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ABSTRACT 

 

 

Detection of Water or Gas Entry into Horizontal Wells by Using Permanent 

Downhole Monitoring Systems. (May 2007) 

Keita Yoshioka, B.S., Waseda University 

Co-Chairs of Advisory Committee: Dr. Dan Hill 
Dr. Ding Zhu 
 

With the recent development of temperature measurement systems, continuous wellbore 

temperature profiles can be obtained with high precision.  Small temperature changes can 

be detected by modern temperature-measuring instruments, such as fiber optic distributed 

temperature sensors (DTS) in intelligent completions.  Analyzing such changes will 

potentially aid the diagnosis of downhole flow conditions.  In vertical wells, temperature 

logs have been used successfully to diagnose the downhole flow conditions because 

geothermal temperature differences in depth make the wellbore temperature sensitive to 

the amount and the type of fluids flowing in the wellbore.  Geothermal temperature does 

not change, however, along a horizontal wellbore, which leads to small temperature 

variations in horizontal wells, and interpretations of temperature profiles become harder 

to make than those for vertical wells.  For horizontal wells, the primary temperature 

differences are caused by frictional effects.  Therefore, in developing a thermal model for 

producing horizontal wellbore, subtle temperature changes should be accounted for. 

This study rigorously derives governing equations for thermal reservoir and 

wellbore flow and develops a prediction model of temperature and pressure.  With the 

prediction model developed, inversion studies of synthetic and field examples are 

presented.  These results are essential to identify water or gas entry, to guide the flow 

control devices in intelligent completions, and to decide if reservoir stimulation is needed 
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in particular horizontal sections.  This study will complete and validate these inversion 

studies.  The utility and effect of temperature and pressure measurement in horizontal 

wells for flow condition interpretation have been demonstrated through synthetic and 

field examples. 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND 

In the past decades, thousands of wells have been drilled horizontally and in multiple 

directions to obtain larger contact volume with the reservoir.  Because of the growing 

complexities of the recent well trajectories, running conventional production monitoring 

tools on appropriate locations has become difficult and costly.  Flow rate, pressure, and 

temperature are the principle parameters we wish to measure through production logging.  

For the pressure and temperature measurements, continuous profiles of these in a 

complex well can be obtained accurately and inexpensively due to the advanced 

technology of fiber optics.  Since the first fiber optic sensor was implemented in a well in 

Shell’s Sleen Field in 19931, the use of distributed temperature sensors (DTS) and 

distributed pressure sensors (DPS) has become increasingly common for monitoring 

producing sections of horizontal wells.   

As for the flow rate measurement, metering flow rate is still difficult especially 

under the turbulent flow conditions that occur in most wells because of pressure 

fluctuations by turbulent eddy.  For multi-phase flowing wells, despite the recent 

advancements in technologies and equipments, a comprehensive solution to measuring 

flow rates and holdups of the phases is evasive2.  However, to take full advantages of 

intelligent wells, which can control inflow capacities from different producing sections 

without interventions, real-time monitoring of the downhole flow conditions such as flow 

rate profiles and locations of excessive water or gas influx is essential for oil and gas 

industries.  Therefore, to realize the value of intelligent wells, downhole flow conditions 

are either measured or interpreted from measurable parameters (e.g. density, pressure, 

and/or temperature) in horizontal, multi-lateral, or multi-branching wells. 

 
This dissertation follows the style of the SPE Journal. 



 

 

2

Temperature logs have been interpreted successfully in vertical wells to locate 

water or gas entry zones, casing leaks, and inflow profiles3.  Recently, interpretations of 

temperature profiles in horizontal wells have been reported to be useful to identify types 

of fluid flowing to a wellbore4-6.  However, the inferences described above require a 

model to translate temperature information into flow information.  Although several 

wellbore temperature models are available for vertical wells, there has been little work on 

the thermal modeling of horizontal producing wellbores. 

The main difference between vertical and horizontal wellbore models lies in the 

variation of temperature and pressure.  In vertical or near vertical wells, the wellbore 

pressure is usually dominated by a hydrostatic difference, and the wellbore temperature 

by the geothermal temperature, both change with depth.  If a vertical well produces fluid 

from different depths, the fluids result in having different inflowing temperature because 

of the geothermal temperature variation with depth.  This difference in inflowing 

temperature would leave clear marks on the temperature logs and the interpretation of 

these logs appears to be an efficient and useful means to infer the downhole flow 

conditions.   

For horizontal wells, the temperature variation along a well is almost zero.  To 

identify the causes of a measured temperature variation, reservoir and wellbore 

temperature models are required to relate a measured temperature to the inflow profile of 

the well.  These models must account for all the subtle thermal energy effects including 

Joule-Thomson expansion, viscous dissipative heating, and thermal conduction. 

 

1.2 LITERATURE REVIEW 

One of the earliest works on temperature prediction was done by Ramey7.  Ramey’s 

method approximates the pressure gradient of vertical wellbores by the hydrostatic 

difference, neglecting frictional pressure drop, and assumes steady-state heat transfer 
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inside the wellbore and transient conduction from the reservoir.  The solution was 

obtained semi-analytically under these assumptions.  His temperature prediction model 

works for either a single-phase incompressible liquid or a single-phase ideal gas in 

vertical injection and production wells.  Sagar8 extended Ramey’s work to inclined 

wellbores.  Hasan et al.9 applied an energy equation for multi-phase flow and calculated 

temperature profile and history numerically.  Hagoort10 revisited Ramey’s equation and 

compared it to the rigorous solution.  He confirmed that Ramey’s equation works for 

broad situations except for early periods of production, and also determined the periods 

for which Ramey’s approximate solution could be applied. 

For horizontal or near-horizontal wells, the hydrostatic difference is zero or very 

small.  Dikken11 presented a coupled reservoir and wellbore equations to simulate 

horizontal well production.  In developing the model, he considered wellbore pressure as 

a function of wellbore and reservoir pressures, and flow rate of the well.  He also showed 

that neglecting wellbore pressure drop could result in errors in estimating production rate 

profiles.  Hill and Zhu12 introduced a dimensionless number that represents the relative 

importance of the horizontal wellbore pressure drop to the reservoir pressure drawdown 

and categorized the situations where the wellbore pressure could be regarded as constant.   

Because of the long contact length of the horizontal wellbore with the formation, 

the wellbore continuously receives mass from the formation (radial influx) that creates 

different flow resistance than vertical wellbore.  Yuan et al.13 and Ouyang et al.14 

conducted horizontal wellbore flow experiments to estimate the pressure drop caused by 

radial influx in a porous pipe and correlated new friction factors for horizontal producing 

wellbores.   

Stone et al.15 proposed a thermal simulation model with multi-segment wells.  

They applied nodal analysis to the coupled problem and solved the equations segment by 

segment.  Ouyang and Belanger16 presented an inversion study of DTS data.  They 

concluded that flow rate could be properly estimated based on DTS data for wells 
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oriented from vertical to 25o and also stated that the inversion would not be performed in 

the wells inclined closer to horizontal than this limit by showing numerical experimental 

results from the model they developed.  However, the theoretical details of the study were 

not revealed. 

 

1.3 OBJECTIVES 

The primary objective of this study is to develop an interpretation method of temperature 

and pressure data from horizontal or near-horizontal wellbores.  There are three 

significant differences in concepts from vertical wells.  First, the geothermal temperature 

that surrounds the horizontal wellbore is almost constant.  Second, the frictional pressure 

drop is the dominant effect on the pressure profile while in vertical wells the gravitational 

pressure drop is the most important term.  Finally, because of much longer exposed 

length to the formation, the wellbore continuously gains or loses convective energy from 

or to the formation as well as mass along its path.   

Except for the production system that is stimulated by thermal method (wellbore 

heating, hot-fluid injection, or combustion), the isothermal system has been assumed in 

petroleum engineering applications.  However, to identify the causes of a measured 

temperature variation in the normal horizontal well production system, we must consider 

subtle temperature behaviors in the wellbore and the reservoir.  

In this research, we derive the governing equations for the wellbore and the 

reservoir then combine the equations.  The derived equations also work for inclination 

wells including vertical wells.  The coupled equations are solved simultaneously for flow 

rate, pressure, and temperature profiles along the wellbore by applying successive 

substitution.  Using the temperature and pressure prediction model developed, we infer 

the features and sensitivities of temperature or pressure profiles under various production 

scenarios, such as water entry.   
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The last part of this research proposes an interpretation method of temperature 

and pressure profile data to downhole inflow conditions.  We set the parameters to be 

estimated as productivities or inflow rates of each segment.  From continuous 

temperature and pressure data along the well, we invert them into the parameters by 

applying the Levenberg-Marquardt algorithm. 
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CHAPTER II 

WELLBORE MODEL 

2.1 INTRODUCTION TO WELLBORE MODEL 

Because of the long exposed length of a horizontal wellbore to the reservoir, fluid may 

enter the wellbore continuously throughout the producing zone.  Therefore, we need to 

account for two streams that are in the axial direction (along the wellbore) and the radial 

direction (from the reservoir) in deriving equations.  Also, the extensive length of the 

well that is exploiting the reservoir makes the downhole pressure and temperature inside 

the wellbore vary with the positions. 

The mass or heat transferred between the wellbore and the reservoir will be 

determined by both the wellbore and the reservoir conditions.  For instance, as a result of 

fluid flow in a horizontal well, the wellbore pressure of near the heel tends to be lower 

than that of the toe, which creates more pressure difference from the reservoir pressure, 

resulting in higher inflow rate near the heel.  In development of a wellbore model, these 

dependences on the reservoir have to be considered. 

 

 
Fig. 2.1 Differential volume element of a wellbore. 
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2.2 WORKING EQUATIONS FOR SINGLE-PHASE FLOW 

In this section, we derive the steady-state conservation equations for the wellbore region 

averaging any variation in temperature or pressure in the radial direction over a 

differential volume element shown in Fig. 2.1.  Then we account for the net input and 

output of intensive properties such as mass, momentum and total energy using the shell 

balance. 

 The completion types may be open hole, perforated liner, etc.  We introduce the 

pipe open ratio defined as 

pipe of area Surface
pipe of areaOpen 

=γ .        (2.1) 

Pipe open ratio is considered over a certain length of the wellbore and is defined with 

position.  It will be the perforation density over a segment for a perforated well and is the 

reservoir porosity of a section for an openhole completed well.  Using γ , the surface area 

of a differential volume element can be expressed as xR Δγπ2 , and convective properties 

from the formation, for instance, transferred mass can be written as xMR Δγπ2 . 

 As depicted in Fig. 2.1, the main streams of the fluid flow are in two directions 

that are axial (x-direction) and radial (r-direction).  We assume the velocity vector as 

⎪
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where v  is the velocity vector and the subscript I means inflow properties.  Eq. 2.2 

indicates that there is no slip ( 0=xv ) at the wall, and the radial velocity only exists at the 

wall ( Ir vv = ) which is reasonable because in most part of the well, radial velocity is 

much smaller than the axial velocity. As stated previously, inflow velocity Iv  is a 

function of the reservoir and the wellbore condition.  Using the productivity index of the 

well, J , the inflow rate for a certain distance ( xΔ ) of the well can be written as 
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( )ppJvdxR R
x

−=∫
Δ

γπ2 ,        (2.3) 

where Rp  is the reservoir pressure. 

 

2.2.1 Mass balance 

Conservation of mass can be equated by observing the incoming mass flux and outgoing 

mass flux as 
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The rate of increase of mass within the differential volume element is 

t
xR
∂
∂
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where ρ  denotes the density.  The rates of mass in and out of the differential volume are 

given as follows. 

( ) ( )xxRr vRvxR ρπργπ 22
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and, 
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 of rate
.        (2.7) 

Substituting Eqs. 2.5 - 2.7 into Eq. 2.4 gives 

( ) ( ) ( )

( ) ( )[ ]xxxxxI

xxxxxRr

vvRvxR

vRvRvxR
t

xR

Δ+

Δ+

−+Δ=

−+Δ=
∂
∂

Δ

ρρπργπ

ρπρπργπρπ

2

222

2

2
.    (2.8) 

Dividing by xR Δ2π , Eq. 2.8 becomes 
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( ) ( )
x

vv
v

Rt
xxxxx

I Δ
−

+=
∂
∂ Δ+ρρ

γρρ 2 .      (2.9) 

Taking 0→Δx , we have 
( )

x
vv

Rt II ∂
∂

−=
∂
∂ ρργρ 2 .        (2.10) 

Finally, for steady-state, we obtain 
( )

II vRdx
vd ργρ 2
= .         (2.11) 

 

2.2.2 Momentum balance 

To derive the equation for momentum, we write a momentum balance over the 

differential volume as 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

fluid the
on force

external

out
momentum

of rate

in
momentum

of rate

momentum of
increase

 of rate
.   (2.12) 

The rate of increase of momentum in the x-direction is given as 

( )
t
v

xR x

∂
∂

Δ=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
ρ

π 2

momentum of
increase

 of rate
.      (2.13) 

Let Φ  be the combined convective and molecular momentum tensor that is defined as 
τδvvΦ −+= pρ ,         (2.14) 

where δ  is the Kronecker delta and τ  is the shear stress tensor.  Then the rate of 

momentum in and out are written as 

( ) ( )

( ) ( )xxxxxRrxxr

xxxRrx

pvvRvvxR

RxR

τρπτρπ

ππ

−++−Δ=

Φ+ΦΔ=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

2

2

2

2
in

momentum
of rate

.   (2.15) 

For Newtonian fluid, the shear stress is given by 
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( )

x
v

x
v

r
rv

rx
v

x

xrx
xx

∂
∂

=

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂

∂
−

∂
∂

=

μ

μμτ

3
4

1
3
22

.      (2.16) 

There is no slip at the wall ( ( ) 0=Rxv ) and Eq. 2.15 becomes 

( )
x

x
xxRrx x

v
pvvRxR ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−++Δ−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
μρπτπ

3
42

in
momentum

of rate
2 .   (2.17) 

The rate of momentum out is 

xx

x
xx x

v
pvvR

Δ+

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
μρπ

3
4

out
momentum

of rate
2 .     (2.18) 

The external force on the fluid is 

θρπ sin
fluid the

on force
external

2 gxR Δ−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
.       (2.19) 

Substituting into Eq. 2.12 and dividing by xR Δ2π , we obtain 

( ) ( )

θρμρ

μρτ
ρ

sin
3
4

3
412

g
x
v

pvv

x
v

pvv
xRt

v

xx

x
xx

x

x
xxRrx

x

−⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+−

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+
Δ

+−=
∂

∂

Δ+

. (2.20) 

Taking 0→Δx , Eq. 2.20 becomes 

( ) ( ) θρμρτρ sin
3
42 g

x
v

pvv
xRt

v x
Rrx −⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−+⋅
∂
∂

−−=
∂

∂ .   (2.21) 

We neglect the second derivative of the velocity and for steady-state, Eq. 2.21 can be 

written as 

( ) ( ) θρρτ sin20 2 gpv
dx
d

R Rrx −+−−= .      (2.22) 

The wall shear stress, rxτ , is given by introducing a fanning friction factor as 
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2

2
x

rx
fvρ

τ = .          (2.23) 

The friction factor for porous pipe was estimated as a function of the friction factor 

without radial flux and wall Reynolds number by Ouyang14.  For laminar flow, it is 

independent of completion type and is given as 

( )( )6142.0
Re,04304.01 wo Nff += .       (2.24) 

For turbulence flow, friction factor for openhole completion is given as 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

8003.0

Re

Re,03.291
N

N
ff w

o ,       (2.25) 

and for perforated well, it is 

( )( )3978.0
Re,0153.01 wo Nff −= .       (2.26) 

where ReN  and wNRe,  are the Reynolds number and the wall Reynolds number that are 

given by 

μ
ρvRN 2

Re = ,         (2.27) 

and 

I

II
w

vRN
μ
ρ2

Re, = ,         (2.28) 

of  is the friction factor without radial influx and is estimated from the Moody’s diagram 

or from Chen’s correlation17 

2
8981.0

Re

1098.1

Re
0

149.7
8257.2

log0452.5
7065.3

log4

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−=

NN
f εε .   (2.29) 

where ε  is the relative pipe roughness. 

Finally, solving for pressure gradient yields 

( ) θρρρ sin
22

g
dx

vd
R

fv
dx
dp

−−−= .       (2.30) 
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2.2.3 Energy balance 

Total energy flux is a combination of convective energy flux, rate of work done by 

molecular mechanisms, and rate of transporting heat by molecular mechanisms, which is 

written as 

[ ] qvπve +⋅+⎟
⎠
⎞

⎜
⎝
⎛ += Uv ρρ 2

2
1 ,       (2.31) 

or 

[ ] qvτve +⋅+⎟
⎠
⎞

⎜
⎝
⎛ += Hv ρρ 2

2
1 ,       (2.32) 

where U , H , and q  are the internal energy, the enthalpy, and the heat flux respectively.  

π  denotes the total molecular stress tensor which is defined as 
τδπ += p .         (2.33) 

An energy balance can be written as 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

production
energy

of rate

forces externalby 
systemon  done

  workof rate

out
energy total

of rate

in
energy total

of rate

increaseenergy 
internal and

 kinetic of rate

.  (2.34) 

The rate of kinetic and internal energy increase is 

⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

Δ=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
Uv

t
xR ρρπ 22

2
1

increaseenergy 
internal and

 kinetic of rate
.     (2.35) 

The rates of total energy in and out are 

( ) ( )xxRr eRexR 22
in
energy total

of rate
ππ +Δ=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
,      (2.36) 

and 
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( ) xxxeR Δ+=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
2

out
energy total

of rate
π ,       (2.37) 

The rate of work is done by gravity force and is given as 

θρπ sin
forces externalby 

systemon  done
  workof rate

2 vgxR Δ−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
.      (2.38) 

The energy production in the system is zero.  Therefore, Eq. 2.34 becomes 

( ) ( ) ( ) θρππππρρπ sin2
2
1 22222 vgxReReRexRUv

t
xR xxxxxRr Δ−−+Δ=⎟

⎠
⎞

⎜
⎝
⎛ +

∂
∂

Δ Δ+ . 

           (2.39) 

The total energy in at r=R is obtained from Eq. 2.32 as 

( ) ( ) ( ) ( )

R
v

qvHv

vvqvHve

I
IIIIII

RrrrRxrxRr
R

rRr

2
2

2

3
2

2
1

2
1

μρρ

ττρρ

++⎟
⎠
⎞

⎜
⎝
⎛ +=

−−+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=

.    (2.40) 

We can split the energy in into two parts as 

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++Δ−+

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++Δ=Δ

IIII
I

II

IIII
I

IIRr

qvH
R
vvxR

qvH
R
v

vxRexR

ρμργπ

ρμργππ

3
2

2
112

3
2

2
122

2

2

.  (2.41) 

The first term on the RHS of Eq. 2.41 is the energy in through the pipe material and the 

second one is through the open area.  Since the covered area of the pipe is impermeable, 

fluid velocity is zero.  Also, we neglect the heat conductions between fluids.  Therefore, 

the heat flux in the pipe open area consists of only convection as depicted in Fig. 2.2.  
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Fig. 2.2 Energy transport through a perforated/slotted pipe. 

 

Therefore, Eq. 2.41 becomes 

( ) ( ) IIII
I

IIRr qxRvH
R
vvxRexR γπρμργππ −Δ+⎟

⎠
⎞

⎜
⎝
⎛ ++Δ=Δ 12

3
2

2
122 2 .  (2.42) 

Substituting Eq. 2.42 into Eq. 2.38 and dividing by xR Δ2π  yield 

( )

( ) ( )
θρ

γρμργρρ

sin

12
3
2

2
12

2
1 22

vg
x
ee

q
R

vH
R
vv

R
Uv

t

xxxxx

IIII
I

II

−
Δ
−

+

−
+⎟

⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ +

∂
∂

Δ+

.  (2.43) 

Taking 0→Δx , Eq. 2.43 becomes 

( )

θρ

γρμργρρ

sin

12
3
2

2
12

2
1 22

vg
x
e

q
R

vH
R
vv

R
Uv

t

x

IIII
I

II

−
∂
∂

−

−
+⎟

⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ +

∂
∂

.  (2.44) 

Also, the energy flux in the x-direction is 

xrxrxxxxx qvvvHve +−−⎟
⎠
⎞

⎜
⎝
⎛ += ττρρ 2

2
1 .      (2.45) 
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Since we neglect the heat conduction between fluids, the heat flux in the x-direction is 

dropped ( 0=xq ).  Using average velocity for an entire region of the cross section area, 

the energy flux can be written as 

v
x
vvHvex ∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛ += μρρ

3
4

2
1 2 .       (2.46) 

Substituting Eq. 2.46 into Eq. 2.43, we obtain 

( )

θρμρρ

γρμργρρ

sin
3
4

2
1

12
3
2

2
12

2
1

2

22

vgv
x
vvHv

x

q
R

vH
R
v

v
R

Uv
t IIII

I
II

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

−

−
+⎟

⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ +

∂
∂

. (2.47) 

We denote the kinetic energy terms as 

KEIII Evv
x

vv
R

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛ 22

2
1

2
12 ρργ ,      (2.48) 

and the viscous shear terms as 

VSI
I Ev

x
v

x
v

R
v

R
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ μμγ

3
4

3
4 .      (2.49) 

For steady-state, Eq. 2.47 becomes 
( ) ( ) θρργργ sin1220 vgEE

x
Hvq

R
Hv

R VSKEIIII −++
∂

∂
−

−
+= .   (2.50) 

Expanding the third term on the RHS of Eq. 2.50, we have 
( ) ( )

dx
vdH

dx
dHv

dx
Hvd ρρρ

+= .       (2.51) 

From mass balance (Eq.2.11), we obtain 
( )

II vR
H

dx
dHv

dx
Hvd γρρρ 2

+= .       (2.52) 

Substituting Eq. 2.52 into Eq. 2.50 gives 

( ) ( ) θρργργ sin1220 vgEE
dx
dHvq

R
HHv

R VSKEIIII −++−
−

+−= .  (2.53) 

Enthalpy is a function of temperature and pressure and can be expressed as 
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( )dpTdTCdH p β
ρ

−+= 11 ,       (2.54) 

where pC  is the heat capacity, and β  is the coefficient of isobaric thermal expansion 

defined as 

pP T
V

VT
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
11 ρ

ρ
β .       (2.55) 

Let the pressure at the boundary, Ip , be the same as the pressure of wellbore p .  Then, 

the enthalpy difference term between inflow and wellbore becomes  

( ) ( )( )

( )TTC

ppTTTCHH

Ip

IIIpI

−=

−−+−=− β
ρ

11
.     (2.56) 

Substituting Eqs. 2.54 and 2.56 into Eq.2.53, we obtain 

( ) ( )

( ) θρβ

ργργ

sin1

1220

vgEE
dx
dpTv

dx
dTvCq

R
TTCv

R

VSKE

pIIpII

−++−−

−
−

+−=
.  (2.57) 

Solving for temperature gradient, we have 

( ) ( ) ( )
p

VSKE
pp

I
p

III C
gEE

vCdx
dp

C
Tq

vCR
TTv

vRdx
dT θ

ρρ
β

ρ
γρ

ρ
γ sin11122

−++
−

−
−

+−=
. 

           (2.58) 

Joule – Thomson coefficient is defined as 

P
JT C

TK
ρ
β 1−

= .         (2.59) 

The heat flux can be estimated in terms of the temperature difference by solving the heat 

conduction equation in steady-state, which is given as 
( )TTq II −= α .         (2.60) 

where α  is the overall heat transfer coefficient.  The details about the overall heat 

transfer coefficient are discussed in Appendix A.  Substituting Eqs. 2.59 and 2.60 into 

Eq. 2.57 yields 
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( ) ( )
P

VSKE
p

I
P

IIJT C
gEE

vC
TT

C
v

vRdx
dpK

dx
dT θ

ρ
αγγρ

ρ
sin112

−++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
++= . (2.61) 

 

2.2.4 Studies from a single-phase model 

In the above derivations, we made the assumptions as few as possible.  Before extending 

the temperature equation to multi-phase flow, we have performed sensitivity studies to 

determine the impact of each term in Eq. 2.61 on the wellbore temperature profile by 

numerically solving the equation under various conditions.  From these evaluations, we 

have determined that the kinetic energy, EKE, and viscous shear, EVS, are less important to 

the temperature profile.  Example temperature profiles are shown below.  The procedure 

of the numerical solution is addressed explicitly in Chapter IV. 

 Fig. 2.3 shows example temperature profiles obtained from the original 

temperature equation, Eq. 2.61 and the one without the kinetic energy term.  This 

example was generated with the wellbore that has an inner diameter of 2.6 in and is 

producing about 6,000 b/d oil.  Fig. 2.4 shows a comparison of the temperature profiles 

with and without the viscous shear terms. 

From these examinations, we can conclude that neither kinetic energy nor viscous 

shear affect the computed temperature very much.  We neglect kinetic energy and viscous 

shear terms in further discussions.  Dropping these terms, the energy balance equation 

becomes 

( )
P

I
P

IIJT C
gTT

C
v

vRdx
dpK

dx
dT θαγγρ

ρ
sin12

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
++= ,  .............................  (2.62) 

or 

( )
P

II
P

JT C
gTT

vCRdx
dpK

dx
dT θα

ρ
sin2

−−+= ,  ...............................................  (2.63) 

where 
( )αγγρα −+= 1PIII Cv .  ..............................................................................  (2.64) 
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We call Iα  a combined overall heat transfer coefficient in this research.  It combines 

both conductive and convective heat transfer for porous wall pipe that has an additional 

convective term added to the conventional overall conductive heat transfer. 
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Fig. 2.3 Temperature profiles with and without kinetic energy. 
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Fig. 2.4 Temperature profiles with and without viscous shear 
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2.3 WORKING EQUATIONS FOR MULTI-PHASE FLOW 

Using a similar shell balance method to the single-phase flow derivations, the mass and 

energy balance equations for multi-phase flow can be developed.  The main difference 

from the single-phase flow is that the conserved properties are weighted by their volume 

fraction (holdup) in the system.  As for the momentum balance of multi-phase flow, it 

needs a special treatment and a number of models have been developed for wellbore 

pressure and holdup calculations18-26.  We apply a homogeneous model for oil-water flow 

and a homogeneous with drift-flux model for gas-liquid flow23. 

 

2.3.1 Mass and energy balance 

The mass balance for phase gas)or   water,oil,( =i  is given as 

( )
Iii

Iiiii v
R
y

dx
yvd

,
,2
ρ

γρ
= .        (2.65) 

where iy  is a volume fraction of phase i . 

 Neglecting kinetic energy and viscous shear terms, the energy balance for phase i 

is 

( )

( ) θργ

γρρρ

sin12

2

,

,,,,,,,,

gvyq
R

TTCyv
Rdx

dp
KCyv

dx
dT

Cyv

iiiIi

iIiipIiIiIi
i

iJTipiii
i

ipiii

−−+

−+=
.  (2.66) 

Summation of the equation for the three phases gives 

( )

( ) ∑∑

∑∑∑

−−+

−+=

i
iii

i
Ii

i
iIiipIiIiIi

i

i
iJTipiii

i

i
ipiii

gvyq
R

TTCyv
Rdx

dp
KCyv

dx
dT

Cyv

θργ

ργρρ

sin12

2

,

,,,,,,,,

. (2.67) 

Assuming that the pressures and temperatures are the same in each phase, we have 

( )

( ) ( ) ∑

∑∑∑

−−
−

+

−+=

i
iiiIT

i
ipIiIiIiI

i
iJTipiii

i
ipiii

gvyTT
R

CyvTT
R

KCyv
dx
dpCyv

dx
dT

θραγ

ργρρ

sin12

2
,,,,,,,

. (2.68) 
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where Tα  is an overall heat transfer coefficient for multi-phase flow (see Appendix A).  

Solving for temperature gradient, we obtain 

( )
( )

θ
ρ

ρ

ρ

αγργ

ρ

ρ

sin

1
2

,

,

,,,,

,

,,

g
Cyv

yv

Cyv

Cyv
TT

RCyv

KCyv

dx
dp

dx
dT

i
ipiii

i
iii

i
ipiii

T
i

ipIiIiIi

I

i
ipiii

i
iJTipiii

∑
∑

∑
∑

∑
∑

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −+
−+=
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Total (mixing) properties can be factorized as 
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and 

( ) ∑=
i

iJTipiiiTJTp KCyvKvC ,,ρρ .       (2.72) 

Finally, we have 
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where 
( ) ( ) TITpIT vC αγργα −+= 1

,, .       (2.75) 

 

2.3.2 Momentum balance 

When estimating the pressure profile and holdup along the well, we can apply a 

homogeneous, a drift flux, or a mechanistic model to the problem.  The simplest model is 

a homogeneous model which regards flow as homogenized single-phase flow.  A 
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mechanistic model is the most realistic and complicated model.  However, it sometimes 

encounters problems in convergence between flow regime transitions.  A drift flux model 

relaxes the assumptions of homogeneous model and considers a slip velocity between 

phases.  Because of the ease and continuities in the parameters of drift flux model, it has 

been widely accepted in a variety of petroleum engineering applications. 

 

Oil-water two-phase flow 

For oil-water two-phase flow, a homogeneous model is applied and the momentum 

balance equation is given with mixture properties as 

( )
θρ
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g
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Where the mixture density, mρ  is given by 
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Since no slip velocity between phases is considered, the holdup is 

sosw

sw
w vv

v
y

+
= .         (2.78) 

where swv  and sov  represent superficial velocities of water and oil.  Mass flux can be 

written as 

swwsooTPm vvv ρρρ += .        (2.79) 

Therefore, the two-phase velocity is 
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w
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o
TP vvv

ρ
ρ

ρ
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The oil-water mixture viscosity is estimated by the model that takes into account 

the phase inversion point27.  It is given by 
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( ) 5.21 −−= dcm yμμ .        (2.81) 

The inversion point is 
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where the subscript c  means continuous phase and d  means dispersed phase.  The 

dimensionless numbers to be used for friction factor estimation will be calculated based 

on the mixture properties as 

m
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Liquid-gas two-phase flow 

When the flow is liquid-gas multi-phase flow, the homogenized pressure gradient model 

by Ouyang and Aziz23 is used.  It consists of frictional, gravitational, and accelerational 

pressure drops and is given as 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−−

+−
=

aW
m

TPm

sg
sggsll

dx
dpg

R
vf

p
v

vv
dx
dp θρ

ρ

ρρ
sin

1

1 2

,   (2.85) 

where slv  and sgv  are superficial velocities of liquid and gas respectively.  
aWdx

dp
⎟
⎠
⎞

⎜
⎝
⎛  is an 

accelerational pressure drop caused by wall friction and is given as 
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where 
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where w  is the mass flow rate.  Subscription l  and g  denote liquid and gas respectively.  

The value for ϖ  is proposed as 0.8. 

The mixture properties are given by 

ggllm yy ρρρ += ,         (2.89) 

ggllm yy μμμ += ,         (2.90) 

and 
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The in-situ velocity of gas is estimated from drift-flux model as 

dsgslg vvvCv ++= )(0 ,        (2.92) 

where dv  is the drift velocity and 0C  is the profile parameter.  They are determined 

experimentally28-31. 
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CHAPTER III 

RESERVOIR MODEL 

3.1 INTRODUCTION TO RESERVOIR MODEL 

In most thermal vertical wellbore models, the fluid is assumed to arrive at the wellbore 

with the same temperature as the geothermal temperature.  Some authors included 

warming or cooling effects (Joule-Thomson effect) near the wellbore vicinity before the 

fluid enters the wellbore16, 32.  However, these warming or cooling effects are relatively 

small compared to the temperature variation in depth caused by geothermal temperature 

gradient.  Therefore, these effects are in general negligible in vertical wellbore modeling. 

Under the condition of normal production, a temperature difference on the order 

of a few degrees Fahrenheit from the geothermal temperature can possibly occur through 

the transport in porous media33, 34.  These temperature changes that are often neglected in 

vertical well modeling would play an important role in horizontal well modeling since 

there would be little differences in geothermal temperature along horizontal wells.  

Hence, to develop a prediction model for horizontal well interpretations, we also need 

equations for the reservoir flow and have to couple them with the wellbore equations. 

 

3.2 WORKING EQUATIONS FOR RESERVOIR FLOW 

We consider a box-shaped reservoir fully penetrated by a horizontal well as depicted in 

Fig. 3.1 with no-flow lateral boundaries and constant fluxes from the sides.  The working 

equations for the reservoir temperature profile can be derived by combining Darcy’s 

equation and an energy balance equation.  In the following sections, we show the 

derivation of the equations. 
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Fig. 3.1 Box-shaped reservoir with constant fluxes from the sides. 

 

3.2.1 Mass balance 

The mass balance for the fluid flow in permeable media is given as, 

( )uρρφ ⋅−∇=
∂
∂

t
.         (3.1) 

where u  is the Darcy velocity ( φvu = ) and the relationship between the pressure is 

given as, 

)( gku ρ
μ

+∇⋅−= p .        (3.2) 

Substituting Eq. 3.2 into Eq. 3.1 and dropping time derivative term, we obtain 
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For an isotropic and homogeneous reservoir, neglecting gravity, Eq. 3.3 becomes 

( )pp ∇⋅∇+∇= ρρ 20 .        (3.4) 

Dividing by ρ  and expanding ρ∇  yield 
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where c is the compressibility of the fluid.  The second term is usually negligible for a 

slightly compressible fluid. 

 

3.2.1 Energy balance 

The temperature behavior of the fluid is described by the energy balance equation, which 

is given as 

( ) ):()( vτqvv ∇−+⋅∇−⋅∇−⋅−∇=
∂
∂ pUU
t

ρρ .    (3.6) 

The relationship between the internal energy and the enthalpy is given by 

ρ
pHU −= .         (3.7) 

Substituting Eq. 3.7 into Eq. 3.6 and dropping the time derivative term gives 
):()()(0 vτqvvv ∇−−⋅∇+⋅∇+⋅∇−⋅∇= ppHρ .    (3.8) 

Expanding the first term on the RHS, we have 
):()()()(0 vτqvvvv ∇−−⋅∇+⋅∇+⋅∇−⋅∇+∇⋅= ppHH ρρ .   (3.9) 

Assuming spatially constant porosity, the mass balance (Eq.3.3) becomes 
( )
( )v
u
ρφ
ρ
⋅∇=
⋅∇=0

.         (3.10) 

Therefore, the second term on the RHS of Eq. 3.9 is zero.  We obtain 
):()()(0 vτqvvv ∇−−⋅∇+⋅∇+⋅∇−∇⋅= ppHρ .    (3.11) 

From the definition of enthalpy derivative (Eq. 2.54), we have 
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The last term on the RHS of Eq. 3.12 ( )vτ ∇− :  is the viscous dissipation heating 

that describes the degradation of mechanical energy into thermal energy.  For flow 

through permeable media, it is expressed as35, 36 
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p∇⋅=∇ vvτ : .         (3.13) 

From Fourier’s law, conductive heat flux is given by 

TKT∇−=q .         (3.14) 

The total thermal conductivity, TK , is the combination of both fluid and matrix, and is 

given by37 
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where the subscripts fl, a, and d refer to fluid, air, and dry rock respectively.  TK  depends 

weakly on temperature and is treated as a constant here.  Substituting Eqs. 3.13 and 3.14 

and replacing the interstitial velocity, v, with the Darcy velocity, u, Eq. 3.12 becomes 

pTKpTTC

pTKpTTC

Tp
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2
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βρ

βρ
.     (3.16) 

The first term in Eq. 3.16 is the thermal energy transported by convection.  The second 

term is thermal energy change caused by fluid expansion.  The third term is thermal 

energy transported by heat conduction, and the last term represents the viscous 

dissipative heating.  

 

3.3 INFLOW TEMPERATURE ESTIMATION 

Inflow temperature can be estimated by solving the equations derived in the previous 

section.  For the reservoir with horizontal well shown in Fig. 3.1, the pressure drop in the 

reservoir can be obtained by integrating Darcy’s law along the streamline.  Furui et al.38 

investigated the geometry of streamlines from a finite element simulation and 

approximated the pressure profile in the reservoir by a composite of 1D radial flow near 

the well and 1D linear flow farther from the well as drawn in Fig. 3.2.  They estimated 

the distance from the wellbore where linear streamlines become radial as h/2.  Their 

solution corresponds to the analytically derived solution by Butler39.   
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We solve the reservoir equations following the streamline geometry shown in Fig. 

3.2.  Firstly, we solve the equations analytically34, 40 and then approximate the solution to 

a simpler expression that gives almost an identical answer to the rigorous solution. 

 

 
Fig. 3.2 Geometry of the streamlines. 

 

3.3.1 Analytical solution 

Following the reservoir streamline geometry, the pressure relationship in a 1D Cartesian 

coordinate (y-direction) is described by Darcy’s law as 

dy
dpku y μ

−= ,         (3.17) 

where k is the permeability and μ  is the viscosity.  In term of the volumetric flow rate, 

Eq. 3.14 becomes 

dy
dpk

Lh
q

μ
−=

2
,         (3.18) 

where q, L, and h are the flow rate, the length of well, and the thickness of the reservoir 

respectively.  In linear coordinate, the energy balance becomes 
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Substituting Eq. 3.18 into Eq.3.19 and rearranging yield 
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Solving the second-order ordinary differential equation, we obtain 
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1L and 2L  are integration constants to be determined by boundary conditions.  

Similarly, we have for the radial flow portion, 
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In radial coordinates, the energy balance becomes 
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Substituting Eq. 3.23 into Eq. 3.24 gives 
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Solution to this second-order differential equation is given by 
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1R  and 2R  are integration constants. The boundary conditions are as follow:  

At the external reservoir boundary, temperature is known (geothermal temperature) 

oYy
TT =

=
2

.          (3.28) 

Temperature and heat flux is continuous at the boundary between radial and linear 

elements 

22
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and 
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Heat flux is continuous at the wellbore. 
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The last boundary condition makes the inflow temperature dependent on the wellbore 

temperature and the overall heat transfer coefficient between reservoir and wellbore.  

From the boundary conditions, finally we have 
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           (3.44) 

The solution of the reservoir temperature mainly depends on Joule-Thomson 

effect in the reservoir and the conduction of heat to or from the wellbore.  Fig. 3.3 shows 

the reservoir temperature profiles (perpendicular to the wellbore) comparison for various 

reservoir pressure drawdowns (100 psi, 300 psi, and 500 psi) neglecting the wellbore 

temperature effect (zero heat transfer with the wellbore) for single-phase oil flow.  Unless 

stated, the default properties listed in Table 3.1 are used in the examples through in this 

chapter. 
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Fig. 3.3 Reservoir temperature profiles (Joule-Thomson effect). 

 

Reservoir length [ft]
Reservoir width [ft]
Reservoir height [ft]

Pressure drawdown [psi] 300
T at outer boundary [oF]

Oil Water Gas
Density [lb/ft3] 41 63 14
Viscosity [cp] 0.49 0.48 0.03

KTt [Btu/hr ft °F] 2 2.5 1.3

Table 3.1 Properties used in the examples.

2000
3150
55

180

 

 

The Joule-Thomson effect is proportional to the pressure drop in the system.  

Therefore, the higher the pressure drawdown, the more significant the Joule-Thomson 

effect can be observed and the higher the inflow temperature of the fluid.  When a 

different type of fluid is produced than the one flowing in the wellbore, there is often a 

temperature difference between the inflowing fluid from the reservoir and the fluid 

flowing inside the wellbore.  In this case, the wellbore temperature effect becomes 

important.  In Fig. 3.4, the reservoir temperature profiles near the wellbore vicinity ( -1.5 
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ft) for different wellbore temperatures with a fixed heat transfer coefficient (88 Btu/hr-ft2-
oF) are shown.  As can be seen in Fig. 3.4, inflow temperature is affected by the wellbore 

temperature.  Because of the high non-linearity between reservoir and wellbore 

temperature, the equations have to be solved iteratively.  The details about the coupling 

model are discussed in Chapter IV. 
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Fig. 3.4 Wellbore temperature effect. 

 

Reservoir temperature profile also varies if the types of fluid differ.  The example 

calculations of temperature profiles of various types of fluid (oil, gas, and water) flowing 

into a wellbore are shown in Fig. 3.5.  If the pressure drawdowns (300 psi) and the 

boundary temperatures (180 oF) are same for all the types of fluid, the temperature 

difference is essentially governed by the Joule-Thomson coefficient, JTK , of the fluid.  

Cooling occurs if JTK  is positive, while warming if it is negative.  JTK  is positive for 

natural gases under the pressures up to about 5000 psi.  For liquids, JTK  is generally 

negative with the temperatures below approximately 80-90% of the liquid’s critical 

temperature and the pressures below the liquid’s vapor pressure41. 
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Fig. 3.5 Reservoir temperature profiles (different fluid type). 

 

3.3.2 Studies from reservoir model 

We have derived the rigorous temperature solution to the reservoir energy balance 

equation, and demonstrated some key behaviors of the reservoir temperature behavior.  

From the above examples, we can see that the temperature profiles follow straight lines 

except for the radial flow region near the wellbore.  This implies that we can neglect the 

second derivative (conductive heat flux) of the temperature in the linear flow region. 

Neglecting the heat conduction term, 2

2

dy
TdKT , and dividing both sides by yu , Eq. 

3.19 becomes 

( ) 01 =−−
dy
dpT

dy
dTC p βρ .       (3.45) 

Solving for 
dy
dT  yields 

dy
dpK

dy
dp

C
T

dy
dT

JT

p

=

−
=

ρ
β 1

.         (3.46) 



 

 

35

Assuming the Joule-Thomson coefficient, JTK , is invariant over the domain of interest 

( 2hyWy =→= ), we can integrate Eq. 3.46 as 

∫∫ =
=

W

h
JT

W

hy

dy
dy
dpKdy

dy
dT

22

,        (3.47) 

∫∫ =∴
=

W

h
JT

W

hy

dpKdT
22

,        (3.48) 

( )
22 hyeJTehy

ppKTT
==

−−=−∴  .      (3.49) 

Then we have the reservoir temperature at 2hy =  

( ) LhyeJTehy
TppKTT ≡−−=

== 22
.      (3.50) 

The solution to the radial region (Eq. 3.26) is now obtained with the new coefficients 

β
1

21 +′+′= −+ nn rRrRT .        (3.51) 

The new coefficients are to be estimated by the following two boundary conditions: 

Lhyhr
TTT ==

==
22

,         (3.52) 

and 

( )wrr
rr

T TT
dr
dTK

w
w

−=
=

=

α .       (3.31) 

Thus, we obtain 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞
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2
1

1 ww
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wT
n

wLwT
n

w TrhrnKrTrnKr
D

R βαααβ , (3.53) 

and 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
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⎡
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⎠
⎞

⎜
⎝
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2 ww
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wLTw
n

w TrhnKrrTnKrr
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R βαααβ , (3.54) 

where 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛= +−

−

+

+

−
wT

n
n

wwT

n
n

w rnKhrrnKhrD ααβ
22

.   (3.55) 
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The comparisons with the rigorous solution are shown in Figs. 3.6 and 3.7.  A small 

discrepancy can be observed in a fine scale near the wellbore (Fig. 3.7).  However, the 

results are almost identical.  From the results above, we conclude that the approximate 

model is a fair alternative to the rigorous solution. 
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Fig. 3.6 Comparison between rigorous and approximate solution. 
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Fig. 3.7 Comparison between rigorous and approximate solution in the radial flow region. 
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3.3.1 Effect of damage skin on reservoir temperature 

Damaged skin factor is created by formation damage during drilling or other well 

operations.  If the damaged formation affects the reservoir inflow temperature enough to 

detect, we would be able to estimate skin distribution along the well from DTS data.  The 

inferences can be performed easily by adding another radial flow region that has a 

reduced permeability.  In this section, we revisit the inflow temperature model to include 

the damaged zone and show how much temperature changes could occur under various 

conditions. 

 

 
Fig. 3.8 Schematic of a well with formation damage. 

 

The damaged region usually extends a few feet from the wellbore radially if 

permeability field is isotropic and homogeneous (Fig. 3.8).  According to the streamline 

geometry depicted in Fig. 3.2, the potential profile ( )zy,Φ  in the reservoir can be simply 

estimated by the following. 

For the radial region: 

( ) 2for       ,ln
2

, 22
22

hzyr
r

zy
L
q

k
zy w

w

≤+≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
⎟
⎠
⎞

⎜
⎝
⎛=Φ

π
μ .   (3.56) 
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For the linear region: 

( ) Wzyhhy
L

q
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⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
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2
2/2ln

2
, μ

π
μ . (3.57) 

Considering a small region of formation damage, we assume the geometry of a 

streamline does not change.  Then, for the pressure field, 

For the damaged region: 

( ) dw
wd

rzyr
r
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k
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μ .   (3.58) 

For the radial region: 
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           (3.59) 

For the linear region: 
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           (3.60) 

From Eqs. 3.58 - 3.60, the total pressure drop with fixed flow rate is obtained as 

( )
⎥
⎥
⎦
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⎢
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⎣

⎡
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=Δ shW

r
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w
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2ln

2
π

π
μ ,     (3.61) 

where 

⎟⎟
⎠

⎞
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⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

w

d

d r
r

k
ks ln1 .        (3.62) 

where kd is a damaged permeability and rd is a damaged radius.  As an example, we 

consider kkd 1.0=  and 3=dr ft ( 7.20=s ).  The pressure profiles of an undamaged 
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reservoir and a damaged reservoir for 500 psi pressure drawdown with fixed flow rate are 

plotted on a log-log plot in Fig. 3.9. 
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Fig. 3.9 Pressure profile comparison between undamaged and damaged reservoir. 

 

From Fig. 3.9, we can observe the higher pressure drawdown in the radial flow 

region if the damage zone, which creates additional pressure drop, exists.  Since the 

temperature profile is very sensitive to the reservoir pressure drawdown, the temperature 

profile should be affected by the existence of skin as well.  The solutions to the 

temperature profile are given by 

2for      ,1
21 hrrrCrCT d

nn ≤≤++= −+

β
,     (3.63) 

and, 

dw
dd rrrrCrCT ≤≤++= −+ for      ,1

43 β
,     (3.64) 

where 
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⎥

⎦
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We estimate these coefficients, C1, C2, C3, and C4 with the following boundary conditions 

in addition to Eqs. 3.31 and 3.52: 

The temperatures at the damaged and undamaged boundary are same, 

ββ
11

4321 ++=++ −+−+ d
d

d
d

m
d

n
d rCrCrCrC ,     (3.66) 

and first derivatives of Eqs. 3.63 and 3.64 are equal since the temperatures should be 

continuous 
1

2
1

3
1

2
1

1
−

−
−

+
−

+
−

+
−+++ +=+ d

d
d

d
n

d
n

d rdCrdCrnCrnC .    (3.67) 

Then the coefficients are: 
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Using the solution derived above, we can calculate the temperature profile.  The 

temperature profiles corresponding to the pressure profiles in Fig. 3.9 are plotted on a 

semi-log plot in Fig. 3.10.  Reservoir temperature is warmed up linearly in the linear flow 

region, while it follows the radial pressure change in the radial flow region.  For both 

cases, as fluid approaches to the wellbore, the temperature change is accelerated.  The 

well with damage has more pressure drawdown near the wellbore, and the fluid arrives at 

the wellbore with a higher temperature, 0.4 oF higher for this example.   
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Fig. 3.10 Temperature profile comparison between undamaged and damaged reservoir. 

 

Fig 3.11 shows the variation of the inflowing temperature varying damaged 

permeability ratio from 0.05 to 1 and damaged radii of 1, 3, and 5 ft.  The more damaged, 

the higher the inflow temperature observed.  Fig. 3.12 shows the same inflow 

temperature example plotted with the skin factor values calculated from Eq. 3.62 in Fig. 

3.7.  From the figure, we can see the almost proportional change of inflow temperature to 

the skin. 
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Fig. 3.11 Inflow temperature vs kd/k. 
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Fig. 3.12 Inflow temperature vs skin factor. 
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CHAPTER IV 

COUPLED MODEL 

4.1 INTRODUCTION TO COUPLED MODEL 

In the last two chapters, we have derived the wellbore and reservoir equations.  Our 

objective in this chapter is to develop a pressure and temperature prediction model that 

provides the flow rate, the pressure, and the temperature profiles along the horizontal or 

near horizontal wellbore.  The three unknowns have to be determined from the mass, the 

momentum, and the energy balance equations of the wellbore along with the reservoir 

equations. 

As Eq. 2.11 indicates, inflow rate profile is obtained from wellbore pressure 

profile.  Simultaneously, estimating wellbore pressure profile requires flow rate profile.  

Similarly, the wellbore temperature is estimated from the wellbore pressure and the 

reservoir temperature which is a function of the inflow rate and the wellbore temperature.  

Since the working equations of the wellbore and the reservoir are highly dependent each 

other, they need to be solved iteratively at the same time. 

We consider a horizontal well fully penetrated through a box-shaped 

homogeneous reservoir as described in Fig. 3.1 and divide the reservoir into a number of 

segments (Fig. 4.1).  With no-flow lateral boundaries, flow in the reservoir is only in the 

y and z directions; flow in the horizontal wellbore is in the x-direction.  The assumptions 

for this coupled model are the followings: 

1) Steady-state flow: For continuous well flow, changes in the well rate are much slower 

than the response time of any sensor.  We use the steady-state equations derived in 

Chapter II for the wellbore and Chapter III for the reservoir. 

2) Isolated reservoir segments: Each segment of the reservoir is idealized to be isolated 

from each other.  There is no flow in the x-direction within the reservoir. 
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3) Single-phase reservoir flow: Each reservoir segment produces a single-phase fluid.  

Multi-phase flow occurs only in the wellbore as a result of the combination of single-

phase flows of different phases from the reservoir segments. 

 

 
Fig. 4.1 Geometry of the forward model. 

 

4.2 SOLUTION PROCEDURE 

These highly non-linear equations are solved numerically.  We first discretize the 

equations with a finite difference scheme and solve the matrices for each equation as 

many times as necessary until the variables meet the convergence by the successive 

substitution. 

The mass balance equation (Eq. 2.65) can be discretized as 

( ) ( ) ( ) ( ) jijijiji BvAv =+ −1 ,       (4.1) 

where i denotes phase and j denotes position index.  ( ) jiA  and ( ) jiB  are given 

respectively as 

( )
( )
( ) jii

jii
ji y

y
A

ρ

ρ 1−−= ,        (4.2) 

and 

( )
( )
( )

( ) ( )
2

,

R
ppJ

y
B jRji

jii

jIi

ji πρ

ρ −
= ,       (4.3) 
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In matrix form, the equations are given by 
( ) ( )TpTp ,, BVA =⋅ .        (4.4) 

Since fluid properties are also pressure and temperature dependent, both coefficients are a 

function of pressure and temperature.   

If the flow is oil-water two-phase, we can discretize the momentum equation (Eq. 

2.76) as 

jjj Dpp =− −1 ,         (4.5) 

where 

( ) ( )
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xD ρρθρ
ρ

.  (4.6) 

In matrix form the equation becomes 
( )Tv,DPC =⋅ .         (4.7) 

In discretized form, the temperature equation (Eq. 2.69) can be written as 

jjjj FTTE =− −1 ,         (4.8) 

where 
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Then we have 
( ) ( )ITpvpv ,,, FTE =⋅ .        (4.11) 

The solution can be found iteratively.  For instance, when velocity and pressure profiles 

are known as ( nv , np ), then the temperature profile can be obtained as follows: 

Solve 
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( ) ( )lnnlnn TpvFTTpvE ,,,, =⋅ ,       (4.12)  

for T . Then T  will be updated as 

( ) lll TTTT +−=+ κ1 ,        (4.13) 

where superscript n means the known variable and l means the current status of the 

unknown variable, and κ  is a relaxation factor that takes value between 0 and 1.  This 

process will be repeated until we have 

2

)()(
)()(

tollTl

lTl

ε<−−
TT

TTTT ,        (4.14) 

where tolε  is a pre-assigned tolerance. A schematic of the solution procedure is shown in 

Fig. 4.2. 

 

 

 

 
Fig. 4.2 Schematic of the solution procedure. 
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4.3 RESULTS AND DISCUSSIONS 

With the recent fiber optic technology, a temperature can be measured with a resolution 

on the order of 0.0045 oF at some spatial and temporal resolutions42.  The changes in the 

horizontal wellbore are normally very limited.  Hypothetically, we set up the measurable 

temperature resolution as 0.01 oF.  However, if the estimated total temperature change of 

the wellbore is on the order of 0.01 oF, it may not benefit us to install the equipment and 

measure the profile.  Therefore, it is important to infer the possible temperature changes 

under various synthetic production cases. 

Other than the quantity of temperature change, we can also learn from the quality 

of temperature changes by taking a spatial derivative of temperature3.  When the different 

types of fluid are produced or well trajectory is changed at some position of the 

horizontal well, the slope of the temperature profile show some anomalies43. 

We consider two kinds of wells: one with a small diameter and the other large, 

and both are completed as cased and perforated wells.  The details of the well properties 

are shown in Table 4.1.  Oil, gas and water are the produced fluids.  The reservoir and 

fluid properties are listed in Table 4.2.  The physical fluid properties are estimated based 

on pressure and temperature along the wellbore, and Table 4.2, using accepted 

correlations41.   

 

Small Large
ID [in] 2.602 4
OD [in] 3.5 4.5

Diameter with cement [in] 5 6
Kcasing  [Btu/hr ft oF]
Kcement  [Btu/hr ft oF]
Relative roughness

Total Length [ft]
Pipe opened ratio [%]

2000
2

6.933
4.021
0.01

Table 4.1 Well properties.
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Reservoir length [ft]
Reservoir width [ft]
Reservoir height [ft]

Pressure drawdown [psi] 300
T at outer boundary [oF]
Specific gravity of gas
Salinity of water [%]

Oil API
Disolved GOR [SCF/STB]

Surface tenstion [dyne/cm]

Oil Water Gas
KTt [Btu/hr ft °F] 2 2.5 1.3
K [Btu/hr ft oF] 0.0797 0.3886 0.0116

180
0.75

5
45.176

Table 4.2 Reservoir and fluid properties.

2000
3150
55

800
10

 

 

4.3.1 Possible temperature changes 

To evaluate the possible temperature changes along the horizontal wellbore in a single-

phase production system, we studied two extreme cases: small and large production 

scenarios with small or large well diameter.  These examples should bracket the possible 

temperature changes in actual single-phase producing wells.  

Fig. 4.3 displays the pressure change from the toe pressure for flow through a 

well with small diameter.  With a total flow rate of about 5,000 b/d, the total pressure 

drop in the 2,000 ft long well is about 30 psi; at a very high rate of about 20,000 b/d, the 

wellbore pressure drop is over 300 psi.  The corresponding temperature change profiles, 

the temperature at any location along the well minus the temperature at the toe, are shown 

in Fig. 4.4.  For the small flow rate case, the temperature changes less than 0.2 oF 

throughout the well while the temperature changes 1.4 oF for the large flow rate case.  

Since the pressure drop for this case, a high flow rate in a small diameter well, is quite 

large, this order of change would be the largest temperature change caused by wellbore 

flow effects that can be expected in a horizontal single-phase oil production well. 
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Table 4.3 summarizes results from several other cases.  The profiles for each are 

similar to those shown in Figs. 4.3 and 4.4.  In these calculations, the temperature 

changes for low production rates with the larger diameter wellbore for both oil 

(maximum change of 0.02 oF) and gas production (0.01 oF) cases were small.  However, 

if the production rate is large, the temperature change would be measurable.  Even though 

the pressure change along a well producing gas is small, the temperature change of gas is 

more sensitive to the production rate. 
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Fig. 4.3 Pressure deviation profiles (oil production with small well diameter). 
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Fig. 4.4 Temperature deviation profiles (oil production with small well diameter). 

 

Fluid Rate Diameter ΔPTotal, psi ΔTTotal, oF

oil Low (4990 bbl/day) Small 35.2 0.16

oil High (20077 bbl/day) Large 314.9 1.44

oil Low (5064 bbl/day) Small 4.4 0.02

oil High (20053 bbl/day) Large 63.4 0.29

gas Low (5046 MSCF/day) Small 6 0.08

gas High (20039 MSCF/day) Large 63.9 0.79

gas Low (5097 MSCF/day) Small 0.73 0.01

gas High (20039 MSCF/day) Large 10.5 0.13

Table 4.3 Summary of possible temperature changes.

 

 

4.3.2 Pressure and temperature profiles with well inclination 

Horizontal wells are rarely perfectly horizontal, with the inclination angle varying along 

the trajectory.  Deviations of the well trajectory may alter the temperature and pressure 

profiles along the wellbore from that of a perfectly horizontal wellbore. 
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The geothermal temperature of the formation monotonically increases with depth 

so that in upward flow, the wellbore fluids will encounter cooler formation temperatures 

as they move up the wellbore, and will encounter warmer surroundings with a downward 

trajectory.  For this example, the geothermal gradient is taken to be 0.01 oF/ft.  

Inclinations of 2o and -2o from horizontal were examined.  These results were compared 

with the horizontal small-diameter case that has uniform inflow (5b/day/ft for oil and 25 

MCF/day/ft for gas).   
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Fig. 4.5 Wellbore pressure drops (single-phase oil). 

 

Fig. 4.5 shows the comparisons of pressure changes from the toe pressure 

(wellbore pΔ ) for upward and downward trajectories.  For oil flow, the pressure loss will 

be larger in upward flow compared to horizontal flow and less in downward flow as 

depicted in Fig. 4.5 because of the decreasing hydrostatic pressure drop.  Fig. 4.6 plots 

the temperature deviations from the toe temperature.  In downward flow, the wellbore 

encounters warmer formation temperature and, as expected, temperature deviation of 

downward flow is more than the horizontal case.  Upward flow temperature behavior is 
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more profound.  The fluid temperature decreases first because of a cooler environment, 

and then increases because of Joule-Thomson warming.  Although this results in the 

minimum temperature deviation among cases, its shape is remarkable since temperature 

should not decrease in a perfectly horizontal wellbore producing liquid.  This downward 

concave shape could be an identification of the upward trajectory of the well and 

illustrates that an accurate measurement of well trajectory is needed to interpret 

temperature and pressure profiles in nominally horizontal wells. 
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Fig. 4.6 Wellbore temperature deviations (single-phase oil). 

 

Next, we present the gas production cases.  Comparisons with the horizontal case  

are displayed in Figs. 4.7 and 4.8.  Similarly, the pressure drop is smaller in downward 

flow and larger in upward flow.  However, because of the relatively small gas density, 

these effects appear to be much less than the previous oil example.  Meanwhile, the 

temperature deviation profiles show distinct differences for the two inclinations.  Because 

of Joule-Thomson cooling, the usual temperature profile shows a monotonically 

decreasing curve in gas production.  But in downward flow, the wellbore is exposed to 
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the warmer surrounding and ends up with a higher temperature at the heel than at the toe.  

This does not usually occur in a flowing horizontal gas well. 
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Fig. 4.7 Wellbore pressure drops (single-phase gas). 
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Fig. 4.8 Wellbore temperature deviations (single-phase gas). 
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4.3.3 Water entry effects 

When water is produced from the same elevation as the oil zone, the water producing 

zone can be actually cooler than oil-producing zones because of the difference in Joule-

Thomson coefficients as shown in Fig. 3.5.  We have observed in Chapter III, that oil, 

gas, and water would have different inflow temperatures and difference in inflow 

temperature is dominated mostly by Joule-Thomson effects in the formation and the 

reservoir boundary temperature.  A case for which the boundary temperatures are 

different is when water entry is caused by water coning.  Since water is produced from 

the deeper zone, water entry tends to cause warming of the wellbore33.  In this study, we 

consider the boundary temperatures are the same for all the fluid types.  Therefore, the 

Joule-Thomson effect of the reservoir that is a product of pressure drawdown and the 

Joule-Thomson coefficient, is the dominant term. 

Fig. 4.9 shows an example of temperature profiles for water entry near the middle 

with different water cut values and Fig. 4.10 shows the corresponding pressure curve.  In 

this example water is entering the wellbore from 1,200 to 1,400 ft from the heel of the 

well.  This water entry is identified by the cool anomaly along the well.  Beginning from 

the toe of the well, the water producing zone is clearly indicated by the cool temperature 

anomaly, with the beginning of the water zone corresponding to the sudden drop in 

temperature and the end of the water zone marked by the increase in temperature.  For the 

higher water cut, this difference is more pronounced.  While temperature profiles indicate 

where the water entry starts and ends, the pressure profiles (Fig. 4.10) do not clearly 

show the location of the water entry.  We can see that the overall pressure drop of the 

higher water cut case is higher.  Since the density of water is higher than that of oil, the 

mixture density of the flowing fluid in the wellbore for the higher water cut case is 

higher.  Therefore, the frictional pressure, which is proportional to the density, ends up 

with being larger for the higher water cut case.  The slope of the pressure curve with a 
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water cut of 0.3 was changed where the water entry began.  However, the pressure 

profiles did not exhibit distinct anomalies. 
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Fig. 4.9 Temperature deviation profiles for different water cuts. 
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Fig. 4.10 Pressure drop profiles for different water cuts. 
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The temperature drops observed on the profiles also vary with the water entry 

locations.  Fig. 4.11 depicts the temperature profiles with different water entry locations 

with a water cut of 0.3.  Water entry near the heel has limited effects on the wellbore 

temperature profile compared to the water entry near the toe because the relative amount 

of water production will be smaller.  For instance, supposing that a well is producing 

5b/d/ft uniformly, the maximum water holdup along a horizontal well can be as high as 

0.5 if water is entering over 1600-1800 ft from the heel.  However, if water is entering 

over 0-200 ft from the heel, water holdup can only be 0.1.  Therefore, as water entry 

occurs closer to the toe, fluid in the wellbore is more affected.  The pressure drop profiles 

are also plotted in Fig. 4.12.  Again, we can observe the slope change where water entry 

starts.  Compared with temperature profiles, pressure profiles would be less informative 

to identify amount and location of water entry. 
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Fig. 4.11 Temperature deviation profiles for different water entry locations. 
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Fig. 4.12 Pressure drop profiles for different water entry locations. 

 

To examine the use of a temperature log as a means to locate water entry location, 

we define the temperature difference ( TΔ ) cause by water inflow into an oil as shown in 

Fig. 4.9 as the difference between the wellbore temperature upstream of the entry and the 

minimum temperature caused by the water entry.  Also, the dimensionless water entry 

location is defined as the fraction of the water entry start distance from the heel divided 

by the total well length as shown in Fig. 4.11.  To develop guidelines for what conditions 

lead to identifiable temperature anomalies, we varied the water cut (0.05 – 0.3) and the 

water entry location while fixing total flow rate (10,000 b/d), the pressure drawdown in 

the reservoir (300 psi), and the length of the water entry zone (10% of total well length).  

The temperature differences from these simulations are summarized in Fig. 4.13, which 

shows broad conditions of detectable temperature changes except for conditions of low 

water cut and water entry locations close to the heel.  As the water cut increases, and the 

location goes away from the heel, the temperature changes become larger. 

 

 



 

 

58

 

 

 

 

 

 

 

 

 
 

Fig. 4.13 Temperature difference contour (water). 

 

4.3.4 Gas entry effects 

When gas is produced, the wellbore will usually experience a temperature cooling.  The 

temperature deviation profiles for different amounts for gas production and the pressure 

drop profiles are shown in Figs. 4.14 and 4.15 respectively.  The sensitivity of the 

temperature behavior to the amount of gas production is clearer than those of water entry 

cases.  But for the pressure profiles, the profiles with different amount of gas production 

cases are almost identical.  The temperature deviation profiles of gas entry with different 

entry locations are shown in Fig. 4.16 and the pressure drop profiles are plotted in Fig. 

4.17.  While the temperature behaves sensitively to the gas entry locations, the pressure 

profiles only change the slopes.  Similarly to the water entry example, the temperature 

change caused by a gas entry increases as the amount of gas production becomes higher 

and the gas entry occurs farther away from the heel. 
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Fig. 4.14 Temperature deviation profiles for different gas fractions. 
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Fig. 4.15 Pressure drop profiles for different gas fractions. 
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Fig. 4.16 Temperature deviation profiles for different gas entry locations. 
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Fig. 4.17 Pressure drop profiles for different gas entry locations. 

 

As with the water entry case, we varied the volume fraction of gas production 

(0.05 – 0.3) and the gas entry location, and fixed total flow rate (10,000 b/d or 56,146 

CF/d), the length of the gas entry zone (10% of total well length), and the reservoir 
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pressure drawdown (300 psi) to determine the conditions which gas entries can be 

identified from the temperature profile.  The gas flow rates for these calculations are the 

downhole volumetric flow rate, so a gas cut of 0.3 means that at the bottomhole pressure 

and temperature, 30% of the total volumetric flow rate is gas.  The results from these 

simulations are summarized in Fig. 4.18.  Similar features to the water entry scenario can 

be observed from the figure.  When gas production rate is small and entry occurs near the 

heel, the temperature changes are not significant enough to detect.  As gas production rate 

increases or gas enters farther away from the heel, the temperature changes become large.  

Considering the fact that the inflow temperature of a gas is cooler than geothermal 

temperature, it is clear that we see more pronounced effects of the gas entry on the 

temperature profile than those of the water entry. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18 Temperature difference contour (gas) 

 

4.3.5 Damaged skin effect 

With the existence of formation damage, the pressure profile in the reservoir changes.  As 

a result, the inflow temperature increases proportional to the damage skin factor were 
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shown in Fig. 3.13.  Inflow temperature changes caused by a near well damaged region 

are not as significant as the ones caused by water or gas entry.  However, while the 

occurrence of water or gas entry can be noticed at the surface once they have been 

produced, the distributions of formation damage are hard to profile.   

If formation damage is evenly distributed in the entire producing zone, there 

would be little chance to observe skin effects on temperature log since it would not leave 

any anomalies on the profiles.  In the following examples, we show the cases that 

formation being damaged in a particular zone, namely toe, middle, and heel.  We 

consider a single-phase oil production with uniform inflow (5 b/d/ft) while the pressure 

drawdown in the reservoir (300 psi) being fixed by adjusting the undamaged 

permeabilities.  We also assume that the damaged zone is extended radially into the 

formation for distance of 3 ft.  The reduced permeability ratios, kkd , of 0.1 ( 6.24=s ), 

0.3 ( 4.6=s ), and 0.5 ( 7.2=s ) are considered. 

Fig. 4.19 shows the case of damage existing near the toe for 500 ft.  For small 

kkd  of 0.1 and 0.3, the temperature changes are measurable.  We can also observe the 

temperature slope change where the damage zone exists.  Fig. 4.20 displays a similar 

example but with the damage zone lying in the middle.  The inflow temperature effects 

are less observable because the difference in inflow temperature is smoothed by the 

wellbore temperature as have been seen in the water or gas entry examples.  Finally, the 

profiles of the damage zone at the heel are shown in Fig. 4.21.  The changes are not 

distinct for this case. 
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Fig. 4.19 Temperature profiles with damaged zone (toe). 
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Fig. 4.20 Temperature profiles with damaged zone (middle). 
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Fig. 4.21 Temperature profiles with damaged zone (heel). 
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CHAPTER V 

INVERSION METHOD 

5.1 INTRODUCTION TO INVERSION METHOD 

In this chapter, we develop an inversion method to analyze distributed pressure and 

temperature data.  The coupled model described in the previous chapters will be used as a 

forward model to calculate pressure and temperature profiles.  With the steady-state 

model, we perform production profile matching along a horizontal well.   

We also present the study of the effects by adding temperature data to flow rate 

and pressure data in reservoir property estimation.  Having more data as observations 

simply increases restrictions in parameter estimation and should decrease the uncertainty 

but possibly over-determines the problem.  Even though pressure data are commonly 

used as observation to be matched, the temperature change is often neglected in normal 

production system.  As discussed previously, that is a fair assumption especially for 

horizontal wells.  However, with the advanced technology to accurately measure 

temperature, it is important to give some insights into the effect of having temperature 

data additionally on the reservoir property estimation.  

 

5.2 INVERSION METHOD 

We regard the total flow rate, the pressure and temperature profiles as observation data, 

and productivity (inflow) distribution as parameters to be estimated. In synthetic 

examples, we generate observations from a forward model and invert them to obtain the 

productivity distribution along the horizontal well.  The discrepancy between observation 

and calculation is the error (objective) function to be minimized.   

The relationships between productivity (or inflow rate) profile and observations 

(total flow rate, pressure, and temperature) are highly nonlinear.  Let the relationship 

between parameter vector w  and model-generated observations be represented by 



 

 

66

( )wx;f .  ( )wx;f  is a function of both observation space x  and parameter w , and maps 

N-dimensional parameter space into M-dimensional observation space.  The Levenberg-

Marquardt Algorithm44 is a blending method of a least-squares estimation and a steepest 

descent method, and it outperforms both methods.  In what follows, we briefly show the 

derivations of both methods and of the Levenberg-Marquardt algorithm. 

 

5.2.1 Least-square method 

We assume that the model-generated observation ( )wx;f  corresponding to a vector w  

that differs slightly from 0w  is a linear function of w .  A linear approximation of 

( )wx;f  in the neighborhood of 0w  is given by a truncated Taylor series as 

( ) ( ) ( )00;; wwJwxwx −+= ff ,       (5.1) 

where J  is a Jacobian matrix given by 

( )0;wxJ f∇= .         (5.2) 

Now we define an objective function as a squared error of the model-generated 

observation ( )wx;f  from the observations y .  It is given as 

( ) ( )( ) 2; ywxw −= fE .        (5.3) 

Taking a derivative of the objective function with respect to the parameter vector w , we 

have 

( ) ( ) ( )( )ywxwxw −∇=∇ ;;2 ffE T .      (5.4) 

Substituting Eq. 5.1 into Eq. 5.4 gives 

( ) ( ) ( ) ( )( )ywwJwxwxw −−+∇=∇ 00;;2 ffE T .     (5.5) 

Since we have assumed a linear approximation of f ’s dependence on w , we have 

( ) ( )
J

wxwx
=
∇=∇ 0;; ff .        (5.6) 

We denote 
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( )( )ywxJd −= 0;fT ,        (5.7) 

and 

JJH T= .          (5.8) 

The letters d  and H  stand for the derivative and the Hessian respectively.  While d  is 

the actual derivative of ( )wE , H  is the approximate Hessian obtained by neglecting the 

second order derivative.  The rigorous Hessian is estimated as45 

( )( )∑
=

−+=
M

i
iii

T yxf
1

; TwJJH ,       (5.9) 

where iT  is the Hessian matrix of the residual ( )( )ii yxf −w;  at this observation point and 

is neglected here because of the linear assumption of f.  With Eqs. 5.7 and 5.8, Eq. 5.5 

becomes 
( ) ( ) dwwHw 22 0 +−=∇E .       (5.10) 

With the optimal parameter vector optw , the gradient of the objective function 

( )wE∇  should be zero.  Therefore, we have 

( ) dwwH0 22 0 +−= opt .        (5.11) 

Solving for optw  yields 

0
1 wdHw +−= −

opt .        (5.12) 

Because of the linear approximation of f , Eq. 5.12 is approximately correct.  

That is optw , defined by adding the upgrade vector to the vector set 0w , is not guaranteed 

to be the minimum of the objective function ( )wE .  Therefore, the new set of parameters 

contained in optw  is then to be used as a starting point to determine new upgrade vector 

given by Eq. 5.12.  By repeating this procedure, we can supposedly reach the global 

minimum of ( )wE .  The process of iteratively arriving at the minimum is depicted for a 

two-parameter problem in Fig. 5.1. 
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Fig. 5.1 Image of least-square method’s iterative process behavior. 

 

5.2.2 Steepest descent method  

The gradient vector of ( )wE  can be written as 

( )
( )( )

d
ywxJ

wg

2
;2 0

=
−=

∇=

f
E

T .        (5.13) 

In the steepest descent method, the upgrade vector follows the direction of that the 

objective function decreases from the current parameter set 0w .  Therefore, the upgrade 

vector will be computed from 

gww η−= 0 ,         (5.14) 

where the constant η  is the upgrading parameter.  The negative gradient vector g−  is in 

the descend direction of the error function ( )wE  in which the current parameter set is 

supposed to move.  The upgrade vector, however, has to be damped by multiplying η  so 

as not to overshoot the downhill direction. 
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5.2.3 Levenberg-Marquardt method 

The upgrade vector derived from the local linear assumption (Least-Square Estimation) 

should not allow the error function ( )wE  to increase from the current state.  Therefore, 

the angle between the upgrade vector derived from local linear assumption, dH 1−− , and 

the negative gradient vector, g− , cannot be greater than 90 degrees.  If the angle is 

greater than 90 degrees, the upgrade vector leads ( )wE  to increase.  However, the 

upgrade vector, dH 1−− , can normally speed up the convergence toward the global 

minimum especially when the parameters are highly correlated even though g−  defines 

the direction of steepest descent of ( )wE .  In such situations, since the descend direction 

becomes too sensitive to the parameters, we tend to wander between the valleys of the 

objective function near the minimum and the convergence speed becomes enormously 

slow.  This behavior is diagrammatically shown in Fig. 5.2. 

 

 
Fig. 5.2 Image of steepest descent method’s iterative process behavior. 

 

The upgrade vector Eq. 5.12 is not always better because it assumes a local 

linearity of ( )wx;f  and that is only valid near a minimum.  Marquardt44 invented a 
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technique that involves ‘blending’ between least-square (Eq. 5.12) and steepest descent 

(Eq. 5.14) methods.  We take full advantage of steepest descent until we reach near the 

minimum and gradually shift the upgrading method into the least-square method.  

Introducing a blending factor λ , the upgrade vector is given as 

( ) dIHww 1
0

−+−= λ .        (5.15) 

where I is the identity matrix.  If a small value for λ  is taken, Eq. 5.15 becomes identical 

to the least-square method.  And, as λ  gets large, Eq. 5.15 approaches to 

dww
λ
1

0 −= ,         (5.16) 

which is a steepest descent method. 

 

5.3 APPLICATION 

We now apply a Levenberg-Marquardt method to our problem, which has flow rate, 

temperature, and pressure data as observations.  Supposing downhole pressure and 

temperature profiles are measured at N points, we will obtain N points of pressure and 

temperature, respectively, in addition to the total flow rates of each phase.  In the 

following, we define the corresponding variables for the Levenberg-Marquardt method. 

 

5.3.1 Variable definitions 

We denote the measured pressure data as 

[ ]T21 ,,, mNmmm ppp L=p ,        (5.17) 

And the temperature measurements as 

[ ]T21 ,,, mNmmm TTT L=T .        (5.18) 

The flow rates of each phase (1 = oil, 2 = water, and 3 = gas) are 

[ ]T321 ,, mmmm qqq=q .        (5.19) 
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The parameters we wish to estimate from these data are the productivity profile 

along the well.  The productivity index J is defined as 

p
qJ
Δ

= .          (5.20) 

From Eq. 3.63, we can solve for the productivity index of horizontal well.   Then we 

obtain 

⎥
⎦

⎤
⎢
⎣

⎡
+−+⎟

⎠
⎞

⎜
⎝
⎛

=
s

h
W

R
h

kLJ
917.1ln

2

πμ

π .      (5.21) 

From Eq. 5.21, the productivity index is proportional to permeability if other parameters 

stay the same.  Therefore, the permeability profile along the well is chosen as the 

parameters to be estimated from production data.  To match the pressure and temperature 

data measured at N points, the forward model must divide the reservoir into N segments.  

Following the notation of the previous section, the parameters can be written as 

( ) ( ) ( )[ ]
[ ]T21

T
21

,,,

,,,

N

N

kkk

xkxkxk

L

L

=

=w
.       (5.22) 

From the forward model with N segments, we can calculate N pressures and N 

temperatures respectively.  The calculated pressure profile from the model is 

( ) [ ]T21 ,,, cNccc ppp L=wp ,       (5.23) 

and temperature profile is 

( ) [ ]T21 ,,, cNccc TTT L=wT .        (5.24) 

Additionally we have production of each phase 

( ) [ ]T321 ,, cccc qqq=wq ,        (5.25) 

where subscript c stands for calculated. 

Now we define the objective function as a squared difference of the model-

calculated values and measurements.  However, we cannot treat temperature, pressure, 
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and flow rate equally because they have different impacts on the permeability profile and 

have even different unit (temperature in oF, pressure in psi, and flow rate in b/d or 

MCF/d).  For this purpose we need to weight each measurement in defining the error 

term.  Hence, we define the error components as follows 

( )mcpp ppDe −= 2
1

,        (5.26) 

( )mcTT TTDe −= 2
1

,        (5.27) 

and 

( )mcqq qqDe −= 2
1

.        (5.28) 

where pD , TD , and QD  are weights for each error element and are diagonal matrices.  

Then we can define the objective function as 

( )

( ) ( ) ( ) ( )[ ] ( ) ( )∑∑
==

−+−+−=
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miciiiq
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DDD

eeeeeew
. (5.29) 

Using the error components vector, the gradient vector d  is given by 

qqTTpp eJeJeJd TTT ++= ,       (5.30) 

where Jacobian matrices pJ , TJ , and QJ  are given by 

( ) ( )
k

cj

jjp
k
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jkp k
p

k
e
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∂
=

∂

∂
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1
DJ ,       (5.31) 

( ) ( )
k
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T
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=

∂

∂
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1
DJ ,       (5.32) 

and 

( ) ( )
k

ci
iip

k

qi

ikq k
q

k
e

∂
∂

=
∂

∂
= 2

1
DJ .       (5.33) 

Therefore, the kth component of the derivative vector d  is given as 
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Similarly, the Hessian matrix H is 

qqTTpp JJJJJJH TTT ++= .       (5.35) 

The component of the matrix is estimated as 
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Each component of Jacobian matrices can be obtained numerically.  For instance, 
k

cj

k
p
∂

∂
, 

can be computed by perturbing kk while keeping other parameters constant.  The 
sensitivity of kk to cjp  is approximated to 

( ) ( )
k

kkkpkkkkp
k
p NkcjNkcj

k

cj

δ
δ LLLL ,,,,,, 11 −+

≅
∂

∂
.    (5.37) 

As obvious from Eq. 5.37, calculating a sensitivity of one parameter kk requires at least 

one forward model run.  Therefore, to compute the whole Jacobian matrix, we need to 

generate a number of parameters (N) forward runs.   

Starting from an initial guess of the parameters, 0w , the update rule follows the 

Levenberg-Marquardt method that is given as 

( ) dIHww 1
0

−+−= λ .        (5.38) 

The schematic of the inversion process is shown in Fig. 5.3. 
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Fig. 5.3 Schematic of the inversion procedure. 

 

5.3.2 Observation weights 

In 5.3.1, we supposed that the production data measured were pressure and temperature 

profiles in addition to total flow rate of each phase.  Giving many types of input data to 

the objective function, however, might result in the problem being over-determined and 

the objective function losing the right path without making any improvements.  

Therefore, in this example, we go through a variety of numerical experiments with 

different input data combinations to evaluate the effects of each input data on the 

permeability inversion.  As observations we possibly obtain, we consider pressure and 

temperature profiles, and flow rates of each phase.  Plus, we consider the spatial 

derivative of pressure and temperature profiles ( dxdp  and dxdT ) because we have 

observed the slope of these curves sometimes indicating additional information. 

In Eqs. 5.26 – 28, we introduced the weights for each observation.  As stated, 

each observation has different physical properties and units.  Therefore, they should have 

different contributions to the objective function.  For instance, if the weight of flow rate 
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is improperly high compared to the other inputs, the inversion problem becomes identical 

to the problem of simply matching the flow rate data only.  Although knowing the 

relative importance of different types of input data is essential, there is no explicit way to 

quantitatively calculate the weights.   

In this study, we approximately equalize the sensitivities of the input data to the 

permeability estimation with observation weights to quantify the relative importance.  

Also, we treat the input data of the same kind equally in further discussion.  Therefore, 
for instance, the component of weight matrices ( )

jjpD  can be replaced with simply pD  

for all pressure observations.  Since each observation has different units, we introduce 

dimensionless observation as follows. 

xkp
q

q
R

i
iD Δ
=

μ
, ,         (5.39) 

R

j
jD p

p
p =, ,         (5.40) 

Rp

j
jD pC

T
T

ρ
=, ,         (5.41) 

R
xxD = .          (5.42) 

where xΔ  is the length of the segment.   

The sensitivity of the dimensionless observation jDp ,  to the permeability of the 

kth segment kk  can be written as jDk pk ,∂∂ .  To obtain similar contributions from 

different observations, we equate the sensitivities with the weights.  Then we have 

( ) ( ) jDD
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111

,   (5.43) 

where dpD  and dTD  are the weights for dxdp  and dxdT . 
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From Eq. 5.43, the relative sensitivity of the dimensionless pressure observation 

to the flow rate can be written as 

jD

jD

jDk

iDk

p

q

q
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pk
qk

D

D

,

,

,

,

2
1

2
1
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∂∂
=

.        (5.44) 

Therefore, the relationship between pD  and qD  is given by 

p
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∂
= .        (5.45) 

iDjD qp ,, ∂∂  is the sensitivity of iDq , to jDp , .  Flow rate of the phase i is given by 

( ) i

N

k
kRk qppJ =−∑

=1
.        (5.46) 

To estimate the sensitivity, we consider small perturbations of pressure and flow rate 

caused by, say, permeability and the resulting changes can be written as 

jjj ppp δ+= 0 ,         (5.47) 

iii qqq δ+= 0 ,         (5.48) 

where 0
jp  and 0

iq  are the initial pressure and flow rate before perturbations.  The 

change in the flow rate is 

( ) ( )
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k
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Therefore, we have 
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j

Jq
p 1

−=
∂

∂
.         (5.50) 

In dimensionless form, the sensitivity becomes 



 

 

77

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛Δ−=

∂

∂Δ=
∂

∂

j

i

j

iD

jD

J
xk

q
pxk

q
p

1

,

,

μ

μ
.        (5.51) 

Therefore, from Eq. 5.21 and 5.45, the relative weight then becomes 
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Similarly, the weight of dimensionless temperature observation is given by 

p
jD

jD
T D

T
p

D
2

,

,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
= .        (5.53) 

From Eq. 2.63, the physical relationship between wellbore temperature and pressure can 

be approximated as 

dx
dp

K
dx

dT j
JT

j = .         (5.54) 

From Eq. 5.54, we have 
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The dimensionless sensitivity is then 
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Therefore, the weight for the dimensionless temperature is 

( ) ppT DDD =−= 21 .        (5.57) 

What remain are the weights of ( ) jDD dxdp  and ( ) jDD dxdT .  From Eq. 5.43, we 

have 
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( ) jDD dxdp  is actually calculated by the pressure difference across a segment divided by 

the length of the segment as 
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With a small perturbation, the changes of jDp ,  and ( ) jDD xp ΔΔ  result in 

jDjDjD ppp ,
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,, δ+= ,        (5.60) 
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Solving for the perturbed change of ( ) jDD xp ΔΔ  gives 
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Therefore, we obtain 

( ) D
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jD x
dxdp
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∂ , ,        (5.63) 

Substituting into Eq. 5.56, the weight for dpD  is then given as 
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Similarly to ( ) jDD xp ΔΔ , the weight for ( ) jDD dxdT  is 

( ) TDdT DxD 2Δ= .         (5.65) 
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5.4 SYNTHETIC AND FIELD EXAMPLES 

With the inversion method described above, we show synthetic and field examples in this 

section.  Synthetic examples include single-phase oil and gas examples to demonstrate 

the effects of each production data (pressure, temperature, etc.), and detections of water 

and gas entry.  In the field example, we use production log data measured from a 

horizontal well in the North Sea which is producing oil and water. 

 

5.4.1 Effects of input data choice 

The possible candidates for input data are the pressure profile, the temperature profile, 

the flow rate, the pressure derivative, and the temperature derivative.  Total flow rate will 

be given as an observation for every case.  Through numerical examples, we evaluate the 

effects of each input data on the inversion results.  The experiments were conducted for 

single-phase oil production and single-phase gas production with a variety of 

permeability distributions. 

 

Experiments for single-phase oil production.  “Observations” are generated from a 

forward model following the “true” permeability distribution that we set up, and then 

inversion of the true permeability distribution is performed by matching the observations 

that are generated from the model. 

As true permeability distributions, we consider four different distributions (cases 

A, B, C, and D) along the horizontal well as shown in Fig. 5.4 for the single-phase oil 

production example.  High permeability (500 md) zone and low permeability (50 md) 

zones are located alternately in different ways.  To obtain larger wellbore effects on the 

profiles, the well with small diameter described in Table 4.1 is used in the experiments 

and the bottomhole (heel) pressure is set for 3,600 psi.  The reservoir whose properties 

are listed in Table 4.2 is considered.  The measurement resolutions of the pressure, 

temperature and flow rate are assumed to be the order of 0.1 psi, 0.01 oF, and 1 b/d 
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respectively.  The measurements are logged over 20 points located every 100 ft along the 

well.  As an initial permeability distribution, a homogeneous 300 md distribution is 

considered assuming we have no a priori information about the permeability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.4 Four different permeability distributions along horizontal well. 

 

For all the cases, we evaluate the effect of input data given on the inversion 

calculation.  The combinations we give are: pressure only, temperature only, pressure and 

temperature, pressure and pressure derivative, temperature and temperature derivative, 

and all of them.  We will determine the best combination among them through numerical 

experiments.  As an example of additional input data effects, the generated observations 
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of case A and the matched curves by using pressure only, temperature only, and all the 

observations are shown in Fig. 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5.5 Observation and matched curves with different input data (Case A, oil). 

 

Giving the pressure data only shows a close match with the pressure profile but 

the temperature curves did not match.  That indicates that pressure could be matched 

even if its temperature profile is off from the observation.  On the other hand, giving 

temperature only obtains a good match while the pressure profiles also match.  With 

more input data (giving all possible input), not significant difference can be observed in 

this example compared with the match from temperature only.   

Fig. 5.6 displays the inversion results from case A.  As pressure data only did not 

show a good match of temperature curve in Fig. 5.5, it is not surprising that inversion 
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from pressure only did not match the true permeability field well.  However, other 

combination choices captured the features of the alternating permeability zone locations, 

and their inversion results show good resemblance to the true permeability distribution.  

Inverted flow rate profile from temperature and pressure data were compared with the 

observed one in Fig. 5.6c.  They show very close match. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.6 Inverted results for case A, (a) permeability distributions from original data.  

(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from temperature and pressure.  

 

The inversion results of case B are shown in Fig. 5.7.  Similarly to case A, the 

inversion with pressure data only or pressure and dxdp  did not produce better 
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inverted flow rate profile from temperature and pressure data is also shown in Fig. 5.7.  

The flow rate profiles are identically agreed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.7 Inverted results for case B, (a) permeability distributions from original data.  

(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from temperature and pressure.  

 

The inversion results for the permeability distribution case C are depicted in Fig. 

5.8.  Unlike the previous two cases, the choice of pressure data only performed well in 

this case.  Also, the choice of all input data including the derivative of the data as shown 
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from the right direction because of too many restrictions.  The inverted flow rate from 

pressure and its derivative is shown in Fig. 5.8c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.8 Inverted results for case C, (a) permeability distributions from original data.  

(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from temperature and its derivative.  
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performances are improved compared with the other choices.  The inverted flow rate by 

temperature and pressure data is compared with the observation in Fig. 5.9c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.9 Inverted results for case D, (a) permeability distributions from original data.  

(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from temperature and pressure.  

 

In order to evaluate the inverted results, we calculated the l-2 norm of the 

discrepancy as 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

20

1

2

,

.,

j truej

invertedjtruej

k
kk

Err ,       (5.64) 

where truejk ,  and invertedjk ,  are the true and the inverted permeability of the position j 

respectively.  The obtained errors were normalized by dividing by the error of the result 

from pressure data for comparison reason and shown in Fig. 5.10.  In cases A, B, and D, 
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the combination of temperature and pressure gives the best result.  While the combination 

of temperature and derivative of the temperature gives the best result in the case C, the 

result from the temperature and pressure combination is still better than the others.  The 

combinations that provided the lowest error are highlighted in the figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.10 The error comparison (single-phase oil production). 

 

Experiments for single-phase gas production.  We perform the same experiments for 

single-phase gas production.  The permeability distributions used as true distribution are 

displayed in Fig. 5.11.  Similarly to the previous experiments, high permeability (100 

md) zone and low permeability (10 md) are located alternately.  Again, we examine the 

goodness of inversion results when using different combinations of input data while flow 
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rate is always given.  As an initial permeability distribution, homogeneous 50 md 

distribution is considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.11 Four different permeability distributions along horizontal well. 

 

We show an example of the observation and matched curves discrepancy.  The 

observed curves of case A and the matched curves are depicted in Fig. 5.12.  The choice 

of pressure data only shows a close match of the pressure curve while its temperature 

curve slightly deviates from the observation.  On the other hand, the matched curves from 

temperature data only show poor matches for both pressure and temperature curves.  

These discrepancies can be seen more clearly in the derivative of the data.  Interestingly, 

the choice of all input data provides better matches than these choices.   
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Fig.5.12 Observation and matched curves with different input data (Case A, gas). 

 

The inversion of permeability results are shown in Fig. 5.13.  As expected, the 

results from the choices of pressure data only and temperature data only did not capture 

the features of the permeability profile well while the combination of pressure and 

temperature and their derivatives gives a close match to the true permeability distribution.  

Obtained flow rate profile shows a very close match with the observed one. 
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Fig. 5.13 Inverted results for case A, (a) permeability distributions from original data.  

(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from all input data.  

 

We performed the permeability inversions for other cases as well.  As we have 

observed in the experiments with single-phase oil production, there is no single best 

choice of the input data.  One combination performs better one time, and another choice 

performs better another time.  Fig. 5.14 summarizes the inversion results from single-

phase gas production.  Except for case C, including all the input data gave the best 

results. 
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Fig. 5.14 The error comparison (single-phase gas production). 

 

The choice of input data.  Through these experiments to determine the best choice of 

input data combinations for single-phase oil and gas, we have seen most of the time 

giving multiple input data provides better permeability inversion than the single input 

data.  In order for us to determine the best choice, we took an average of normalized 

permeability distribution errors.  The comparison is shown in Fig. 5.15.  The combination 

of temperature and pressure provides the least error above all the choices.  Therefore, we 

select temperature and pressure profiles as input data to the inversion process in addition 

to flow rate in further discussion. 
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Fig. 5.15 Average of normalized errors. 

 

5.4.2 Single-phase inversion 

In the determination of input data choice, we considered horizontal wells producing high 

flow rates to obtain substantial wellbore effects.  The inversions of permeability 

distribution were promising for those cases.  In this section, we use a well with large 

diameter described in Table 4.1 with larger bottomhole pressure to have small production 

rate (small wellbore effect) to generate “pessimistic” conditions that have small pressure 

drop and small temperature changes along the well.  We again invert the permeability 

distributions of cases A and B shown in Fig. 5.4 for single-phase oil production and in 

Fig. 5.11 for single-phase gas production.  For inversion of the permeability profile, we 

select pressure and temperature as observed data choice as determined in the last section. 

 

Single-phase oil production.  With large diameter well and bottomhole pressure 3900 psi 

instead of 3600 psi, the generated observations of pressure and temperature profiles are 

shown in Fig. 5.16.  The total flow rate is 7767 b/d.  Overall pressure drop in the well is 

only about 7 psi and the temperature change is 0.04 oF as shown in the figures.  The 

matched curves are also depicted in Fig. 5.16.  Because the resolution of temperature is 

restricted to 0.01 oF, temperature profile is discretized.  Yet, the observed and inverted 
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profiles closely matched.  Fig. 5.17 shows the inverted permeability distribution and flow 

rate profile.  Despite the small changes of pressure and temperature profile, the inverted 

profile reproduced the feature of the true profile quite well. 

 

 

 

 

 

 

 

 
Fig. 5.16 Observed and matched curves (case A, oil). 

 

 

 

 

 

 

 

   a         b 
 

Fig. 5.17 Inverted (a) permeability distribution and (b) flow rate profile (case A, oil). 

 

Fig. 5.18 shows the observed profiles with the permeability distribution of the 

case B.  The total flow rate is 7842 b/d.  Also, the pressure drop (15 psi) and temperature 

changes (0.07 oF) are very limited.  The obtained matches are very close.  The inverted 

permeability distribution and flow rate are compared with the true distribution and shown 

in Fig. 5.19.  In Fig. 5.19a, the low permeability zone near the toe is well represented but 
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the inversion of the high permeability zone near the heel shows some differences.  

However, the overall permeability prediction is good and obtained flow rate profile (Fig. 

5.19b) shows a close match. 

 

 

 

 

 

 

 

 
Fig. 5.18 Observed and matched curves (case B, oil). 
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Fig. 5.19 Inverted (a) permeability distribution and (b) flow rate profile (case B, oil). 

 

Single-phase gas production.  Now we perform the permeability inversion with single-

phase gas production.  The well used for the calculation is the same and the bottomhole 

pressure is set at 3980 psi this time.  Fig. 5.20 shows the observed pressure and 
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temperature profiles with the inverted curves for case A permeability profile.  The total 

flow rate at the surface is 8449 MSCF/d.   

The pressure drop in the horizontal well is about 1.4 psi and the overall 

temperature change is 0.02 oF.  Both the inverted temperature and pressure curves give 

very close match to the observations.  The inverted permeability and flow rate profiles 

are shown in Fig. 5.21.  Even though the changes along the well are small, the inverted 

permeability and flow rate profiles capture the features of the true profiles well. 

 

 

 

 

 

 

 

 
Fig. 5.20 Observed and matched curves (case A, gas). 
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Fig. 5.21 Inverted (a) permeability distribution and (b) flow rate (case A, gas). 
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Fig. 5.22 Observed and matched curves (case B, gas). 
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Fig. 5.23 Inverted (a) permeability distribution and (b) flow rate profile (case B, gas). 

 

With the true permeability profile of case B, the total production is 8529 MSCF/d.  

The total pressure drop in the well is about 1 psi and the total temperature cooling is 0.02 
oF.  Fig. 5.22 shows the observed profiles and the matched curves.  Both pressure and 

temperature profiles are closely matched.  The inverted results are depicted in Fig. 5.23.  

The inverted permeability gives a profile close to the true except for the near heel region.  

Although the temperature profile is matched very well, the change itself is limited and is 

not captured by the measurement.  If the measurement resolution were high, the 

temperature drop caused by high permeability zone near the heel would appear clearly 

and better permeability distribution could be inverted.  However, this permeability 
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difference near the heel does not affect much on the flow rate profile as shown in Fig. 

5.23b. 
 

5.4.3 Water entry detection 

When water is produced, we can detect its entry from the wellbore temperature cooling if 

the water and oil are produced from the same level (same boundary temperature).  We 

show water entry examples of water entering from two regions (900 – 1100 ft, and 1600 

– 1800 ft from heel) and invert the permeabilities of these zones.   
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Fig. 5.24 Permeability distribution and water entry zones (case A). 

 

For a first example (case A), we consider a permeability profile as shown in Fig. 

5.24.  Two water entry zones are indicated in the figure.  Observations generated based 

on this permeability field are shown in Fig. 5.25.  The well with large diameter described 

in Table 4.1 is used and the bottomhole pressure is set as 3600 psi.  As depicted in Fig. 

5.25a, we have two water entry zones: one at the middle and the other at near the heel of 

the well.  For each water entry zone, the wellbore temperature is cooled as shown in Fig. 

5.25c, while the pressure profile (Fig. 5.25b) does not show any signs of water entries.  

For this case, both water entry zones have equal permeability.   
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Fig. 5.25 Generated observations (a) flow rate, (b) pressure,  

and (c) temperature profiles (case A). 

 

We inverted the permeabilities of the water entry zones and the permeabilities of 

the oil producing zone by matching the pressure and temperature profiles, and the flow 

rates of oil and water.  The matched temperature and pressure curves are displayed in 

Fig. 5.26 and the inverted permeability distribution and flow rate profile are in Fig. 5.27.  

Both the temperature and pressure profiles are closely fitted by the inversion method.  As 

a consequence, we were able to reproduce very accurate permeability and flow rate 

profiles for the two water entry zones. 
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Fig. 5.26 Observations and matched curves (water entry – case A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.27 Inverted (a) permeability distribution and (b) flow rate profiles  

(water entry – case A). 
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In the next example (case B), we consider the case in which water entry from the 

middle is smaller than the one from near the heel.  The permeability profile shown in Fig. 

5.28 is considered as the true profile.  The generated flow rate and temperature profiles 

according to this permeability distribution are shown in Fig. 5.29.   
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Fig. 5.28 Permeability distribution and water entry zones (case B). 

 

 

 

 

 

 

 

 
 
 

Fig. 5.29 Generated observations (a) flow rate and (b) temperature profiles (case B). 

 

Again, we can find the water entry zones by looking for temperature drop along 

the well.  The true permeability distribution is inferred by matching the production data.  

The matched curves are depicted in Fig. 5.30 and the obtained permeability and flow rate 

distributions are shown in Fig. 5.31. 
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Fig. 5.30 Observations and matched curves (water entry – case B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.31 Inverted (a) permeability distribution and (b) flow rate profiles  

(water entry – case B). 
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The observations were regenerated very precisely as depicted in Fig. 5.30.  As we 

have observed in Chapter IV, the wellbore temperature cooling by water entry are mainly 

determined by the location of the entry zone and the water production rate.  The cooling 

effect is more emphasized as its flow rate becomes higher and as it occurs closer to the 

heel.  Therefore, in this case, the temperature cooling at the middle is less significant than 

the previous water entry example.  The permeability inversion still shows a good match 

with the true permeability distribution.  Also, the flow rates in both water entry region  

are precisely inverted.    

For a last example of water entry (case C), we consider a smaller water flow rate 

near the toe as shown in Fig. 5.32.  The temperature drop near the toe, as can be 

expected, became less and at the middle it became more.  The observed profiles and the 

inverted profiles are shown in Fig. 5.33.  The inverted pressure and temperature curves 

are accurately matched with the observation.  The inverted permeability and flow rate 

profiles are shown in Fig. 5.34.  The obtained permeability distribution predicts both 

water entry zones’ permeability very closely.  The flow rates of both water and oil are 

closely matched as well. 
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Fig. 5.32 Permeability distribution and water entry zones (case C). 
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Fig. 5.33 Observations and matched curves (water entry – case C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.34 Inverted (a) permeability distribution and (b) flow rates profiles  

(water entry – case C). 
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5.4.4 Gas entry detection 

Similarly to water entry, gas entry cools the wellbore.  However, the cooling effect by gas 

is much larger than that of water because the gas temperature actually cools off below the 

geothermal temperature while oil and water warm up.  Therefore, the detection of gas 

becomes relatively easy as discussed in Chapter IV.  In this section, we show examples of 

permeability inversions when oil and gas are produced.  Again, we consider two gas entry 

regions: one is located near the toe (1,600 – 1,800 ft from heel).  The other one is at the 

middle (900 – 1,100 ft from heel).  The well properties are the same as the water entry 

example except for bottomhole pressure which is set at 3900 psi. 
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Fig. 5.35 Permeability distribution and gas entry zones (case A). 

 

As a first example (case A), we consider the two gas entry zones having the same 

permeability (20 md) while the oil permeability is 200 md as shown in Fig. 5.35.  The 

observations (flow rate, pressure, and temperature profiles) from this permeability 

distribution are also shown in Fig. 5.36.  As can be found from Fig. 5.36a, gas entered 

into the well from two regions.  Similarly, whereas we cannot see any indications of gas 

production on the pressure profile (Fig. 5.36b), the locations of gas entries can be found 

from the temperature profile by detecting the temperature drop as depicted in Fig. 5.36c.  
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We give the total flow rates of each phase, and pressure and temperature profiles to the 

inversion process as input data in this case as well.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.36 Generated observations (a) flow rate, (b) pressure,  
and (c) temperature profiles (case A). 

 

The matched pressure and temperature profiles are shown in Fig. 5.37 and the 

inverted permeability and flow rate distributions are shown in Fig. 5.38 with the initial 

permeability distribution used to start the inversion.   
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Fig. 5.37 Observations and matched curves (gas entry – case A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.38 Inverted (a) permeability distribution and (b) flow rates profile  
(gas entry – case A). 
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We slightly missed matching the pressure profile near the toe but the other zone 

and entire temperature profile are very closely matched.  The obtained permeability 

distribution is close to the true permeability distribution.  While the oil flow rate profile is 

successfully reproduced, gas flow rate replication shows slight off from the observation.  

However, more importantly, the permeabilities of both gas entry zones were predicted 

accurately. 

The next example (case B) is the same as the first one except that the middle gas 

entry zone’s permeability is lower (10 md).  The matched pressure and temperature 

profiles are shown in Fig. 5.39 and the inverted permeability distribution and flow rate 

profile are shown in Fig. 5.40.  The temperature and pressure profiles are almost exactly 

matched.  Also, Fig. 5.40a shows a very successful permeability inversion result.  High 

and low gas permeabilities of both gas entry zones are predicted correctly.  The obtained 

flow rates profiles are agreed well with the observations. 

 

 

 

 

 

 

 

 
 
 

Fig. 5.39 Observations and matched curves (gas entry – case B). 
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Fig. 5.40 Inverted (a) permeability distribution and (b) flow rate profiles  
(gas entry – case B). 

 

For a last example (case C), we invert the permeability distribution that has low 

permeability (10 md) gas entry zone near the toe (1600 – 1800 ft from heel) and high 

permeability (20 md) at the middle (900 – 1100 ft from heel).  The matched curves of 

pressure and temperature are shown in Fig. 5.41, and the inverted permeability 

distribution and flow rate profiles are shown in Fig. 5.42. 
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Fig. 5.41 Observations and matched curves (gas entry – case C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.42 Inverted (a) permeability distribution and (b) flow rate profiles  
(gas entry – case C). 
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We can see in Fig. 5.41 that the observations were almost identically reproduced.  

The inverted permeability distribution is also fit to the true permeability distribution 

including gas entry zones so are the obtained flow rate profiles.  Compared with the 

examples of water entry, the inversion results are better.  This is because a gas entry tends 

to create a clearer effect on the temperature profile than a water entry does.  Both 

detection of entry locations and quantification of productivities are easier for gas entries. 

 

5.4.5 Damage skin inference 

Existence of formation damage changes the pressure profile of the reservoir with a fixed 

flow rate.  This results in, as demonstrated in Chapter III, inflow temperature increase.  

Temperature increases are mainly determined by the damaged formation permeability.  

The effects of the damage zone’s radius are limited as shown in Fig. 3.11.  We also 

demonstrated the wellbore temperature profile with existence of formation damages in 

Chapter IV.  Fig. 4.18 – 4.21 showed more pronounced formation damage effects as the 

damage lies closer to the toe. 

We apply the inversion method developed to infer the formation damage 

permeability.  Similarly to the examples shown in Chapter IV, we consider a 

homogeneous reservoir having formation damage near the toe, middle, and heel with 

various ratios of reduced permeability.  Then we study about the predictability of 

formation damage from temperature profile.  The permeability of the reservoir is 

considered to be 200 md and the well with large diameter with 3600 psi bottomhole 

pressure is used in the calculation. 

Fig. 5.43 shows the observed temperature profiles from the reservoir with 

formation damage extending 3 ft into the formation over the zone of 1500 – 2000 ft from 

the heel for 3ft from the wellbore.  The ratios of reduced permeability ( kkd ) considered 

are 1, 0.5, 0.3, and 0.1.   
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Fig. 5.43 Wellbore temperature profiles with different formation damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.44 Matched temperature profiles (toe) of (a) kkd  = 0.5, (b) kkd  = 0.3, 

 and (c) kkd  = 0.1 
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We inverted the damaged permeability by matching the temperature profiles.  The 

matched temperature profiles are shown in Fig. 5.44 and the inverted damage skin factors 

are shown in Fig. 5.45.  We can see that the inversion result becomes better as the 

damage becomes more severe.  The more the reservoir is damaged, the more the 

temperature profiles are affected and therefore, the more chance we have to infer the 

damage skin factor.  For kkd  = 0.5 and kkd  = 0.3 cases, even though the temperature 

profiles are closely matched, we obtained different skin factor results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5.45 True and inverted damage skin profiles (toe) of (a) kkd  = 0.5, (b) kkd  = 0.3, 

and (c) kkd  = 0.1 
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If the damage zone is located closer to the heel, its effect on temperature profile 

becomes smaller.  We next show the prediction of skin factor for the reservoir with 

damage zone at the middle (800 – 1300 ft from the heel).  The observed and matched 

temperature profiles are shown together in Fig. 5.46 and the inverted skin factor profiles 

are shown in Fig. 5.47.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.46 Observed and matched temperature profiles (middle) of  

(a) kkd  = 0.5, (b) kkd  = 0.3, and (c) kkd  = 0.1 
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Fig. 5.47 True and inverted damage skin profiles (middle) of (a) kkd  = 0.5, (b) kkd  = 0.3, 

and (c) kkd  = 0.1 

 

The observed temperature profiles are precisely reproduced as shown in Fig. 5.46.  

For kkd  = 0.5 case, the profile of damage skin factor is not predicted well.  However, 

the skin factor profiles of kkd  = 0.3, and kkd  = 0.1 are reasonably predicted from the 

temperature profile despite the small changes of temperature. 

The last example contains the cases of damage zone being near the heel (0 – 500 

ft from the heel).  The true and inverted skin factor profiles are depicted in Fig. 5.48.  
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uniformly distributed.  In other words, if the damage is segregated and large, we can infer 

the damaged zone and quantify the reduced permeability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.48 True and inverted damage skin profiles (heel) of (a) kkd  = 0.5, (b) kkd  = 0.3, 

and (c) kkd  = 0.1 
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production rate have not been measured.  We apply the inversion method to the field data 

and obtain flow rate profiles of oil and water by matching the temperature and pressure 

data. 

The well is not perfectly horizontal and has slight deviations along its path.  The 

trajectory of the well is shown in Fig. 5.49.  The total oil production rate is 12,699 b/d 

and the water production rate is 8,554 b/d.  From the measured depth 10689 ft to 9785 ft, 

the oil is being produced with 4,101 b/d and water with 2,201 b/d.  From 9,705 ft to 8712 

ft, the oil production rate is 8,598 b/d and the water production rate is 6,553 b/d.  About 

65% of the total production is produced from the upper zone.  The measured temperature 

and pressure profiles in this upper zone are shown in Figs. 5.50 and 5.51 respectively. 
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Fig. 5.49 Trajectory of the well. 
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Fig. 5.50 Measured temperature profile. 
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Fig 5.51 Measured pressure profile. 

 

From the temperature profile (Fig. 5.50), we can detect the temperature drop.  We 

consider this zone (about 9,200 – 9,600 ft, measured depth) as a water producing zone.  

Also, considering the total flow rate of oil and water (21,253 b/d), the wellbore pressure 

drop is very small (about 14 psi).  Therefore, this well must be producing most of the 

fluid near the heel so that it has less frictional pressure drop inside the wellbore.  The 

available properties given for this well are listed in Table 5.1.  For the other properties 

we need for calculations, we use the values listed in Tables 4.1 – 4.3.  The inverted 

temperature and pressure profiles are shown in Figs. 5.52 and 5.53 respectively.   
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ID [in]
Total Length [ft]

Reservoir height [ft]

T at outer boundary [oF]

Specific gravity of gas

Oil API
Disolved GOR [SCF/STB]

Reservoir pressure [psi]

Table 5.1 Field properties

2917

89

179.6

5

37.8

1250

0.85

197
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Fig. 5.52 Inverted temperature profile. 

 

2544

2546

2548

2550

2552

2554

2556

2558

2560

2562

2564

8400 8600 8800 9000 9200 9400 9600 9800

Measured depth [ft]

Pr
es

su
re

 [p
si

]

Measured
Inverted

 
Fig. 5.53 Inverted pressure profile. 

 



 

 

118

Although the inverted temperature deviated from the observation around 8500 ft 

of the measured depth, overall inversion is good.  The pressure curves also show close 

agreement.  Therefore, we can consider that the inverted profiles represent the actual 

profile.  Obtained flow rates of oil and water are depicted in Fig. 5.54.  As can be seen 

from the figure, oil is produced mainly from 9,000 – 9,200 ft and 8,400 – 8,500 ft.  The 

first oil production corresponds to the temperature increase of the temperature 

measurement on this zone.  The second oil producing zone is resulted from the fact that 

the wellbore pressure drop is extremely small for this high flow rate. 
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Fig. 5.54 Inverted flow rates. 
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CHAPTER VI 

CONCLUSIONS 

We have derived the governing equations of the producing wellbore that continuously 

transfer mass and heat along its path.  We have also derived the governing equations that 

describe reservoir fluid flow and heat transfer, and solved them analytically in one-

dimensional (1D) flow.  Results from the 1D analytical reservoir solution indicate that the 

inflow temperature can change from the geothermal temperature by a few degrees.  The 

size of this change depends on the types of fluids flowing and on the pressure drawdown 

between the reservoir and the wellbore.  Inasmuch as we must account for heat transfer 

from wellbore to formation, we have coupled the wellbore and reservoir equations and 

solved them numerically. 

Based on the coupled model predictions we see little changes on the temperature 

profiles if the liquid flow rate is quite small or if the pressure drop along the well is small.  

We found that temperature and pressure profiles are sensitive to the well trajectories, 

meaning that an accurate well survey is needed to interpret temperature and pressure 

profiles when significant elevation changes occur.  The other finding from the prediction 

model is that temperature decreases when water or gas enter into horizontal wells if the 

boundary temperatures are the same.  Where the production of one fluid starts and 

another ends is clearly observed under certain production conditions.  We also presented 

a sensitivity study to show the effect of flow rate and water or gas zone location on 

temperature behavior.   

The last part of this study presented an inversion method that interprets distributed 

temperature and pressure data to obtain flow rate profiles along horizontal wells.  We 

have applied the inversion method, which is based on the Levenberg-Marquardt 

algorithm, to minimize the differences between the measured profiles and the profiles 

calculated from the prediction model developed.  Through numerical experiments, we 
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inferred the relative importance of the input data and determined the best combination of 

input data. 

We have shown synthetic and field examples to illustrate how to use the inversion 

model to interpret the flow profile of a horizontal well.  The synthetic examples showed 

that even with single-phase oil production, the inflow profile can be estimated in many 

cases.  The method is even more robust when water or gas is produced along discrete 

intervals in an oil production well because of the unique temperature signature of water 

or gas production.   

We have applied the inversion method to temperature and pressure profiles 

measured with production logs in the North Sea horizontal oil and water producing well.  

With the inversion method developed, we have successfully matched the profile of 

temperature and pressure. 
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NOMENCLATURE 

Symbol   Description 

 c   compressibility of fluid 

hC   heat transfer coefficient 

pC   heat capacity 

D   weight matrix for observations 

D   wellbore diameter 

d   derivative vector 

e   total energy flux 

 e   total energy 

of   friction factor 

 f   friction factor with wall flux 

g   gravity acceleration vector 

g   gradient vector (Ch. 5) 

g   gravity acceleration 

H   Hessian matrix 

H   enthalpy 

h   reservoir thickness 

I   identity matrix 

J   Jacobian matrix 

J   productivity index 

 k   permeability tensor 

K   thermal conductivity 

JTK   Joule-Thomson coefficient 

 k   permeability 

 dk   damaged permeability 
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L   well length 

M   mass 

ReN   Reynolds number 

wNRe,   wall Reynolds number 

PrN   Prandtl number 

p   pressure 

 ep   pressure at external boundary of reservoir 

 Rp   reservoir pressure 

Q   heat transfer rate 

q   conductive heat flux 

 q   conductive heat flux (Ch. 2) 

 q   flow rate 

 R   pipe inner diameter 

 wr   wellbore radius 

 dr   damaged radius 

 s   skin factor 

T   temperature 

 bT   bulk temperature 

 eT   temperature at external boundary of reservoir 

 IT   inflow temperature 

 t   time 

 U   internal energy 

 u   Darcy velocity vector 

u   Darcy velocity 

ou   drift flux 

 V   specific volume 

 v   velocity vector 
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 v   velocity 

 sgv   superficial velocity of gas 

 slv   superficial velocity of liquid 

 sov   superficial velocity of oil 

 swv   superficial velocity of water 

 W   reservoir width 

w   parameter vector 

w   mass flux 

x   observation space 

y   observations 

y   holdup 

 

Greek 

α   overall heat transfer coefficient 

Iα   combined overall heat transfer coefficient 

β   coefficient of isobaric thermal expansion 

γ   pipe open ratio 

δ   Kronecker delta 

ε   relative pipe roughness 

η   upgrading parameter 

Φ   combined convective and molecular momentum tensor 

Φ   combined convective and molecular momentum 

Φ   flow potential (Ch. 4) 

φ   porosity 

λ   Marquardt parameter 

θ   wellbore inclination 

μ   viscosity 
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ρ   density 

σ   surface tension 

τ   shear stress tensor 

τ   shear stress 

   

Subscripts 

c   calculated (Ch. 5) 

c   casing (Appendix A) 

cem   cement 

fl   fluid 

g   gas 

I   inflow 

i   phase index 

kj,   position index 

l   liquid 

m   mixture 

m   measured (Ch. 5) 

o   oil 

T   total 

TP   two phase 

w   water 
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APPENDIX A: OVERALL HEAT TRANSFER COEFFICIENT 

The object of this appendix is to derive the overall heat transfer coefficient used in this 

study.  For a cased and cemented wellbore, the temperature profile near the wellbore will 

look like as shown in Fig. A.1.  The wellbore is surrounded by casing material and 

cement.  Fluid arrives with temperature, IT .  At the inside of the cement, the temperature 

is cemT  and the temperature is cT  at the inside of casing.  The bulk average temperature 

inside the well is given as bT .   

 

 

 

 
Fig. A.1 Temperature profile near the wellbore. 

 

For steady state with constant thermal conductivity, the radial temperature 

distribution is given as 
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Solving this differential equation for the casing yields 
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The heat flow rates are 
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The heat flow from wall to flowing fluid is given by 
( ) ( )bchfl TTCRQ −−−= γπ 12 .       (A.6) 

where hC  is a heat transfer coefficient that would be determined experimentally.  From 

boundary layer analysis with a constant wall temperature, the laminar flow heat transfer 

coefficient is 
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For turbulent flow, Gnielinski’s formula46 is widely used. The heat transfer coefficient is 

given as 
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 When liquid-gas two phase flow occurs, the heat transfer coefficient will become 

flow regime dependent.  Kim and Ghajar47 presented a simple flow regime dependent 

correlation as 
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lhC ,  is the liquid heat transfer coefficient and is based on the in-situ Reynolds number. 

The constants are given in Table A.1. 
 

Table A.1 Constant values for heat transfer coefficient. 

 C  m  n  s  t  
Slug and Bubbly 2.86 0.42 0.35 0.66 -0.72 
Annular 1.58 1.4 0.54 -1.93 -0.09 
Stratified 27.89 3.1 -4.44 -9.65 1.56 

 

At steady state, heat flows are equal. Then, we have 
QQQQ flcemc ≡== .        (A.11) 

Summation of the relationships gives 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎟
⎠
⎞⎜

⎝
⎛

+
⎟
⎠
⎞⎜

⎝
⎛

−
=−

hcem

c

cem

c

c

Ib RCK
R

R

K
R

R
QTT 1lnln

12 γπ
.    (A.12) 



 

 

133

Therefore, the overall heat transfer coefficient for the wellbore is 
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Considering a partly opened well, the total energy entering the wellbore 

neglecting kinetic energy and viscous shear is then 
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Equating with the total energy from the formation is 
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Equating Eqs. A.14 and A.15 and considering the difference of convection 
term ( )
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This is the fourth boundary condition of the reservoir solution (Eq. 3.31).  For the open 

hole case, RRcem = . 
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