes is almost the same as that of regulation. This comparison will be discussed in 

more detail in terms of the frequency response, and plant and coupling TFs later in this chapter. 

 

Fig. 5.3. System time response to a chirp signal. (a) Input chirp signal given in x with a 
frequency range of [0, 2500] Hz, (b) response in x, (c) coupled response in y, a factor of 
20 smaller in magnitude compared with x, and (d) coupled response in φ 
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Fig. 5.4. System time response to a chirp signal. (a) Input chirp signal given in y with a 
frequency range of [0, 2500] Hz, (b) coupled response in x, a factor of 8 smaller in 
magnitude compared with y, (c) response in y, and (d) coupled response in φ 
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Fig. 5.5. System time response to a chirp signal. (a) Input chirp signal given in φ with a 

frequency range of [0, 2500] Hz, (b) coupled response in x, (c) coupled response in y, 
and (d) response in φ 
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5.3.2 Closed-Loop Identification Algorithm 

From the reference input signal in the three axes and measured output in the respective 

axes as well as coupled axes, all 9 TFs of the system matrix in (5.1) may be identified. Model 

identification was performed with MATLAB using an algorithm consisting of following steps.  

 

Step-1: Data packaging – MATLAB function iddata(y,u,Ts) is used to package the 

input-output data into a data object to be subsequently used for identification. u and y in 

this function are input and output column vectors, respectively, and Ts is the sampling 

interval.  

 

Step-2: Identification of closed-loop TF – In the this step, the parameters of the polynomials A, 

B, C, and D given in (5.3) are identified using the MATLAB function 

pem(data,orders). The argument data of this function is the packaged data from 

Step-1. The model orders may be specified as orders = [nf, nb, nc, nd, na, 

nk], where na, nb, nc, nd and nf are the desired orders of the auto-regressive moving 

average with exogenous input (ARMAX) model, and nk is the delay. The MATLAB 

function pem essentially uses the same algorithm for identification as ARMAX model, 

with modifications in the computation of prediction errors and gradients. It returns an 

identified polynomial object with the resulting parameter estimates, together with 

estimated covariances using a prediction error method.  

The structure of the model to be identified is given by  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )k

B q C q
F q Y k U k n E k

A q D q
= − + .        (5.4) 
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It may be noted that (5.3) is a special case of the general structure given by (5.4). 

Furthermore, the ratio of the norms of the sensor noise sequence E(k) to output sequence 

R(k) is about 0.0079. Thus the contribution from the sensor noise in (5.3) may be 

ignored. Let’s define the closed-loop TF as ( )T q , where  

( ) ( ) ( )
( ) ( )

( )
( )1

G q M q B q
T q

G q M q A q
= =

+
.         (5.5) 

Here the subscripts used in (5.3) were dropped for simplicity. Let [ , ]c c
G Gn d  and 

[ , ]c c
M Mn d  be the orders of the numerator and denominator polynomials of the 

continuous-time plant and controller TFs, respectively. Then, from the analytical plant 

model given by (5.2) and the stabilizing lead-lag controller design, we have 

[ , ] [0, 2]

[ , ] [2, 2]

 

 

c c
G G

c c
M M

n d

n d

=

=
.          (5.6) 

Therefore, the order for the desired discrete-time closed-loop TF from (5.5) is 

[na, nb] [ , ] [3, 4]d d
A Bn n= =  .         (5.7) 

Here the superscripts c and d signify continuous-time and discrete-time TFs, respectively, 

and the subscripts A and B signify the numerator and denominator polynomials of the 

closed-loop TF ( )
( )

B q
A q

 in (5.3). Then nk is set to 1.  

 

Step-3: Deduction of plant TF – The discrete-time plant model was obtained from the closed-

loop TF identified in Step 2 as follows. Rearranging (5.5), we get 

( ) ( ) ( ) ( ) ( )( ) 1
G q T q M q M q T q

−
= − ,         (5.8) 
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Using (5.3) with the closed-loop TF orders (5.7) and the relation (5.8), we obtain the 

high-order identified plant TFs. For the purpose of order reduction and analysis of the 

frequency-domain behavior of the identified plant model, the TF was converted to 

continuous time model using zero-order-hold (ZOH) method. The high-order 

continuous-time TF for x, for example, is given by 

( )

( ) ( )( )
( )( )( )

( )( )( )
( )( )

( )( )

22 2 6 2 7

2 7
5

2 6 2 7

2

4014 335 1.2750 10 6102 1.1090 10

13123 18202 9947 3.4330 10
3.1435 10

11.4763 4014 4042

335 1.2750 10 6102 1.1090 10

54.6250 76.9111 2450

xx

s s s s s

s s s s
G s

s s s s

s s s

s s s

−

⎡ ⎤+ + + × + + ×⎣ ⎦
⎡ ⎤⋅ + + − + ×⎣ ⎦= ×

⎡ ⎤+ + +
⎢ ⎥
⋅ + + × + + ×⎢ ⎥⎣ ⎦

⋅⎡ − + ⎤ +⎣ ⎦
64.2460 10s⎡ ⎤+ ×⎣ ⎦

 

(5.9) 

The pole-zero map of this TF is shown in Fig. 5.6(a) and the magnitude of the TF is 

shown in Fig. 5.7(a) with a thin solid line.  

 

Step-4: Order reduction – Although the identified TF (5.9) is 12-th order, there are several pole-

zero pairs at the same locations as seen in Fig. 5.6(a) because of the way in which the TF 

was deduced in Step 3. These pole-zero cancellations reduce the order of the plant 

significantly. The order may be further reduced by eliminating the zeros much faster 

than the closed-loop system dynamics, and making the required adjustments in the TF 

magnitude. Finally, with the remaining poles and zeros, the dynamics of the system can 

be divided into two modes – the first mode is the slowest and very close to a double-

integrator. This mode is of greatest interest in the design of a controller since it 

represents the rigid-body dynamics of the maglev positioner. The second mode 

corresponds to the mechanical vibrations of the maglev positioner with resonant 

frequency around 325 Hz and can be ignored in the plant model since the designed 
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controller has a control bandwidth of about 60 Hz and is not expected to excite these 

high frequency modes. 

 

Fig. 5.6. Pole-zero map of (a) the identified TF and (b) the reduced-order TF (first mode) in x 
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Fig. 5.7. Analytical plant TFs (dashed line), identified plant TFs (thin solid line) and reduced-
order fit (thick solid line) from (a) x to x, (b) x to y, and (c) x to φ 
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5.3.3 Reduced-Order Identified TF models  

With the order reduction described in the previous subsection, the order of the plant TF 

becomes [ , ] [0, 2]  c c
G G identifiedn d = . The reduced-order TF fit so obtained is shown in the Fig. 5.7(a) 

with a thick solid line. It matches the identified TF in the frequency range of [20, 300] Hz within 

an error of 1%. This error is defined as ( )i r iP P Pε = − , where Pi and Pr are the magnitudes of 

the identified plant TFs and their corresponding reduced-order fits. The TFs for the coupled 

terms are obtained in a similar manner and are shown in the Fig. 5.7(b) and (c). The plant and 

coupling TFs for y and φ are shown in Figs. 5.8 and 5.9, respectively. These identified 

continuous-time TFs are given by 

( ) ( )( )
13.1845

54.62 76.91xxG s
s s

=
− +

           (5.10a) 

( )
( )( )2 6

142.4017
13.83 219.40 1.98 10xyG s

s s s
=

+ + + ×
     (5.10b) 

( ) ( )
( )( )2 6

6977.00
0.4266

9.74 451.50 1.17 10x

s
G s

s s sφ

−
=

− + + ×
     (5.10c) 

( ) ( )( )
13.1623

82.21 76.91yyG s
s s

=
− +

           (5.11a) 

( )
( )( )2 6

1114.9298
105.91 131.00 1.09 10yxG s

s s s
=

+ + + ×
    (5.11b) 

( )
( )( )2 5

1964.3725
322.80 65.59 7.29 10yG s

s s sφ =
+ + + ×

    (5.11c) 

( ) ( )( )
11530.1985

86.73 76.91
G s

s sφφ =
− +

         (5.12a) 
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( ) ( )
( )( )2 5

934.60
0.1411

76.91 586.20 2.53 10x

s
G s

s s sφ

−
=

+ + + ×
     (5.12b) 

( ) ( )( )
10.9065

76.91 315.60yG s
s sφ =
+ +

       (5.12c) 

The right-half-plane poles identified in (5.10a), (5.11a), and (5.12a) correctly reflect the 

maglev system’s open-loop instability due to the negative spring constants of the magnetic origin. 

The frequency responses of the identified plant models are represented in Figs. 5.7, 5.8, and 5.9. 

These plots show the analytical plant models (thin dashed lines) from (5.2), the identified plant 

models (thin solid lines) from (5.9) using the BJ method from the input-output time sequences, 

and the reduced-order fits (thick solid lines) from (5.10)–(5.12). From these frequency responses, 

it is apparent that there are certain mismatches between the analytical and identified models. The 

mismatch in the low-frequency range is due to the fact that the plant TFs are indeed not of pure 

double-integrators but consist of two real poles at different locations with the existence of 

magnetic springs in the actuators. In the high-frequency range, the mismatch may be due to 

unmodeled dynamics. However, in the interesting frequency range of [20, 300] Hz, the two 

models exhibit an almost perfect match. In addition to this match in frequency domain, time-

domain behavior, particularly the transient response, of the order-reduced TFs is also important. 

This match will be demonstrated later in this subsection (Fig. 5.10). 

Other identified TFs of interest are the off-diagonal ones in (5.1) that may be used to 

reduce the dynamic coupling among the axes. These TFs are also presented in Figs. 5.7, 5.8, and 

5.9. The order of the reduced-order TFs are identically chosen to be 3 for all the coupling terms 

for consistency and ease of controller design using this information. A comparison between the 

TFs ( )xyG s  and ( )yxG s  shows that the peak value of the plot is greater for ( )yxG s , particularly 

in the frequency range [50, 250] Hz. Similarly, comparing ( )xG sφ  and ( )yG sφ , it may be 
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observed that the magnitude of the ( )xG sφ  TF is greater. This is in agreement with the response 

plots (5.3)–(5.5) discussed earlier in this chapter. 

 

Fig. 5.8. Analytical plant TFs (dashed line), identified plant TFs (thin solid line) and reduced-
order fit (thick solid line) from (a) y to y, (b) y to x, and (c) y to φ 
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Fig. 5.9. Analytical plant TFs (dashed line), identified plant TFs (thin solid line) and reduced-
order fit (thick solid line) from (a) φ to φ, (b) φ to x, and (c) φ to y 
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taken from maglev positioner with optimal LQ controller designed using the analytical plant TF 

model (3.3), the identified model (5.10a) and the simulated response for a step of 100 µm, 

normalized to 1. It is apparent from the figure that the identified model gives a closer match with 

the simulated results and hence is more reliable. The small mismatch between the simulated 

response and the response using identified TF model might be because of order reduction and 

coupling with other axes, as in this experiment, the coupling TF as well as identified TFs in other 

axes were ignored. Incorporating all 9 identified TFs in the controller design is expected to give 

a much closer match. 

 

Fig. 5.10. Experimental evaluation of the identified plant TFs – step responses with identified 
model (solid), analytical model (dashed) and simulated response (dash-dotted) 

 

5.4 Summary 

In this chapter, system identification was performed to obtain the system models and 

coupling terms of the developed Y-stage. The BJ method with a closed-loop framework and a 

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

no
rm

al
iz

ed
 p

os
iti

on

t (s)



110 

 

known controller structure was used to derive the closed-loop TF from the input-output time 

sequences. A zero-mean WGN and a chirp signal were used in two separate experiments as 

persistently excited reference inputs, and the effectiveness of each was discussed in identifying 

the plant behavior with fidelity. Since the control structure was known perfectly, the open-loop 

TF and the coupling terms were determined from the closed-loop and controller TFs. The entire 

analysis was performed using discrete-time equations to avoid any digitization errors from 

continuous-time. The continuous-time analyses in terms of Bode magnitude plots and pole-zero 

maps were performed to check the effectiveness of the system identification and order-reduction 

algorithms and to interpret the physical meanings of the identified models. The closed-loop 

system responses with these models were found to have a significantly close match with 

simulated results within the control bandwidth. In the subsequent chapters, I will be using these 

identified models for the Y-stage instead of the analytical ones for controller design. For the ∆-

stage, however, I will continue using the analytical plant model. 
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CHAPTER VI 

NANOSCALE PATH PLANNING AND MOTION CONTROL 

 

6.1 Introduction 

This chapter addresses nanoscale path planning and motion control with the two maglev 

nanopositioners. Although these nanopositioners have been demonstrated to have nanoscale-

positioning and load-carrying capabilities as demonstrated in Chapter III, the performance of the 

positioners remains to be proven for any practical applications such as µSTL, DPN, and 

scanning applications for imaging and manipulation of nanoscale surface phenomena. Motion 

trajectories commonly used in industrial applications are identified along with the challenges in 

optimal path planning to meet the nanoscale motion-control objectives and achieve precise 

positioning and maximum throughput simultaneously. Key control parameters in path planning 

are determined, and control design methodologies including a well-damped lead-lag controller 

are proposed to satisfy the positioning requirements. The proposed methodologies, individually 

and collectively, are implemented. Experimental results are presented in this chapter to illustrate 

their effectiveness in planning optimal trajectories. With these techniques, the maglev stage 

demonstrated excellent performances for the chosen nanomanufacturing applications in terms of 

position resolution, accuracy, and speed, and with tracking errors as small as 4.5 nm.  

Note that the physical properties and behavior of the material under manufacturing 

change at nanoscale. This scale effect exists in a device which is actually scaled down to a 

micro/nano-level size, for instance, an electrostatic microelectromechanical-system (MEMS) 

motor. In the maglev system, however, there was no such physical scaling of the actual 
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positioning device. The size of the moving platen is on the order of a few hundred millimeters. 

Due to the benefits of the maglev technology we are able to achieve nanoscale precision in path 

planning and motion control. Thus, by considering the facts that (a) the forces acting on the 

positioner are too small (on the order of a few millinewtons) to produce any significant distortion 

in the structure of the platen, and (b) the laser-interferometer sensor provides averaged measured 

data over the beam diameter and due to multiple passes on the reflecting surfaces, it may be 

concluded that the platen structure is rigid for all practical purposes. This means that each point 

on the entire platen actually moves by the exact same amount when the sensor senses the 

movement of a particular point on the platen. 

 

6.2 Nanoscale Path Planning Techniques 

Fig. 6.1 shows a motion trajectory followed by the platen that can be employed in a 

µSTL application with the controllers given by (3.12). As shown in the figure, the actual path 

significantly overshot the commanded trajectory. This is because the controller was not 

optimized for speed, and the platen did not begin the corner turns until the actual path overshot 

the command. Furthermore, since the controllers were simple lead-lag compensators, there was 

no direct control over the velocity. Coupling between the x- and y-axes was also significant as 

seen in Fig. 6.1(b) since the controllers were decoupled SISO ones. In the following subsections, 

several attempts are made to reduce these shortcomings for better trajectory-tracking. 

 

6.2.1 Overshoot Reduction 

There are various ways through which the overshoot may be reduced. 
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A. Using Smaller Yet Uniform Position-Command Steps 

Since the plant model is assumed to be linear, the overshoot is linearly proportional to 

the step size. Hence the overall overshoot can be significantly reduced by using successive 

smaller position-command steps instead of a single large one. Fig. 6.2(a) shows the path (solid 

line) followed by the stage using smaller uniform steps of 5 µm against the larger 20-µm and 25-

µm steps shown in Fig. 6.1(a) to cover the same distance. The error in x is shown in Fig. 6.2(b) 

with solid line. The overall percentage overshoot was reduced from 39.35% to 6.58% in x and 

from 31.99% to 5.05% in y. The percentage overshoot was calculated by dividing the maximum 

amount the platen overshoots its final value divided by its final value expressed as a percentage. 

As shown in the error plot, the position noise is maintained within 12 nm pp (peak-to-peak) 

except at the corners. 

 

Fig. 6.1. (a) Commanded trajectory (dashed line) and path traversed by the platen without using 
path-planning methodologies (solid line). (b) Errors in x and y. 
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B. Using Decreasing Position-Command Steps 

An alternate method is to use decreasing step-command sizes. It, in effect, slows down 

the platen as it approaches the corners. Fig. 6.2(a) (dashed line) shows the path followed by the 

stage using the step-sizes decreasing in a geometric progression (12.5000, 6.2500, 3.1250, 

1.5625, and 1.5625 µm). The error in x is shown in Fig. 6.2(b) with a dashed line. The overall 

percentage overshoot was reduced prominently to 2.32% from 39.35% in x and 2.12% from 

31.99% in y.  

 

Fig. 6.2. (a) Path traversed by the platen using path-planning methodologies with smaller 
uniform steps of 5 µm (solid), and with decreasing step commands (dashed). (b) Errors 
in the corresponding trajectories. 
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remains better than 12 nm pp. For the above two trajectory-planning experiments, I used a 

controller with a 48-Hz cross-over frequency and 51° PM given by (3.12). 

 

C. Using a Damped Controller  

Although the above two methods are capable of providing significant improvements in 

the dynamic performance of the maglev platen, they depend on the nature of the trajectory, and 

hence give little flexibility. Furthermore, applications like scanning demands a much better 

transient response and any overshoot is unacceptable. A better way to tackle this problem is to 

design a controller capable of giving a damped response to a step command and hence little or 

no overshoot. I designed another controller with this objective with a larger cross-over frequency 

of 85.8 Hz and 73° PM which meets the conflicting requirements of lesser overshoot and faster 

dynamic responses simultaneously. The TF for the resulting compensator is given by 

( ) ( )( )
( )( )

73.51 8.53
2.30 4014

K s s
G s

s s
+ +

=
+ +

       (6.1) 

The controller gain 54.5997 10K = ×  N/m. The step responses in x with this controller and the 

one being used in the previous two methods (with a crossover frequency of 48 Hz and 51° PM) 

have been compared in the Fig. 6.3. The percentage overshoot was reduced from 39.35% to 

11.85%. Additionally, due to the larger crossover frequency, the rise time decreased from 4.5 to 

2.2 ms using a 10% criterion. 

 

6.2.2 Velocity Control 

Another parameter to be controlled in trajectory-tracking is the velocity. The platen 

needs to be slowed down as it approaches the corners (as shown in Fig. 6.1(a)) for sharper 
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maneuvers. One way to control the velocity is, again, through controlling the command step size. 

The implementation of the controller in the form of difference equations requires steps at fixed 

time intervals (0.2 ms for our case at the sampling rate of 5 kHz). Varying the step size for the 

fixed time intervals is thus equivalent to varying the speed of the platen. Note that in using the 

smaller steps as in the previous section, the motion was more like a staircase. For velocity 

control, the motion is essentially a ramp, which is what we need. In discrete-time control, the 

two motions may be related by the fact that as the step size gets smaller and smaller, the staircase 

motion imitates a ramp. 

 

Fig. 6.3. Step responses in the x-axis with the 85.8-Hz (solid) and 48-Hz (dashed) controllers 
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Fig. 6.4. (a) Paths traversed by the platen at nanoscale at 50 µm/s (dash-dotted line), 25 µm/s 
(dashed line), and 5 µm/s (solid line). (b) Error in x in the path traversed at 5 µm/s 
(solid line in Fig. 6.4(a)). 
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tracking. In this section the effectiveness of the presented nanoscale path planning methods is 

demonstrated on three spatial scales differing by a factor of 100.  

Fig. 6.5 shows the nanoscale trajectory tracking with the ∆-stage and the Y-stage. The 

path was traversed at a constant velocity of 5 µm/s in both the cases. Error plots of the profile 

traced by ∆-stage shows that the position-noise level varied from the best of 4.5 nm pp to the 
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percentage overshoot was 3.85% and coupling among the x-y axes was 1.32%. These values are 

summarized in Table 6.1. 

 

Fig. 6.5. Nanoscale trajectory tracking using the combined path-planning methodology and 
errors in x and y with (a) the ∆-stage and (b) the Y-stage 
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A direct comparison of the trajectory originally presented in Fig. 6.1 without using and 

with using path planning methods is given in Fig. 6.6. It shows the microscale trajectory tracking 

with the two maglev nanopositioners. The path was traversed at a constant velocity of 50 µm/s in 

both the cases. A comparison between this trajectory and the one shown in Fig. 6.1(a) shows that 

the percentage overshoot was reduced from 39.35% to 0.45% in x and 31.99% to 0.37% in y. 

The maximum steady-state error was reduced from 20.6 nm to 18.2 nm.  Coupling among the 

axes was reduced from 4.74% to 0.05% in x and 1.80% to 0.02% in y. However, the total time 

taken to trace the entire trajectory increased from 0.17 s to 1.7 s. This time increase is, however, 

acceptable for an application like µSTL that works at a much slower rate [47]. The values are 

summarized in Table 6.1. A comparison showing the improvement in the dynamic performance 

of the maglev nanopositioner is given in Table 6.2. 

 

Table 6.2.  A comparison between the microscale performance of the ∆-stage without and 
with using nanoscale path planning methods 

Parameter Without With 
Overshoot (%), x 39.35 0.45 
Overshoot (%), y 31.99 0.37 
Coupling (%), x 4.74 0.05 
Coupling (%), y 1.80 0.02 
Noise (nm) 20.6 18.2 
Time (s) 0.17 1.70 

Table 6.1.  Performance of the two maglev stages with nanoscale path planning and 
motion control 

Nanoscale Microscale Milliscale Parameter 
∆-stage Y-stage ∆-stage Y-stage ∆-stage Y-stage 

Velocity (µm/s) 5 5 50 50 – 500 
Overshoot (%) 2.50 3.85 0.37 0.54 – 0.06 
Coupling (%) 1.85 1.32 0.02 0.04 – 0.81 
Noise (nm) 10.5 15.6 18.2 19.3 – 20.8 
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Fig. 6.6. Microscale trajectory tracking using the combined path-planning methodology and 
errors in x and y with (a) the ∆-stage and (b) the Y-stage 
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profile is that in spite of the a spatial order difference of 10000× compared to the nanoscale 

trajectory shown in Fig. 6.5, the position error is maintained at around 20 nm pp except at the 

corner maneuvers. Furthermore, the percentage overshoot was 0.06% which is comparable to the 

corresponding microscale and nanoscale values. This confirms that the performance of the 

maglev nanopositioner is linear as it was assumed in plant modeling.  

 

Fig. 6.7. Milliscale trajectory tracking using the combined path-planning methodology and 
errors in x and y with the Y-stage 
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tracking errors depending on the application at hand. This can be done by controlling the 

step-sizes and/or velocity as the platen approaches the corners. The effectiveness of both 

these techniques was shown in the Sections 6.2.1 and 6.2.2. For continuously varying 

trajectories such as circles, this problem is insignificant. 

3. The profile in Fig. 6.7 was tracked with maximum velocity among the three profiles 

presented above at various spatial scales. As the velocity is increased, the results using 

nanoscale path planning techniques gets closer to the ones following a direct single step. 

Consequently, it took the Y-stage longer to settle to the steady-state values. Here, I 

reiterate that there is a trade-off between the position accuracy and the process 

throughput; high position accuracy can be achieved for large travel if the travel speed is 

kept very slow. Accordingly, the steady-state error can again be controlled by limiting 

the tracking speed. The problem of handling conflicting performance specifications will 

be tackled in Chapter VII. 

From the conclusions derived above, it is recommended that the ∆-stage is more suitable 

for nanoscale applications with small (several hundred micrometers) travel range, where there 

are stringent requirements on the position resolution. The Y-stage, on the other hand, is more 

appropriate for large range (several millimeters) motion applications with resolutions 

requirements on the order of at most few tens of nanometers. 

 

6.2.4 Noise Analysis 

It may be noted from Fig. 6.7 that there is a distinct frequency component of disturbance 

present in the tracking response of the Y-stage. By counting the number of peaks per second, this 

frequency is expected around 14 Hz. I performed power spectral density (PSD) analysis of the 
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regulation with the Y-stage with a sampling frequency of 40 Hz in order to identify exact 

frequency of this disturbance and to locate its source. Fig. 6.8 shows the results of this analysis.  

 

Fig. 6.8. Results of the PSD analysis of disturbance coming in the closed-loop response of the 
Y-stage (a) without using optical table, (b) using optical table, (c) replacing the laser 
interferometer, and (d) with the platen in 6-axis magnetic levitation 

 

Fig. 6.8(a) shows the PSD of the data from one of the laser interferometer receivers 

without using the optical table for passive vibration isolation. The platen was not levitated in this 

experiment. Therefore, this plot shows the disturbances being transmitted primarily from the 

floor. A peak at around 14 Hz confirms the prediction made from Fig. 6.7. With the use of optical 

table, I was able to attenuate this frequency by about 20 dB. This has been shown in the Fig. 

6.8(b).  
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Another possible source of this disturbance might be the mechanical vibrations in the 

interferometer itself. To test this, I replaced one of the interferometer. Fig. 6.8(c) shows the PSD 

of the data taken with this new interferometer. All other conditions were identically the same as 

those of Fig. 6.8(b). The amplitude and frequency content of the two plots are significantly 

different. This implies that if there are loose parts in the interferometer system or if the 

components of the sensor system, including the mirrors, interferometer and receiver, are not 

fixed firmly, the sensor itself can be major source of erratic readings. This error is in addition to 

the sensor noise originated due to its electronics. Particularly, since we are working with a 

nanopositioning device and its accuracy depends on the accuracy of sensed data, even small 

vibrations in the sensor system may be significantly detrimental to the fidelity of the reading. 

Finally, I checked the response of the maglev stage using closed-loop control. The PSD 

analysis of this data is presented in the Fig. 6.8(d). The platen was in 6-axis magnetic levitation 

for this experiment with all other conditions being the same as those of Fig. 6.8(b). This figure 

shows that while the controller dynamics attenuates the frequencies under 4 Hz, it actually 

amplifies the frequencies higher than that by about 15 dB. In particular, the 14-Hz frequency 

component reappears. Since this disturbance is within the control bandwidth, it will be 

challenging to get rid of it via standard loop-shaping techniques. This problem may be solved 

using a feedforward control method such as the one suggested by Yasuda et al. [26].  

From the above discussions, it may be concluded that the 14-Hz disturbance appearing 

in the regulation and tracking responses of the Y-stage is because of the following. 

1. Attenuated floor vibrations being transmitted through the optical table 

2. Mechanical vibrations from the loose laser interferometer system components  

3. Amplification of the disturbances by the controller dynamics 
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6.3 Test Results for Key Nanomanufacturing Applications  

In this section, I apply the proposed methodologies to generate motion trajectories 

relevant to key nanomanufacturing applications such as DPN, µSTL, and scanning, and 

demonstrate the effectiveness of the path-planning techniques.  

 

6.3.1 Dip-Pen Nanolithography 

One of the practical applications that require extensive nanoscale path planning is DPN. 

DPN has emerged as an ideal solution for the direct-write nanofabrication, which plays an 

important role in areas such as sensor patterning, miniaturization of biological assays, and 

creation of nanoelectronic components. Nanoink uses NSCRIPTORTM, a dedicated scanning probe 

lithography system, for DPN process. Its scanning stage is motor-driven, and hence requires 

intensive maintenance and suffers losses due to friction from its contact-type mechanisms [60]. 

The apparatus uses seven motors for translation and zoom against the single-moving-part 

approach of the maglev stage we designed. Furthermore, their scanning is performed by three 

independent piezos which have several disadvantages over the maglev positioners as I discussed 

in Chapter I. For instance, the total travel range is limited by 90 µm in x and y and 8 µm in z. The 

placement precision is around 10 nm, which is comparable to the maglev nanopositioner. Thus, 

the maglev system has a much simpler mechanism and provides competitive advantages in terms 

of travel range, precision, and repeatability in DPN and other similar applications. Additionally, 

the maglev positioner can be used as a cluster tool in such applications, thereby eliminating the 

need for separate actuators for the positioning stage and cantilever probes. The probes can 

remain fixed throughout the entire patterning operation, while all the motion generations, as 

described below, can be performed using the maglev positioner. 
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The DPN process employs microfluidic ink delivery devices, called DPN inkwells, for 

coating. The use of these microwells allows dipping the probe in the ink in a controlled fashion 

and prevents the ink from coating the top side of the probe cantilever, and a number of different 

inks can be simultaneously introduced on adjacent cantilevers in a probe array. A typical 

nanopatterning process consists of the following steps. (1) The cantilever probe needs to be 

aligned with the microwells. The probe may be a single one or a probe array. (2) The probe is 

dipped in a microwell for coating. When lowering the probes onto the microwells, the probes 

contact the ink and their cantilevers bend. Here again, the lowering must be precisely controlled 

in order to avoid damage to the cantilevers. (3) After a successful dipping step, inking is 

complete. The probes are now translated onto the DPN substrate, where ink deposition can 

commence. Feature size is a primary concern for any patterning technology and can be 

controlled by the amount of ink and the environmental conditions for ink transfer to the substrate. 

The amount of ink in turn can be controlled by regulating the probe speed. As small as 80 nm 

line-width may be achieved with a write speed of 20 µm/s [80].  

Apparently, all these steps require extensive path planning and motion control strategies. 

Additionally, for high-volume work where re-inking is necessary during the patterning process, 

the probes need to be switched repeatedly between the microwells and the substrate with the 

same level of position accuracy. The Y-stage offers a solution to these requirements of DPN 

because if its nanopositioning capabilities and versatility. A schematic of its use for DPN is 

shown in the Fig. 6.9. In this setup, the cantilever probe for nanopatterning can remain fixed 

while the platen performs all the operations mentioned above. Typical dimensions of a nanowell 

die and substrate are also indicated in the figure [81]. The distance from the edge of the nanowell 

die to the microwell is about 2 mm. Thus a 5-mm planar travel range of the Y-stage allows 

writing on a 3 mm × 5 mm substrate placed closely with the inkwell die.  
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Fig. 6.9. Schematic showing the arrangement of Y-stage for DPN (Source: [81]) 
 

Fig. 6.10(a) shows the plot of experimental data of a trajectory traversed by the maglev 

platen for nanoscale patterning. The entire trajectory was traversed at variable speeds, 20 µm/s 

for the write speed channels, 100 µm/s for probe insertion, and 500 µm/s for probe release. The 

total time taken to complete this trajectory was 0.8 s. The height variation of the maglev 

positioner for patterning and rapid motions is shown in Fig. 6.10(b). Thus all the three axis 

motions can be achieved using the single-part platen and the cantilever probe can remain fixed 
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throughout the nanolithographic process. This eliminates the need of a separate bias control for 

cantilever probes. 

 

Fig. 6.10. (a) A “DPN” profile traced by the maglev nanopositioner at a write speed of 20 µm/s. 
The marker size for the plot is chosen so that the letters appear to be 80 nm wide in 
proportion to the size of the “DPN” pattern. Dashed lines represent the rapid motion of 
the stage while the probe is not in contact. (b) The z-axis motion of the maglev platen 
with the nominal vertical position at 200 µm when the probe is not in contact with the 
substrate. The height of 205 µm corresponds to the platen’s vertical position during the 
patterning processes of each letter, D, P, and N. 

 

6.3.2 Microstereolithography 

With its inception in the early 1990’s, remarkable research progresses have been made in 

MEMS. Many MEMS device concepts were proposed and their feasibilities were demonstrated 

for applications in various fields of microfluids, aerospace, biomedical, chemical analysis, 

wireless communications, data storage, display, optics, etc. [48]. Manufacturing processes, such 

as µSTL, micromachining, micromolding, and soft-lithography played a crucial role in the 
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miniaturization of MEMS devices. Classical STL processes use a laser beam deflected by a pair 

of low-inertia-galvanometric mirrors and focused by a dynamic lens to solidify photopolymer 

[47]. This methodology works well for objects on the order of a few hundred micrometers. 

However, beam defocusing becomes problematic for smaller objects. This limits the minimum 

achievable component size. An alternate approach is to keep the laser beam fixed and use a high-

precision positioning stage to generate x-y motions for scanning [48]. Magnetic levitation 

became an enabling technology for these applications with position resolution as good as 5 nm 

[65]. 

Fig. 6.11 shows a microscale screw for medical tissues traced by the maglev stage with 

the lateral resolution of 12 nm and vertical resolution of 100 nm. The inner radius, the pitch, and 

the length of the threads are 12 µm, 3 µm, and 18 µm, respectively. The state of the art is the one 

fabricated by the Central Microstructure Facility with a lateral and vertical resolution of 10 µm, 

inner diameter of 600 µm, thread length of 900 µm, and pitch of 150 µm, approximately [82]. 

Thus the maglev positioner is capable of tracing the profile with a position resolution 2000 times 

better and the feature size 50 times smaller compared to the prevailing technology. Therefore in 

such applications, the limitation on the minimum achievable size is posed by the manufacturing 

technology, not the maglev positioning technology. 

 

6.3.3 Scanning Applications 

Among commonly used scanning devices are (1) piezoelectric-actuated scanners to 

position a probe on a sample surface during imaging of nanoscale surface phenomena with SPMs 

and (2) MEMS-based scanners to position optical micro-mirrors in wearable computers [32]. An 

alternative is to keep the probe fixed and move the stage in the x-y plane to scan the surface.  
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Fig. 6.11. (a) Image of a screw for medical applications manufactured by Central Microstructure 
Facility [82]. (b) 3D profile traced by the ∆-stage to manufacture a microscale screw 
for medical tissues with µSTL 

 

A typical scanning operation consists of two sections: (1) the active-scan or output-

tracking section where a desired output trajectory is pre-specified and must be tracked precisely 

and (2) the retrace or output-transition section where trajectory-tracking is not critical. Instead, 

the output is to be returned to a predefined value so that the active scan can be repeated [32]. 

(a)

(b)
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These active-scan and retrace sections are repeated in time in a scanning operation. Fig. 6.12 

shows a simple scanning trajectory traced by the maglev platen and the errors in x and y for the 

active scan component to demonstrate its precision scanning capability in the active-scan section 

as well as fast return motion in the retrace section. Paths 1-2, 3-4, and 5-6 are active-scan 

trajectories, and paths 2-3, 4-5, and 6-1 are fast retrace trajectories. The error in the active-scan 

section is well within 40 nm pp in x and 60 nm pp in y. The tracking speed and the return speed 

are 50 µm/s and 500 µm/s, respectively. 

 

Fig. 6.12. (a) Active-scan and retrace sections scanned by the platen. (b) Error in x and in y. (c) 
Errors in the part 3-4 of the trajectory 

 

6.4 Summary 

With the recent development in nanomanipulation and nanomanufacturing, appropriate 

path-planning techniques are required as much as precision positioning itself. Although 

substantial research results are available on macroscopic trajectory planning and control, 

particularly in robotic applications, not much work has been reported yet in nanoscale path 
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planning and motion control. In this chapter, key problems were investigated that we might face 

while actually putting in use nanomanipulation devices, more specifically, incorporating a 

maglev stage in manufacturing or scanning applications at nanoscale. 

The parameters that influence the dynamic behavior of the positioning device were 

identified, and ways to control these parameters were proposed. Design and implementation of a 

well-damped SISO lead-lag controller was described, and their influence on the performance of 

the maglev stage was discussed. Test results for key nanomanufacturing applications such as 

µSTL, DPN, and scanning were presented. The command-tracking errors were well within 20 

nm with the best performance of 4.5 nm pp. The minimum achievable feature size is thus limited 

only by manufacturing techniques and not by our maglev positioning technology. The 

experimental results demonstrated that the maglev stage performed well for these 

nanomanufacturing applications in terms of position resolution, accuracy, speed, and versatility. 
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CHAPTER VII 

MULTISCALE CONTROL 

  

7.1 Introduction 

One of the objectives of the presented work is to design a controller capable of meeting 

conflicting time-domain performance specifications. Semiconductor manufacturing is one of the 

applications of particular interest in this context with the demanding feature sizes (on the order 

of a few tens of nanometers) to be produced on a wafer while still requiring high throughput 

(greater than 100 wafers per hour). In this chapter, I present three multiscale control techniques 

that can be used to achieve these desired yet conflicting time-domain performance specifications: 

(1) a controller-switching technique that employs two controllers designed to meet two 

conflicting performance objectives. These controllers are switched in the course of operation 

when the tracking error reaches a predetermined fraction of the commanded step size. (2) An 

integral-reset scheme, which resets the integral term in the control law when a new reference 

point is reached. This method makes full use of the integral action in the beginning, and in effect, 

tends to slow down the system response to reduce overshoot as the output approaches the 

targeted command value. (3) A reduced-order model-following approach that uses a dynamic 

reference model without increasing the overall order of the system. The objective of this scheme 

is to make the plant’s output track the model’s output as closely as possible. All these methods 

exhibit better performances compared with conventional control schemes as shown in this 

chapter. The term multiscale control is used throughout this chapter in order to emphasize the 
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fact that such control is capable of meeting such conflicting time-domain performance 

specifications and providing desired performances in both nanoscale and macroscale operations. 

Optimal PI control is used as a basis for the controller design. The reason for this choice 

is its popularity in most industrial applications. PI controllers are often effective and are easy to 

implement and maintain. Additionally, the results from optimal control methods are well-known 

to minimize the control effort and guarantee robust stability margins, particularly if full-state 

feedback is available. Furthermore, the inclusion of the integral term ensures the zero steady-

state error for type-0 plants or the plants whose parameters are not perfectly known. 

 

7.2 Conventional Optimal PI Control Revisited 

In this section, the conventional optimal PI control is discussed briefly. It is usually 

desirable to include the integral action in optimal control systems in order to eliminate the offset 

due to unmeasured load disturbances or modeling errors. Consider the LTI system 

p p p

p p

x x u
y x

p p

p

A B
C

= +
= ,              (7.1) 

where xp is the state vector of dimension n, up is the control vector of dimension r, yp is the 

output vector of dimension m, and Ap, Bp, and Cp are constant matrices of appropriate dimensions. 

The system is assumed to be controllable. It is also assumed that full-state feedback is available. 

Its unavailability will not affect rest if the following analysis. However, robust stability cannot be 

guaranteed in that case. For the piecewise constant, non-zero reference points, an analogous PI 

control law can be obtained by redefining the state and output vectors. Let py′  be the r0-

dimensional subset of yp for which integral action is desired. It is assumed that r0 ≤ r since there 

are only a total of r DOFs [78]. Then the augmented system can be described as 
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p p p

A B

C

= +

=
              (7.3) 

with the new set of variables x Re x x
p p= − , y Re y y

p p= − , u Re u u
p p= − , and y xp p pC′ ′= , where 

pC′  is the appropriate partition of Cp, and the subscript R denotes the reference values of the 

corresponding variables. Furthermore, the set of integral state variables, pξ  is defined as 

( )
0

( ) ( )p p Rξ y y
t

t dτ τ′ ′= −∫ .                    (7.4) 

Let J  denote the performance index for the augmented system: 

( )

( )
0

0

1
2

1
2

p p p p

p p

y y p p u u

p p u u

e e ξ ξ e e

y y e e

T T T
I

T T

J Q Q R dt

Q R dt

∞

∞

= + +

= +

∫

∫
,                   (7.5) 

where 
0

0 I

Q
Q

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. If the augmented system is controllable, the optimal control law is given 

by 

1
pu p pe x = xTR B P K−= − − ,                               (7.6) 

where P  satisfies the algebraic Riccati equation. The control law in (7.6) can also be expressed 

as  

( ) ( )
0

p R R p R pu u x x y y
t

C IK K dτ′ ′= + − + −∫ ,                   (7.7) 

where KC and KI are partitions of K in (7.6). 
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Equation (7.7) gives the optimal PI control law for the general non-zero reference-

tracking problem. The control gain matrices, KC and KI, are determined by the choice of the 

weight matrices, Q, QI, and R. These weight matrices are often treated as the tuning parameters 

for a given control application. Although the integral-control action is essential to eliminate the 

tracking error, the choice of the weight matrices in the quadratic performance index (7.5) usually 

involves a compromise between load-change and reference-tracking performances. In the 

following section, I propose a remedy for this problem based on some modifications of the 

conventional optimal PI control. 

 

7.3 Multiscale Control 

One viable choice to deal with the problem discussed in the previous section is to design 

multiple controllers in advance and switch them in the course of operation. The other two 

proposed techniques, namely integral reset and reduced-order model-following, are more 

rigorous and capable of providing a generalized solution. In many applications, it is desirable to 

use only one set of control parameters for reference tracking as well as to deal with load changes. 

On the other hand, it is also desirable to have small overshoot and fast response time without 

causing additional controller complexity or increasing the order of the plant model associated 

with the model-following approach. In the following subsections, I will focus on the 

development of three different multiscale control schemes and their analyses in terms of stability, 

transient and steady-state behaviors, and closed-loop criteria such as sensitivity function, 

bandwidth, and control effort. The reduced-order model-following scheme, being most effective 

of the three methods, will be discussed in more elaborate details compared to the other two. 
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7.3.1 Controller-Switching Scheme  

In order to meet the conflicting performance requirements of fast response as well as 

little or no overshoot, I designed a set of two controllers to meet these two objectives separately. 

The two controllers were then put into use sequentially. The continuous-time state-space plant 

model for the x-axis motion for designing these controllers is given by  

5.69 1 0
5477.53 0 3.19

1 0
0 1

p p

p p

x x

y x

pu
−⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,        (7.8) 

where the state vector xp consists of the position and velocity of the maglev positioner, control 

input up is the force required in x and output vector yp consists of the sensed position and 

velocity data from the laser interferometer. This plant model in state-space form is essentially the 

same as TF (5.10a) identified in Chapter V using the BJ method. Controllers may be designed in 

a similar manner for the plant models in other two axes, namely y and rotation about z, using the 

TFs (5.11a) and (5.12a), respectively. Note once again that there is one right-half-plane pole in 

the identified plant model, which correctly reflects the maglev system’s open-loop instability due 

to the negative stiffness of the magnetic origin.  

A block diagram of its control structure is shown in Fig. 7.1. The first controller in the 

set was designed for this system following the method discussed in Section 7.2. Since we are 

primarily interested in positioning, the integral action is used for position control only. The 

weight matrices used for the controller design were  

6

3

2 10 0 0
0 1 10 0
0 0

1
I

Q
Q

R

⎡ ⎤×
⎢ ⎥= ×⎢ ⎥
⎢ ⎥⎣ ⎦

=

,         (7.9) 
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with 141 10IQ = × . These weight matrices were chosen after a few iterations, starting with using 

acceptable values of xp and up based on the sensing range of the laser interferometer and actuator 

saturation limits, such that 21 maxii iiQ x=  and 21 max iiR u= . 

 

 

Fig. 7.1. Block diagram representing the controller-switching scheme 

 

The simulated response of this controller to a step of 1 mm in the x-axis normalized to 1 

is shown in Fig. 7.2(a) with a dash-dotted line. Although it had a fast response time, it generated 

a large overshoot. The second controller was designed for a smaller overshoot with the weight 

matrices given by (7.9) and 81 10IQ = × . However, with this controller, we get a large settling 

time. The simulated response of this controller to a step of 1 mm normalized to 1 is shown in Fig. 

7.2(a) with a dashed line. The values of controller gains for both the controllers are presented in 

the Table 7.1. 

 

Table 7.1. Controller gains corresponding to the weight matrices given by (7.9) 

QI KC KI 
108 [2510.16, 50.76] 104 
1010 [4182.04, 60.22] 105 
1012 [13784.36, 98.27] 106 
1014 [61008.15, 198.28] 107 
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Fig. 7.2. (a) Simulations and (b) experimental verification of controller-switch scheme with a 
normalized 100-µm step response in x with 1410IQ =  (dash-dotted), 810IQ =  (dashed), 
and the controller-switching scheme (solid) 
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Controller switching from the first to the second controller was triggered when the 

tracking-error reached 90% of the step size. This percentage yielded the best performance in 

terms of the overshoot as well as the rise and settling times and was obtained after a few 

iterations. The simulated response of the composite controller with the controller-switching 

scheme is shown in Fig. 7.2(a) with a solid line. This composite controller was able to reduce the 

percentage overshoot from 40.97% to 3.13% compared with the first controller. The rise and 

settling times were reduced from 39.3 ms and more than 450 ms to 18.7 ms and 330 ms, 

respectively compared with the second controller. Experimental verification of the three 

responses with the maglev nanopositioner is shown in Fig. 7.2(b). There is a close match 

between the simulated and experimental responses with small mismatches in overshoot and rise 

and settling times. These mismatches might be because of the reduced-order plant TFs used for 

controller designs. Thus, it may be concluded that the controller-switching scheme can provide 

significant improvements in the conflicting performance specifications compared with the 

conventional optimal control techniques. 

 

7.3.2 Integral-Reset Scheme 

Another promising solution to the multiscale-control problem is to limit the size of the 

integral term during the time period until a new reference point is reached. This strategy is 

equivalent to converting a tracking problem to a regulation problem after a certain period of time. 

This method makes full use of the integral control action in the beginning and hence, does not 

increase the rise time. In effect, setting the integral term to zero is equivalent to slowing down 

the response of the system to reduce overshoot as it reaches the targeted reference point. Thus, if 

a controller is designed to give a good regulatory control, this resetting of the integral term will 

have an advantage of smaller response times as well as less overshoot. The value of the integral 
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state vector, pξ , is stored and updated every time the control input calculations are performed. 

Thus the only extra effort it takes to implement this scheme is simply an on/off switch for the 

integral term, KI, of the controller gain calculated with a conventional optimal control method. 

Fig. 7.3 shows a block diagram to implement the integral-reset scheme. The weight 

matrices used to calculate the controller gain are given by (7.7) with 101 10IQ = × . The values of 

the corresponding controller gains are presented in Table 7.1. The integral term was switched off 

when the tracking error reached 70% of the step size. This percentage was chosen to make full 

use of the integral action in the beginning and for the best performance in terms of overshoot as 

well as rise and settling times.  

 

 

Fig. 7.3. Block diagram representing the integral-reset scheme 
 

The simulated responses of the plant in the x-axis to a step of 1 mm with (solid) and 

without (dashed) the integral-reset scheme are shown in Fig. 7.4(a). The overshoot was reduced 

from 23.16% to 1.15% with this method without any significant negative effect on the rise time. 

Additionally, the settling time was reduced from 123 ms to 46 ms. For simulations, I used the 

analytical plant model. To completely switch off the integral term, the identified plant model 

could not be used since it had no inherent integrator. Thus, switching off the integral term 

completely would result in a non-zero steady-state error which is undesirable. This can be seen 

from the experimental results presented in the Fig. 7.4(b) with the same controller designs and 
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switching time as used for the simulations. This poses a limitation on the type of plants on which 

this method can be effectively applied. 
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Fig. 7.4. (a) Simulation and (b) experimental verification of the integral-reset scheme with a 
normalized 100-µm step response in x with 1010IQ =  (dashed) and the integral-reset 
scheme (solid) 
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The above two schemes may be applied together sequentially to take the full advantages 

of both schemes. The motivation to devise this composite scheme, namely the controller 

switching with integral reset, originates from the following facts: 

1. In the controller-switching technique, although there is a reduction in the overshoot, the 

difference in the response time compared with the fast controller may be significant 

depending on how much overshoot is acceptable. In other words, the rise-time of the 

composite controller may be close to the slow controller if the fast controller is used 

only for a very short period of time. 

2. The integral-reset scheme makes the most of the fast controller in the beginning and 

tends to slow down the response when the integral term is turned off. 

Thus, the issue of slow response may be resolved by using the fast control with integral-reset 

scheme in the beginning and then using the slower controller subsequently. 

Fig. 7.5 shows the response to a 1-mm step command in the x-axis with the integral-reset 

plus controller-switching scheme. The controller-switching method was used with a combination 

of the controllers with the weight matrices given by (7.7) and 141 10IQ = ×  and 81 10× . Switching 

was done when the tracking error reached 5% of the step command. The integral-reset method 

was used on the fast controller with the integral term being put to rest when the tracking error 

reached 60% of the step command. The switching criteria were set in order to obtain the best 

dynamic performance in terms of all three time-domain specifications, namely percentage 

overshoot, rise time, and settling time. With this composite multiscale control scheme, the 

percentage overshoot was reduced from 40.97% with 141 10IQ = ×  and 23.16% with 101 10IQ = ×  

to 10.49%. It also shows a significant improvement in rise time from 20.9 to 6.0 ms compared 

with the optimal PI controller with 1010IQ = . 
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Fig. 7.5 Step response in x with the controller-switching plus the integral-reset scheme 
 

7.3.3 Reduced-Order Model-Following Scheme 

In this subsection, the controller design is carried out with a general linear time-

invariant state-space model, deferring the results from the maglev positioner to be presented 

subsequently. This helps in proving that although the application of this method is demonstrated 

for the control of a maglev system, it essentially works well with a general class of higher-order 

LTI systems with or without open-loop instability and plant model uncertainties. 

 

A. Controller Design 

A model-following approach may also be used to alleviate the overshoot problem. 

Conventional model-following schemes try to make the output of the plant, yp, follow the output 
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of a reference model, ym, as closely as possible. The reference model is a dynamic model which 

has yR as its input vector. A major disadvantage of the model-following scheme is that the 

original system’s state vector is appended with the model’s states, and hence the order of the 

overall plant dynamics increases. This requires a Riccati equation of higher order to be solved 

and an additional gain matrix to be stored. 

A modified version of the model-following scheme is used here that does not require any 

additional states [43]. Consider a reference model of the form. 

m m

m m

x x u
y x

m m m

m

A B
C

= +
=

.        (7.10) 

The Am, Bm, and Cm matrices in this reference model are assumed to be the same as those of the 

plant in (7.1). An approach to ensure that the reference model has a suitable reference-tracking 

response with little or no overshoot is to specify um as 

( )m R R mu u x xCK= + − ,        (7.11) 

where KC is the control gain matrix specified in (7.7). Using an analogous derivation as outlined 

in Section 7.2, we get 

mm m u

m m

x x e

y x
p p

p

A B

C

= +

=
.        (7.12) 

Define p mx x xδ = − , p my y yδ = − , p mu u uδ = − . Then, the error dynamics is 

x x u

y x
p p

p

A B

C

δ δ δ

δ δ

= +

=
.        (7.13) 

The optimal PI control law for this plant is given by 

( ) ( )
0

p m m p m pu u x x y y
t

C IK K dτ′ ′= + − + −∫ .       (7.14) 

Using (7.11) and (7.14), we get 
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( ) ( )
0

p R R p m pu u x x y y
t

C IK K dτ′ ′= + − + −∫ .       (7.15) 

This control law has essentially the same structure as that of the conventional optimal PI control 

given by (7.7) with ′Ry  replaced by ′my  in the integral term.  

It may be proved that the reduced-order model-following scheme reduces the problem of 

overshoot subject to some conditions. Consider the plant and model dynamics defined by (7.1) 

and (7.10) respectively. The reference input dynamics is given by  

0R R Rx x up pA B= = + .       (7.16) 

Using the new set of variable defined in (7.2) and substituting the control law from reduced-

order model-following scheme (7.14) in (7.1), we get 

( )( ) ( ) ( )( )
0

p R p R m px x x x y y
t

p p C p IA B K B K dτ τ τ′− = − − + −∫  

or       ( )( ) ( ) ( )( )
0

p p R m px x x x x
t

p p C p I pA B K B K C dτ τ τ′= − − + −∫ .     (7.17) 

Similarly, using the new set of variables defined in (7.12) and using (7.10) and (7.16), we get 

( ) ( )m R m R m Rx x x x u up pA B− = − + − .      (7.18) 

From the control law defined by (7.11) and using (7.18), we get 

( )( )m m Rx x xp p CA B K= − − .        (7.19) 

Subtracting (7.19) from (7.17), we get 

( )( ) ( ) ( )( )
0

p m p m p mx x x x x x
t

p p C p I pA B K B K C dτ τ τ′− = − − − −∫ .   (7.20) 

Differentiating (7.20) with respect to t gives 

( )( ) ( )p m p m p mx x x x x xp p C p I pA B K B K C′− = − − − − ,         (7.21) 
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with initial condition ( ) ( )0 0p mx x 0− = . Therefore, from (7.20), we have ( ) ( )0 0p mx x 0− = . 

The solution of (7.21) with these initial conditions is given by 

       ( ) ( )m px xt t= .       (7.22) 

Equation (7.22) shows that the model states follow the plant states. Furthermore, the 

integral term in (7.20) is eliminated, provided (a) the initial states of the model are equal to those 

of the plant and (b) the plant and model system matrices are identical. This justifies the need to 

find an accurate plant model through system identification in Chapter V. In the presence of 

modeling errors, the integral windup will be small as long as the model output ym is close to the 

plant output yp. Thus the problem of excessive overshoot due to the integral action is reduced 

without increasing the closed-loop plant order, requiring different controller gains and 

subsequent controller switching, or requiring the perfect knowledge of the plant TF or initial 

plant states. The effect of mismatch between the initial plant and model states will be further 

discussed in the following section.  

 

B. Implementation on Maglev Positioner 

A block diagram showing the implementation of the proposed control scheme on the 

plant model (7.8) is shown in Fig. 7.6. Step responses to a 1-mm command using the 

conventional optimal control as well as the proposed multiscale control are shown in Fig. 7.7. 

They support the claim made in Section 7.1 that a single controller cannot be used to achieve 

good load-change as well as reference-tracking performance objectives. The reduced-order 

model-following scheme, on the other hand, is capable of meeting both the objectives with a 

single set of controller gains, and without requiring any abrupt changes in the gain values.  
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Fig. 7.6. Block diagram representing the reduced-order model-following scheme 
 

 
Fig. 7.7. 1-mm step responses in x with the reduced-order model-following scheme with 

1210IQ =  (solid), and conventional LQ controllers with 810IQ =  (dashed) and  
1410IQ =  (dash-dotted) 

 

This control scheme was tested for three different controllers with the weight matrices 

given by (7.9) and 81 10IQ = × , 101 10×  and 121 10× , respectively. The values of the controller 

gains for these controllers are presented in Table 7.2. Step responses to a 1-mm command with 
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these controllers are shown in Fig. 7.8. It can be seen from the figure that for all three chosen 

values of the integral terms, the reduced-order model-following scheme gives minimal (2.12% 

for 1210IQ = ) or no overshoot ( 810IQ = ).  

 

 
Fig. 7.8. 1-mm step response in x with the reduced-order model-following scheme with 

810IQ =  (dashed line), 1010IQ =  (solid line), and  1210IQ =  (dash-dotted line) 
 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

t (s)

po
si

tio
n 

(m
m

)

Table 7.2.  Comparison among the three proposed multiscale control schemes 

Method IQ  Overshoot 
(%) 

Rise time 
(ms) 

Settling time 
(ms) 

Optimal-control 108 7.33 39.3 >450 
Controller-switching 108, 1014 3.13 18.7 330 
Optimal control 1010 23.16 20.9 123 
Integral-reset 1010 1.15 21.9 46 
Integral-reset plus 
Controller-switching 108, 1014 10.49 6.0 161 

Model-following 108 0.00 46.1 85 
Model-following 1010 0.05 28.6 45 
Model-following 1012 2.12 12.9 30 
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Fig. 7.9 shows the 1-mm and 100-nm step responses for positive and negative steps, 

normalized to unity for comparison. The plot demonstrates that the multiscale control scheme 

gives identical performances at nano- as well as macro-scale, except for the noise level, thus 

justifying the term multiscale defined in the Section 7.1. It also shows that the controller design 

results in repeatable performance and the results presented herein are not based on a single set of 

experiments.  

 

Fig. 7.9. 1-mm (solid) and 100-nm (dashed) step responses, normalized to 1 for comparison, 
with the reduced-order model-following scheme 

 

7.3.4 Comparison among the Three Proposed Methods 

A comparison of performances of the three methods is presented in this subsection. 

Table 7.2 gives the values of overshoot, rise time (with the 90% criterion), and settling time 

(with the 1% criterion) of the plant to a step command of 1mm. The values of Q and R matrices 

defined by (7.9) are kept identical for the sake of fair comparison. As summarized in Table 7.2, 
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the controller-switching scheme gave a good rise time performance while the integral-reset 

scheme provided a better overshoot performance. The integral-reset scheme with controller 

switching improved the rise-time significantly, but adversely affected the overshoot and settling 

time. Hence this scheme is not recommended in the applications that cannot tolerate large 

overshoot. The model-following approach, on the other hand, gave the best overall performance. 

The overshoot was comparable with that of the integral-reset scheme, while the rise-time was 

almost as good as the controller-switching method, particularly with the higher values of IQ . At 

the same time, it showed a good settling-time performance as well, which is a shortcoming with 

the other two methods. Thus I continued further analysis concerning stability, uncertainties, and 

robustness in the presence of process and measurement noises for this third method alone. This 

analysis is presented in Section 7.4. 

I conclude this section by making a remark that the methods discussed in this section are 

valid for any LTI plant with higher order as long as the assumptions and conditions noted in 

Sections 7.2 and 7.3 are valid. In particular, the controller-switching method may be devised for 

any given plant with a set of controllers to meet the conflicting requirements individually and 

then use the controllers sequentially. The integral-reset scheme may be applied to any n-th-order 

plant with r inputs as long as an integral action is desired for r0 states with 0r r≤ . The model-

following scheme may similarly be used with any n-th-order plant with n-th-order model. 

 

7.4 Performance Analyses for Reduced-Order Model-Following Method 

In this section, the analyses of the performance of the reduced-order model-following 

scheme are presented in terms of closed-loop stability, initial state uncertainties, and input and 

output sensitivities. 
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A. Closed-Loop Stability 

Since modified optimal LQ control methodologies are used to design the controllers and 

since full state feedback is available, we have the advantage of the guaranteed stability margins, 

i.e., the gain margin (GM) between 6 dB and ∞, and the PM greater than 60° [78]. This may be 

verified by doing a Nyquist stability analysis at any loop-breaking point in the closed loop. 

Particularly for the model-following scheme, wherein the control gains are modified, these 

stability margins need to be verified. Although it is apparent from the step responses shown in 

the Figs. 7.7–7.9 that these control schemes give stable control loops, a formal stability analysis 

is still necessary to find how much uncertainty can be tolerated in the closed loop. Fig. 7.10 

shows the Nyquist plot for the reduced-order model-following scheme at the loop-breaking point 

‘A’ in Fig. 7.6.  

 

Fig. 7.10. Nyquist plot showing the stability margins of the reduced-order model-following 
scheme at control-input loop-breaking point to the plant ‘A’ in Fig. 7.6 
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Since there is an unstable pole in the plant TF and the Nyquist plot encircles the –1 point 

in the complex plane in the counterclockwise direction once, we have a stable closed loop from 

the Nyquist criteria. Furthermore, in this case, the closed-loop has a GM of at least 11.2 dB and a 

PM of at least 63°.  

 

B. Performance with Initial-State Mismatch 

In Subsection 7.3.3-A, I demonstrated that the integral term of the controller is 

eliminated provided the initial states match perfectly. Furthermore, in the presence of modeling 

errors, the integral windup will be small as long as the model output ym is close to the plant 

output yp. Here, I demonstrate that even in the presence of initial-state mismatches as much as 

±20%, the model states converge to the plant states in about the same time as without any 

mismatch. This percentage is chosen only to demonstrate the effect of mismatch; the plant states 

track the desired reference inputs no matter how large the initial mismatch is. Fig. 7.11 

demonstrates this situation where the initial state vector of the model is not identical to that of 

the actual plant. The model states are shown with solid lines while the actual plant states are 

shown with dashed (+20% mismatch) and dash-dotted lines (–20% mismatch). With imperfect 

knowledge of initial plant states, the dynamic performance is moderately affected in terms of 

overshoot. However, there is no significant change in the rise and settling times and the steady-

state errors. Furthermore, the model states converge to plant states in almost the same time. This 

implies that for any reference-tracking problem, if the initial plant states are not known perfectly, 

a dummy step can be given to allow the models states to become identical to those of plant. Any 

subsequent meaningful tracking can be then done without any error. 
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Fig. 7.11. Model states (solid) and responses of the plant with the multiscale control scheme in 
the presence of the mismatch between the plant and model initial states with a 
difference of +20% (dashed) and –20% (dash-dotted) in (a) position and (b) velocity 
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C. Performance in the Presence of Noises 

Another analysis of particular interest is the robustness of the designed controller to 

process and measurement noise. Consider the combined closed-loop system given by  
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where d and n are process and measurement noises as indicated in Fig. 7.6. For input sensitivity, 

assuming n 0=  and using the control laws (7.11) and (7.15), we get 
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Using Laplace transforms on both sides and assuming zero initial conditions, we get 
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Using the matrix identity [78] 
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where 1
22 21 11 12X A A A A−− , we get 
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Thus the input sensitivity function Td is given by 
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The output sensitivity function Tn may be similarly found assuming d 0=  and using the control 

laws (7.11) and (7.15). The TF is given by 
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Fig. 7.12(a) and (b) respectively show the input and output sensitivity TFs for the 

maglev positioner using (7.28–7.29). The output of the plant is not affected significantly by the 

input disturbances. The process noise at the input end to the plant is physical in nature and is 

expected to be of low frequency. For the entire frequency range the maximum amplification of 

these disturbances is around –80 dB at around 20 Hz. The measurement noises, on the other hand, 

have high-frequency contents. For the frequencies greater than 1 kHz, the amplification of the 

position measurement is less than –60 dB, whereas that of velocity measurement is less than –25 

dB. Thus, the reduced-order model-following scheme offers almost the same level of 

performances even in the presence of process as well as measurement noises. 

 

7.5 Summary 

The main focus of this chapter was to present multiscale control techniques which can be 

used to meet conflicting time-domain performance specifications at nano- as well as macro-scale. 

Plant models from the closed-loop system identification results from Chapter V were used to 

design the controllers. In particular, emphasis was given to the requirement of achieving little or 

no overshoot with a zero steady-state error and fast dynamic response in terms of rise and 

settling times. Semiconductor manufacturing is such an application, wherein these performance 

objectives translate into achieving nanoscale feature sizes at high throughput.  
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Fig. 7.12. (a) Input sensitivity TFs between the control input disturbance d and the states position 
(solid) and velocity (dashed), and (b) output sensitivity TFs between the measurement 
noises n and the respective states position (solid) and velocity (dashed) 

 

Each of the three proposed multiscale control schemes were found to have certain 

benefits and limitations. The controller-switching scheme provided a fast response time. The 

main benefit of the integral-reset scheme was its simplicity and ease of implementation. The 

model-following approach was relatively complex. However, it provided the best results in terms 

of overshoot as well as response time. Furthermore, this method did not increase the overall 

order of the closed-loop system.  Detailed performance analysis of this method was performed to 
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demonstrate its working on a practical system with problems like open-loop instability, unknown 

plant TF, imperfectly known initial plant states and presence of process and measurement noises.  

All three multiscale control schemes were found to provide significantly improved 

responses compared with the conventional optimal PI control. In particular, the reduced-order 

model-following scheme gave identical performance for step sizes of 1 mm and 100 nm. The 

GM was found to be greater than 11.2 dB along with a PM of at least 63°. Furthermore, an initial 

mismatch between the plant and model states can also be sustained without losing stability or 

affecting the performance of the closed-loop significantly. In the presence of process and 

measurement noises, the attenuation is about 80 dB and 65 dB, respectively, in the frequency 

ranges of interest. The results presented herein were consistent and repeatable. Although only a 

linear system with a precisely known plant model was considered, the proposed multiscale-

control method works well with a general class of higher-order LTI systems with or without 

open-loop instability. 
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CHAPTER VIII 

CONCLUSIONS 

 

This chapter summarizes the major contribution of this research. One of the main 

objectives of this dissertation was to develop nanoscale control strategies and motion planning to 

overcome the inherent technical challenges of the maglev positioning systems and to make them 

suitable to be used for commercial applications that require nanoscale position resolution. With 

the advances in electronics, medical and several other industries working with cutting-edge 

technologies, the role of precision positioning systems has become vital for nanopositioning and 

nanomanipulation. Currently available positioning technologies are able to provide good 

resolution but over very short travel range (a few tens to several hundred micrometers). 

Furthermore, with the increasing complexity of assembly, manufacturing, and metrology 

processes, multitasking will be a necessity in near future to increase the throughput. These 

demanding requirements call for a novel method for precision positioning in multiple DOF, with 

large travel range and nanoscale resolution at high control bandwidth. Two novel maglev stages 

were used as nanoscale positioning devices for industry applications that fulfill all the 

requirements mentioned above. The maglev systems have no mechanical contact between the 

moving and stationary parts. This non-contact nature of magnetic levitation facilitates its 

maintenance, eliminates wear in the mechanical parts, and increases their life spans, and do not 

require lubricants. 

First of the two, namely the ∆-stage, is compact in size and capable of motion control in 

all 6 DOFs with the travel ranges of 300 µm in the three translations and 3.5 mrad in the three 
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rotations. The position resolution is better than 2 nm. It has the maximum speed capability of 0.5 

m/s and the actuators are sized for 30 m/s2 acceleration in horizontal direction. Due to a light-

weight moving platen and compact design, there is a nominal power consumption of about 1 W 

by all the actuators in steady state. The Y-stage has an extended travel range of 5 mm × 5 mm in 

the horizontal axes and 500 µm in the z-axis, limited by the sensing range of the capacitance 

probes. The stage has noise level of 3 nm rms. This maglev stage has a very simple mechanical 

structure with a single moving part. It is easy and inexpensive to fabricate and can be easily 

taken out without disturbing rest of the assembly. This design makes it a very powerful 

positioning device that can be used as a cluster tool in applications requiring multitasking. In 

such applications, the same platen can be used for a variety of processes by changing the setup 

and all the processes can be completed with a fixed tool set. Analytical modeling, controller 

design and performance testing of the two maglev positioners were performed as a part of 

preliminary analysis. Both gave repeatable results with nanoscale precision for rigorous set-

point-change as well as load-change tests. 

A problem of potential interest was unavailability of accurate plant model. The pure-

mass model obtained analytically with several assumptions was too simplistic and did not 

capture the low-frequency plant dynamics and coupling terms with fidelity. The effectiveness of 

any control strategy designed for a plant relies on the accuracy of plant model. To address this 

problem, system identification is required. System identification was particularly challenging in 

our because of the inherently unstable nature of maglev systems. I carried the conventional 

identification methods one step ahead in this research in order to obtain a more reliable, 

consistent, and complete plant models. Identification was performed using the BJ method with a 

closed-loop framework and a known controller structure. I performed the entire analysis using 

discrete-time equations to avoid any errors because of the continuous-to-discrete-time 
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conversions. An order-reduction algorithm was presented to reduce the order of the identified 

plant to a level at which the controller could be designed with ease and without loosing any 

significant dynamics of the plant within the control bandwidth. The closed-loop system 

responses with these models were found to have a significantly close match with simulated 

results. In the subsequent chapters, these identified models were used instead of the analytical 

ones for better and more reliable controller design. 

Due to the use of a single-piece moving part to generate all the 6-axis motions and 

inaccuracies in the assembly of the actuator units relative to the platen, there are inherent and 

undesired couplings among the axes. A systematic procedure for designing a multivariable 

optimal control of the two maglev positioners was presented to reduce the effect of such 

couplings. Nonlinear equations of motion were derived using the Euler-angle approach, and a 

linearized plant model in state-space form was developed about an operating point. A 

comparison between the multivariable LQ controller and the decoupled SISO lead-lag controller 

revealed a reduction in coupling by about 97%. The control effort required for a given step size 

was reduced by a factor of 10. The peak velocity was also found to be reduced by 85.89%. It was 

concluded from the experimental results that the objectives of reduction in coupling as well as 

the control effort requirement were met with the designed LQ controller. However, the 

performance was found to be adversely affected in terms of settling time.  

This problem of designing a controller to meet the conflicting time-domain performance 

specifications at nano- as well as macro-scale was covered separately in the multiscale control 

design. In particular, emphasis was given to the requirement of achieving little or no overshoot 

with a zero steady-state error and fast dynamic response in terms of rise and settling times. For 

practical applications, these performance objectives translate into achieving nanoscale position 

resolution at high throughput. Among the proposed control strategies, the controller-switching 
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scheme was found to provide a fast response time. The integral-reset scheme was particularly 

useful because of its simplicity and ease of implementation. The model-following approach gave 

the designer more control over the overshoot and provided the best results in terms of overshoot 

as well as response time. Emphasis was given on the fact that the proposed model-following 

method does not increase the overall order of the closed-loop system unlike the traditional 

model-following schemes.  All three multiscale control schemes were found to provide 

significantly improved responses compared with the conventional optimal PI control. Detailed 

performance analysis of the proposed methods was performed to demonstrate their working on 

practical systems with problems like open-loop instability, unknown plant TF, imperfectly 

known initial plant states and presence of process and measurement noises. Although only a 

linear system with a precisely known plant model was considered, the proposed multiscale-

control method works well with a general class of higher-order LTI systems with or without 

open-loop instability. 

It was crucial in the presented research work to design controllers that can effectively 

reduce or eliminate the problems associated with the maglev positioners in order to make them 

usable for industry applications. Additionally, with the recent developments in nanomanipulation 

and nanomanufacturing, it is equally vital to device appropriate path-planning techniques for 

precision motion control. With this objective, key parameters that influence the dynamic 

behavior of the maglev positioning device were investigated, and ways to control these 

parameters were proposed. Design and implementation of a well-damped SISO lead-lag 

controller was described, and their influence on the performance of the maglev stage was 

discussed. Test results for key nanomanufacturing applications such as µSTL, DPN, and 

scanning were presented. The command-tracking errors were well within 20 nm pp with the best 

performance of 4.5 nm pp. The minimum achievable feature size is thus limited only by 
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manufacturing techniques and not by our maglev positioning technology. The experimental 

results demonstrated that the maglev stage performed well for these nanomanufacturing 

applications in terms of position resolution, accuracy, speed, and versatility. 

With these results, the two maglev nanopositioners were shown to be a promising 

solution to nanopositioning requirements of the next-generation nanotechnology. 
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