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ABSTRACT

A Non-Continuum Approach to Obtain a Macroscopic Model for the Flow of Traffic.

(May 2007)

Vipin Tyagi, B. Tech., IIT Bombay, India;

M. Tech., IIT Bombay, India

Co–Chairs of Advisory Committee: Dr. Darbha Swaroop
Dr. K. R. Rajagopal

Existing macroscopic models for the flow of traffic treat traffic as a continuum or

employ techniques similar to those used in the kinetic theory of gases. Spurious two-

way propagation of disturbances that are physically unacceptable are predicted by

continuum models for the flow of traffic. The number of vehicles in a typical section

of a freeway does not justify traffic being treated as a continuum. It is also important

to recognize that the basic premises of kinetic theory are not appropriate for the flow

of traffic. A model for the flow of traffic that does not treat traffic as a continuum

or use notions from kinetic theory is developed in this dissertation and corroborated

with traffic data collected from the sensors deployed on US 183 freeway in Austin,

Texas, USA.

The flow of traffic exhibits distinct characteristics under different conditions and

reflects the congestion during peak hours and relatively free motion during off-peak

hours. This requires one to use different governing equations to describe the diverse

traffic characteristics, namely the different traffic flow regimes of response. Such

an approach has been followed in this dissertation. An observer based on extended

Kalman filtering technique has been utilized for the purpose of estimating the traffic
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state. Historical traffic data has been used for model calibration. The estimated

model parameters have consistent values for different traffic conditions. These esti-

mated model parameters are then subsequently used for estimation of the state of

traffic in real-time.

A short-term traffic state forecasting approach, based on the non-continuum

traffic model, which incorporates weighted historical and real-time traffic information

has been developed. A methodology for predicting trip travel time based on this

approach has also been developed. Ten and fifteen minute predictions for traffic state

and trip travel time seem to agree well with the traffic data collected on US 183.
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CHAPTER I

INTRODUCTION

The interest in the subject of road traffic is very old and has attracted a large group of

investigators and theoreticians from diverse backgrounds who have proposed various

mathematical models to explain the observed phenomena in road traffic. As early

as in 1934, Kinzer [1] drew an analogy between road traffic and electrical networks.

In 1935, Greenshields [2] made an experimental study of traffic by measuring actual

flows (vehicles per hour) and speeds of observed vehicles. He plotted the traffic speed

against traffic density (number of vehicles per mile) for one-lane traffic and fitted the

points by a straight line. In the 1950s and the 1960s, there were considerable pub-

lications, especially in the journal of operations research. These papers introduced

the relationship between the traffic flow and traffic density, formally known as the

“Fundamental diagram of road traffic” (a term coined by Haight [3] in 1963). The

motivation for such studies was put into perspective by Greenberg in 1959 [4]: “The

volume of vehicular traffic in the past several years has rapidly outstripped the ca-

pacities of the nation’s highways. It has become increasingly necessary to understand

the dynamics of traffic flow and obtain a mathematical description of the process.

This is especially true for extremely high traffic when the roadway must perform at

its peak.”

More than forty five years later, due to increased demands for mobility, the

volume of vehicular traffic has increased to such an extent that cities like New York,

Los Angeles and San Francisco (to name a few) suffer from heavy traffic congestion

around the clock. It has been reported [5], [6] that in USA in 2003, the eighty-five

The journal model is IEEE Transactions on Automatic Control.



2

largest metropolitan areas experienced 3.7 billion vehicle-hours of delay, resulting in

2.3 billion gallons in wasted fuel and $63 billion in lost productivity due to congestion.

It is estimated that roughly half of these losses are due to recurring congestion, caused

by recurring demands that exist virtually every day, where road use exceeds existing

capacity.

Because it is not always publicly acceptable and financially affordable to expand

the existing freeway infrastructure, more efficient means of managing freeway opera-

tions are required to tackle the problem of increasing roadway traffic congestion [7].

Increasing attention is being paid to Intelligent Transportation Systems (ITS) as a

means of alleviating urban and suburban congestion. ITS is an umbrella term that en-

compasses a variety of advanced technologies in the areas of communication, comput-

ers, information display, road infrastructure, and traffic control systems. Important

applications of ITS include management of freeway traffic and traveller information

systems1. Freeway management and traveller management systems attempt to im-

prove capacity utilization of the freeways in real-time. Some typical measures include

ramp control (includes ramp metering, closure, and priority access), lane management

(includes high occupancy vehicle (HOV) lanes, lane control, variable speed limits etc.),

information dissemination (example, dynamic message signs), providing both pre-trip

(example, provided via internet web-sites and specialized telephone services) and en-

route (example, provided via wireless services or radio) information to travellers. A

desirable and important feature of such systems is the ability to predict future traf-

fic conditions, the rationale being that without projection of traffic conditions into

the future, control or route guidance strategies are very likely to be irrelevant and

outdated by the time they take effect.

1http://www.itsoverview.its.dot.gov
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In the above mentioned context, thus it becomes imperative to have a good

understanding of freeway traffic dynamics. This in turn requires that we should be

able to abstract from a complex system a simplified mathematical representation - a

model - which is able to describe a specific phenomenon2, observed in the system. In

the context of traffic, we shall call these mathematical models as traffic flow models.

Thus, there is a pronounced need for construction of traffic flow models which are

able to describe the various dynamic traffic flow phenomena and can be computer

coded for various traffic engineering tasks (example: simulation, planning and traffic

flow control strategy design).

We can broadly classify the traffic flow models into two categories according

to the level of detail with which they describe the flow of traffic. Some models,

known as microscopic traffic flow models, offer high-level of detail in their description

for traffic by considering the space-time behavior of individual vehicles (or drivers)

under the influence of other vehicles in their proximity. Macroscopic models on the

other hand, attempt to describe the traffic at a low-level of detail by describing it

from the viewpoint of collective traffic behavior.

For different freeway management and traveller information management sys-

tem applications, estimation and prediction of traffic state is of utmost importance.

Macroscopic traffic flow models are very useful in this context since they are able

to offer a collective traffic behavior description. In this disseration, we focus on a

macroscopic traffic flow modeling approach, proposed by Darbha and Rajagopal [8],

and its utilization in estimation and prediction of traffic state. We now define the

problem and present the dissertation objectives.

2Or various observed phenomena.
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A. Problem definition and dissertation objectives

The problem addressed in this dissertation focuses on the corroboration of the macro-

scopic traffic flow modeling approach proposed by Darbha and Rajagopal [8]. The

main focus in the corroboration procedure is to estimate (and predict) the traffic state

for real traffic flow case studies. We classify the available traffic data as historical and

real-time3. Corresponding to these two classes of traffic data, we distinguish between

two types of estimation problems. The first, which is essentially an offline problem,

involves estimation of the traffic state from the historical data and its utilization in

calibrating the traffic flow model parameters. The real-time estimation problem on

the other hand, involves the estimation of the traffic state in real-time. An additional

issue of relevance and great importance in the real-time problem is the prediction

of the traffic state for freeway management and traveller information management

applications. More rigorously, we define the problem as follows:

1. Offline estimation: Given a time series of historical traffic data, estimate the

traffic state and use it for calibrating the proposed traffic model.

2. Real-time estimation and prediction: Given the traffic data in the time interval

k and the historical data time series,

(a) estimate the traffic state for the time interval k, and

(b) predict the traffic state for future time intervals.

The main objective of this dissertation is to corroborate the macroscopic traffic flow

modeling approach proposed by Darbha and Rajagopal [8]. To that end, the objective

is to develop a methodology to estimate and predict the traffic state in real-time. The

3We discuss about the available traffic data in Chapter III.
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methodology should be robust enough to handle traffic data collected from the sensors

deployed on the freeways and be capable of estimating and predicting the traffic state

for relatively long lengths of the freeway. The second objective of the dissertation is

to develop an algorithm for predicting trip travel times for ITS applications.

B. Literature review of traffic flow modeling approaches

Research in the field of traffic flow modeling has been very active since the 1950s.

Investigators and researchers from diverse backgrounds in mathematics, physics, en-

gineering and operations research have contributed to the literature of traffic flow

modeling. This has resulted in a broad scope of models which attempt to describe

different aspects of traffic flow operations4. However, it is has been argued that the

traffic flow theory is unlikely to reach the descriptive accuracy attained in other do-

mains of science like thermodynamics for example [9], [10]. This is because, the only

accurate physical law in traffic flow is the balance of number of vehicles. There are

other difficulties which hamper in attaining a detailed accurate description of traffic.

For example, it is far from clear how to model human factors such as the driver’s psy-

chological disposition, the complex consequences of weather conditions, disturbances

to the flow of traffic due to road work, a major accident on the roadway, sudden in-

flux of traffic due to a sporting event ending, etc. Although human and other natural

elements such as weather involved in driving makes the problem of modeling com-

plex, everyday experience suggests that the aggregate driving behavior is predictable

within reasonable bounds and enables us to estimate the travel times with reasonable

consistency so that we can plan our driving to and from work and at other instances

with some degree of certainty. For this reason, development of traffic flow models

4Probably more than hundred different traffic flow models have been suggested [9].
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continue to be pursued.

1. Traffic flow modeling approaches

The general modeling approaches which aim to describe the observed behavior of

real systems are either physics-based (example, Newtonian physics applied to de-

velop a model of a mechanical system) or try to fit available input/output real data

to generic mathematical models (example, autoregressive integrated moving average

models (ARIMA)5, neural networks). There are also some approaches which follow

an intermediate path, in a sense that these approaches attempt to formulate a basic

mathematical model first (via physical reasoning and/or adequate assumptions and

idealizations) and then try to fit a specific structure to the real data. Most of the

traffic flow models suggested so far in the literature try to fit the available data to

generic mathematical models or follow the intermediate approach. We now discuss

the various traffic flow modeling approaches based on the level of detail by which they

attempt to describe the behavior of traffic.

a. Microscopic models

Microscopic traffic flow models typically consider a string of vehicles following each

other in a single lane. They attempt to describe both the space-time behavior as well

the interactions of individual vehicles (and drivers). The interactions between the

vehicles are described through a proposed or an assumed vehicle-following rule6.

5We discuss ARIMA models in more detail in Appendix B.
6There also has been some research done on microscopic traffic flow models which

attempt to describe the lane-changing behavior of drivers. This typically is done by
modeling the gap acceptance behavior of the drivers [11], [12]. For the purposes of
this dissertation, we will restrict our focus to this vehicle following behavior for single
lane traffic when we discuss both microscopic as well as macroscopic models.
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Most of the microscopic models attempt to describe the vehicle following be-

havior by assuming a form of the response (either braking or acceleration) of the

following vehicle. This can be done, for example, by prescribing a following distance

(or distance headway)7. By following distance we refer to the distance between the

rear and front bumpers of the preceding and the following vehicles respectively. Fig.

1 shows a schematic of a string of vehicles following each other. We index the vehicles

in an increasing order as we traverse the string upstream. Thus, a vehicle indexed as

n follows a vehicle indexed as n − 1. We now briefly discuss the various microscopic

traffic flow models that have been proposed.

Fig. 1. Schematic of the vehicle-following: vehicle n following vehicle n − 1

The models proposed by Reuschel8 and Pipes [13] seem to be the earliest micro-

scopic models for the flow of traffic. They hypothesized that each driver maintains a

following distance proportional to the speed of their vehicle plus a constant distance

headway at standstill. In the words of Pipes [13], “A good rule for following another

vehicle at a safe distance is to allow yourself at least the length of a car between you

and the vehicle ahead for every ten miles an hour of speed at which you are traveling”.

7We have used “following distance” and “distance headway’ interchangeably in
this dissertation.

8As mentioned in [9].
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Using this rule, we can define the following distance Dn of the vehicle n, with respect

to its preceding vehicle n − 1 as follows:

Dn(v) = Ln(1 + vn/10) (1.1)

where Ln and vn denote the length and speed of the nth vehicle. A similar approach

was also proposed by Forbes et al. [14]. Leutzbach [15] proposed a more refined model

by considering the contribution of driver reaction time and the braking distance in

the distance headway as

Dn(v) = Ln + Tvn +
v2

n

2µ
(1.2)

where T is the total reaction time and µ is the maximum deceleration possible.

Leutzbach assumed that drivers consider braking distances large enough to permit

them to brake to a stop without causing a rear-end collision with the preceding vehicle

if the latter comes to a stop instantaneously. Jepsen [16] proposed a model in which

he also considers a speed risk factor in prescribing the following distance as follows

Dn(v) = (Ln + dmin) + vn(T + vnF ) (1.3)

where dmin is some constant minimal distance between vehicles at standstill, F is

the speed risk factor and T is over all reaction time. According to Jepsen, the speed

risk factor stems from the observation that drivers aim not only to prevent rear end

collisions but also to minimize the potential damage or injuries due to a collision, and

are aware that in this respect their velocity is an important factor. He thus proposed

that drivers increase their time headway by some factor - the speed risk factor -

linear to vn
9. Gipps [17] has also proposed a model in which limits were imposed

9The time headway is defined by the difference in passage times of two successive
vehicles.
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on the performances of the vehicle and the driver. He then used these limits to

calculate a safe distance with respect to the preceding vehicle. Dijker et al. [18] have

discussed some empirical findings on vehicle-following behavior in congested traffic

flow conditions.

There are also some microscopic models which attempt to model the vehicle

following on the assumption that the drivers try to conform to the behavior of their

preceding vehicle. In general, they assume that the response is a function of the

sensitivity of the driver. They also assume that the stimulus driving this response is

the speed difference between the preceding and the following vehicle. In general, they

model the response of the following vehicle, delayed by some overall reaction time T .

Let xn(t) denote the position of the vehicle n at some time instant t. Chandler et

al. [19] proposed the following form of the response with a constant driver sensitivity

(γ)

an(t + T ) = γ[vn−1(t) − vn(t)] (1.4)

where vn(t) and an(t) denote the speed and acceleration respectively of a vehicle

n at time t. Gazis et al. [20] proposed a more general driver sensitivity expression as

follows:

γ = c
[vn(t + T )]m

[xn−1(t) − xn(t)]l
(1.5)

The response can then be modeled as in Equation 1.4 with the driver sensitivity

(γ) as in Equation 1.5. Thus, the following vehicle adjusts its speed proportionally

to both speed difference and the following distance. The extent to which the vehicle

adjusts its speed depends on the values of c, l and m.

For the sake of completeness, we also mention about the Cellular Automaton
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models. These are microscopic models, which distinguish and trace the individual

vehicles but do not describe any vehicle following behavior. The Cellular Automaton

model describes, in a discrete way, the movement of vehicles from one cell to an-

other10 [21], [22]. There have been some other microscopic models proposed as well

(the following papers consider some, but by no means a complete list of such models

that have been published in the literature [23] - [27]).

Because of the human and other natural elements involved in the modeling of

microscopic models, experimental corroboration of such models is an arduous task

as there can be considerable variance in the driving behavior of individuals as well

as the variance in the driving behavior of the same individual in different states of

mind. Nevertheless, these models have been employed in a variety of simulation

software for describing the flow of traffic and can be used to understand the dynamic

interaction between the traffic management system and the drivers on the roadway

network [28], [29].

b. Macroscopic traffic flow models

Macroscopic traffic flow models deal with the aggregate behavior of a collection of

vehicles. In contrast to microscopic traffic flow models, they are restricted to the

description of the collective vehicle dynamics in terms of the evolution of appropriate

“macroscopic” variables which can express the aggregate behavior of a collection of

vehicles at any location and instant of time. The macroscopic variables that are

usually considered are: spatial vehicle density ρ(x, t), speed V (x, t) and the flow

10The freeway is assumed to be divided into cells. The size of the cells is chosen
in such a way that a vehicle driving with a unit speed (in any chosen unit system)
moves into the immediate downstream cell during one time step. The vehicles are
assumed to attain only a limited number of speed values, ranging from zero to some
maximum preassigned value.
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Q(x, t) of traffic. In the literature we can distinguish between macroscopic models

which describe traffic using a continuum approach as that of a compressible fluid or

a statistical approach via the kinetic theory of gases. We now briefly discuss the

macroscopic models proposed in the literature based on these two approaches.

Models based on continuum approach as that of a compressible fluid

One of the most popular macroscopic traffic flow models was proposed by Lighthill

and Whitham in 1955 [30]. It appears that Richards developed the same model inde-

pendent of them in 1956 [31]. Their theory, called the ‘hydrodynamic theory of traffic

flow’ underlies many of the existing macroscopic traffic flow models11. They employ

a balance of mass equation (Equation 1.6) along with a constitutive assumption that

the velocity of traffic changes instantaneously with the density12. It is also assumed

that the relation in Equation 1.7 holds exactly.

∂ρ(x, t)

∂t
+

∂Q(x, t)

∂x
= 0 (1.6)

Q(x, t) = ρ(x, t)V (x, t) (1.7)

Equations 1.6 and 1.7 constitute a system of two independent equations and

three unknown variables. Consequently, to get a complete description of traffic flow,

a third independent model equation is required. To that end, Lighthill and Whitham

used a nonlinear constitutive relationship between speed and density (or equivalently,

between flow and density). Equation 1.8 shows speed as being described as a function

11This theory is also sometimes known as L-W-R theory of traffic flow.
12It is assumed that the macroscopic variables (ρ(x, t), V (x, t) and Q(x, t)) are

differentiable functions of time and space.
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of the traffic density13.

V (x, t) = V e(ρ(x, t)) (1.8)

By using the above mentioned relationship between the traffic speed and density

and Equation 1.7, Lighhill and Whitham obtained the partial differential equation to

describe the traffic flow as shown in Equation 1.9

∂ρ(x, t)

∂t
+

∂[ρ(x, t)V e(ρ(x, t))]

∂x
= 0 (1.9)

The relationship between the traffic flow and density is what is usually referred

to as the Fundamental Diagram of Traffic or Fundamental Traffic Characteristic. It

is important to note that since the dynamics (or inertia) of traffic is neglected, such

a model is also referred to as a kinematic wave model. Subsequently, Payne [32] at-

tempted to include the dynamics of traffic through the consideration of the dynamics

of traffic speed 14.

Models based on kinetic theory of gases

The models based on kinetic theory of gases describe the dynamics of traffic in terms

of speed distribution functions of vehicles at specific locations and time instants.

These distributions are generally governed by the dynamics of various processes such

as acceleration, interaction between vehicles and lane changing.

13Greenshields in 1935 [2] had suggested an empirical linear relation between speed
and density as

V e(ρ) = V0(1 − ρ/ρjam)

where ρjam is the traffic density for bumper-to-bumper traffic.
14An an overview of Payne’s model and other recent developments of Payne-type

models can be found in [33]. A detailed discussion on the macroscopic models based
on the hydrodynamic theory can be found in a review article of Papageorgiou [10].



13

Newell [34] seems to be have been the first to develop a traffic flow model based

on kinetic theory of gases. He treated the flow of traffic as analogous to the flow of

rarified gases. However, most of the work in gas-kinetic continuum models is based

on the work of Prigogine and coworkers [35] - [37].

Gas-kinetic continuum models are based on the equation for the phase-space

density,

ρ̃(x, v, t) = ρ(x, t)P̃ (v; x, t) (1.10)

which is the product of the vehicle density ρ(x, t) and the distribution P̃ (v; x, t)

of vehicle speeds v at location x at time t. The phase-space density can be interpreted

as follows: at an instant t the expected number of vehicles present at an infinitesimal

region [x, x + dx) driving with a speed [v, v + dv) equals ρ̃(x, v, t)dxdv. Prigogine

and coworkers assumed that changes of the phase-space density are caused by the

following processes:

1. Vehicles moving with speed v which enter or exit the roadway segment [x, x+dx)

causes changes in the ρ̃(x, v, t).

2. Vehicles not driving at their desired speeds will accelerate if possible.

3. A vehicle that interacts with a slower vehicle will need to reduce its speed when

it cannot immediately pass the slower vehicle. They described this interaction

by the word “collision” and assumed that this interaction was via the senses of

the drivers rather than via the bumpers of the cars.

These assumptions lead to a partial differential equation for the total temporal

change in the phase-space density with the crucial assumption that traffic can be

treated as a continuum. Prigogine and coworkers distinguished between contributions
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caused by acceleration towards the desired speed and interactions between vehicles.

They then suggested specific expressions for both these contributions.

There have been several modifications to the model proposed by Prigogine and

coworkers. A review of models based on kinetic theory of gases can be found in [38].

Discrete Lighthill-Whitham-Richards model

These macroscopic models are governed by partial differential equations, solutions to

which are sensitive to boundary conditions and can be computationally intensive, but

this is not the main deficiency of these models15. Moreover these models are applied

in practice via the application of finite difference schemes to the continuous equa-

tions described in the models. Most of these solution approaches involve numerical

approximations (discretizations) in the spatial domain, temporal domain or both.

Daganzo [39] proposed the cell transmission model based on an earlier model of

Newell [40] borrowing from the models of Lighthill and Whitham, and Richards to

predict the traffic conditions for a stretch of a freeway by evaluating the flow at a

finite number of intermediate points, selected a priori, including the entrances and

exits.

The cell transmission model of Daganzo is a discrete flow model that uses care-

fully selected cell sizes (the freeway stretch is assumed to be divided into cells) and

a piecewise linear relationship between traffic flow Q and traffic density ρ16. In the

15There are far more serious philosophical problems concerning the appropriateness
of using such continuum models to describe the flow of traffic, which we discuss later
in the chapter.

16The piecewise linear relationship assumed was:

Q = min[vρ,Qmax, v(ρjam − ρ)], for 0 ≤ ρ ≤ ρjam (1.11)

where v is the free-flow speed, ρjam is the jam density, and Qmax ≤ ρjamv/2 is the
maximum flow possible.
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model formulation, given a time step, the length of the cells are chosen such that un-

der free-flow conditions all vehicles in a cell will flow into the immediate downstream

cell. The number of vehicles flowing out of a cell is upper bounded by the space left

in the immediate downstream cell.

For the purposes of this dissertation, we have briefly discussed the various traffic

flow modeling approaches. More comprehensive reviews of traffic flow models can

be found in [9], [41]. We will now focus mainly on macroscopic traffic flow modeling

approaches. We next discuss several important issues regarding the inappropriateness

of using the continuum approach to model the macroscopic flow of traffic and then we

propose an alternative non-continuum approach to describe the macroscopic behavior

of traffic.

C. Problems with using the continuum approach to model the macroscopic flow of

traffic

The definition of the above mentioned “macroscopic” variables has been and contin-

ues to be a source of problems in developing macroscopic models of traffic. In all these

works, the macroscopic variable “density” is defined analogous to the variable in me-

chanics; however, it is this definition of “density” that proves to be most problematic

from the point of view of the appropriateness of the model. For the notion of density

to hold for traffic and hence, for the governing partial differential equations to hold

for traffic, the representative section under consideration should have a “sufficiently

large” number of vehicles (just a change of few vehicles can change such a quantity

significantly). Moreover the following three ratios are very important in determining

whether traffic can be modeled as a continuum:

1. Following distance/Length of section
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2. Length of vehicle/Length of section

3. Length of vehicle/Following Distance

Of course the third ratio above is not an independent ratio in the sense that it is a

composite of the first two. The equivalent of the “length of a vehicle”, “following

distance” and the “length of a section” in a continuum setting are the “diameter of a

molecule”, “mean free path” and the “characteristic length of a flow domain” respec-

tively. While the ratio (1 ), which is essentially the Knudsen number is sufficiently

small for traffic (of the order of 10−3), there are not sufficient number of vehicles in

the section for the flow to be regarded as a continuum. Also, for the approximation of

a continuum to be meaningful, the ratio (2 ) should be of the order of 10−8 or less as

hundreds of millions of molecules might occupy the cross-section; the corresponding

ratio for traffic at best can be of the order of 10−3. To have a comparable number

of vehicles in a section as molecules in a representative volume, the section lengths

to be considered must be at least millions of miles long. It would be unreasonable

to model a handful of molecules in a flow domain as a continuum and it is equally

unreasonable to model a handful of cars in a “section” of a freeway as a continuum.

Another important concern with the use of the flow of traffic as a continuum

is that a decrease in the speed of traffic in an upstream section also results in a

decrease in the speed of traffic in the downstream section even if there is little change

in the rate of vehicles entering the downstream section from the upstream section.

This phenomenon is not observed in freeway traffic. This is a fatal flaw concerning

the model and this fact cannot be overemphasized. Also, there is no transparency in

incorporating the heterogeneity of traffic in existing macroscopic traffic flow models.

This concern can be redressed by considering the continuum as an inhomogeneous

body; but the principal objection that remains is that of treating the traffic flow as



17

flow of a continuum.

Traffic flow models based on kinetic theory treat traffic analogous to a rarified

gas. But this again associates a notion of “density”. This we believe is once again

inappropriate, as the kinetic theory presumes sufficient number of molecules that are

constantly colliding in the flow domain of interest, many more so than the number of

vehicles in a section of a highway. While one can reason away the need for collisions

by replacing it by a hypothetical interaction when the vehicles get appropriately close,

the main idea behind the model is ill-conceived, we do not have a sufficient number

of vehicles.

Also, more importantly, the time scales associated with gases and vehicles on

freeway are of distinctly different orders. The time gap, defined as the ratio of the

following distance to the speed is of the order of one second in traffic. An equivalent

“time gap” in gases is of the order of 10−10 seconds. It is the very large number of

molecules at length scales of interest, and the rapidity of fluctuation of molecules,

which when integrated over a characteristic time scale, allows for a meaningful defi-

nition of field variables such as the probability density; in a unidirectional movement

of vehicles which constitutes the flow of traffic, the speed of vehicles as well as the

number of vehicles in a representative section do not allow for such a concept to be

defined in a meaningful way for a theory a la the kinetic theory of gases.

An additional concern with the existing approaches is that there is no trans-

parency in modeling how the information at the vehicular level affects the macroscopic

dynamics.
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D. A non-continuum approach to model the macroscopic flow of traffic

As an alternative to the continuum approach, we present a discrete dynamical system

approach which seems well suited to describe the dynamics of such large scale systems

as the flow of traffic [8]. The main features of the proposed non-continuum approach

to model the flow of traffic are:

1. Unlike most previous approaches, where first a continuum approximation of

the large collection is obtained, and for practical control applications, a spatial

discretization of the continuum model is sought, in the proposed approach, we

directly obtain a spatially discrete, but lower dimensional model of the large

collection of vehicles.

2. The proposed model based on this approach overcomes the limitation associ-

ated with existing models - namely, that the speed in the downstream section

decreases in response to a slow down in the traffic in the upstream section.

3. The proposed approach integrates aggregate vehicle-following behavior into de-

veloping a macroscopic model. This is in keeping with our intuition that what

we observe in traffic is a consequence of the aggregate behavior of drivers. In

this respect, it sharply differs from hydrodynamic models or models based on

kinetic theory of gases where one resorts to analogies with a fluid. While there

are many types of fluids [42], existing methodologies do not provide a rationale

as to why an analogy is drawn to a particular type of fluid (e.g., Navier-Stokes

fluid).

4. The proposed methodology also allows for refining the vehicle following part

of the model to account for heterogeneity in vehicle following. In this respect,
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it overcomes the limitation of opacity in incorporating such effects in existing

models.

5. The evolution equation for the speed of traffic is described through the vehicle

following behavior, which changes with the regime of traffic. For example, in

the un-congested regime, there is little change in speed in response to the fol-

lowing distance, while it is not so in the congested regime of traffic. While the

definitions of regimes themselves are empirical, the models proposed here are

hybrid in nature reflecting the different phases of congestion in traffic. Corre-

spondingly, the model of the flow of traffic may be considered as a model of a

hybrid system.

E. Dissertation contributions

This dissertation is an attempt to advance the state-of-the-art in macroscopic traffic

flow modeling. The main contribution of the dissertation is the modification and

corroboration of the non-continuum traffic model with traffic data collected from the

sensors deployed on the freeways. Specifically,

• A comprehensive methodology for traffic state estimation and prediction for

real-time ITS applications is developed.

– Aggregate vehicle following behavior is identified based on traffic data

collected from the sensors deployed on the freeways.

– The performance of the developed methodology is rigorously evaluated by

validating it against the real traffic data.

• A methodology for predicting trip travel times is developed.
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F. Organization of this dissertation

This thesis is organized as follows. In Chapter II, we introduce the non-continuum

traffic flow model. Chapter III consists a discussion of the available traffic data

from US 183 freeway in Austin, TX. We then present the methodology developed to

corroborate the non-continuum traffic flow model in Chapter IV. In Chapter V we

present the developed methodology for short term traffic state forecasts and prediction

of trip travel time. We conclude the thesis with possible directions for future research

in Chapter VI.
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CHAPTER II

A NON-CONTINUUM TRAFFIC FLOW MODEL

A. Introduction

The traffic flow model must have two components - one that reflects the balance of

vehicles in a section and the other which reflects how vehicles react to the following

distance in a section. The second component concerns aggregate vehicle following

behavior [8]. In addition to these components, a traffic flow model should have the

following desired attributes:

1. it should be based on sound physical principles,

2. it should be expressible in terms of physical, and if possible, measurable vari-

ables. If this is not possible, then such variables should be quantifiably in-

ferrable,

3. it should preferably be governed by an ordinary differential equation of a low

order for traffic flow control and estimation purposes, and1

4. it should be easy to take care of the translation from Lagrangian (vehicle fol-

lowing) description of the traffic flow to Eulerian (traffic dynamics at a fixed

point on the freeway) description.

The translation from a Lagrangian to an Eulerian description is very important since

traffic operations such as ramp metering are performed at fixed points on the freeway,

while vehicles occupy different points on the freeway at different times. In this chapter,

we present a simple and a spatially discrete model for the flow of traffic. This is done

1This is because the systems described by ordinary differential equations are easier
to deal with considering the state-of-the-art in control and estimation.
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through the introduction of the concept of a limit of a collection of dynamical systems.

We model the traffic as a countably infinite collection of homogenous, interconnected

dynamical systems. To this end, each vehicle in the traffic is considered as a dynamical

system which has its speed and following distance as state variables describing its

dynamics. The traffic can then be thought as a collection of these vehicles interacting

on the freeway. The interaction between the vehicles is defined through a vehicle

following behavior.

The central hypothesis of a non-continuum approach to traffic modeling is the

existence of a few “representative” vehicles on every section of a freeway. A “rep-

resentative” vehicle (equivalently a dynamical system) can be thought of as a limit

of a collection of dynamical systems (vehicles) of finite state space dimension. This

is analogous to a limit of a sequence. The choice of a limit of a collection as an

aggregate is motivated by the need to translate from a Lagrangian description to an

Eulerian description of traffic flow. The vehicle following behavior of the represen-

tative vehicles reflects the aggregate vehicle following behavior of traffic. Together

with a balance of the number of vehicles in any section of the freeway, the limit of

a collection of dynamical systems, which is the governing equation for the evolution

of the speed of traffic, describes the dynamics of the flow of traffic at a point on a

section of a freeway.

Before we discuss the model further, we must define a section. Consider a freeway

equipped with detector stations. We consider the detector stations indexed in an

increasing manner from the downstream end of the highway to the upstream end

of the highway. For pragmatic reasons, we consider a section to be the stretch of

highway between two consecutive odd numbered detector stations. If the number

of detector stations is even, we consider that a fictitious detector station exists at

the upstream detector station so that the total number of detector stations is odd.



23

We index the sections in an increasing order as we traverse the freeway from the

downstream end towards the upstream end. Thus if any section is indexed as i, the

immediate upstream section is indexed as i + 1. Fig. 2 shows a schematic for the

division of freeway into sections. We next present the issues and assumptions in

treating traffic as a large collection of dynamical systems and precisely define the

limit of a collection of dynamical systems.

Fig. 2. Division of freeway into sections

B. Limit of a collection of dynamical systems

Traffic is considered as a large collection of dynamical systems with each vehicle in the

traffic treated as a dynamical system. We are interested in a systematic methodology

for obtaining a macroscopic description of this large scale system from an awareness

of its microscopic description (vehicle following behavior). Thus we are interested in

formulating the problem to model the movement of traffic that can be verified with
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the measurements that can be obtained from the roadside sensors. Since the sensors

are placed at discrete points on the freeway, the focus is to model the traffic movement

where the sensors are placed. We assume that the following three variables are either

measurable or inferrable at the location where sensors are placed: speed and following

distance of vehicles as they cross the point where the sensors are placed, and the rates

at which vehicles enter or leave a section of a freeway. In this section, we use the

assumptions and definitions of a limit of a collection of dynamical systems from [8].

They have been provided here for completeness sake.

1. Problem formulation

We can define a general problem in modeling the dynamics of traffic as follows: Sup-

pose that we are given a fixed location on the freeway and we ask the question whether

it is possible to approximate the evolution of measured/inferrable variables (exam-

ple: speed and following distance) by constructing a dynamical model. To put the

same question mathematically, we are given a strictly monotonically increasing and

unbounded sequence of time instances, {ti} (instances of crossing a fixed point on the

freeway) and the outputs of different vehicles (discrete dynamical systems) at those

time instances, {yi(ti)}. The question is whether there exists a model of the form:

ω̇ = g(ω, u), (2.1)

such that for some smooth h, we have:

h(ω(ti)) → yi(ti) as i → ∞ (2.2)

The specific requirement is that the above system be finite dimensional. The

answer depends on the initial conditions for the vehicles in the traffic and whether

disturbances in traffic get attenuated i.e., whether the string of vehicles in the traffic
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is stable. We assume the following before going on to define the limit of a collection

of dynamical systems.

• Collection of vehicles is homogenous, i.e., all vehicles in the traffic have identi-

cal governing equations. This assumption can be easily relaxed to have a finite

number of representative vehicles. For example, if there are significant percent-

age of trucks in a lane on a freeway, one can have two representative vehicles -

a car and a truck.

• Currently we assume that no vehicles enter or leave the collection and that

vehicles always maintain the same ordering throughout.

• Actions of a vehicle are only dependent on the state of the vehicle immediately

preceding it and that the state space dimension of all the vehicles are identical.

We model the traffic movement via an infinite system (string) of coupled ordinary

differential equations of the form:

ẋi =f(xi, yi−1, u), i = 1, 2, ....,

yi =h(xi)

xj =x1, ∀j ≤ 0;

Here, u is the reference information, if any, available to each vehicle and xk(t) ∈

ℜn and yk(t) ∈ ℜm for all k. The output of a system (vehicle), yk may be a subset

of the states of the system. The interactions in this model are lower-triangular or

“look ahead”. This description of traffic via the use of an infinite system of ordinary

differential equations is reasonable because the response of the drivers is based on the

state of the vehicle in front of him/her. As a result, the introduction of vehicles at



26

the tail of a finite vehicle string does not alter its behavior.

Now suppose at an instant of time we consider the sequence of state of systems

(vehicles) in the collection. The following questions are of importance:

1. Does this sequence have a limit?

2. If it does has a limit, then is the convergence to the limit uniform in time?

In physical terms, the question can be thought of as whether disturbances originating

from the lead vehicle attenuate spatially. If so, vehicles at the tail of the string do not

get affected at all and behave as though they are almost identical and hence spatially

shift invariant. In fact, a similar, simplified car-following model was recently suggested

by Newell [43]. In such a scenario, what the sensors detect asymptotically in time

is the limit of the string of vehicles, when disturbances attenuate. In this sense, a

limit of a collection takes care of the conversion from Lagrangian description (vehicle

following) to the Eulerian description (dynamics at a fixed point). It is specifically for

this purpose that we are interested in using the limit as an aggregate or a macroscopic

quantity to describe the traffic dynamics.

2. Definition of a limit of a collection of dynamical systems

The class of large scale systems considered are described by an infinite system of

differential equations of the form:

ẋk =f(xk, xk−1, ....., xk−r+1, u), xk(t) ∈ ℜn (2.3)

xj(t) ≡x1, ∀j ≤ 1 (2.4)
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Definition 1. A system of the form:

ω̇ = g(ω, u), ω(t) ∈ ℜn, (2.5)

is a limit of the collection if

1. for every ω(0) and every ǫ > 0, there exists a δ > 0 such that

sup
j

‖ xj(0) − ω(0) ‖< δ ⇒ sup
j

sup
t

‖ xj(t) − ω(t) ‖< ǫ (2.6)

and

2.

lim
j→∞

xj(0) = ω(0) ⇒ lim
j→∞

sup
t

‖ xj(t) − ω(t) ‖→ 0 (2.7)

We will refer to {xk(t), k ≥ 1} as the solution of the string corresponding to

initial conditions, {xk0} if

ẋk(t) =f(xk, xk−1, ..., xk−r+1, u), k = 1, 2, ..., (2.8)

with xj(t) :=x1(t), ∀j ≤ 1, and (2.9)

xk(0) =xk0, k = 1, 2, ... (2.10)

An important ingredient for the determination of a limit of a collection of sys-

tems is that of stability of the solutions. We use the following notion of stability of a

solution, also referred to as string stability [44].

 L∞ stability : Let {xi(0)} and {x̂i(0)} be two sets of initial conditions and let {xi(t)}

and {x̂i(t)} be the corresponding solutions. The solution {xi(t)} is  L∞ stable if there

exists ǫ > 0 such that
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sup
i

‖ xi(0) − x̂i(0) ‖< δ ⇒ sup
i

sup
t≥0

‖ xi(t) − x̂i(t) ‖< ǫ.

Spatial Asymptotic  L∞ stability : Let {xi(0)} and {x̂i(0)} be two sets of initial condi-

tions and let {xi(t)} and {x̂i(t)} be the corresponding solutions. The solution {xi(t)}

is spatially asymptotically  L∞ stable if

lim
k→∞

‖ xk(0) − x̂k(0) ‖= 0 ⇒ lim
k→∞

sup
t≥0

‖ xk(t) − x̂k(t) ‖= 0.

We now state the main result given in [8].

Proposition 1. For the collection of dynamical systems considered above, suppose

that every solution {xk(t)} is spatially asymptotically stable; then the limit of the

collection is given by:

ω̇ = f(ω, ω, ..., ω, u).

Proof:

It is easy to verify that when the initial condition of all the systems is ω0, xk(t) ≡ ω(t),

where2

ω̇ = f(ω, ω, ..., ω, u), ω(0) = ω0

Since the solution ω(t) is spatially asymptotically stable, it implies that, from

the definition of stability and that of the limit of the collection of dynamical systems,

the system described by

ω̇ = f(ω, ω, ..., ω, u),

is the limit. This limit of the collection of dynamical systems is unique.

2The underlying assumption is that a solution to this differential exists and is
unique
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C. Variables that are used to describe the flow of traffic

We use the number of vehicles, N , in the section at any given time, aggregate following

distance ∆̄, and the aggregated speed of traffic, v̄ as the variables that can describe

the traffic dynamics in a section of a freeway. The aggregate following distance and

number of vehicles are considered as different state variables for the following reasons:

1. We believe that the psychology/inconsistency of drivers can render ∆̄ and N

as independent variables while satisfying an inequality constraint that their

product be at most the length of the section. However, we relax such a constraint

in this dissertation.

2. Should a traffic model of higher fidelity, involving distinct classes of vehicles

be developed, there will be two variables representing the aggregated following

distance for each class of vehicles. Hence, to be consistent with possible future

refinements, it makes sense to consider the two as independent variables.

3. Data concerning the flow of traffic suggests the existence of different traffic

regimes (for example congested and un-congested) which probably can be ex-

plained due to a switch in the driving behavior of drivers. This switch can

be potentially made on the basis of the increase (or decrease) in the number

of vehicles in a section (which leads to increased or decreased levels of occu-

pancy). We have found that a switch of the regime based on the number of

vehicles in traffic to be problematic and we expect that it will continue to be

problematic with different classes of vehicles and driving behavior. In fact, it

may be simpler to base it on occupancy as occupancy can be measured while

the average following distance must be inferred from traffic data. Switching of

a traffic regime can also potentially explain the hysteretic (here by hysteresis
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we mean the lagging of the effect behind that of the cause and not to its use in

mechanics to signify the conversion of working into thermal energy) behavior

observed in traffic (eg. [7], [45], [46]).

It is reasonable to assume that vehicles on a freeway react to changes in the

following distance and the relative velocity to maintain a safe distance from their

preceding vehicles on a freeway. One may model the vehicle following behavior of an

automated as well as a non-automated vehicle on the freeway as (for any function

x(k), we use ẋ(k) in this dissertation to mean x(k+h)−x(k)
h

where h is the time step):

v̇ = f(v, ∆, ∆̇)

where, ∆ and ∆̇ represent respectively the following distance and the rate of change

with respect to time of the following distance of a vehicle (hereafter referred to as the

relative speed of the vehicle) travelling on a freeway. This model of vehicle following

neglects variations of the driving behavior of drivers; nevertheless this is a reasonable

model for the following reasons:

1. We are interested in the aggregate behavior of vehicles on the freeways. Also,

the observation of stable throughput on a number of freeway sections suggests

that the aggregate behavior of vehicles is well defined, although the behavior of

individual vehicles may not be.

2. Such a vehicle following behavior is reasonable for automatically controlled ve-

hicles on automated freeways.

3. The granularity of the model required dictates the heterogeneity of vehicle fol-

lowing behavior that should be considered at the microscopic level.
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We also make an important assumption that the vehicle following behavior is either

string stable (in the case of non-automated traffic) or can be engineered to be string

stable (in the case of automated traffic). By string stability, we mean that the fol-

lowing distance of any vehicle in the section remains close to its desired following

distance at any time [44], [47]. This assumption enables us to approximate the ve-

hicle following dynamics of each of the vehicles in a section of a freeway with that

of a “representative” vehicle. In physical terms, it enables one to approximate the

evolution of traffic speed from the dynamics of representative vehicles in the traffic.

In other words, if there are l consecutive sections on a freeway, and if ∆̄i,
˙̄∆i and v̄i

represent the following distance, relative speed and speed of vehicles as they cross a

generic location Ai in the ith section of a freeway at any instant of time, the aggregated

speed dynamics, as seen by an observer at the location Ai, may be approximated by:

˙̄vi = f(v̄i, ∆̄i,
˙̄∆i)

The exact structure of the function, f , requires further discussion and can be found

later in Chapter III and Chapter IV.

D. The model

Let Ṅi denote the rate of change of the number of vehicles with respect to time of the

number of vehicles in ith section. Then Ṅi is computed using the balance of vehicles

on the freeway as follows:

Ṅi = Ṅ en
i − Ṅ ex

i + ˙̃ni.

In the above equation, Ṅ en
i is the rate of vehicles entering the section from its up-

stream section, Ṅ ex
i is the rate of vehicles exiting the given section into a downstream

section (if there is one), and ˙̃ni is the net inflow into the section from the ramps.
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If there are l sections under consideration and are indexed in an increasing order

from the downstream end to the upstream end, the following must be true to ensure

compatibility:

Ṅ ex
i+1 = Ṅ en

i , i = 1, 2, ..., l − 1.

The constitutive equation for ˙N ex
i is

Ṅ ex
i =

v̄iNi

Ls,i

,

where Ls,i is the length of the ith section.

To complete the model for the flow of traffic, we must provide an equation for the

evolution for the aggregated following distance. We hypothesize that the evolution

equation for the aggregate following distance in a section consists of two components:

The first component is due to the net influx of vehicles from ramps and the mainline

and the second component is due to the speed differential between the vehicles in the

section and those in the section immediately downstream. The addition of the second

component is critical to obtain a correct directional propagation of disturbances in

traffic. Since the first section does not have any sections downstream from it, the evo-

lution equation for aggregated following distance contains only the first component.

One may hypothesize the first component for the ith section as:

−(L̄car + ∆̄i)
2

Ls,i

Ṅi.

The second component is

βi,i−1v̄i−1 − v̄i.

where, βi,i−1 is called the speed-correction factor. The subscripts (i, i − 1) follow

the notion of section indexing as defined earlier. In a sense, it reflects the speed of
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a representative vehicle from the downstream section as seen by the representative

vehicle upstream. It is intuitive to understand that βi,i−1 will be equal to one if the

aggregate traffic speeds in the downstream and the upstream section are equal. This

is basically due to our assumption that all the vehicles in a section have the same

speed as that of the representative vehicle.

Putting everything together, the model for the flow of traffic in the ith section of

a freeway is:

Ṅi =Ṅ en
i − Ṅ ex

i + ˙̃ni

˙̄∆1 = − (L̄car + ∆̄1)
2

Ls,1

Ṅ1,

˙̄∆i = − (L̄car + ∆̄i)
2

Ls,i

Ṅi + βi,i−1v̄i−1 − v̄i, i > 1 (2.11)

˙̄vi =f(v̄i, ∆̄i,
˙̄∆i)

Ṅ ex
i =

v̄iNi

Ls,i

Ṅ en
i =Ṅ ex

i+1

E. Summary

In this chapter we have presented the non-continuum traffic flow model. We still

need to discuss the mechanism for traffic congestion as depicted by this model. We

discuss that later in Chapter IV, once the traffic regimes and their respective vehicle

following structures have been described and identified.
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CHAPTER III

FREEWAY TRAFFIC DATA AND ITS ANALYSIS

A. Introduction

We can classify the traffic information into three categories: historical, current or

real-time and predictive. To these three categories of traffic information we can

associate the respective traffic data. Historical traffic data describes the traffic con-

ditions/states at some previous time periods. Historical traffic data can be used to

observe aggregate traffic behavior which can be useful in developing heuristics for

traffic forecasting. Interesting traffic flow patterns can be observed which are useful

in classifying the traffic flow into different categories, example working day or a hol-

iday. Real-time traffic data describes the current state of traffic. It is dynamic in

nature and it can be used with historical data to perform on line analysis for various

transportation management applications. Predictive traffic information associates

with itself forecasted traffic state data. Predictive traffic information is anticipative

in nature and involves the process of estimating the anticipated traffic conditions at

some future point in time.

Freeway traffic data is gathered by the use of traffic surveillance systems. In

general, there are two types of traffic surveillance systems: road-based and vehicle-

based.

1. Road-based : Road-based detection systems are local in nature, as they are in-

stalled at specific locations on a freeway. Typically they can be classified as

either “in-road” or “road side”. Most commonly used “in-road” detection sys-

tems are the inductive loop detectors and they have been a principal element of

freeway surveillance and incident detection for many years. Other in-road detec-
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tion technologies include the use of magnetometers and piezoelectric detectors.

All of these technologies can be used to measure vehicle passage, vehicle count,

and occupancy 1. “Road side” detectors are generally mounted on overhead

structures or to the side of the pavement. Typically they consist of video image

detection systems (example, a closed circuit TV camera) or other technologies

based on such as infrared, microwave, radar and ultrasonic.

2. Vehicle-based : Vehicle-based traffic surveillance systems involve probe vehicles

equipped with tracking devices, such as transponders (electronic tags) and GPS,

that allow the vehicles to be tracked by a central computer facility. There have

been efforts to collect traffic data using aerial surveillance as well [48]. They

try and capture photographs which indicate the positions of various vehicles

on the freeway. Successive snapshots are taken at relatively short intervals of

time to establish the trajectories of vehicles by processing consecutive picture

frames. Vehicle-based surveillance systems are not yet widely used. But they

show great promise in estimating travel times and identifying origin-destination

patterns.

For the purposes of this study and corroboration of the non-continuum traffic flow

model, we have used the data collected by an inductive loop detection system. In the

next section we briefly describe the working principle of the inductive loop detector

and the traffic data collected by the same.

1Occupancy of a point, to be more precise, an “appropriately small” neighborhood
of the point on the freeway at a given time, t, is the percentage of time it is occupied
by a vehicle in [t − T, t], where T > 0 is sufficiently large. One can define the
occupancy as the probability of finding a vehicle at the point over a suitably normed
unit observational time scale of measurement.
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B. US 183 dual inductive loop detector data

For this study, we use the dual inductive loop detector data collected by Texas De-

partment of Transportation (Tx DOT) on US 183 freeway in Austin, Texas, USA.

The data was made available by the Translink Research Laboratory2 at the Texas

Transportation Institute (TTI).

1. Inductive loop detector

Inductive loop detectors were introduced in the early 1960s. Since then, they have

become the most common form of traffic detection system. The main or principal

component of an inductive loop detector system is one or more turns of insulated

loop wire wound in a shallow slot sawed in the pavement. This wire is connected

to the detector electronics and controller unit. The detector electronics unit drives

energy through the loop system. The loop system forms a tuned electrical circuit of

which the loop wire is the inductive element. When a vehicle passes over the loop or

is stopped within the loop, it decreases the inductance of the loop. This decrease in

inductance then actuates the detector electronics output relay or solid state circuit

which, in turn, sends an impulse to the controller unit signifying that it has detected

the passage or presence of a vehicle. The most common loops used are square loops

of edge equal to six feet. The traffic data measured by these single loop detectors are

the vehicle count and occupancy [49].

A dual-loop detector is formed by two consecutive single-loop detectors few me-

ters apart. With two loops, one can record the time taken by a vehicle to traverse

from the first loop to the second loop. Since, the distance between the two loops is

predetermined, a dual-loop detector can calculate traffic speed fairly accurately based

2http://translink.tamu.edu
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on such information. By applying the calculated speed from the dual-loops and the

single-loop measured lane occupancies, the length of a vehicle can be estimated and

the vehicle can be assigned to a certain class based on its length. Thus, the dual-

loop detectors distinguish themselves from single-loop detectors by giving speed and

vehicle-classification data. Fig. 3 show a typical dual loop detector setup.

Fig. 3. Dual loop detector setup

2. US 183 data set

The provided data set by Texas Transportation Institute contains archived traffic

data that were collected during the years 2003 and 2004 on select Austin freeways

by Texas Department of Transportation [50], [51]. The provided data is preprocessed

and aggregated into one minute intervals. Data is provided in the form of comma-

separated value (csv) files. Each data file contains one hour data for all detectors

(example, on select locations on US 183 in Austin) for which data are being collected.

Files are named following a specific naming convention that contains the freeway
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name, year, month, date, and time at which the data was collected. For example,

the following file contains detector data for US 183 for the “0900” hour (09 : 00 AM

- 09 : 59 AM) on January 2, 2004:

US 0183
︸ ︷︷ ︸

Freeway

SCU 0900
︸︷︷︸

Time

20040102
︸ ︷︷ ︸

Date

. DET
︸ ︷︷ ︸

Extension

In each file, the first line contains data that defines the number of detectors for which

data is being collected, detector identification tag3, and the station name4. It has the

following format:

nnn,xxxxxxx,yyyyyyyyyyyyy, xxxxxxx,yyyyyyyyyyyyy, · · ·

where,

nnn = number of detectors for which data is being collected,

xxxxxxx = detector ID, and

yyyyyyyyyyyyy =station name string.

The next sixty lines in the file provide minute by minute-by-minute traffic data for

all the detectors in the following format:

hhmmss,xxxxxxx,vvv,ooo,sss,ttt,xxxxxxx,vvv,ooo,sss,ttt, · · ·

3Detector ID is a unique seven digit identifier assigned to each detector by Tx
DOT

4Station name is a unique identifier used for grouping together all travel lanes in a
given direction for a given roadbed. Ramps are grouped separately from the adjacent
mainlines. Station names have been assigned by TTI
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where,

hhmmss = time stamp (hh = hour, mm = minute, ss = second) of the data recorded,

xxxxxxx = detector ID,

vvv = number of vehicles passing through the detector location,

ooo = occupancy (0-100%),

sss = average speed of vehicles that passing through the detector location, and

ttt = average percentage of trucks (0-100%).

C. Historical traffic data and observed traffic flow patterns

With two years of dual loop detector data available, we treat 2003 and first half of

2004 data as historical traffic data. Because the traffic data is available for each

individual lane in the main-line (there are either three or four lanes on US 183 in

Austin), we aggregated this data to obtain traffic data for each station. We obtained

aggregated vehicle counts and occupancies (in percentage) by summation of the vehi-

cle counts and occupancies across all the lanes. We computed aggregate traffic speed

by averaging the speeds across the individual lanes.

Upon careful observation of the data for many days at multiple locations on US

183 in Austin, we make a preliminary observation that the aggregate behavior of traffic

is different for working days and non-working days. By non-working days we imply

weekends (Saturdays and Sundays) and other special holidays (example Christmas

day). Fig. 4 and Fig. 5 show typical aggregate speed, number of vehicles passing

per minute, and the occupancy (in percentage) at a location in Austin (at Metric

Blvd. on US 183 North Bound) across three lanes for a working and a non-working

(Sunday in this case) day respectively. The difference between the traffic behavior on
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a working and a non-working day can be observed in terms of the number of vehicles

passing per minute and the occupancy levels. Also, there is no drop in the aggregate

traffic speed on the non-working days. This observation is similar to the observations

of Zackor and of Chrobok et. al. on German freeways [52], [53].
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Fig. 4. Traffic data for May 17, 2004 (Monday) at a location on US 183 NB (Metric

Blvd.)

For working days, the aggregate behavior of traffic does show a stable throughput.

By stable throughput, we mean that consistent values of traffic flow are observed on a

number of days and in a repeatable manner. Also the traffic behavior on all working

days except the Fridays’ exhibit sharp decrease in aggregate traffic speed during the

evening hours. Fig. 6 shows the aggregate traffic speeds observed on typical working

days.

Although there is no decrease in the aggregate traffic speed on a Friday, as shown



41

0 3 6 9 12 15 18 21 24
0

10

20

30

40

50

60

70

80

90

100

Time (hrs)

T
ra

ffi
c 

D
at

a

 

 
Aggregate Speed (MPH)
Vehcile Count/min
Occupancy (%)

Fig. 5. Traffic data for May 16, 2004 (Sunday) at a location on US 183 NB (Metric

Blvd.)

in Fig. 6, it is important to note that the traffic behavior on a Friday is different

from that of a non-working day. This can be seen in terms of the quite different level

of vehicle counts observed on Fridays’ and non-working days as shown in Fig. 7. A

possible explanation for this different traffic behavior on Fridays’ is provided later in

the dissertation.

For the working days (except Fridays’), the traffic data suggests the existence of

different traffic flow regimes, viz:

1. A sharp decrease in the aggregate speed of traffic between 4:30 PM to 6:30 PM.

This is accompanied by an increase in the number of vehicles passing per minute

and the occupancy levels.

2. An almost constant aggregate traffic speed at all other times of the day.
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Fig. 6. Aggregate traffic speed for all five working days

There seems to be a threshold occupancy level after which sharp decrease in the

aggregate traffic speed is observed. This threshold occupancy level is location specific

and is observed to vary between 30 - 50 %. This suggests that period of low aggregate

traffic speed begins when traffic switches from a high-speed, high vehicle count (free

flow) state to a low-speed, low vehicle count glut of vehicles. This transition seems

to occur when the number of vehicles in the section (or alternatively the occupancy)

exceeds a critical level. Once the traffic enters a congested state, it takes a long time

to return to a non congested state. Fig. 8 illustrates this congestion phenomenon. It

plots the aggregate traffic speed against the five minute aggregated vehicle counts at

Metric Blvd. on US 183 in Austin from 6 AM to 9 PM. From early in the morning till

about some time after 5 PM in the evening, the traffic aggregate speed remains high

(between 50 and 70 miles per hour) while the vehicle count consistently increases.
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Fig. 7. Traffic behavior on a Friday and a non-working day

An influx of vehicles in the evening rush hour pushes the number of vehicles trying

to utilize the freeway above some critical level (or equivalently the occupancy levels

reaching some critical threshold level), forcing the traffic into a congested state as

illustrated in Fig. 8. For example, at 5:45 PM the traffic has slowed down considerably

(to about 20 miles per hour) and the vehicle count in a five minute segment has also

decreased to about 369. Traffic does not return to a relatively un-congested state

again till about 6:24 PM. Fig. 9 illustrates the above explanation with respect to

percentage occupancy. It can be seen from the figure that there exists some threshold

occupancy level, above which the aggregate traffic speed begins to decrease and the

traffic goes into a congested state. These sharp drops in the speed of the vehicles and

hysteretic behavior have also been reported by other investigators [7], [45], [46], [54].

Periods of almost constant aggregate speed and of sharp speed drops suggests
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Fig. 8. Aggregate traffic speed versus vehicle count in 5 minute intervals at Metric

Blvd. in Austin

different driving patterns as a reaction to the number of vehicles that are trying to

use the same section of the freeway at the same time. Various other researchers

have also reported the existence of different traffic flow regimes, which have been

related to different behavioral characteristics of the drivers. Some vehicle following

(microscopic traffic flow) models which subscribe to this line of thought can be found

in [17], [55], [56], and more recently by Kerner [26]. The work of Kerner is a micro-

scopic model in which the author hypothesizes the existence of three phases of driving.

The distinction here is that we are making an assumption on the aggregate vehicle

following behavior in a section and our vehicle following component is macroscopic

in its context.

Typically for working days (except Fridays’), we can classify the flow of traffic
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Fig. 9. Aggregate traffic speed versus percentage occupancy

into the following regimes:

1. Free Regime: Observed during early morning hours and late night hours.

Typically from 10 PM to 7 AM.

2. Regime 1: Observed from 7 AM to 10 PM except the time duration when

there is a sharp decrease in traffic aggregate speed.

3. Regime 2: Observed sometime between 4:30 PM to 6:30 PM. The duration of

this regime is determined by observing the occupancy levels. The exact time for

the onset of this regime is not known. Even on similar working days (example

Mondays’), the time periods during which the traffic remains in Regime 2 are

quite different. Fig. 10 show this for four different Mondays’ in 2004. It can

be seen, that on all four days the onset and the time duration during which the
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traffic remains in Regime 2 are different.
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Fig. 10. Aggregate traffic speed illustration for four Mondays’

By different traffic regimes, we mean that different vehicle following behaviors can

be hypothesized. During the Free Regime, high aggregate speeds and very few number

of vehicles per minute passing thorough a location are measured on the freeway. This

can be deduced both from the traffic data consisting of occupancy and number of

vehicles per minute through a location. The vehicles which belong to this regime can

be thought of as being driven with their desired speeds without any interaction with

other vehicles. When considering vehicles in Regime 1 and Regime 2, we need to take

cognizance of the fact that there is an interaction between the vehicles as there is

a far greater level of occupancy and a much larger number of vehicles pass through

the location per minute. These observations are found to be repeatable on different

working days and locations at the same time during the day.
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It is important to note that the time of the day when these traffic regimes manifest

themselves can be different for different locations and direction of travel. At the same

location (i.e. Metric Blvd.) on US 183 south bound, sharp drops in traffic speed are

observed during the morning hours (typically between 7:30 AM to 9:30 AM). The

traffic speed is almost constant during other times.

During the Free Regime, there is little interaction between the vehicles and ve-

hicles can be driven at the desired speeds for most of the time. An understanding of

this regime is not critical to relieving congestion. In this dissertation, we have not

tried to corroborate this regime with the US 183 traffic data.

The structure of vehicle following dynamics for traffic in the regimes 1 and 2

demand greater scrutiny and are discussed in the next chapter.

D. Data integrity issues

The inductive loop detector traffic data which have been utilized for the purposes

of this dissertation has to be set up in right form to be useful for non-continuum

model corroboration purposes. To that end, the traffic data should be meaningful

and consistent. Upon careful analysis of the data archives many locations on US 183

were observed to have bad or inconsistent data consistently.

Table I shows the observed traffic data for three stations viz,: upstream, down-

stream and an entrance ramp between the upstream and the downstream stations

on US 183 north bound. In the table, “Vol”, ”Occ.”, “Sp.”, “Tr.” denote the ve-

hicle count, percentage occupancy, traffic speed in miles per hour and percentage of

trucks respectively. The seven digit identifier (example “2000511”) denotes the loop

detector. The following data integrity issues were observed:

1. Some stations consistently produced zero values for all the four available data
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for all days and during all times.

2. In some instances (example for detector “2001015” in Table I) report “-1” for

speed and percentage truck data while the vehicle count and percentage occu-

pancy data are reported as “0”. In such cases, it was not clear how to interpret

these data given that the speed and truck percentage are flagged with a nega-

tive value. No information was available to determine if part of the data can be

useful or if all the detector data should be considered as invalid.

3. Many detectors reported very low speeds even during early morning or late

night hours during which very light traffic is expected.

4. In many instances inconsistent vehicle counts in terms of the total number of

vehicles recorded at an upstream station does not match with the entrance/exit

ramps and the vehicle count recorded at the downstream station. In almost all

instances, there was a “loss” of vehicles between the upstream and the down-

stream stations. This “vehicle loss” was very common even for detector stations

which otherwise seemed to report consistent and meaningful data.

E. Setting up the database for the corroboration of the proposed model

For the corroboration of the proposed traffic flow model, setting up the not-faulty

and consistent traffic database is of utmost importance. To that end, the primary

task was of selecting the site for the course of this study. After careful analysis of

the traffic data, the stretch of US 183 from Lamar Blvd. to Mopac was selected. The

main factors contributing to this selection were:

• It offered a stretch of US 183 freeway where at-least two sections (as per the

section definition mentioned earlier) could be considered in tandem with “good”
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Table I. Illustration of bad traffic data - Monday, May 3, 2004

Upstream Freeway Station - Chevy Chase Drive

Time 2000511 2000512 2000513

Vol. Occ. Sp. Tr. Vol. Occ. Sp. Tr. Vol. Occ. Speed Tr.

3:00pm 8 2 48 0 18 6 46 0 0 0 0 0

3:01pm 6 2 49 0 7 3 45 0 0 0 0 0

3:02om 9 3 48 0 16 3 46 0 0 0 0 0

3:03pm 9 9 51 0 16 5 47 0 0 0 0 0

3:04pm 20 6 49 0 18 6 49 0 0 0 0 0

Downstream Freeway Station - Carver Avenue

Time 2001011 2001012 2001013

Vol. Occ. Sp. Tr. Vol. Occ. Sp. Tr. Vol. Occ. Speed Tr.

3:00pm 0 0 0 0 0 0 0 0 0 0 0 0

3:01pm 0 0 0 0 0 0 0 0 0 0 0 0

3:02om 0 0 0 0 0 0 0 0 0 0 0 0

3:03pm 0 0 0 0 0 0 0 0 0 0 0 0

3:04pm 0 0 0 0 0 0 0 0 0 0 0 0

Entrance Ramp Station - Between Upstream and Downstream Station

Time 2001015

Vol. Occ. Sp. Tr.

3:00pm 0 0 -1 -1

3:01pm 0 0 -1 -1

3:02om 0 0 -1 -1

3:03pm 0 0 -1 -1

3:04pm 0 0 -1 -1
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traffic available.

• There were both entrance and exit ramps in each of the two defined sections.

This consideration was important in not selecting one other stretch of freeway

which offered good traffic data.

• This stretch of freeway is reasonably long (about 6.6 lane miles or 2.2 miles).

The length of the freeway to be considered is also an important factor in cor-

roboration of the trip travel time estimation and prediction.

Fig. 11 and Fig. 12 show a map and the freeway configuration of the selected stretch

of US 183 respectively.

Setting up the historical traffic data database:

Historical data has been used for identifying patterns in traffic behavior. For the

purposes of traffic state forecasting (discussed later in the dissertation), a historical

database was setup. Data corresponding to the loop detector stations on the selected

stretch of the freeway was aggregated into a historic database. To that end, twenty five

sets of data corresponding to each of working days (Monday - Friday) were selected

from 2003 and the first five months of 2004. A simple mathematical mean of all the

twenty five days data was taken for all the detector stations and was written into one

file. Thus, we had five different files (one for each working day) which constituted the

historical traffic data database.
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Fig. 11. Map of the selected stretch of US 183 freeway



52

Fig. 12. Freeway configuration of the selected stretch of US 183 freeway
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F. Summary

In this chapter we have described the available traffic data from US 183 in Austin,

TX, USA. We have made some important and useful observations on macroscopic

traffic flow patterns from this data. We have also discussed the various data quality

issues and setting up the historical database which will be utilized in traffic state

forecasting and is discussed more later in the dissertation.
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CHAPTER IV

CORROBORATION OF THE NON-CONTINUUM TRAFFIC FLOW MODEL

A. Introduction

The traffic model that has been developed is primarily based on the idea of repre-

senting the aggregate behavior of the flow of traffic with a “representative” vehicle,

whose dynamics is based on the interactions between the vehicles in the traffic. In

this chapter we corroborate the non-continuum traffic model with the traffic data

collected from the loop detectors deployed on US 183 freeway in Austin, TX. The

corroboration procedure has been carried out in two steps, with the aim of corrobo-

rating the non-continuum model for a large stretch of the freeway. In the first step,

we corroborate the non-continuum model for a single stand alone section and for the

second step, we utilize the results and techniques from first step to corroborate the

non-continuum model for two linked sections. To that end, the freeway is divided into

consecutive sections as described earlier in the dissertation. Each section is defined

to be the stretch of the freeway between three consecutive detector stations. The two

extreme detector stations become the entrance and exit for the section of the freeway

(depending on the direction of flow of traffic) that is considered and the data from

the intermediate detector station is used to corroborate the model that is developed

in this dissertation.

B. Single section corroboration

The process of corroboration consists of three steps described in the three following

subsections. The first two steps are concerned with calibrating the model, i.e., esti-

mating the parameters of vehicle following in different regimes from a few data sets
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collected on US 183 and the third step is involved with prediction of the state of

traffic based on the calibrated parameters for other data sets of US 183. The estima-

tion of parameters in the vehicle following model requires knowledge of the following

distance, the number of vehicles in the section, net number of vehicles entering a sec-

tion and speed, of which only the speed and the net number of vehicles entering the

section are readily available. Since information concerning speed is readily available,

we decouple the tasks of calibrating the parameters of vehicle following from that of

estimating the aggregate following distance and the number of vehicles in a section.

The latter is considered in the first subsection, while the former is considered in the

second subsection.

1. Use of historic traffic data to identify the structure of vehicle following for

Regimes 1 and 2

From the traffic loop detector data, repetitive patterns are observed in traffic through-

put with respect to the time of the day and the day of the week. The traffic data

for the number of vehicles passing through a location and their aggregate speeds are

used to identify the structure of vehicle following for the traffic flow regimes 1 and 2.

Since the traffic data are available at discrete intervals of time, for the non-continuum

model (see Equation 2.11), presented earlier, we will use k to denote the discrete time

instant under consideration and h to denote the time step size. Since the number

of vehicles exiting a section in a time step is available from the traffic data, we in-

troduce another state, N ex
i,sum, to represent the cumulative number of vehicles that

have exited the section. We will use H̄(i) to represent a unit Heaviside function, i.e.,

H̄(i) = 0 ∀i ≤ 0 and H̄(i) = 1, ∀i ≥ 1. The following state space model may then be

constructed for the purpose of identification:
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Ni(k + 1) =Ni(k) + h
[
Ṅ en

i (k) −
[ v̄i(k)Ni(k)

Ls,i

]
+ ˙̃ni(k)

]

N ex
i,sum(k + 1) =N ex

i,sum(k) + h
[ v̄i(k)Ni(k)

Ls,i

]
(4.1)

∆̄i(k + 1) =∆̄i(k) − h
{

[
(Lcar + ∆̄i(k))2

Ls,i

][Ṅ en
i (k) −

[ v̄i(k)Ni(k)

Ls,i

]
+ ˙̃ni(k)]

− H̄(i − 1)(βi,i−1v̄i−1(k) − v̄i(k))
}

The value of the section index i in the above equations has to be set equal to

one for the purposes of a single section corroboration. In other words, we treat this

section as a stand alone one with no section upstream to it. Hence in Equation 4.1,

H̄(i − 1) equals zero and thus there is no contribution of the (βi,i−1v̄i−1(k) − v̄i(k))

term to the aggregate following distance update equation.

The term h[Ṅ en
i (k) + ˙̃ni(k)] is the net inflow of vehicles into the section in time

interval [kh, (k+1)h) and is measurable. The system output is taken to be N ex
i,sum, the

cumulative number of vehicles exiting the section. Thus, the model assumes that the

rate of change of number of vehicles with respect to time in a section is known. Since,

we do not know the initial conditions of the states Ni, N ex
i,sum, and ∆̄i, we design a

state estimator using Extended Kalman Filtering technique. Similar approaches were

used earlier to predict the flow of traffic for continuum models of traffic [57] - [60].

Below we describe the basic procedures involved in the extended Kalman filtering

and its application, in identification purposes1.

1Detailed definitions and proofs for state space modeling and Kalman filtering are
provided in the Appendix A.
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a. Extended Kalman Filtering:

The Kalman Filtering procedure for non-linear models involves computing, in real-

time, the Taylor series approximation of the system function at the previous state

estimate and that of the observation function at the corresponding predicted position.

The Kalman filter so obtained is called the extended Kalman filter. While there are

no guarantees of convergence of the estimates of the states to their true values, it still

remains an effective tool as far as practice is concerned.

Below we describe the basic extended Kalman filtering equations and algorithm

for a nonlinear model of a system [61]. Consider a non linear system in the following

form:

xk+1 =fk(xk) + Hk(xk)ξ
k

vk =gk(xk) + η
k

(4.2)

where x is the state vector, v is the output vector, fk and gk are vector valued functions

with ranges in ℜn and ℜq respectively and 1 ≤ q ≤ n and Hk is a matrix valued

function with range in ℜn ×ℜq, such that for each k the first order partial derivatives

of fk(xk) and gk(xk) with respect to all the components of xk are continuous. Also,

we consider zero mean Gaussian white noise sequences {ξ
k
} and {η

k
} with ranges in

ℜp and ℜq respectively and 1 ≤ p, q ≤ n.

Assume that the initial state of the system x0 has a known initial estimate, x̂0,

and variance Σ0. We make two additional assumptions. First, the transition and

measurement errors ({ξ
k
} and {η

k
} respectively) are uncorrelated. This is reasonable

since they arise from two different processes. Second we assume that the initial

state, x0, is independent of the errors {ξ
k
} and {η

k
}. Again, this does not seem

unreasonable. Putting the above stated assumptions mathematically, we get:
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E(ξ
k
ξT

l
) =Qkδkl E(η

k
ηT

l
) =Rkδkl (4.3)

E(ξ
k
ηT

l
) =0 E(ξ

k
xT

0 ) =0 E(η
k
xT

0 ) =0 (4.4)

where Qk and Rk are the variance matrices for random vectors {ξ
k
} and {η

k
} respec-

tively, E denotes the expectation and the above conditions are satisfied for all k and

l. Using the assumptions stated above, the following results about extended Kalman

filtering can be stated2:

P0,0 =Σ0 = V ar(x0), x̂0 = E(x0) (4.5)

For k =1, 2, ..., (4.6)

Pk,k−1 =
[ ∂fk−1

∂xk−1

(x̂k−1)
]
Pk−1,k−1

[ ∂fk−1

∂xk−1

(x̂k−1)
]T

+ Hk−1(x̂k−1)Qk−1H
T
k−1(x̂k−1)

(4.7)

x̂k|k−1 =fk−1(x̂k−1) (4.8)

Gk =Pk,k−1

[∂gk

∂xk

(x̂k|k−1)
]T

�

[
[∂gk

∂xk

(x̂k|k−1)
]
Pk,k−1

[∂gk

∂xk

(x̂k|k−1)
]T

+ Rk

]−1

(4.9)

Pk,k =

[

I − Gk

[∂gk

∂xk

(x̂k|k−1)
]
]

Pk,k−1 (4.10)

x̂k|k =x̂k|k−1 + Gk(vk − gk(x̂k|k−1)). (4.11)

In Kalman filtering terminology, x̂k|k−1 represents a one-step prediction of the

state xk. It represents the best knowledge of the values of the states at the time instant

2The notation i|j indicates an estimate corresponding to the time instant i based
on the information up to and including time instant j.
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k, prior to obtaining the measurement values for the kth time instant. Equation 4.8

shows how this can be obtained. Pk,k−1 and Pk,k represent the variances of x̂k|k−1 and

x̂k|k. Equation 4.7 shows how Pk,k−1 depends on both the uncertainty in x̂k−1|k−1 as

well as the variances of the error Qk−1.

The matrix Gk is called the Kalman gain matrix. Its interpretation becomes

clear from Equation 4.11. Equation 4.11 shows that the filtered estimate x̂k|k can be

represented as a sum of two terms. The first one is simply the one-step prediction

(prior estimate) x̂k|k−1. The second term represents the adjustment to be applied to

the prior estimate in the light of the new measurements vk that have just been ob-

tained. The term gk(x̂k|k−1) represents, in a sense, a predicted cumulative sum of the

number of vehicles exiting the section. vk represents the cumulative sum of vehicles

exiting the section actually measured by the loop detectors. (vk − gk(x̂k|k−1)) there-

fore represents a “residual”. In filtering theory, this sequence of residuals is termed

as the innovations sequence. These innovations represent the “new” information in

each measurement (vk, in our case). The Kalman gain Gk can now be interpreted

as the weight given to the new information. From Equation 4.9, we can see that as

the variance Rk increases, Gk decreases and the weight given to this new information

decreases as it should. We now discuss how the extended Kalman filtering method-

ology can be applied to identify the structure of vehicle following for different traffic

flow regimes.

b. Structure of vehicle following dynamics for traffic under different regimes:

Since the extended Kalman filtering technique requires the smoothness of the vector

fields, f and g, it is apparent that such a scheme cannot be applied in principle if

there is frequent switching between different regimes of traffic. However, from the

traffic data, one can observe that the duration of each regime is long enough for one
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to treat the problem of filtering for each regime individually. As long as smoothness

of the vector field f is guaranteed in each regime and there is infrequent switching

between different regimes, it is reasonable to circumvent the requirement of smooth f

by considering problems of filtering for each regime separately. This is the approach

we adopt here.

We apply the extended Kalman filtering methodology to identify the states in

the state space model in Equation 4.1, with the value of i being set equal to one.

The following state space system is constructed (in representation consistent with

Equation 4.2):

xk =
[
Ni(k) N ex

i,sum(k) ∆̄i(k)
]T

fk =













Ni(k) + h
[
Ṅ en

i (k) −
[

v̄i(k)Ni(k)
Ls,i

]
+ ˙̃ni(k)

]

N ex
i,sum(k) + h

[
v̄i(k)Ni(k)

Ls,i

]

∆̄i(k) − h

{

[ (Lcar+∆̄i(k))2

Ls,i
][Ṅ en

i (k) −
[

v̄i(k)Ni(k)
Ls,i

]
+ ˙̃ni(k)]

−H̄(i − 1)(βi,i−1v̄i−1(k) − v̄i(k))

}













Hk =









h 0 0

0 h 0

0 0 h









(4.12)

ξ
k

=
[
ξNi

k 0 ξ∆̄i

k

]T

with h being the time step. The cumulative count of the number of vehicles exiting
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the section at each time step is used as the output. Thus we have:

vk =
[
0 1 0

]
xk + ηk

where vk is the output vector. Use of the Gaussian white noise sequences (ξNi

k and

ξ∆̄i

k ) in the state transition equation helps us to treat the aggregate following distance

and the number of vehicles in the section as different state variables. The aggregate

speed data is used to estimate the states at each instant of time.

For all the simulation purposes, a fixed vehicle length of fifteen feet has been

used. We now give the following structure to vehicle following. That is, we give a

structure to the function f in the following equation:

v̇ = f(v, ∆, ∆̇)

The following structure of vehicle following for the different traffic regimes is

hypothesized:

1. Regime 1: Observed from 7:00 AM to 10:00 PM except the time duration

when there is a sharp drop in the traffic speed. The desired aggregate following

distance in this regime is hypothesized to be linearly proportional to the speed

of the vehicles and the equation describing the evolution of speed of traffic may

be expressed as:

v̇i =
1

hw

[∆̇i + λ1(∆i − hwvi)]

2. Regime 2: Observed between 4:30 PM to 6:30 PM. This regime can be further

subdivided into two sub-regimes: (a) when the traffic speed drops sharply to a

low speed and fluctuates about this minimum for some time and, (b) when the

traffic speed again increases to a high speed (regime changes again to Regime

1 after this). In this regime, we hypothesize a non-linear relationship between
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the desired following distance and speed, i. e., ∆̄des = q(v̄).

v̇i =
1
dq
dv

[∆̇i + λ2(∆i − q(v))]

In traffic Regime 1, it is hypothesized that the drivers tend to maintain a following

distance that varies linearly with the speed of the vehicle. This hypothesis reflects the

observation that the drivers tend to accept smaller following distances while maintain-

ing almost constant speeds. This happens when there is an increase in the demand

on utilization of the freeway (more number of vehicles are present).

During Regime 2, it is hypothesized that the drivers react more sharply to the

increasing demand on freeway utilization and are not able to maintain high speeds. As

a result, aggregate traffic speed drops and drivers are able to maintain much smaller

following distances, but with slower speeds. Since q(v) associated with Regime 2 is

assumed to be smooth for EKF to be applicable, and since its structure is not known,

a reasonable starting point is to express it using the first few terms of its Taylor’s

series:

∆̄des = α1v
1 + α2v

2 + ... + αpv
p. (4.13)

Since the value of p in Equation 4.13 (highest order term) is unknown, we start by

choosing its value as one and we increase it till we get a good fit for the estimated

following distance. The following distance to be used in the Equation 4.13 is obtained

when we estimate the states of the state space model in Equation 4.1. For many

“Mondays” (for example) it was observed that for p = 1, 2, 3, 4 we do not get a

good fit. p = 5 gives us a reasonably good fit. Terms higher than fifth order in

the Taylor’s series do not substantially improve the fit. Numerical accuracy issues

also arise for higher order terms during parameter identification due to the units of

following distance (feet) and speed (feet per minute). In Fig. 13 we plot six different
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predictions labelled according to highest order term till which the Taylor series was

considered for Regime 2a.
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Fig. 13. Fitting data to identify structure of vehicle following for Regime 2a

After fixing a value of p, further analysis of the Taylor series for the non linear

relationship between the desired following distance and the speed shows that the

contributions from the lower order terms is not very significant. It was observed from

the historical data that the contributions of lower order terms till p − 1 were not

significant. Fig. 14 shows the percentage contribution of terms of different powers

for data for six Monday(s) in 2004. For ease of maintaining traffic parameters and

reducing the computational effort, only the pth power term was considered in the

relationship between the desired following distance and the speed as shown below:

∆̄des = αvp
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The vehicle following law can then be synthesized as:

v̇i =
1

αpvp−1
i

[∆̇i + λ2(∆i − αvp
i )]

For Regime 2a and Regime 2b different values of α and p have to be used.

Different values for α and p also make eminent sense from point of view of the observed

traffic hysteresis as different values of aggregate traffic speed are observed for the same

values of the occupancy levels during the congestion onset (Regime 2a) and recovery

(Regime 2b) phases. In Fig. 15 we show the above mentioned hysteretic behavior

observed in traffic.

In the above equations, the parameters, λ1, λ2 reflect the time constants associ-

ated with driving in their respective traffic regimes. These along with hw (for Regime

1 ), α2a, p2a and α2b, p2b (for Regime 2a and 2b respectively) are the parameters to

be estimated from the traffic data. The numerical values of the parameters asso-

ciated with this structure are specific to the highway section under consideration.

This structure of vehicle following dynamics is a constitutive relationship and can be

modified to fit experimental data (traffic data). It should be noted that, values of

estimated aggregate following distance are used in estimating the traffic parameters.

The aggregate following distance is estimated by applying extended Kalman filter-

ing algorithm to the state space model in Equation 4.12 as described earlier in this

section.
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2. Estimating the traffic parameters associated with different traffic regimes

In this subsection, we estimate the time constants λ1, λ2, aggregate time headway hw

associated with the traffic Regime 1 and the parameters α and p for Regime 2. The

values of estimated traffic states - the aggregate following distance and the number

of vehicles in the section - and the aggregate speed data are used to estimate the

parameters. For parameter estimation, objective functions are synthesized from the

constitutive relationship for the vehicle following behavior of different traffic regimes.

For example, in Regime 1, velocity updates can be obtained as

v̄i(k + 1) =
1

hw

(
∆̄i(k + 1) + (λ1h − 1)∆̄i(k)

)
− v̄i(k)(λ1h − 1).

Since, we have the aggregate speed data, we can then formulate the objective function

to be minimized as

Minimize
∑

k

(

1 − v̄i(k + 1)

y(k + 1)

)2

where y(k + 1) is the corresponding speed data for Regime 1. Thus the objective

functions are developed to be minimized in a least squares sense. The above men-

tioned objective function cannot be used if the traffic has stalled (y(k) = 0), and we

will have to use a different objective function. Stalled traffic typically is a case of

non-recurring congestion and can happen, for example if there a vehicle has broken

down on the freeway or if there has been an accident. For recurring congestion, traf-

fic data suggests sharp drops in aggregate traffic speeds, but zero traffic speed was

observed only on very few days in the years 2003 and 2004. Since we are concerned

with modeling repeatable traffic patterns (recurring congestion for example), we have

neglected the days when there was stalled traffic for parameter estimation purposes.

A MATLAB application on multidimensional unconstrained nonlinear minimiza-

tion approach based on Nelder-Mead simplex [62] method was used to minimize the
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non linear objective function. The estimated parameters show consistency over dif-

ferent working days. We list some sample estimated parameters in the results section.

3. Predicting traffic state in real-time

Estimated time constants and other parameters (hw, α and p) associated with the

different traffic regimes from historical data, are then used to predict the traffic state

in real-time. Extended Kalman filtering is again used to estimate the states of traffic

in real-time but now the state vector also includes the aggregate speed of the traffic

(speed of the “representative” vehicles for the particular section). For example, for

Regime 1, the state space representation of the traffic model (in the representative

form consistent with Equation 4.2) will be:

xk =
[
Ni(k) N ex

i,sum(k) ∆̄i(k) v̄i(k)
]T

fk =



















Ni(k) + h
[
Ṅ en

i (k) −
[

v̄i(k)Ni(k)
Ls,i

]
+ ˙̃ni(k)

]

N ex
i,sum(k) + h

[
v̄i(k)Ni(k)

Ls,i

]

∆̄i(k) − h
{

[ (Lcar+∆̄i(k))2

Ls,i
][Ṅ en

i (k) −
[

v̄i(k)Ni(k)
Ls,i

]
+ ˙̃ni(k)]

−H̄(i − 1)(βi,i−1v̄i−1(k) − v̄i(k))
}

v̄i(k) + h
hw

{(
[ (Lcar+∆̄i(k))2

Ls,i
][Ṅ en

i (k) −
[

v̄i(k)Ni(k)
Ls,i

]
+ ˙̃ni(k)]

−H̄(i − 1)(βi,i−1v̄i−1(k) − v̄i(k))
)

+ λ1(∆̄i(k) − hwv̄i(k))
}



















Hk =












h 0 0 0

0 h 0 0

0 0 h 0

0 0 0 h












(4.14)
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ξ
k

=
[
ξNi

k 0 ξ∆̄i

k ξv̄i

k

]

vk =
[
0 1 0 0

]
xk + ηk

The input to the system is taken to be the net inflow of vehicles into the section,

h[Ṅ en
i (k)+ ˙̃ni(k)], and the observed occupancy percentage. The output of the system

is again taken to be the cumulative number of vehicles exiting the section. The

observed percent occupancy is used in determining the traffic regime transitions as

discussed earlier in the dissertation. Fig. 16 shows a traffic regime transition diagram

based on the input occupancy levels. The traffic flow regime changes from Regime

1 to Regime 2a when the occupancy becomes greater than some critical occupancy

(denoted by “Occthreshold” in Fig. 16) for the section under consideration. Once, when

the traffic has already transitioned into Regime 2a, the regime transition between

regimes 2a and 2b seems to take place based on the net number of vehicles entering the

section. That is, the traffic regime changes from 2a to 2b when the number of vehicles

exiting are more than the number of vehicles entering the section. Equivalently, the

traffic can again switch to Regime 2a from Regime 2b if there are more number of

vehicles entering the section than exiting. This fluctuation between Regime 2a and

Regime 2b was observed to happen less frequently. This threshold value of the net

number of vehicles entering the section which determines the switch between Regime

2a and Regime 2b is location specific and different sections will have a different

threshold values (in Fig. 16 we denote this threshold value by “numthreshold ”). The

traffic finally goes back to Regime 1 once the occupancy levels fall below the critical

occupancy for the section under consideration.

To corroborate the predicted traffic states, the predicted aggregate speed and the

predicted number of vehicles at a detector station are plotted against the observed



70

Fig. 16. Schematic of the traffic regime transition

values for a particular day. By applying the extended Kalman filtering technique with

the data update frequency of one minute, we can make traffic state predictions for

the next minute.

4. Results

In this section we provide some results for one minute traffic state predictions and typ-

ical values of the estimated traffic parameters for the following two stretches (sections)

on US 183 north bound freeway in Austin. We also provide some other important

details for the two sections, pertaining to corroboration purposes.
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1. Section 1: From Ohlen Road (upstream station) to Mopac (downstream sta-

tion).

• The section is 3.75 lane miles long (or 1.25 miles actual distance).

• The critical threshold occupancy level for traffic state transition between

Regime 1 and Regime 2a (or between Regime 2b and Regime 1 ) is observed

to be 35%.

• The threshold value (numthreshold in Fig. 16) for net number of vehicles

entering the section for regime switch between Regime 2a and Regime 2b is

10. That is, Ṅ ex−Ṅ en has to be greater than 10 for regime transition from

Regime 2a to Regime 2b or equivalently less than -10 for regime transition

from Regime 2b to Regime 2a

2. Section 2: From Lamar Blvd. (upstream station) to Ohlen Road (downstream

station). The corresponding threshold values (mentioned in the same order as

above) for this section are:

• The length of the section is 2.85 lane miles (or 0.95 miles actual distance).

• Critical threshold occupancy level is 42%.

• Threshold net number of vehicles is 15 for regime transition from Regime

2a to Regime 2b.

a. Estimated values for the parameters characterizing the flow of traffic in the dif-

ferent regimes

Below we give some typical values for the parameters that characterize the flow of

traffic associated with Regime 1 and Regime 2 for both sections 1 and 2.
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1. Regime 1 : The vehicle following control law hypothesized for traffic Regime 1

is:

v̇i =
1

hw

[∆̇i + λ1(∆i − hwvi)]

Table II and Table III show the estimated values for hw and λ1 for section 1

and section 2 respectively for four different weeks. The units of λ1 and hw

are minute−1 and minute respectively. The parameters show repetitive trends

with respect to the day of the week for both the sections. It should be noted

that the values of both λ1 and hw for both the sections are pretty close. This

is reasonable to expect, since the aggregate speed of traffic remains almost

constant in Regime 1 in both the sections. Also, the aggregate traffic speed

during Regime 1 is about the same in both sections 1 and 2.

The time headway (hw) varies from about 9 to 24 seconds for both the sections.

For example, on Mondays’ in section 1, the time headway is about thirteen

seconds. It can also be noted that the time headway is smaller on Mondays’

and Fridays’ than those compared with the other three working days of the

week. These numbers for time headway are pretty reasonable for the high

speeds observed in Regime 1. The small values of λ1’s and typical values of

time headway and speed in the section suggests that drivers are ready to accept

shorter following distances so that they can drive with almost constant speeds.

Also, it can be observed that the rate of change of speed is more dependent on

the relative speed ( ˙̄∆).
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Table II. Estimated parameters for Regime 1 - Section 1

Regime 1

Monday Tuesday Wednesday

Date λ1 hw Date λ1 hw Date λ1 hw

03-01-04 1.2E-7 0.170 03-02-04 9.9E-4 0.375 03-03-04 10.8E-4 0.212

03-08-04 1.3E-7 0.244 03-09-04 6.1E-4 0.288 03-10-04 8.9E-4 0.278

04-05-04 5.9E-8 0.236 04-06-04 7.8E-4 0.398 04-07-04 9.1E-4 0.319

05-03-04 1.3E-7 0.238 05-04-04 4.4E-4 0.300 05-05-04 6.7E-4 0.301

Thursday Friday

Date λ1 hw Date λ1 hw

03-04-04 5.9E-4 0.349 03-05-04 1.3E-7 0.223

03-11-04 7.6E-4 0.253 03-12-04 1.3E-7 0.215

04-08-04 5.8E-4 0.294 04-09-04 1.9E-7 0.243

05-06-04 8.5E-4 0.3000 05-07-04 8.8E-8 0.191
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Table III. Estimated parameters for Regime 1 - Section 2

Regime 1

Monday Tuesday Wednesday

Date λ1 hw Date λ1 hw Date λ1 hw

03-01-04 1.8E-7 0.167 03-02-04 9.2E-4 0.302 03-03-04 9.5E-4 0.210

03-08-04 1.5E-7 0.203 03-09-04 5.8E-4 0.298 03-10-04 9.1E-4 0.288

04-05-04 3.6E-7 0.200 04-06-04 8.3E-4 0.383 04-07-04 8.6E-4 0.332

05-03-04 1.1E-7 0.189 05-04-04 6.9E-4 0.325 05-05-04 7.8E-4 0.265

Thursday Friday

Date λ1 hw Date λ1 hw

03-04-04 6.3E-4 0.301 03-05-04 1.7E-7 0.222

03-11-04 7.1E-4 0.248 03-12-04 1.6E-7 0.254

04-08-04 6.8E-4 0.285 04-09-04 2.1E-7 0.260

05-06-04 8.3E-4 0.199 05-07-04 5.9E-8 0.210
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2. Regime 2: The vehicle following control law hypothesized for traffic Regime 2

is:

v̇i =
1

αpvp−1
i

[∆̇i + λ2(∆i − αvp
i )]

Table IV and Table V show the estimated values for α, p and λ2 for Regime 2a

for four weeks for section 1 and section 2 respectively.

For Regime 2b, smaller values of p are observed. Typically they are one less

than the p’s for the Regime 2a. For example, for section 1 on Monday’s, p2b is

equal to 4. The, α2b’s are also correspondingly smaller. This is due to the fact

that the recovery from congestion is quite fast. Traffic remains in the congested

regime (Regime 2a) for a larger time duration and when the recovery phase

starts, the traffic is able to achieve faster speeds in a relatively smaller time

duration.

Another interesting point to note is that we have not given estimates for the appro-

priate parameters for the flow of traffic in Regime 2, for Fridays. Friday, being the

end of the working week, people tend to leave the offices all day long, after lunch.

So there is no excess demand for freeway utilization. In fact it was observed that

for some Fridays, slight congestion occurs around noon time. This point was also

elaborated previously in the chapter on data analysis. This again stresses the point

that traffic parameters are location sensitive, but the constitutive relations for the

flow of traffic still remain the same.
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Table IV. Estimated parameters for Regime 2a - Section 1

Regime 2a

Monday Tuesday

Date α p λ2 Date α p λ2

03-01-04 1.2E-15 5 0.035 03-02-04 1.6E-8 3 0.384

03-08-04 2.4E-15 5 0.025 03-09-04 1.1E-8 3 0.655

04-05-04 5.8E-15 5 0.309 04-06-04 2.8E-8 3 0.238

05-03-04 2.6E-15 5 0.386 05-04-04 1.4E-8 3 0.313

Wednesday Thursday

Date α p λ2 Date α p λ2

03-03-04 1.4E-15 5 0.019 03-04-04 1.2E-15 5 0.016

03-10-04 1.4E-15 5 0.028 03-11-04 1.3E-15 5 0.028

04-07-04 1.2E-15 5 0.047 04-08-04 2.6E-15 5 0.028

05-05-04 1.7E-15 5 0.002 05-06-04 9.5E-15 5 0.442
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Table V. Estimated parameters for Regime 2a - Section 2

Regime 2a

Monday Tuesday

Date α p λ2 Date α p λ2

03-01-04 4.7E-12 4 0.241 03-02-04 1.9E-8 3 0.445

03-08-04 3.1E-12 4 0.118 03-09-04 2.1E-8 3 0.585

04-05-04 7.6E-12 4 0.203 04-06-04 2.6E-8 3 0.608

05-03-04 5.4E-12 4 0.289 05-04-04 1.7E-8 3 0.493

Wednesday Thursday

Date α p λ2 Date α p λ2

03-03-04 5.5E-12 4 0.103 03-04-04 3.1E-12 4 0.276

03-10-04 6.0E-12 4 0.098 03-11-04 2.8E-12 4 0.311

04-07-04 5.9E-12 4 0.146 04-08-04 2.6E-12 4 0.378

05-05-04 4.9E-12 4 0.206 05-06-04 4.1E-12 4 0.402
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b. Traffic state prediction

In this subsection we provide results concerning the state of traffic. We plot the

predicted aggregate traffic speed against the actual observed/measured aggregate

speed of traffic. We also corroborate the predicted number of vehicles passing per

minute at a particular detector station with the collected data.

Fig. 17 and Fig. 18 show the predictions after one minute on June 14th, 2004 and

July 15th, 2004 for section 1. Fig. 19 show the predictions after one minute on June

14th, 2004 for section 2. For both the sections we predict both the aggregate traffic

speed and the number of vehicles passing through a detector station (downstream

end detector station). On the same plots (for speed and number of vehicles) we plot

the actual traffic speeds and the vehicle count for the corresponding time of the day.

From the plots we observe that the non-continuum traffic flow model is able to

predict the traffic state very well. Some spikes can be observed in the prediction of

the number of vehicles crossing the detector station. These are due to the traffic flow

regime switching.
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Fig. 17. 1 minute prediction of state of traffic, Section 1, June 14, 2004
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Fig. 18. 1 minute prediction of state of traffic, Section 1, July 15, 2004
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Fig. 19. 1 minute prediction of state of traffic, Section 2, June 14, 2004
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C. Corroboration of proposed model: multiple sections in tandem

In this section we describe the non-continuum model corroboration for multiple sec-

tions in tandem. The corroboration procedure again consists of two basic steps. The

first step is concerned with the calibration of the traffic flow model, i.e., estimating

the model parameters. The second step is involved with the prediction of the states of

traffic based on the calibrated model parameters. As an example we consider a case

study of corroborating the non-continuum model for multiple linked sections with

traffic data from sections 1 and 2 as described earlier in section B of this chapter.

1. Model calibration

Model calibration is again concerned with identifying the structure of vehicle following

and then estimating the relevant traffic flow model parameters.

a. Setting up linked sections

For the model calibration purposes, we first have to set up linked section on the US

183 freeway. To that end, we again consider section 1 and section 2. The indexing

of the sections has been done while being consistent with the nomenclature assumed

earlier. Thus section 1 is the downstream section and section 2 is the upstream one.

For model calibration purposes, we only need to re-calibrate the parameters for

the upstream section (section 2 ). This is because, the only input that the downstream

section takes from the upstream section (in the sense of the non-continuum traffic flow

model) is the number of vehicles that enter the immediate downstream section under

consideration. In the upstream section, on the other hand, the evolution of the traffic

state depends on the state of the traffic in the downstream section. This dependence

was captured in the aggregate following distance evolution equation in the traffic flow
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model. We discuss more about this one way traffic disturbance propagation in the

subsequent section.

We can now construct a state space system which describes the traffic flow dy-

namics, for model calibration purposes, in the upstream section. The basic calibration

procedure remains the same but there is an additional parameter which needs to be

identified before the vehicle following parameters can be estimated. For the upstream

section, we have the following the state space system (in representation consistent

with quation 4.2 and the formulation consistent with Equation 4.12).

xk =
[
N2(k) N ex

2,sum(k) ∆̄2(k)
]T

(4.15)

fk =









N2(k) + h
[
Ṅ en

2 (k) −
[

v̄2(k)N2(k)
Ls,2

]
+ ˙̃n2(k)

]

N ex
2,sum(k) + h

[
v̄2(k)N2(k)

Ls,2

]

∆̄2(k) − h
{

[ (Lcar+∆̄2(k))2

Ls,2
]
[
Ṅ en

2 (k) −
[ v̄2(k)N2(k)

Ls,2

]
+ ˙̃n2(k)

]
− (β2,1v̄1(k) − v̄2(k))

}









The subscript 2 to the state variables in the Equation 4.15 denotes section 2.

We notice that in this state space representation, we have the speed-correction factor

(β2,1) as an extra unidentified parameter, when compared to Equation 4.12. Before

proceeding to estimate the relevant parameters in the vehicle following structure, we

need to estimate the value of the speed-correction factor.

Since β2,1 is a constant, we employ extended Kalman filtering to perform adaptive

system identification purposes [61]. For adaptive identification purposes, there is a

need to modify the state space system in Equation 4.12.

We augment the state vector by introducing β2,1 as an extra state. We consider
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β2,1 as a random variable; that is we consider

β2,1(k + 1) = β2,1(k) + ξ
β2,1

k (4.16)

where β2,1(k) is the value of β2,1 at the kth time instant and E(ξ
β2,1

k ) = 0. Thus we

have the following state space representation of the traffic dynamics, for parameter

identification purposes, in the section under current consideration (in representation

consistent with Equation 4.2).

xk =
[
N2(k) N ex

2,sum(k) ∆̄2(k) β2,1(k)
]T

fk =












N2(k) + h
[
Ṅ en

2 (k) −
[

v̄2(k)N2(k)
Ls,2

]
+ ˙̃n2(k)

]

N ex
2,sum(k) + h

[
v̄2(k)N2(k)

Ls,2

]

∆̄2(k) − h
{

[ (Lcar+∆̄2(k))2

Ls,2
]
[
Ṅ en

2 (k) −
[

v̄2(k)N2(k)
Ls,2

]
+ ˙̃n2(k)

]
− (β2,1(k)v̄1(k) − v̄2(k))

}

β2,1(k)












Hk =












h 0 0 0

0 h 0 0

0 0 h 0

0 0 0 h












(4.17)

ξ
k

=
[
ξN2

k 0 ξ∆̄2

k ξ
β2,1

k

]T

The cumulative count of the number of vehicles exiting the section at each time

step is again utilized as the system measurement. Thus we have the following:

vk = [0 1 0 0]xk + ηk
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where vk is the the output vector.

After estimating the value of β2,1, we follow the same procedure as was followed

for the corroboration of a single stand alone section. That is we first estimate the pa-

rameters associated with the vehicle following in the two traffic flow regimes (Regime

1 and Regime 2 ) and then finally utilize the estimated parameters to predict the

state of traffic in real-time. The prediction of traffic state for multiple linked sections

require more elaboration and we discuss it next.

2. Predicting the traffic state in real-time

Estimated time constants (hw, α and p), associated with different traffic flow regimes,

and speed-correction factor (βi,i−1) are used to predict the traffic state in real-time.

We again use extended Kalman filtering, but the state vector is now composed of

states from all the inter-linked sections. Thus for the case study under current con-

sideration, the traffic states from both section 1 and section 2 are included in the state

space description of the traffic dynamics. For example, for Regime 1, the state space

representation of the traffic flow model (in representation consistent with Equation

4.2) will be:

xk =
[
N1(k) N ex

1,sum(k) ∆̄1(k) v̄1(k) N2(k) N ex
2,sum(k) ∆̄2(k) v̄2(k)

]T
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fk =
































N1(k) + h
[
Ṅ en

1 (k) −
[

v̄1(k)N1(k)
Ls,1

]
+ ˙̃n1(k)

]

N ex
1,sum(k) + h

[
v̄1(k)N1(k)

Ls,1

]

∆̄1(k) − h
{

[ (Lcar+∆̄1(k))2

Ls,1
][Ṅ en

1 (k) −
[ v̄1(k)N1(k)

Ls,1

]
+ ˙̃n1(k)]

}

v̄1(k) + h
hw,1

{
[ (Lcar+∆̄1(k))2

Ls,1
][Ṅ en

1 (k) −
[

v̄1(k)N1(k)
Ls,1

]
+ ˙̃n1(k)]

+λ1,1(∆̄1(k) − hw,1v̄1(k))
}

N2(k) + h
[
Ṅ en

2 (k) −
[

v̄2(k)N2(k)
Ls,2

]
+ ˙̃n2(k)

]

N ex
2,sum(k) + h

[ v̄2(k)N2(k)
Ls,2

]

∆̄2(k) − h
{

[ (Lcar+∆̄2(k))2

Ls,2
][Ṅ en

2 (k) −
[

v̄2(k)N2(k)
Ls,2

]
+ ˙̃n2(k)] − (β2,1v̄1(k) − v̄2(k))

}

v̄2(k) + h
hw,2

{
[ (Lcar+∆̄2(k))2

Ls,2
][Ṅ en

2 (k) −
[

v̄2(k)N2(k)
Ls,2

] + ˙̃n2(k)]

−(β2,1v̄1(k) − v̄2(k)) + λ1,2(∆̄2(k) − hw,2v̄2(k))
}
































Hk =

























h 0 0 0 0 0 0 0

0 h 0 0 0 0 0 0

0 0 h 0 0 0 0 0

0 0 0 h 0 0 0 0

0 0 0 0 h 0 0 0

0 0 0 0 0 h 0 0

0 0 0 0 0 0 h 0

0 0 0 0 0 0 0 h

























(4.18)

ξ
k

=
[
ξN1

k 0 ξ∆̄1

k ξv̄1

k ξN2

k 0 ξ∆̄2

k ξv̄2

k

]

vk =
[
0 1 0 0 0 1 0 0

]
xk + [η1,k η2,k]T

In Equation 4.18 λ1,1 (and hw,1) and λ1,2 (and hw,2) denote the time constants

associated with Regime 1 for section 1 and section 2 respectively. Also, the subscript
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“1” and “2” associated with the state variables denote the corresponding state vari-

ables for section 1 and section 2 respectively. The inputs to this system are: the net

inflow of vehicles into section 1 (Ṅ en
1 + ˙̃n1), the net inflow of vehicles into section

2 (Ṅ en
2 + ˙̃n2) and the observed occupancy percentage values for both section 1 and

section 2. The observed percentage occupancy values are again used in determining

the traffic regime transitions.

3. Results

In this subsection we present some results for the non-continuum traffic flow model

corroboration for two sections in tandem. It should be noted, that the results, for both

parameter estimation and traffic state prediction in real-time, for the downstream

section (section 1 ) are the same as when it was treated as a single stand alone section.

This is because in traffic flow, there is only unidirectional disturbance propagation

and that is only in the upstream direction.

Table VI shows the estimated values of speed-correction factor (β2,1) for four

different weeks. It is interesting to note that the values of β2,1, for almost all of the

days, is very close to the ratio of the aggregate traffic speeds in the upstream and

the downstream section. It is reasonable to expect this behavior since the speed-

correction factor in a sense smoothes the sharp change in speed that happens at the

boundary of the downstream and upstream section due to the “instantaneous” change

in the speed of the representative vehicle when it crosses into the downstream sec-

tion from the upstream section. If both the downstream and upstream sections had

equal aggregate traffic speeds, then the value of β2,1 is expected to be equal to one as

there will be a “smooth” crossover of the representative vehicle into the downstream

section.
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Table VI. Estimated values of speed-correction factor (β2,1)

β2,1

Monday Tuesday Wednesday

Date β2,1 Date β2,1 Date β2,1

03-01-04 0.753 03-02-04 0.721 03-03-04 0.697

03-08-04 0.845 03-09-04 0.787 03-10-04 0.689

04-05-04 0.832 04-06-04 0.806 04-07-04 0.724

05-03-04 0.865 05-04-04 0.741 05-05-04 0.784

Thursday Friday

Date β2,1 Date β2,1

03-04-04 0.667 03-05-04 0.835

03-11-04 0.712 03-12-04 0.647

04-08-04 0.772 04-09-04 0.796

05-06-04 0.700 05-07-04 0.712

Table VII and Table VIII show the estimated parameters for Regime 1 and

Regime 2a for the same four weeks. It is worth noting that these estimated parameters

are not much different, than when they were calculated by considering section 2 as

a stand alone section. This is again to be expected as in the framework of the non-

continuum traffic flow modeling, any section can be considered as a stand alone section

by assigning it as the extreme downstream section. In Fig. 20 we plot the one minute

traffic state prediction for June 14, 2004 on section 2. On Fig. 21 we plot the one

minute traffic speed predictions for June 14, 2004 on section 2 as obtained by multiple
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Table VII. Estimated parameters for Regime 1 - Section 2, two sections in tandem

Regime 1

Monday Tuesday Wednesday

Date λ1 hw Date λ1 hw Date λ1 hw

03-01-04 1.4E-7 0.172 03-02-04 9.0E-4 0.287 03-03-04 8.9E-4 0.237

03-08-04 1.5E-7 0.214 03-09-04 4.9E-4 0.265 03-10-04 9.3E-4 0.221

04-05-04 4.1E-7 0.184 04-06-04 5.6E-4 0.343 04-07-04 8.2E-4 0.325

05-03-04 4.7E-7 0.291 05-04-04 6.5E-4 0.305 05-05-04 5.9E-4 0.219

Thursday Friday

Date λ1 hw Date λ1 hw

03-04-04 4.7E-4 0.269 03-05-04 1.9E-7 0.199

03-11-04 6.4E-4 0.226 03-12-04 7.9E-6 0.311

04-08-04 7.3E-4 0.312 04-09-04 2.7E-7 0.286

05-06-04 8.1E-4 0.185 05-07-04 5.2E-8 0.201

linked sections modeling and when section 2 was treated as a stand alone section. On

the same figure, we also plot the actual observed traffic speed in section 2 on June

14, 2004. From the plot, we can note that the multiple linked section modeling

approach provides slightly better predictions. This again is not unreasonable, since

in multiple linked sections modeling approach, we account for the upstream traveling

traffic disturbance propagation in real-time.

We are now in a position to explain the mechanism for traffic congestion as

explained by the non-continuum traffic flow modeling approach. We describe the

same in the following section.
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Table VIII. Estimated parameters for Regime 2a - Section 2, two sections in tandem

Regime 2a

Monday Tuesday

Date α p λ2 Date α p λ2

03-01-04 4.1E-12 4 0.219 03-02-04 8.9E-7 3 0.561

03-08-04 2.8E-12 4 0.143 03-09-04 1.7E-8 3 0.352

04-05-04 7.0E-12 4 0.211 04-06-04 3.0E-8 3 0.667

05-03-04 5.1E-12 4 0.268 05-04-04 2.6E-8 3 0.431

Wednesday Thursday

Date α p λ2 Date α p λ2

03-03-04 5.1E-12 4 0.134 03-04-04 3.0E-12 4 0.305

03-10-04 5.3E-12 4 0.119 03-11-04 2.6E-12 4 0.331

04-07-04 4.1E-12 4 0.166 04-08-04 2.5E-12 4 0.394

05-05-04 5.2E-12 4 0.246 05-06-04 3.7E-12 4 0.279
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D. Explanation of the mechanism for traffic congestion based on a non-continuum

traffic flow model

The mechanism for traffic congestion depicted by the non-continuum traffic flow model

is as follows:

1. The rate of change of aggregate following distance in the ith section changes

with the introduction (or exiting) of vehicles from the entrance (or exit) ramps.

2. As a result of the rate of change of the aggregate following distance, the rate of

change of aggregate traffic speed of vehicles in the ith section changes.

3. As a consequence of the change of traffic speed of the vehicles in the ith section,

the rate of change of aggregate following distance in the immediately upstream

(“i + 1”) section changes (due to the speed differential component in the aggre-

gate following distance equation). Thus, the aggregate speed and the aggregate

following distance in the upstream section changes.

An important point to note in the non-continuum model is that, there is only one-

way disturbance propagation (as compared to a disturbance propagation in both

directions as predicted by the continuum traffic flow models). To understand this

better, consider a decrease in aggregate traffic speed in the ith section (this may

be due to influx of vehicles from the entrance ramps). Now if the decrease in the

aggregate traffic speed in the ith section is such that the rate of change of number

of vehicles exiting the ith section does not change, then the downstream section does

not feel the effect of the disturbance (the influx of vehicles from the entrance ramps)

created in the ith section.

In a freeway section, a decrease in speed can also result from a vehicle breaking

down. Let us now consider the following scenario: there is a breakdown in an upstream
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(i+1) section and its immediate downstream (i) section is in congested regime (Regime

2 ). In this case, the number of vehicles entering the downstream (i) section will

decrease and eventually the number of vehicles exiting the ith section will be more

than the number of vehicles entering. This will lead to a negative rate of change of

number of vehicles with respect to time (Ṅi) which in turn will lead to an increase

in the aggregate following distance in the ith section. In other words, we will have a

traffic regime transition from Regime 2 to Regime 1. Thus, the disturbance is never

propagated into the downstream sections. Infact, it can only be propagated into the

upstream section(s) as explained by the congestion mechanism earlier. This overcomes

a major limitation (decrease in speed in the current section implies a decrease in speed

in the downstream section as well!) which is predicted by the continuum models. This

prediction of the model and its agreement with what is observed in the flow of traffic

cannot be over-emphasized. We reiterate the classical continuum model incorrectly

predicts that there is a decrease in speed of the vehicles in the downstream section

due to a decrease in the speed of vehicles in the upstream section.

Another important point to be made with respect to the non-continuum traffic

flow model is that it does not involve ad-hoc spatial discretization. Also, the speed of

the propagation of the disturbance to the traffic is not faster than that of the traffic -

changes in aggregate following distance and speed in any section (and the adjoining

sections as well) always lags the disturbance. It is for all these reasons that the non-

continuum methodology for traffic flow modeling is a significant welcome departure

from the existing macroscopic traffic flow modeling approaches.
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E. Summary

We have presented the methodology for corroboration of the non-continuum traffic

model with traffic data collected from the loop detectors deployed on the freeways.

Structures for vehicle following behavior were identified and they were used in real-

time estimation and prediction of traffic state. We have also explained the mecha-

nism of traffic congestion as explained by the non-continuum traffic flow modeling

approach. We discuss autoregressive integrated moving average (ARIMA) modeling

of traffic time series data in Appendix B. In the same appendix we also present re-

sults regarding ARIMA modeling on the selected locations on US 183 north bound,

i. e. section 1 and section 2. We then compare the non-continuum corroboration re-

sults with those obtained with ARIMA modeling. In the next chapter we extend the

developed corroboration methodology for making short term traffic state forecasts.
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CHAPTER V

SHORT-TERM TRAFFIC STATE FORECASTING AND TRIP TRAVEL TIME

ESTIMATION AND PREDICTION

A. Introduction

Current practices in traffic management and control strategies are dominated by

the emerging use of intelligent transportation systems (ITS) methodologies. The

overall objective of ITS systems is to increase the operational efficiency and capacity

of the transportation network by utilizing the advancements in technological and

telecommunication systems. A continuous flow of information about the traffic state

(example, aggregate traffic speed and number of vehicles crossing a fixed point on the

freeway in a time interval) and its evolution over time is the basic idea behind creating

an efficient ITS environment [63]. This traffic information is dynamic and has to be

anticipative in nature. In other words, the traffic information (which is provided to the

users of the transportation network) to be useful and applicable, must be updated in

real-time and should provide projections/forecasts on the traffic conditions expected

at some future instant in time. Short-term traffic state forecasting can then be defined

as the process of estimating the anticipated traffic conditions at a future time, given

historical and short-term feedback traffic information.

In the context of short-term traffic state forecasting there are two important

considerations. They are forecasting horizon and forecasting time step respectively.

Forecasting horizon denotes the extent of time ahead to which the forecast refers to.

The forecasting step represents the time interval upon which the forecasts are made

and indicates the frequency of predictions in the forecasting horizon. For example, an

algorithm might predict the aggregate traffic speed ten minutes ahead in five minute



97

intervals. The basic implications of the forecasting horizon is quite intuitive. For

example, greater the forecasting horizon, the less accurate the forecast gets. Ishak et.

al [64] studied the relationship between the accuracy of forecasts and the forecasting

horizon and concluded that the prediction accuracy degrades with an increase in the

forecasting horizon. Vythoulkas suggested that the quality of information extracted

by users degrades if the forecasting horizon is less than ten minutes [65].

A review of the various short-term traffic state forecasting approaches can be

found in the article by Vlahogianni et al. [66].

B. Short-term traffic forecasting by non-continuum traffic model

We now discuss how the non-continuum traffic model can be utilized in making short-

term traffic state forecasts. During the corroboration of the traffic flow model, we

observed that the model was able to make good one minute forecasts of the aggregate

traffic speed and the number of vehicles crossing a fixed location on the freeway per

minute. As already discussed, for all practical ITS applications we need much larger

forecasting horizon.

By the application of extended Kalman filtering algorithm to the real-time traffic

data we are able to obtain one step (one minute) traffic state predictions. An intuitive

way of obtaining multi-step predictions, is to apply the state update vector to the

filtered state at each time instant m times if m step prediction is required1. Though,

this is a viable way for obtaining multi-step predictions it does not produce reliable

forecasts. The main drawback is that these multi-step predictions will be based on the

state of the traffic at the current time interval. For example, multi-step predictions

made this way will fail to capture the onset of congestion (traffic regime switch from

1This is a very well known result in Kalman filtering theory. For more details
please refer [61].



98

Regime 1 to Regime 2 ) that might happen ten minutes into the future, based on the

occupancy levels information at the current time instant.

1. Proposed approach: Use of historical traffic data

In this subsection we propose a methodology for providing short-term traffic state

forecasts by utilizing historical data archives. Setting up of the historical traffic data

database from twenty five weeks of data was earlier presented in Chapter III of the

dissertation. The database consists of five comma separated value (csv) files, each

containing the full day’s inductive loop detector traffic data for one working day

(Monday through Friday).

The proposed approach is to obtain a weighted traffic data, with weights allocated

to both the current, and the “future” traffic data obtained from the historical traffic

database. In Fig. 22 we show the schematic of the method of using historical and

real-time traffic information for the purposes of short-term traffic state forecasting.

For the purposes of this study, we aim to make ten and fifteen minute traffic state

forecasts. To that end, we allocate exponential weights to historical and real-time

traffic information as follows.

Let k denote the current time instant. To make a traffic state forecast fifteen

minutes into the future, that is at the time instant k + 15 (for example) we utilize

the traffic data as follows:

1. traffic information at (k + 15)th time instant from the historical database,

2. traffic information at (k + 10)th time instant from the historical database, and

3. current traffic information at the kth time instant.

We now allocate exponential weights to the above mentioned three instances of
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Fig. 22. Schematic of utilization of historical and real-time traffic for short-term fore-

castingdata

traffic data to obtain a “future instant” information. This is done by assigning the

weights as follows:

Wi =
e−i2/3

∑3
j=1 e−j2/3

, i = 1, 2, 3 (5.1)

In Equation 5.1, i refers to the three different time instants as described earlier

and Wi is the corresponding associated weight. Thus we associate maximum weight

to the fifteen minute future traffic information obtained from the historical database

and the least to the current traffic information2. We can also assign similar weights

to (k + 10)th, (k + 5)th (both from the historical database) and kth (current real-

time data) time instants for traffic state forecasting on a ten minute horizon. It is

important to note that in this procedure of utilizing the historical traffic information

we are also using the feedback from the current traffic information.

With regard to this obtained “future instant” traffic information, it is important

to note that on any given day if the traffic conditions are drastically different from the

2Specific values of these weights are: 0.5050, 0.3619 and 0.1331 respectively. It
should be pointed out that this allocation weights has not been optimized. A more
detailed study may have to be carried out find out the optimal weights.
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historical averages, then the approach mentioned above may not produce desirable

results. It should also be pointed out that the traffic behavior on the selected stretch

of US 183 in Austin was observed to be very repeatable across all the working days3.

If from the historical traffic data it is observed that on some days the traffic condi-

tions are drastically different from the historical averages then the following alternate

approach to obtain “future instant” traffic information may be followed. In this al-

ternate approach we propose to use the difference between future traffic information

obtained from the historical database and the current instant traffic information.

To obtain a value for the traffic data, vehicle count for example, we multiply this

difference with the ratio of the current traffic data obtained in real-time and the cur-

rent instant data obtained from the historical database. We then associate the same

weights as discussed earlier. Thus this approach puts more emphasis on the current

real-time information. It should also be noted that if one had a historical database

with traffic information about incidents and special events, then that information can

also be incorporated to obtain predictions which have a capability of being applicable

in most situations.

Once we have obtained the “future instant” traffic information then we can utilize

the extended Kalman filtering algorithm to recursively estimate the traffic states. The

input data which is required to estimate and predict the traffic state in real-time is

now this future instant traffic data. We can now have three extended Kalman filters

running in parallel. The first one runs on the real-time traffic data and provides one

minute traffic state forecasts. The second and the third filters run on fifteen and ten

minute future instant traffic information providing fifteen and ten minute traffic state

forecasts respectively. The forecasting time step for all the three filters is one minute

3Traffic data has been discussed in detail in Chapter III.
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(traffic data is available at one minute intervals).

2. Results

In Fig. 23 we show the ten minute traffic state forecasts for section 1 on June 14,

2004. On the same figure we plot the actual observed traffic states. Fig. 24 shows

the fifteen minute traffic state prediction for section 1 on June 14, 2004. In Fig. 25

we plot the ten minute and fifteen minute speed predictions along with the observed

traffic speed on June 14, 2004. We have zoomed into the plot area where the traffic

regime switching takes place.

It can be observed that both ten minute and fifteen minute predictions match

very well with the observed traffic states. For example, the fifteen minute speed

predictions is able to capture the onset of congestion about eight minutes in advance.

C. Short term travel time prediction

Accurate Traffic surveillance systems are a core element in a transportation system.

With the advent of intelligent of ITS, accurate estimation and prediction of section

trip travel times over freeway networks has become an important issue. Accurate

prediction of trip travel times is a very critical issue for many ITS applications, such

as in-vehicle route guidance systems (RGS) and advanced traffic management systems

(ATMS). With the development of the advanced traveler information systems (ATIS),

short-term trip travel time prediction is becoming increasingly important [67], [68].

For example, for RGS applications, travel time information enables the generation

of a path which would take the shortest amount of time (or an alternative path)

connecting the current location and destinations, besides also suggesting directions

dynamically in case of congestions or incidents.
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Fig. 23. 10 minute prediction of state of traffic, Section 1, June 14, 2004
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Fig. 24. 15 minute prediction of state of traffic, Section 1, June 14, 2004
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For trip travel time estimation, many advanced techniques have been applied

which involve the use of advanced sensor, telecommunications and image process-

ing technologies [69]. However, the existing infrastructure in most urban contexts

currently only supports point detection of traffic, mostly by inductive loop detectors.

There has been much research contributing to the field of trip travel time pre-

diction which try to utilize the loop detector traffic data. In the context of prediction

methodologies, various time series modeling approaches ( [70] - [74]), artificial neu-

ral network models ( [75], [76]), utilization of Kalman filtering and probe vehicles

( [77], [78]) have been used. There have also been some efforts in trying to use input

and exit flow and traffic speed measurements from loop detectors. Some of these

studies, also try to exploit the relationship between traffic density and speed, in a

continuum modeling context ( [79] - [85]).

Owing to our motivation for developing a traffic model which can utilize the

readily available loop detector data, for this study we have focussed our efforts on de-

veloping a speed-based section trip travel time estimation and prediction algorithm4.

1. Speed-based section travel time estimation

Let us first define what we mean by travel time and section travel time. Travel time

can be simply defined as the time spent by a vehicle in travelling from one point to

another. For a freeway section, the section travel time can be defined as the amount

of time it takes for a vehicle to reach the downstream end of the section after it starts

from the upstream end. Trip travel times are represented by discretizing the temporal

and spatial dimensions. Trip travel time can be calculated if one is able to estimate

the average traffic speed. However, it is important to distinguish between space-mean

4We have interchangeably used section travel time and trip travel time.
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and time-mean average speeds in the present context. The space-mean speed reflects

the average speed over a spatial section of freeway, while the time-mean speed reflects

the average speed of the traffic stream passing a specific fixed point on the freeway.

The speed data observed by the loop detectors is the time-mean traffic speed.

The basic idea behind speed-based trip travel time estimation models is to con-

struct a “virtual” trajectory of a hypothetical vehicle as it moves along the freeway.

Most of the current speed-based models which attempt to estimate the travel time

over a network of links 5 utilize the following basic relationship6:

t(k) =
2l

va(k) + vb(k)
(5.2)

where t(k) is the trip travel time estimated at time instant k. l, va(k) and

vb(k) denote the length of the link and speed measurements at the upstream and

downstream detector location at time instant k respectively. This is a very coarse

estimation of trip travel time because the implicit assumption that the speed of the

hypothetical vehicle does not change during its travel along the link.

D. Short-term trip travel time estimation and prediction using the non-continuum

modeling approach

In the context of the non-continuum modeling methodology, the idea of the represen-

tative limiting vehicle provides us with an abstraction of the traffic at all instants in

time. Thus, the trip travel time is implicitly contained within the definition of the

5These developed models uses a slightly different notion of a freeway section (called
a “link”). A link is a freeway segment between two consecutive loop detector stations.
As a result, when this definition is compared with our definition of a section, it
becomes clear that two consecutive links constitute one section in the context of
non-continuum traffic modeling.

6Let a and b denote the upstream and downstream ends of a link.
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abstract representative vehicle. We can define the section travel time by the following

relationship:

TTi,tk =
Ls,i

w̄i(tk)
(5.3)

where TTi,tk denotes the section travel time for section i estimated at time tk.

Ls,i and w̄i(tk) denote the section length and the space-mean speed of the traffic in

the ith section and at time tk respectively. It is important to note that w̄i is never

zero since every vehicle traverses the section in a finite amount of time, though it

may have zero speed for some time period in between. Looking at Equation 5.3 it

might feel intuitive to replace w̄i by the speed of the representative vehicle, v̄i at each

time instant tk. However during the time periods of congestion (and this is the most

relevant case), the speed of the representative vehicle (v̄i) may temporarily be zero

(or very small) leading to arbitrarily high errors when used in place of the space-mean

speed (w̄i) in Equation 5.3.

1. Proposed approach

An approach which can avoid this difficulty and leads to much better results is as

follows. Consider a virtual test vehicle which is started periodically from the upstream

end of the section and is moved along the section with the speed of the representative

vehicle at each time interval until the it exits the section. Thus in our non-continuum

modeling context, a virtual test vehicle is started at one minute intervals and it moves

with a speed v̄i(tk) for the time period [tk, tk+1) before shifting its speed to v̄i(tk+1)

at t = tk+1. We can then have the following recursive scheme until the virtual test

vehicle exits the section. If postv,j(tk) ≤ Ls,i and Ls,i − postv,j(tk) ≥ T.v̄i(tk),
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then we have:

postv,j(tk+1) = postv,j(tk) + T.v̄i(tk)

TTi,tk = TTi,tk + T (5.4)

If postv,j(tk) ≤ Ls,i and Ls,i − postv,j(tk) � T.v̄i(tk), then

postv,j(tk+1) = Ls,i

TTi,tk = TTi,tk +
Ls,i − postv,j(tk)

v̄i(tk)
(5.5)

In equations 5.4 and 5.5 above postv,j(tk) and T are the position of the virtual test

vehicle at time instant tk and the time step (one minute in our context) respectively.

It should be noted that the trip travel time is available only once the virtual

test vehicle has exited the section under consideration. This methodology extends

itself easily for estimation of travel time over multiple linked sections. When a vehicle

crosses over from the upstream to the downstream section, the speed of the virtual

test vehicle changes from that in the upstream to the aggregate traffic speed in the

downstream section. Thus the vehicle then traverses the downstream section for a

part of the time step (that is one minute interval), if any, with the current speed of

the downstream section and then updates its speed at the start of the new time step.

2. Trip travel time prediction

For ITS applications, prediction of trip travel times over a ten to fifteen minute fore-

casting horizon is required. In our proposed speed-based approach for estimating trip

travel times, it is very convenient to extend the trip travel time estimation algorithm

to produce trip travel time forecasts.
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To be able to make a 15 minute forecasting horizon (for example) trip travel time

prediction, we simply have to replace the current aggregate traffic speed (v̄i(tk)) with

the fifteen minute predicted aggregate traffic speed. The forecasting time step of one

minute for short-term traffic state predictions (as discussed earlier) helps in making

the predictions for trip travel time with the same time step.

3. Results

We now present some results regarding the trip travel time estimation and prediction.

Efforts were made to collect empirical measurements for trip travel time on US 183 in

Austin. Fig. 26 shows the estimated trip travel time for traversing from the upstream

end of section 2 to the downstream extreme of section 1 (or multiple linked sections)

for Monday, June 14, 2004. On the same figure we have plotted the actual trip travel

time observed on Monday, January 29, 2007. Fig. 27 and Fig. 28 show the ten minute

and fifteen minute trip travel time predictions for June 14, 2004 plotted along with

the observed travel time on January 29, 2007.
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Fig. 26. Estimated trip travel time on June 14, 2004: Multiple linked sections
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Fig. 27. 10 minute prediction of trip travel time on June 14, 2004: Multiple linked

sections
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The results plotted in figures 26, 27 and 28 have to be interpreted as follows.

The travel time (plotted on the y−axis) corresponding to a time instant (plotted on

the x − axis) is the time taken for the virtual test vehicle to reach the downstream

end (end point) of the trip after it starts at the time instant under consideration from

the upstream end (starting point) of the trip. For fifteen minute (or ten minute)

prediction of trip travel time the travel time plotted is the travel time estimated to

be taken by a virtual test vehicle which starts fifteen minutes (or ten minutes) into

the future. For example, in Fig. 28, the reported travel time at 5:45 PM is about

340 seconds. This travel time is the estimated travel time for the virtual test vehicle

which starts at 5:45 PM when the current time is 5:30 PM. Since, the forecasting

time step is one minute and the virtual test vehicle takes 340 seconds to traverse the

length of the freeway under consideration, we can report this predicted travel time at

5:36 PM. The travel time may be reported in the following format:

“Current time: 5:36 PM. The predicted travel time from Lamar Blvd. to

Mopac at 5:45 PM is 5 minutes and 40 seconds.”

These predicted travel times may be updated in real-time at internet web-sites or

may be displayed at the variable message sign boards along the freeway. Depending

on the scope of the ITS application, the update rates can be kept fixed or variable.

For example, they can be updated in real-time every ten minutes for relatively free

flow conditions and five minutes for congested traffic. Following remarks are very im-

portant when validating the proposed methodology results with the actual measured

travel time:

• The loop detector clocks and the clock used during trip time measurement are

not synchronized, thus creating either a lead or a lag in the measured time when

compared to the time when data was collected and processed on June 14, 2004.
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• The exact locations of the trap loop detectors on the freeway and the exit/entrance

ramps is not known. It has been suggested that the locations of the loop de-

tectors on the freeway are supposed to be within 500 feet of the nearest cross

street. Thus it becomes difficult to determine the exact locations of the start

point (upstream end of section 2) and the end point (downstream end of section

1) of the trip under consideration.

• The travel time readings were measured by driving a vehicle repeatedly between

the entrance ramp at Lamar Blvd. (upstream end of section 2) and the exit

ramp at Mopac (downstream end of section 1). This resulted in fewer mea-

surements. To that end, the measured travel time data has been interpolated

linearly between two consecutive measurements.

Despite the above mentioned difficulties, we can observe from figures 26, 27 and

28 that the proposed methodology is able to make estimations and predictions which

compare well with the actual measured travel time. These results again help reinstate

the point that the aggregate behavior of traffic is pretty well defined and is observed

to be repeatable7.

E. Summary

We presented the methodology for short term traffic state forecasting using the non-

continuum traffic flow model. An algorithm for trip travel time prediction was also

presented. It can be seen that the results for traffic state and trip travel time predic-

tion are very encouraging.

7Model calibrated with traffic data from years’ 2003 and 2004 predicts travel time
for a day in 2007 quite well.
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CHAPTER VI

CONCLUSION

In this chapter we present an assessment of the contributions of this research to the

state-of-the-art of the macroscopic traffic flow modeling. We then provide a brief

discussion of some practical issues that arise in the implementation of this research

for on-field ITS applications. We conclude the chapter with suggestions for further

research.

A. Contributions to state-of-the-art

This research represents an advancement of the state-of-the-art of the macroscopic

traffic flow models and their applications in real-time estimation and prediction of

the traffic conditions. The non-continuum traffic model presented here is a significant

departure from the current macroscopic traffic flow modeling approaches. Specifically,

• The non-continuum approach overcomes the philosophical difficulties in mod-

eling traffic as a continuum. Aggregate vehicle following behavior is integrated

in the macroscopic traffic flow model. This integration is of utmost importance

since it is essential to understand how the control at the microscopic level af-

fects the macroscopic dynamics. Moreover, with the non-continuum approach

we directly obtain a spatially discrete model which is suited for estimation and

control purposes.

• In the presented methodology, estimation and prediction of the traffic state can

be conducted simultaneously.

• The presented model has been subjected to empirical testing based on real dual

loop detector data with very encouraging results. With this elaborate process
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of corroboration, the model is ready for implementation within a prototype

freeway management and/or traveller management systems.

B. Application issues

In this section, we discuss the various issues related to the implementation of the

non-continuum model within an ITS framework.

1. Data issues

Sensor failures are not uncommon occurrences. Various bad or missing data issues

as applicable to US 183 traffic data were discussed in detail in Chapter III. It is im-

portant that the traffic state estimation and prediction methodology is robust with

respect to sensor failures1. The methodology presented in this thesis can accommo-

date missing observations arising as a result of sensor failures. The easiest way to do

this would be to assign a historical average value2. The estimation and prediction

methodology would otherwise remain the same.

2. Computational issues

Given the size of the most real-life freeway networks, computational considerations

assume an important role in practical ITS applications. In the present research effort

we corroborated the non-continuum model for a freeway length of 2.2 miles. For

our case study, there were no computational issues - all estimation and prediction

1In this dissertation, for corroboration purposes we identified two sections with
good and meaningful data for both the years 2003 and 2004. What we imply here
by sensor failures is that there is an odd occurrence of failure and the sensor can be
corrected in due course in time.

2This can be done by setting up a historical database in the same way as has been
done in this research effort.
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calculations are able to complete within the one minute forecasting time step.

For real-life ITS applications in real-time, the freeway stretch has to be much

longer. This will lead to many linked sections and thus more traffic states to es-

timate and predict. To that end, it is very important to consider modifications to

the extended Kalman filtering algorithm which can reduce the computational load.

The most time-consuming operation in the Kalman filtering process is the compu-

tation of the Kalman gain matrices (see Equation 4.9). In particular “Sequential”

and “Square-Root” algorithms have been proposed which attempt to avoid a direct

computation of the inverse of the matrix

[
[∂gk

∂xk

(x̂k|k−1)
]
Pk,k−1

[∂gk

∂xk

(x̂k|k−1)
]T

+ Rk

]−1

in Equation 4.93.

C. Further research directions

We now discuss some possible directions for further research.

1. Freeway management applications

Further research may be carried out to extend the applications of the non-continuum

traffic flow model.

1. Further research may be carried out in designing and testing various ramp

metering strategies. One way to do this is by utilizing synthetic traffic data in

conjunction with traffic data collected from the sensors deployed on the freeways

for simulation purposes.

3The reader is referred to [61] for more details.
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2. More empirical testing of the model may be carried out. This can be done via

calibrating the model for much longer stretch of the freeway. This will also

involve in developing variants of the Kalman filtering algorithm as discussed

before. This exercise can also lead to possibly identifying more structures of

vehicle following depending on the location of the selected freeway stretch.

3. Research work can be carried out to increase the forecasting horizon to be more

than fifteen minutes. There is also some research scope in identifying optimal

weights to be assigned for historical and current traffic information. This can

possibly lead to much better predictions of traffic state and trip travel time.

2. Possible model refinements

One possible model refinement is to include more than one representative vehicle in

any section. This may be accomplished by developing an aggregate model for each

individual lane. It is possible to consider each lane separately since lane changes

and passing can be automatically taken into account via the aggregation procedure

as they will lead to changes in the following distance. This research endeavor can

possibly lead to a much more realistic description of the macroscopic traffic flow and

its corroboration with traffic data can be a challenging and a rewarding effort.

D. Summary

A comprehensive methodology for the corroboration of the non-continuum traffic flow

model with traffic data collected from loop detectors deployed on the US 183 freeway

in Austin, Texas has been presented in this thesis. The model is able to estimate and

predict the traffic state in real-time. An algorithm for predicting trip travel times

has also been developed. The results thus far are very encouraging and indicate that
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the developed traffic state estimation and prediction methodology is robust enough

to work with loop detector traffic data in real-time and is ready to be for a prototype

implementation.
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APPENDIX A

STATE SPACE MODELING AND KALMAN FILTERING

In this appendix we give a brief overview of State Space Modeling and the Kalman

Filter4. We first introduce the state space model and the basic Kalman filtering

algorithm as applied to linear systems. Finally we introduce the Extended Kalman

Filtering algorithm as applied for filtering applications of non linear systems.

State Space Model

State-space models are essentially a notational convenience for estimation and control

problems. For a linear system, its state space description typically consists of two

equations - the transition5 equation and the measurement6 equation.

Transition Equation: xk+1 = Akxk + Γkξk
(A.1)

Measurement Equation: vk = Ckxk + η
k

(A.2)

where xk is the vector which represents the state of the system during the time

interval k. vk is the vector of measurements made in the time interval k. Ak, Γk

and Ck are known constant matrices. {ξ
k
} and {η

k
} are respectively, the (unknown)

system and measurement noise sequences, with known statistical information such as

mean, variance and covariance.

We typically make the following assumptions about the model:

4For more extensive coverage of the material, the reader is referred to [61].
5Or system
6Or observation
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1. {ξ
k
} and {η

k
} are zero mean, independent7 and gaussian processes with

E(ξ
k
ξT

l
) = Qkδkl and E(η

k
ηT

l
) = Rkδkl; δkl = 1 if k = l and 0 otherwise.

2. The initial state of the system x0 is independent of ξ
k

and η
k

in the sense that

E(x0ξ
T

k
) = 0 and E(x0η

T
k

) = 0 for all k = 0, 1, ....

Given these assumptions, the filtering problem is to estimate the quantity x̂k|k =

E(xk|vk)8 where vk denotes the vector [v0...vk]T . A one-step prediction problem is

to estimate the quantity x̂k|k−1 = E(xk|vk−1). Finally the smoothing problem is to

estimate the quantity x̂k|j = E(xk|vj) where j > k.

The Kalman Filter

The Kalman filter is named after Rudolph E. Kalman, who in 1960 [86] published

his famous paper describing a recursive solution to the discrete-data linear filtering

problem. We wish to determine an optimal estimate x̂k of the state of the system xk

at the time k. The main idea is to obtain this optimal estimate recursively: given a

prior optimal estimate of the state of the system at time k denoted by x̂k|k−1, we wish

to obtain an updated estimate x̂k|k after measurement vk is known9. The optimality

is in the sense of least squares to minimize the estimated error covariance.

Least squares preliminaries:

We now briefly discuss how the principle of least squares can be applied in designing

a state estimator for a linear stochastic system. Consider the measurement equation

in Equation A.2 which shows the observed data contaminated with noise. The goal

7Independent in the sense that E(ξ
k
ηT

l
) = 0 for all k and l.

8We will denote x̂k = x̂k|k as the estimate of xk in the time interval k.
9The presentation here is based on [61]. Readers interested in a more rigrous

derivation are referred to [86].
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is to obtain an optimal estimate ŷk of the state vector xk from the information {vk}.

This is done by minimizing the quantity

F (yk,Wk) = E(vk − Ckyk)T Wk(vk − Ckyk)

over all n-vectors yk where Wk is a positive definite and symmetric matrix, called a

weight matrix. That is, we wish to find a ŷk = ŷk(Wk) such that

F (ŷk,Wk) = min
yk

F (yk,Wk) (A.3)

where min denotes the minimum. In addition, we wish to determine the optimal

weight Ŵk. It can be proved that the optimal weight matrix is Ŵk = R−1
k , and the

optimal estimate of xk using this optimal weight is10

x̂k := ŷk(R−1
k ) = (CT

k R−1
k Ck)−1CT

k R−1
k vk (A.4)

We call x̂k the least squares optimal estimate of xk
11.

Derivation of Kalman filtering algorithm

To find the minimum variance estimate of the state vector, we incorporate the infor-

mation of all measurements vj, j = 0, 1, · · · , k, in determining the estimate x̂k of xk.

To accomplish this, we introduce the vectors:

vj = [vT
0 · · ·vT

j ]T , j = 0, 1, ... (A.5)

10For detailed proof please refer to [61].
11This estimate is also the minimum variance estimate of xk.
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It can then be shown with some algebraic manipulation that the state space descrip-

tion of the linear system can be written as

vj = Hk,jxk + ǫk,j, (A.6)

where

Hk,j =









C0Φ0,k

...

CjΦj,k









and ǫk,j =









ǫk,0

...

ǫk,j









with Φl,k being the transition matrices defined by

Φl,k =







Al−1 · · ·Ak if l > k

I if l = k

Φl,k = Φ−1
k,l if l < k and

ǫk,l = η
l
− Cl

k∑

i=l+1

Φl,iΓi−1ξi−1

For real-time applications, we need a recursive relation for the optimal state

estimate. We will derive a recursive formula that gives x̂k = x̂k|k from the “prediction”

x̂k|k−1 and x̂k|k−1 from the estimate x̂k−1 = x̂k−1|k−1. At each step, we will only use

the incoming bit of the measurement information so that very little data storage is

necessary.

The prediction-correction formulation

To compute x̂k in real-time, we will derive the recursive formula







x̂k|k = x̂k|k−1 + Gk(vk − Ckx̂k|k−1)

x̂k|k−1 = Ak−1x̂k−1|k−1,
(A.7)

where Gk will be called the Kalman gain matrices. The starting point is the initial
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estimate x̂0 = x̂0|0. Since x̂0 is an unbiased estimate of the initial state x0, we can use

x̂0 = E(x0), which is a constant vector. The Kalman gain matrices Gk also have to

computed recursively. These two recursive processes together are called the Kalman

filtering process.

Let x̂k|j be the (optimal) minimum variance least squares estimate of xk by

choosing the weight matrix to be

Wk,j = (V ar(ǫk,j))
−1

using vj in Equation A.6. It can now be verified that

W−1
k,k−1 =









R0 0

. . .

0 Rk−1









+ V ar









C0

∑k
i=1 Φ0,iΓi−1ξi−1

...

Ck−1Φk−1,kΓk−1ξk−1









(A.8)

and

W−1
k,k =






W−1
k,k−1 0

0 Rk




 (A.9)

Now it can be followed from the least squares formulation that (Equation A.4)

x̂k|j = (HT
k,jWk,jHk,j)

−1HT
k,jWk,jvj (A.10)

Our first goal is to relate x̂k|k−1 with x̂k|k. To do so, we observe that

HT
k,kWk,kHk,k =

[

HT
k,k−1C

T
k

]






Wk,k−1 0

0 R−1
k











Hk,k−1

Ck






= HT
k,k−1Wk,k−1Hk,k−1 + CT

k R−1
k Ck (A.11)

and

HT
k,kWk,kvk = HT

k,k−1Wk,k−1vk−1 + CT
k R−1

k vk. (A.12)
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Using Equations A.10, A.11 and A.12, we have

(HT
k,k−1Wk,k−1Hk,k−1 + CT

k R−1
k Ck)x̂k|k−1

= HT
k,k−1Wk,k−1vk−1 + CT

k R−1
k Ckx̂k|k−1

(A.13)

and

(HT
k,k−1Wk,k−1Hk,k−1 + CT

k R−1
k Ck)x̂k|k

= (HT
k,kWk,kHk,k)x̂k|k

= HT
k,k−1Wk,k−1vk−1 + CT

k R−1
k vk.

(A.14)

Subtracting Equation A.13 from Equation A.14 we get

(HT
k,k−1Wk,k−1Hk,k−1 + CT

k R−1
k Ck)(x̂k|k − x̂k|k−1)

= CT
k R−1

k (vk − Ckx̂k|k−1)
(A.15)

Now we define

Gk = (HT
k,k−1Wk,k−1Hk,k−1 + CT

k R−1
k Ck)−1CT

k R−1
k (A.16)

= (HT
k,kWk,kHk,k)−1CT

k R−1
k . (A.17)

Then we have

x̂k|k = x̂k|k−1 + Gk(vk − Ckx̂k|k−1) (A.18)

Since x̂k|k−1 is a one step prediction and (vk −Ckx̂k|k−1) is the error between the real

measurement and the prediction, Equation A.18 is in fact a “prediction-correction”

formula with the Kalman gain matrix Gk as a weight matrix. To complete the re-

cursive process, we need an equation that gives x̂k|k−1 from x̂k−1|k−1. Equation A.19

gives that relation12.

x̂k|k−1 = Ak−1x̂k−1|k−1 (A.19)

We now need a recursive scheme to obtain the Kalman gain matrices Gk. We write

12Detailed proof can be found in [61].
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Gk = Pk,kC
T
k R−1

k where Pk,k = (HT
k,kWk,kHk,k) and set Pk,k−1 = (HT

k,k−1Wk,k−1Hk,k−1).

Then using Equation A.11 we obtain P−1
k,k = P−1

k,k−1 + CT
k R−1

k Ck.

It can be proved that

Gk = Pk,k−1C
T
k (CkPk,k−1C

T
k + Rk)−1 (A.20)

so that,

Pk,k = (I − GkCk)Pk,k−1. (A.21)

Furthermore, it can be shown that

Pk,k−1 = Ak−1Pk−1,k−1A
T
k−1 + Γk−1Qk−1Γ

T
k−1. (A.22)

Hence using Equations A.21 and A.22 with the initial matrix P0,0, we obtain a re-

cursive scheme to compute Pk−1,k−1, Pk,k−1, Gk and Pk,k for k = 1, 2, · · · . Moreover

using Equation A.6 and Equation A.10 it can also be shown that

Pk,k−1 = E(xk − x̂k|k−1)(xk − x̂k|k−1)
T (A.23)

and that

Pk,k = E(xk − x̂k|k)(xk − x̂k|k)T . (A.24)

In particular, we have

P0,0 = E(x0 − Ex0)(x0 − Ex0)
T = V ar(x0). (A.25)

Finally, combining all the results obtained above, we arrive at the Kalman filtering

process in Equation A.26 for the linear stochastic system with state space description
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as in Equation A.1 and Equation A.2:







P0,0 = V ar(x0), x̂0 = E(x0)

For k = 1, 2, · · · ,

Pk,k−1 = Ak−1Pk−1,k−1A
T
k−1 + Γk−1Qk−1Γ

T
k−1

x̂k|k−1 = Ak−1x̂k−1|k−1

Gk = Pk,k−1C
T
k (CkPk,k−1C

T
k + Rk)−1

Pk,k = (I − GkCk)Pk,k−1

x̂k|k = x̂k|k−1 + Gk(vk − Ckx̂k|k−1)

(A.26)

Let us now consider the state space description of a general linear determinis-

tic/stochastic system (where a deterministic control input is also present)







xk+1 = Akxk + Bkuk + Γkξk

vk = Ckxk + Dkuk + η
k

(A.27)

where Bk and Dk are constant matrices. {uk} is the sequence of control inputs. The

system in Equation A.27 can be decomposed into the sum of a linear deterministic

system:

Deterministic:







zk+1 = Akzk + Bkuk

sk = Ckzk + Dkuk

(A.28)

and a (purely) stochastic system:

Stochastic:







dk+1 = Akdk + Γkξk

wk = Ckwk + η
k

(A.29)

with xk = zk + dk and vk = sk + wk. The solution zk of the linear deterministic

system is well known and is given as follows:

zk = (Ak−1 · · ·A0)z0 +
k∑

i=1

(Ak−1 · · ·Ai−1)Bi−1ui−1 (A.30)
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Hence, the optimal estimate of the state vector x̂k in Equation A.27 can be obtained

by

x̂k = d̂k + zk. (A.31)

Thus, by superimposing the deterministic solution with the Kalman filtering equations

for a purely stochastic system (Equation A.26) we can obtain the following Kalman

filtering process for the linear stochastic/deterministic system (Equation A.27) as:







P0,0 = V ar(x0), x̂0 = E(x0)

For k = 1, 2, · · · ,

Pk,k−1 = Ak−1Pk−1,k−1A
T
k−1 + Γk−1Qk−1Γ

T
k−1

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1

Gk = Pk,k−1C
T
k (CkPk,k−1C

T
k + Rk)−1

Pk,k = (I − GkCk)Pk,k−1

x̂k|k = x̂k|k−1 + Gk(vk − Dkuk − Ckx̂k|k−1)

(A.32)

Extended Kalman filter

The Kalman filtering process described earlier was designed for linear systems. For

a general non linear system, a linearization procedure is performed in deriving the

filtering equations. We will consider a real-time linear Taylor series approximation

of the system function at the previous state estimate and that of the observation

function at the corresponding prediction position. The Kalman filter so obtained is

generally called as the extended Kalman filter.

Consider a non linear system in the following form:

xk+1 =fk(xk) + Hk(xk)ξ
k

vk =gk(xk) + η
k

(A.33)
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where x is the state vector, v is the output vector, fk and gk are vector valued

functions and Hk is a matrix valued function, such that for each k the first order

partial derivatives of fk(xk) and gk(xk) with respect to all the components of xk are

continuous. Also, we consider zero mean Gaussian white noise sequences {ξ
k
} and

{η
k
}. Similar to the assumptions made for the linear model, we make the following

assumptions







E(ξ
k
ξT

l
) = Qkδkl, E(η

k
ηT

l
) = Rkδkl

E(ξ
k
ηT

l
) = 0, E(ξ

k
xT

0 ) = 0

E(η
k
xT

0 ) = 0

(A.34)

where Qk and Rk are the variance matrices for random vectors {ξ
k
} and {η

k
} respec-

tively.

The initial estimate x̂0 = x̂0|0 and the first prediction x̂1|0 are chosen to be:







x̂0 = E(x0)

x̂1|0 = f0(x̂0)
(A.35)

We will now formulate x̂k = x̂k|k, consecutively for k = 1, 2, · · · , using the

predicted estimate

x̂k+1|k = fk(x̂k) (A.36)

and the linear state space description







xk+1 = Akxk + uk + Γkξk

wk = Ckxk + η
k

(A.37)

where Ak, uk, Γk,wk and Ck are to be determined in real-time as follows.

Suppose that x̂j has been determined so that x̂j+1|j is also defined as in Equation

A.36, for j = 1, 2, · · · , k. We now consider the linear approximation of fk(xk) at x̂k
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and that of gk(xk) at x̂k|k−1 as follows:







fk(xk) ≃ fk(x̂k) + Ak(xk − x̂k)

gk(xk) ≃ gk(x̂k|k−1) + Ck(xk − x̂k|k−1)
(A.38)

where13

Ak =

[
∂fk

∂xk

(x̂k)

]

and Ck =

[
∂gk

∂xk

(x̂k|k−1)

]

Hence, by setting 





uk = fk(x̂k) − Ak(x̂k)

Γk = Hk(x̂k)

wk = vk − gk(x̂k|k−1) + Ckx̂k|k−1

(A.39)

the nonlinear model in Equation A.33 may be approximated by the linear model in

Equation A.37.

It is to be noted that the linearization procedure adopted above is possible only

if x̂k has been determined. Since we assume that x̂0 is known, the system description

in Equation A.37 is valid for k = 0. From this, we define x̂1 = x̂1|1 as the optimal

estimate of x1 in the linear model in Equation A.37, using the measurements [vT
0 wT

1 ]T .

Now, by applying Equation A.36, Equation A.37 is established for k = 1, so that

13Here, for any vector valued function

h(xk) =





h1(xk)
...

hm(xk)





where xk = [x1
k · · ·xn

k ]T we denote, as usual,

[ ∂h

∂xk

(x∗
k)

]
=






∂h1

∂x1

k

(x∗
k) · · · ∂h1

∂xn
k

(x∗
k)

...
...

∂hm

∂x1

k

(x∗
k) · · · ∂hm

∂xn
k

(x∗
k)





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x̂2 = x̂2|2 can be determined analogously, using the data [vT
0 wT

1 wT
2 ]T , etc. From

the Kalman filtering results for general linear deterministic/stochastic state space

descriptions, we can write the “correction” formula as:

x̂k = x̂k|k−1 + Gk(wk − Ckx̂k|k−1)

= x̂k|k−1 + Gk

(
(vk − gk(x̂k|k−1) + Ckx̂k|k−1) − Ckx̂k|k−1

)

= x̂k|k−1 + Gk(vk − gk(x̂k|k−1))

where Gk is the Kalman gain matrix for the linear model in Equation A.37.

The resulting extended Kalman filtering process can be summarized as follows

in Equation A.40.







P0,0 = V ar(x0), x̂0 = E(x0)

For k = 1, 2, ...,

Pk,k−1 =
[ ∂fk−1

∂xk−1

(x̂k−1)
]
Pk−1,k−1

[ ∂fk−1

∂xk−1

(x̂k−1)
]T

+ Hk−1(x̂k−1)Qk−1H
T
k−1(x̂k−1)

x̂k|k−1 = fk−1(x̂k−1)

Gk = Pk,k−1

[∂gk

∂xk
(x̂k|k−1)

]T
�

[
[∂gk

∂xk
(x̂k|k−1)

]
Pk,k−1

[∂gk

∂xk
(x̂k|k−1)

]T
+ Rk

]−1

Pk,k =

[

I − Gk

[∂gk

∂xk
(x̂k|k−1)

]
]

Pk,k−1

x̂k|k = x̂k|k−1 + Gk(vk − gk(x̂k|k−1))

(A.40)
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APPENDIX B

ARIMA MODELING OF TRAFFIC TIME SERIES DATA AND ITS

COMPARISON WITH THE NON-CONTINUUM MODEL PERFORMANCE

In this appendix we present a brief overview of Autoregressive Integrated Moving

Average (ARIMA) approach towards modeling of time series data and its application

towards traffic state predictions. We also compare the results of the one step traffic

state prediction using ARIMA modeling approach with those obtained by using the

non-continuum modeling approach.

ARIMA modeling: Box Jenkins approach

The Box-Jenkins approach [87] is used to construct a one step predictor model to

predict freeway traffic state variables. Let Xt represent a non-seasonal time series

of observations taken at equally spaced time intervals. The time series Xt is either

stationary or reducible to a stationary form Zt, by computing the difference for some

integer number of times d such that:

Zt = (1 − B)dXt (B.1)

where B is the back-shift operator defined as BXt = Xt−1.

A time series can be represented by the following general class of linear models:

Φp(B)(1 − B)d(Xt − µ) = Θq(B)at (B.2)

where p, d, q are non negative integers and µ is the mean of the series. Φp(B) is the

autoregressive operator of order p defined as

Φp(B) = 1 − φ1B... − φpB
p
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where φ1, · · · , φp are the autoregressive (AR) coefficients. Θq(B) is the moving aver-

age operator of order q defined as

Θq(B) = 1 − θ1B... − θqB
q

where θ1, · · · , θq are the moving average (MA) coefficients. at are the random distur-

bances assumed to be independent and identically distributed (iid) with zero mean

and variance σ2
a. The model in Equation B.2 is called an autoregressive integrated

moving average (ARIMA) model of order (p, d, q).

ARIMA models are fitted to a particular data set by a three stage iterative

procedure:

1. Preliminary Identification

2. Estimation

3. Diagnostic check

In preliminary identification, the values of p, d, and q are determined by inspecting

the autocorrelations and partial autocorrelations of the series or its differences, or

both and by comparing with those of some basic stochastic processes. The sample

autocorrelation function is given by

rk =

∑n−K
t=1 [(Xt − X̄)(Xt+k − X̄]

∑n
t=1(Xt − X̄)2

, K = 1, 2, ...

where X̄ is the sample mean and n is the number of observations. The autocorrelation

function of a stochastic process provides a measure of how long a disturbance in the

system affects the state of the system in the future. In general:

• Moving Average Processes: The autocorrelation function of a moving av-

erage process of order q has a cutoff after lag q (memory of lag q), while its
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partial autocorrelation function tails off.

• Autoregressive Process: The autocorrelation function of an autoregressive

process of order p tails off in the form of damped exponentials or damped sine

waves, while its partial autocorrelation function has a cutoff after lag p.

For mixed processes, both the autocorrelation and partial autocorrelation function tail

off. Failure of the autocorrelation function to die out rapidly suggests that differencing

is needed (d > 0).

Once the values of p, d, and q have been determined, the autoregressive and

moving average parameters are estimated by using non linear least squares techniques.

Finally the goodness of the model fit is checked. If the form of the chosen model is

satisfactory, then the resulting residuals, ât, should be uncorrelated random deviations

with zero mean14. To test for this, Box and Pierce [88] developed an overall test of

autocorrelations for lags 1 thorough K. According to the test, the variable Q defined

below, is approximately distributed as a chi-square variable with (K − p− q) degrees

of freedom.

Q = n

K∑

i=1

r2
i (â) (B.3)

In the above equation, n is the number of observations minus the degree of differencing

and ri(â) is the residual autocorrelation for lag i. K is typically chosen in the range

of 15 to 30. Thus, given the time series of the residues, we reject the iid (residues

being independent and identically distributed) hypothesis at level of significance α if

Q > χ2
1−α(h), where χ2

1−α(h) is the 1 − α quantile of the chi-square distribution with

h degrees of freedom15.

14Residuals are generally defined as the difference between the observation and
fitted value.

15h = K − p − q in our context.
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Modeling US 183 traffic time series data

We consider two locations on US 183 North Bound and analyze the traffic speed time

series data. We identify these two locations as Station 23 (at Lazy Lane in section

2) and Station 29 (at Metric Blvd. in section 1). In Fig. 29 we plot the traffic

speeds observed at Station 23 and Station 29 on June 14, 2004. We call this as the

representative speed data.

Preliminary identification and estimation

We now calculate the sample autocorrelations and partial autocorrelation functions.

Fig. 30 and Fig. 31 show the sample autocorrelations and partial autocorrelation

functions for the representative speed data and for the data which has been differenced

once. Note that in these figures, the blue lines, very close and parallel to the x-axis,

represent the error bounds for the data. The bounds are determined based on ±2/
√

n.

These error bounds are for 95% confidence limits. If the values of the autocorrelation

and partial autocorrelation functions lie within these limits, then we consider that

they are not significantly different from zero. It can be observed from Fig. 30 and

Fig. 31 that the sample autocorrelations of the raw speed time series data for both

Station 23 and Station 29 damp off very slowly as lag increases. This suggests that

differencing is required.
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Fig. 29. Representative traffic speeds at stations 23 (top) and 29 (down), June 14,

2004
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Fig. 30. Sample autocorrelation and partial autocorrelations, speed data, Station 23,

June 14, 2004
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Fig. 31. Sample autocorrelation and partial autocorrelations, speed data, Station 29,

June 14, 2004
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The sample autocorrelations of the first differences, however, indicate that only

the spikes at lag 1 is large in relation to the standard error16. The partial autocorre-

lations of the first differences gradually tail off for both the time series. This suggests

that the stochastic process generating the time series is ARIMA (0,1,1); that is the

first differences of traffic speed data can be represented by a first order moving av-

erage model. Similar autocorrelation and partial autocorrelation function plots were

observed for many working days for both Station 23 and Station 29. Thus the speed

data at both the detector locations can be modeled as ARIMA (0,1,1) models, albeit

with different coefficients.

ARIMA (0,1,1) model can be represented as:

(1 − B)(Xt − µ) = (1 − θ1B)at (B.4)

or simply

Xt − Xt−1 = Zt = at − θ1at−1. (B.5)

Two weeks (Monday - Thursday each week) speed time series data, with fifteen hours

each day (900 data points each day), was analyzed. In Table IX we list the average

parameter (θ1) values obtained for two weeks of data. In the same table we also list

the corresponding standard error.

Diagnostic Check

Diagnostic checking was carried out by inspecting the residuals (ât). Fig. 32 and Fig.

33 show the plot of residuals and their autocorrelation functions for speed data with

one differencing for Station 23 and Station 29 respectively. From the autocorrelation

16The standard error of a sample of sample size n is the sample’s standard deviation
divided by

√
n.
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Table IX. Average θ1 values and its standard error for Station 23 and Station 29 speed

data

Day Station 23 Station 29

Coeffecient Standard Error Coeffecient Standard Error

Monday 0.7456 0.0223 0.6165 0.0176

Tuesday 0.6968 0.0479 0.6278 0.0157

Wednesday 0.7474 0.0247 0.7081 0.0361

Thursday 0.6913 0.0632 0.6261 0.0542

plots we observe that there are no systematic patterns and are all quite small. The

average of the residuals and their estimated standard error for speed data from Station

23 are 0.0058 and 0.1293 respectively. Similarly for speed data from Station 29, the

average and standard error are 0.0111 and 0.1177 respectively. This strongly suggests

that the residuals have zero mean.

We also conducted the chi-square distribution test for the residuals (see Equation

B.3). For K = 25, the calculated value of Q for Station 23 and Station 25 were 31.36

and 32.83 respectively. Since these values are less than χ2
0.95(24), we can accept the

fitted model as adequate.

There have been several studies where researchers have studied the volume and

occupancy loop detector time series data and have attempted to model them as

ARIMA models of various orders ( [89] - [94]). Each study concluded different model

orders, indicating that the performance and the orders was subject to the traffic data

used in the study.
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Fig. 32. Residual plots and sample autocorrelations, speed data, Station 23, June 14,

2004
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Fig. 33. Residual plots and sample autocorrelations, speed data, Station 29, June 14,

2004
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One minute predictions

The ARIMA model can be used to make one step predictions in real-time.

Let Ẑt−1(1) be the one step ahead forecast made at time (t − 1) for Zt, which

when observed will be represented by Equation B.5. If Ẑt−1 is the minimum mean

square error forecast, then its value is determined by the conditional expectation of

Zt, given the history (Ht) of the series up to time t. That is:

Ẑt−1 = E(Zt/Ht)

= −θ1at−1 (B.6)

Therefore, the forecast error at time (t − 1) is determined by subtracting Equation

B.6 from Equation B.5:

et−1(1) = Zt − Ẑt−1

= at (B.7)

Hence, the white noise that generated the ARIMA (0,1,1) process is the one step

ahead forecast error. Thus, we obtain the following update expression for the model:

Ẑt(1) = −θ1et−1(1) (B.8)

Fig. 34 show the one step (one minute) forecasts of the traffic speed at Station

23 and Station 29.
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Fig. 34. One minute ARIMA model prediction, Station 23 and Station 29, June 14,

2004
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Fig. 35 and Fig. 36 show the comparison of one step (one minute) forecasts

of the traffic speed by non-continuum and ARIMA modeling approaches at Station

23 and Station 29 respectively. It can be seen, that for the selected locations, the

non-continuum traffic flow model is able to predict the traffic speed much better than

the ARIMA model. One important point to note is that the speed prediction results

obtained from the ARIMA model are very noisy. Also, the fitted ARIMA model was

not able to fully capture the sharp speed drops which occur during peak congestion.
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Fig. 35. One minute predictions - Comparing non-continuum and ARIMA models,

Station 23, June 14, 2004
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Fig. 36. One minute predictions - Comparing non-continuum and ARIMA models,

Station 29, June 14, 2004
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