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ABSTRACT

Second Order Accurate Variance Estimation in Poststratified Two-stage Sampling.

(May 2006)

Kyong Ryun Kim, B.S., Sungkyukwan University, Korea;

B.S., Michigan State University;

M.S., Michigan State University

Chair of Advisory Committee: Dr. Suojin Wang

We proposed new variance estimators for the poststratified estimator of the popula-

tion total in two-stage sampling. The linearization or Taylor series variance estimator

and the jackknife linearization variance estimator are popular for the poststratified

estimator. The jackknife linearization variance estimator utilizes the ratio, R̂c, which

balances the weights for the poststrata while the linearization or Taylor series esti-

mator does not. The jackknife linearization variance estimator is equivalent to Rao’s

(1985) adjusted variance estimator. Our proposed estimator makes use of the ratio,

R̂c, in a different shape which is naturally derived from the process of expanding

to the second-order Taylor series linearization, while the standard linearization vari-

ance estimator is only expanded to the first-order. We investigated the properties

and performance of the linearization variance estimator, the jackknife linearization

estimator, the proposed variance estimator and its modified version analytically and

through simulation study. The simulation study was carried out on both artificially

generated data and real data. The result showed that the second order accurate

variance estimator and its modified version could be very good candidates for the

variance estimation of poststratified estimator of population total.
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CHAPTER I

INTRODUCTION

Poststratified estimation of population total is one of popular methods in point esti-

mation used in survey sampling. Poststratification can improve accuracy of estimate

by using demographic information of population level that are already known. How-

ever, poststratum identifiers of indivisual units are not usually available at the design

stage. Therefore, the number of sampling units from each poststratum is random.

That implies that can be made both unconditionally and conditionally (Yung and

Rao 1996). As for the variance estimation, previous research has adopted two prin-

cipal approaches, linearization methods and resampling methods. A linearization

method involves the analytic calculations of linearizing procedure for a new variable.

An advantage of the linearization method is that it is applicable to general sampling

design, but it requires the derivation of a separate standard error formula and can

be tedious, especially for nonlinear statistics. For example, when estimating ratio

or regression coefficients, linearization method is very common (see Rao 1988). Re-

sampling procedures, such as the jackknife, balanced repeated replicaton (BRR) and

bootstrap, reuse the procedure for computing the point estimator repeatedly, using

computing power to reduce the theoretical work. The jackknife variance estimator

is one of the most frequently used method in practice. By linearizing the jackknife

variance estimator, jackknife linearization variance estimator can be obtained which

is identical to Rao’s (1985) variance estimator when estimating the variance of the

The format and style follow that of Journal of the American Statistical Association.
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poststratified estimator. Valliant (1993) studied the standard linearization variance

estimator, the balanced repeated replication, and the jackknife linearization variance

estimator to determine if they estimate the conditional variance of the poststratified

estimator of a finite population total under a super population model. Yung and Rao

(1996) studied the standard linearization variance estimator, the jackknife and the

jackknife linearization variance estimators for both the poststratified estimator and

the regression estimator. Their simulation study suggested that the three variance

estimators perform similarly, while an incorrect jackknife procedure which does not

recalculate the regression weights each time when a cluster is deleted performs poorly.

The jackknife linearization variance estimator has the adjustment factor that plays a

role of balancing the weights for poststrata while the standard linearization variance

estimator doesn’t have such a feature. We propose a second-order accurate variance

estimator by extending the linearization step to the next order. We will study the

standard linearization variance estimator, the jackknife linearization variance esti-

mator, proposed variance estimator and the adjusted proposed linearization variance

estimator for the poststratified point estimator.



3

CHAPTER II

SAMPLING DESIGN

2.1 Survey Sampling

A survey concerns a finite set of elements called a finite population. The goal of

a survey is to provide information about the finite population in question or about

subpopulations of special interest, for example, “men” and “women” as two sub-

populations of “all persons”. Such populations are called domains of study or just

domains. A value of one or more variables of study is associated with each popula-

tion element. The goal of a survey is to get information about unknown population

characteristics or parameters. Parameters are functions of the study variable values.

They are unknown, quantitative measures of interest to the investigator, such as total

revenue, mean revenue, total yield, number of unemployed, for the entire population

or for the specified domains.

In most surveys, access to and observation of the individual population elements

are established through a sampling frame that associates the elements of the popu-

lation with sampling units in the frame. From the population, a sample of elements

is selected in the frame. A sample is a probability sample to be realized by a chance

mechanism. The sample elements are observed. That is, for each element in the

sample, the variables of study are measured and the values recorded. The recorded

variable values are used to calculate estimates of the finite population parameters of

interest. Estimates of the precision of the estimates are also calculated.

In the sample survey, observation is limited to a subset of the population. A

special type of survey where the whole population is observed is called a census or a

complete enumeration.
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2.2 Probability Sampling

Probability sampling is an approach to sample selection that satisfies certain condi-

tions, which, for the case of selecting elements directly from the population is de-

scribed:

(1) we can define the set of samples, S = {s1, s2, ..., sM}, that are possible to

obtain with the sampling procedure;

(2) each possible sample s is associated with a known selection probability p(s);

(3) every element in the population has a nonzero probability of selection through

the procedure;

(4) one sample is selected by a random mechanism under which each possible s

receives exactly the probability p(s).

A sample under these conditions is called a probability sample. The function

p(·) defines a probability distribution on S = {s1, s2, ..., sM}. It is called a sampling

design, or just design. The probability referred (3) is called the inclusion probability

of the element. Under a probability sampling design, every population element has a

strictly positive inclusion probability. This is a strong requirement, but one that plays

an important role in the probability sampling approach. Sampling is often carried out

in two or more stages. Clusters of elements are selected in an initial stage. This may

be followed by one or more subsampling stages. The elements themselves are sampled

at the ultimate stage. To have a probability sampling design, those conditions must

apply to each stage. The procedure as a whole must give every population element a

strictly positive inclusion probability.

The frame or the sampling frame is any material or device used to obtain obser-

vational access to the finite population of interest. It must be possible with the aid

of the frame to identify and select a sample in a way that respects a given probability
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sampling design.

2.3 Inclusion Probability

An interesting feature of a finite population of N labeled elements is that the ele-

ments can be given different probabilities of inclusion in the sample. The sampling

statistician often takes advantage of the identifiability of the elements by deliberately

attaching different inclusion probabilities to the various elements. This is one way

to obtain more accurate estimates. Suppose that a certain sampling design has been

fixed. That is, p(s), the probability of selecting s, has a given mathematical form.

The inclusion of a given element k in a sample s is a random event indicated by the

random variable Ik, defined as

Ik =







1 if k ∈ S

0 oterwise .

Note that Ik = Ik(s) is a function of the random variable S. We call Ik the sample

membership indicator of element k.

The probability that element k will be included in a sample, denote πk, is obtained

from the given design p(·) as

πk = Pr(k ∈ s) = Pr(Ik = 1) =
∑

k∈s

p(s).

Here, k denotes that the sum is over those samples s that contain the given k.

The probability that both of the elements k and l will be included is denoted πkl and

is obtained from the given p(·) as follows:

πkl = Pr(k, l ∈ s) = Pr(IkIl = 1) =
∑

k,l∈s

p(s).
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If the study variable y is approximately proportional to a positive and known

auxiliary variable x, there are some advantages in selecting the elements with proba-

bility proportional to x. By choosing πk proportional to the known value xk will lead

to approximately constant ratio yk/πk. As a result, the variance of the estimator will

be small (Sarndal et al., 1992).

2.4 Horvitz-Thompson Estimator

Let’s consider the estimator of the population total T ,

T̂π =
∑

k∈s

yk

πk

.

This estimator can be expressed with indicator functions Ik:

T̂π =
∑

k∈U

Ik

yk

πk

.

Because E(Ik) = πk and πk ≥ 0 for all k ∈ U , it follows that T̂π is an unbiased

estimator of T =
∑

k∈U yk. The quantity yk/πk can be called the “π-expanded y-value

for the k-th element” (Sarndal et al., 1992). The given estimator will be referred as

the π estimator of the population total. The π expansion has the effect of increasing

the importance of the elements in the sample. Because the sample contains fewer

elements than population, an expansion is required to reach the level of the whole

population. The k-th element, when present in the sample, will, as it were, represent

1/πk population elements. The above formula embody extremely important principle,

namely, the use of π-expanded sample values to obtain an unbiased estimator of a

population total when sampling is done with arbitrary positive inclusion probabilities.

Horvitz and Thompson (1952) used the principle of π expansion to estimate the

total t =
∑

U yk, and is often called the Horvitz-Thompson estimator.

A probability sample s is drawn from U , the set of all possible samples from

population, by any sampling design which induces the inclusion probabilities πk =
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P (k ∈ s). Let 1/πk be the sampling weight associated with the k-th unit. Then an

unbiased estimator of population total, Y , introduced by Horvitz-Thompson (1952),

can be given. This estimator does not depend on the number of times a unit may be

selected. Each distinct unit of the sample is utilized only once. Let the probability

that both k and l are included in the sample be denoted by πkl. The variance estimate

is

var(T̂HT ) =

N∑

k=1

(
1 − πk

πk

)y2
k +

N∑

k=1

∑

l 6=k

(
πkl − πkπl

πkπl

)ykyl.

In most experiments, it is no necessary to actually compute the probability of

selecting the entire sample. For each sample unit k, the probability of selecting that

particular unit, πk, is only needed to be calculated. For simple random sampling

without replacement, each of n units has the same selection probability, πk = n
N

.
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CHAPTER III

POINT ESTIMATION IN FINITE POPULATION

3.1 Calibration Estimation

It is often desirable to make use of several data sources when producing statistical

estimates. First, a more accurate estimate may be achievable from a combination

of sources than from any single source. Second, presence of common variables in

different data sources may lead to incoherence if estimates from the different sources

are produced separately.

Calibration estimation (Deville and Sarndal, 1992) provides a valuable class of

techniques for combining data sources. The basic idea is to use estimates from one

set of sources, which may be treated as sufficiently accurate to act as ‘benchmarks’.

Estimates based on data from a further sample source are then adjusted so as to

agree with these benchmarks. The process of adjustment is called ‘calibration’. The

constraints that the estimates of the benchmarks based on this source should agree

with the benchmarks are called ‘calibration constraints’.

Simple examples of calibration estimation are provided by ratio estimation and

poststratification. In the classical case it is assumed that population values are avail-

able for an auxiliary variable and that these data are combined with sample data on

some survey variable to estimate the mean or total of this variable.

In ratio estimation it is assumed that the population total or mean of continu-

ous auxiliary variable is known. In poststratification it is assumed that population

proportions falling into the categories of a discrete auxiliary variable are known.
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3.2 Auxiliary Variable

Generally speaking, an auxiliary variable is any variable about which information is

available prior to sampling. Ordinarily, we assume that a priori information for an

auxiliary variable is complete. The value of the variable, say x, is known for each

of N population elements so that the values x1, ..., xN are at our disposal prior to

sampling. An auxiliary variable assists in the estimation of the study variable. The

goal is to obtain an estimator with increased accuracy.

Some sampling frames are equipped from the outset with one or more auxiliary

variables, or with information that can be transformed into auxiliary variables through

simple numerical manipulations. This is, the frame provides not only the identification

characteristics of the units, but attached to each unit is also the values of one or more

auxiliary variables. For example, a register of farms may contain information about

the area of each farm. A list of district may contain information about the number

of people living in each district at the time of the latest population census.

Auxiliary variable values can be transferred to the sampling frame from admin-

istrative or other registers by matching these registers to the sampling frame. There

are practical problems associated with matching. For instance, the frame and reg-

ister may date from different periods in time, elements may be coded differently or

erroneously, and so on. In these cases, an element in the frame cannot always be

unambiguously identified in the register. These are sometimes difficult problems.

We already noted that auxiliary variables can be used at the design stage of a

survey to create a sampling design that increases the precision of the π estimator.

One approach is the probability proportional-to-size sampling, that is to make the

inclusion probabilities π1, ..., πN of the design proportional to known, positive values

x1, ...., xN of an auxiliary variable. The π estimator will then have a small variance if
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x is more or less proportional to y, the study variable.

Another approach is to use auxiliary information to construct strata such that

the π estimator for a stratified simple random sampling design,

T̂π =

H∑

h=1

Nhȳsh

obtains a small variance. However, the stratification that is efficient for one study

variable may be inefficient for another.

The auxiliary information can also be used at the estimation stage. The aux-

iliary variable will enter explicitly into the estimator formula, not only through πk.

That is, for a given sampling design, we construct estimators that utilize information

from auxiliary variables and bring considerable variance reduction compared to the

π estimator.

The basic assumption behind the use of auxiliary variables is that they covary

with the study variable and thus carry information about the study variable. Such

covariation is used advantageously in the regression estimator.

3.3 Generalized Regression Estimator

Consider a finite population U = {1, ..., k, ..., N}, from which a probability sample

s(s ⊆ U) is drawn with a given sampling design, p(·). That is, p(s) is the probability

that s is selected. The inclusion probabilities πk = Pr(k ∈ s) and πkl = Pr(k, l ∈ s)

are assumed to be strictly positive. Let yk be the values of the variable of interest, y,

for the kth population element, with which also associated an auxiliary vector value,

xk = (xk1, ..., xkj, ...xkJ)′. The population total of x, X =
∑

U xk, is assumed to be

accurately known. The incorporation of auxiliary information can be reflected in the

creation of new weights, denoted by wk, k ∈ s. The new estimator is

T̂w =
∑

k∈s

wkyk,
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where the weights wk are chosen to minimize
∑

k∈s dk(wk, ak) ,which measures the

distance between the wk and the design weights ak = 1/πk, subject to the following

calibration constraints,

∑

k∈s

wkxk = X.

The approach of calibration involves determining these new weights {wk : k ∈ s}

by making them as close as possible to the original sampling weights {ak : k ∈ s}

according to a specified distance function. Constraints placed on the new weights

are such that, when applied to each of the auxiliary variables, the known population

total X is reproduced.

Suppose x′ = (x1k, x2k, · · · , xpk) is a vector of length p containing the values

of auxiliary variables for the k-th indivisual, and the auxiliary information available

from an external source is summarized by the known vector total
∑

k∈U xk = X.

The choice of the function dk will lead to different estimators. The choice

d(wk, ak) = (wk − ak)
2/2ak leads to the generalized regression (GREG) estimator.

By use of lagrange Multiplier with the above constraint, we have the following

φ(λ) =
∑

k∈s

(wk − ak)
2

2ak

− λ′(
∑

k∈s

wkxk − X).

Differenciating φ(λ) with respect to wk, equating the result to zero

∂

∂wk

= 0

gives
∑

k∈s

(wk − ak

ak

− λ′xk

)

= 0,

wk = ak + akλ
′xk

= ak + akx
′
kλ.
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Plug wk into the equation of the constraint and solve for λ as follows:

∑

k∈s

xk(ak + akx
′
kλ) − X = 0,

(
∑

k∈s

akxkx
′
k)λ +

∑

k∈s

xkak − X = 0,

λ = (
∑

k∈s

akxkx
′
k)

−1(X −
∑

k∈s

xkak).

Then we have

wk = ak + akλ
′xk

= ak(1 + λ′xk)

= ak

{
1 + (X −

∑

k∈s

xkak)
′(
∑

k∈s

akxkx
′
k)

−1x′
k

}

= ak

{
1 + (X − X̂a)

′(
∑

k∈s

akxkx
′
k)

−1x′
k

}
.

New calibration estimator for the population total, T , which is adjusted by the

auxiliary information vector x is following,

T̂w =
∑

k∈s

wkyk

=
∑

k∈s

ak

{
1 + (X − X̂a)

′(
∑

k∈s

akxkx
′
k)

−1x′
k

}
yk

=
∑

k∈s

akyk + (X − X̂a)
′(
∑

k∈s

akxkx
′
k)

−1
∑

k∈s

akxkyk

= T̂a + (X − X̂a)
′β̂,

where β̂ = (
∑

k∈s akxkx
′
k)

−1
∑

k∈s akxkyk.

3.4 Raking

Raking has been widely used for many years for benchmarking sample distributions

to external distributions. When benchmarking to population distributions from ex-

ternal sources, sometimes only the marginal distributions of the auxiliary variables
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are available. Raking operates only on the marginal distributions of the auxiliary

variables. Raking is an iterative proportional fitting procedure (IPF):

(1) Sample row totals are forced to conform to the population row totals; then

the sample adjusted column totals are forced to conform to population column totals.

(2) Then the row totals are adjusted to conform and so on until convergence is

reached.

Consider a two dimensional table with observed cell counts, nij, unknown pop-

ulation cell counts, Nij and estimates of the population cell counts, N̂ij. Marginal

sums
∑

j Nij = Ni·(i-th row total) and
∑

i Nij = N·j(j-th column total) are known. As

pointed out in Little and Rubin (1987), raking applies to the individual cell counts, nij,

to iteratively calculate estimates that satisfy marginal constraints N̂i· =
∑

j N̂ij = Ni·

and N̂·j =
∑

i N̂ij = N·j.

IPF is used to adjust the cells to marginal totals. At the first step of the pro-

cedure, estimators are calculated N̂ (1)ij =
nijNi·

ni·
. This matches the row marginals

exactly, but the column marginals are unlikely to agree with the known values. Then

next iteration adjusts the individual cells to the column marginals by N̂ (2)ij =
N̂1

ijN·j

N̂1
·j

.

Then the row marginals are adjusted by N̂ (3)ij =
N̂(2)ijNi·

N̂(2)i·
. Iteration between rows

and columns continues until convergence is achieved, where convergence is defined as

| N̂i·−Ni· |≤ ε and | N̂·j −N·j |≤ ε for some small value ε. Both iterative proportional

fitting and raking are attributed to Deming and Stephan (1940).

The next few tables show an hypothetical example (Micheal A. Greene, Linda E.

Smith, Mark S. Levenson, Singne Hiser and Jean C. Mah) for a 2 × 2 problem with

an additional unknown row and unknown column. The example adjusts columns first

instead of rows, but the principles are the same.

Before raking, the unknown marginal are distributed to the known marginal in

proportional to the value of the known marginal and shown in Table 1. In the first
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Table 1: 2×2 problem with additional unknown row and column

female male unknown pop.marginal
old 65 30 5 100
Young 25 50 25 100
unknown 10 2000 70 2080
pop.marginal 100 2080 100 2280

column of female (100 + 100 × 100/2180 = 104.6) and in the second column of male

(2080 + 100 × 2080/2180 = 2175.4). The table without the values of unknown is

shown in Table 2. This is now ready for raking.

Table 2: Distribution of unknowns to the known marginals

female male sample marginal pop.marginal
old 65 30 95 1140
Young 25 50 75 1140
sample marginal 90 80 170
pop.marginal 104.6 2175.4 2280

Population totals of 104.6 and 2175.4 for the columns are shown in Table 2 and

are different from the computed marginals by 14.6 and 2095.4, respectively. The first

iteration involves multiplying the entries in the first row by ratio of population to

computed marginals as follows

N̂1
11 =

n11N1·

n1·
=

65 × 1140

95
= 780,

N̂1
12 =

n12N1·

n1·
=

30 × 1140

95
= 360.

Also, in the second row

N̂1
21 =

n21N1·

n2·
=

25 × 1140

75
= 380,

N̂1
22 =

n22N1·

n2·
=

50 × 1140

75
= 760.
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Then we have following results in Table 3 after first adjustment procedure.

Table 3: First step in raking with rows

female male pop.marginal
old 780 360 1140
Young 380 760 1140
adjusted marginal 1160 1120 2080
pop.marginal 104.6 2175.4 2280

While the row marginal have been adjusted to the population totals, the col-

umn marginal are now off. The appropriate multipliers for the column marginal are

104.6/1160 and 2175.4/1120, respectively. This results in Table 4.

Table 4: First step in raking with columns

female male adjusted marginal pop.marginal
old 70.33 699.24 769.57 1140
Young 34.27 1476.16 1510.43 1140
pop.marginal 104.6 2175.4 2280

Table 5: Second step in raking with rows & columns

female male adjusted marginal pop.marginal
old 83.79 1048.1 1131.8 1140
Young 20.81 1127.3 1148.1 1140
pop.marginal 104.6 2175.4 2280

The application of column multipliers perfectly aligns the columns at the expense

of the rows. The next iteration multiplier carries in the first row by 1140/769.57

and the second row by 1140/1510.43. In Table 5, it can be verified that one more

adjustment to the columns, using multipliers 104.6/130.05 and 2175.4/2149.9 bring
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the population and calculated marginals within 8.2 in both dimensions. More iterative

adjustments will lead the difference to converge into very small value, ‘ε’, which is a

given stopping rule before the procedure starts.
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CHAPTER IV

STRATIFICATION AND CLUSTERING

4.1 Stratified Sampling

Many populations are, in effect, collections of populations, and a target variable

in a survey may follow a different model in each of subpopulations. In a survey

of households to estimate average income, for example, the income levels may vary

widely among different demographic groups and regions of a country. The sample

data from one subgroup may be of limit use in making estimates for other subgroups.

In these populations, estimates mat be required both the full population and for some

or all of the subpopulations. In either case, it is desirable to take each subpopulations

as a stratum and so require a sample in each subpopulation.

The cost of conducting a survey may differ substancially among the strata. An

optimum allocation of sample to the strata will consider both the cost and the variabil-

ity of the target variable in each stratum. Practical problems related to response and

measurement may differ considerably among subpopulations. Stratification allows

some flexibility in the choice of data-collection procedures that are used for different

subpopulations. Telephone data collection may be adequate for some groups while

personal interviews may be needed for others, for instance. For operational conve-

nience, the survey organization may also be divided into geographic district with a

field office supervising work in each district.

In stratified sampling, the population is divided into nonoverlapping subpopula-

tions called strata. A probability sample is selected in each stratum. The selections in

different strata are independent. Stratified sampling is powerful and flexible method

that is widely used in practice. In a survey, practical aspects related to response, mea-
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surements, and auxiliary information may differ considerably from one subpopulation

to another. Nonresponse rates and measurements problems may be more pronounced

in some subpopulations than in others. The extent of the auxiliary information may

differ greatly. These factors suggest that the choice of sampling design and esti-

mator perhaps should be made difficulty in different subpopulations to increase the

efficiency of the estimation. One may thus want to treat each subpopulation as a sep-

arate stratum. For administrative reasons, the survey organization may have divided

its total territory into several geographic district with a field office in each district.

Here, it is natural to let each district be a stratum. An additional reason in favor

of stratified sampling is that most of the potential gain in efficiency of probability

proportional-to-size sampling can be captured through stratified selection with sim-

ple random sampling within well-constructed strata. Stratified sampling in several

respects simpler than and consequently preferred to proportional-size sampling. Let

us first introduce some notation and definitions. By a stratification of a finite popu-

lation U = {1, ..., k, ..., N} we mean a partitioning of U into H subpopulations, called

strata and denoted U1, ..., Uh, ..., UH , where Uh = {k : k belongs to stratum h}. By

stratified sampling we mean that a probability sample s is selected from Uh according

to a design ph(·) (h = 1, ..., H) and that the selection in one stratum is independent

of selections in all other strata.

The resulting total sample, denoted by s as usual, will thus be composed as

s = s1 ∪ s2 ∪ · · · ∪ sH

and, because of the independence feature,

p(s) = p1(s1)p2(s2) · · ·pH(sH).

The number of elements in stratum h, called the size of stratum h, is denoted
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Nh, which is assumed to be known. Since the strata form a partition of U we have

N =

H∑

h=1

Nh.

Furthermore, the population total can be decomposed as

T =
∑

U

yk =

H∑

h=1

Th =

H∑

h=1

Nhȳh,

where Th is the stratum total, and ȳh the stratum mean. Finally, let Wh = Nh/N

denote the relative size of the stratum Uh. Then the population mean has the decom-

position

ȳ =

H∑

h=1

Whȳh.

4.2 Cluster Sampling

Many naturally occuring populations exhibit clustering in which units that are near

to each other (geographically or in some other respect) have similar characteristics.

Households in the same neighborhood tend to have similar incomes, educational lev-

els of the heads of household, and amounts of expenditures on food and clothing.

Business establlishments in the same industry and geographic area will pay similar

wages to a guven occupation because of competition.

In cluster population, the methods of data collection may also differ from the

methods used in other populations. In household survey, for example, a complete list

of households to use for sampling is usually not available, especially if the population

is large. In the united states, for instance, there were nearly 100 million households

in 1995. The households of interest may be geographically dispersed; field work can

be more economically done when sample units are clustered together to limit travel

costs. A practical and widely used technique is to select the sample in stages, using

at each stage, sampling units for which a complete list is available. In the household
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example, geographic areas may be selected at first stage. At the second stage, each

first stage sample unit may be further subdivided and a sample of the subdivisions

selected. A list of the households in each sample subdivision is then compiled and

data collected from each. In a business population, establishments may be selected

at the first stage, a list of occupations compiled in each sample establishment, and

a sample of occupations then drawn from each list. Although occupations are the

units ultimately sampled, a complete list of occupations for each establishment inthe

universe is unlikely to be available, whereas a list of establishments often is. Selecting

occupations in two stages can also allow better control over survey costs. Travel

and extracting data from personnel records may be referred to the number of sample

occupations. Two-stage sampling can also allow fine-tuning of survey budget.

A probability sample of clusters is selected, and every population element in the

selected cluster is surveyed. In the single-stage cluster sampling, the finite population

U = {1, ..., k, ..., N} is partitioned into NI clusters, and denoted U1, ..., UNI
. The set

of clusters is symbolically represented as

UI = {1, ..., i, ..., NI}.

The number of population elements in the ith cluster Ui is denoted Ni. The

partitioning of U is expressed by the equations

U =
⋃

i∈Ui

Ui and N =
∑

i∈Ui

Ni.

Cluster sampling is now defined in the following way:

(1) A probability sample sI of clusters is drawn from UI according to the design

pI(·). The size of sI is denoted by nI , for a fixed size design, or by nsI
for a variable

size design.



21

(2) Every population element in the selected clusters is observed. Here, pI(·) may

be any of conventional designs, that is, simple random sampling without replacement,

systematic sampling, stratified sampling and so on.

The strategy of simple random cluster sampling is likely to be inefficient in many

situations, especially if the clusters are heterogeneous or of unequal sizes. However,

from a cost efficiency point of view, the strategy may have advantages, since it is

often much cheaper to survey clusters of elements than to survey the geographically

scattered sample that may arise from a simple random selection of elements.

However, the efficiency of cluster sampling can be improved when auxiliary infor-

mation is available. The choice of strategy then depends on the information available.

A simple case is when an approximate measure of size ui is available for each cluster

i = 1, ..., NI. If ui is roughly proportional to ti which is the ith cluster total, we can

reduce the variance of the π- estimator (or Horvits-Thompson estimator which will

be discussed later) by using probability proportional-to-size cluster sampling with

inclusion probabilities πIi ∝ ui. An alternative is to use stratified cluster sampling

with strata of clusters formed so that the variation of ui is small in each stratum.

4.3 Two-stage Sampling

Cluster sampling is also called single-stage cluster sampling. By contrast, in two-

stage cluster sampling, the sample of elements is obtained as result of two stages of

sampling.

(1) The population elements are first grouped into disjoint subpopulations, called

primary sampling units (PSUs). A probability sample of PSUs is drawn (first-stage

sampling).

(2) For each PSU in the first-stage sampling, the type of sampling unit to be used

in the second-stage sampling is decided upon. These second-stage sampling units may
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be elements or clusters of elements. A probability sample of second-stage sampling

units from each PSU in the first stage sample. When the second-stage sample units

are clusters, every element in the selected second-stage sampling units is surveyed.

It is noted that variance of simple random sampling is smaller than simple ran-

dom cluster sampling (Sarndal et al., 1992). This is explained by the tendency for

elements in the same cluster to resemble each other, which implies that the homo-

geneous measure is positive, and by the variation in the cluster sizes. The variance

of the π estimator under simple random cluster sampling can always be reduced by

selecting more clusters. However, the increased cost of taking a bigger sample may

be unacceptable under the variable budget.

To control the cost and at the same time increase the number of selected clusters,

we may subsample within the selected clusters, instead of surveying all elements in the

selected clusters. Then we must estimate the cluster total Thi from the subsamples.

If the variation within the clusters is small, the estimates T̂hi have a smaller variance,

even for rather modest subsample sizes. It often pays to use two-stage sampling

instead of cluster sampling.

Notation and estimation in two-stage sampling are slightly more complex than

in cluster sampling. There are two sources of variation. The first-stage sampling vari-

ation arises from the selection of primary sampling units. The second-stage sampling

variation arises from the subsampling of secondary sampling units within selected

PSUs.

Multistage sampling consists of three or more stages of sampling. There is a

hierarchy of sampling units: primary sampling units, secondary sampling units within

the PSUs, tertiary sampling units within secondary sampling units and so on. The

sampling units in the last-stage sampling are called ultimate sampling units and those

in the text to the last stage sampling are called penultimate sampling units.
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A variety of sampling designs are available for surveys in which direct element

sampling is impossible or impractical. These range from cluster sampling to highly

complex multistage sampling designs using unequal probability sampling at the var-

ious stages of selection. In cluster sampling, the finite population is grouped into

subpopulations called clusters. Stratification and clustering both divide the popu-

lation into mutually exclusive groups. Whether those groups are strata or clusters

depends on how the sample is selected. If at least one sample unit is drawn from each

group, they are strata. Otherwise, the groups are clusters.
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CHAPTER V

POSTSTRATIFIED POINT ESTIMATOR

5.1 Population Total

Before we start to talk about point estimators, we need to define some definitions

which will be used throughout later chapters. The following indexes and notations

will be used in the remainder of the dissertation.

h = index for strata (h = 1, . . . , L),

i = index for cluster (i = 1, . . . , Nh),

k = index for units (k = 1, . . . , Mhi),

c = index for poststrata (c = 1, . . . , C),

yhikc = a variable of interest,

N =
∑

h Nh, number of clusters in population,

M =
∑

h Mh, population size.

We consider a clustered finite population with L strata. Let Nh be the number of pri-

mary sampling units(PSU), or clusters in h-th stratum and whik be the survey weight

associated with yhik, k-th unit within i-th cluster in h-th stratum. (An unbiased

estimator of the cluster total, Thi (i = 1, ..., nh) by subsampling in a sampled cluster

is assumed.) A stratum h contains Nh clusters. Cluster hi contains Mhi units with

Mh =
∑Nh

i=1 Mhi and M =
∑L

h=1 Mh. In the same manner, the number of sampled

clusters in h-th stratum and sampled units in hi-th cluster are nh and mhi respectively.

Assume that units in different clusters and strata are iid and srs(simple random sam-
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pling) without repllacement is also assumed. But units in different post-strata may

not be iid.

However, at variance estimation stage, srs with replacement can be assumed

only for computational convenience but all the assumptions maybe considered to be

still valid if first-stage sampling fraction is small enough. The finite population total

is

T =
L∑

h=1

Nh∑

i=1

Mhi∑

k=1

yhik

=

L∑

h=1

Th,

where Th =
∑Nh

i=1

∑Mhi

k=1 yhik is the h-th stratum total.

An customary estimator of population total T is expressed as

T̂ =
L∑

h=1

nh∑

i=1

mhi∑

k=1

whikyhik

=

L∑

h=1

r̄h

(

=

L∑

h=1

1

nh

nh∑

i=1

rhi

)

=
L∑

h=1

T̂h,

where T̂h =
∑Nh

i=1

∑Mhi

k=1 whikyhik is estimate of the stratum total and rhi = nh

∑

k whikyhik

(one of the stratum total estimate among nh ones based on only i-th sampled cluster

in h stratum). Note that rhi are iid with mean T̂h, h stratum total, and same variance

in each stratum under with replacement sampling scheme.

5.2 Poststratified Estimator

Auxiliary variables used in the regression estimator can be both quantitative variables

and qualitative variables. Actually, the poststratified estimator is a special case of
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the regression estimator when the auxiliary variables are the indicator variables for

the poststrata. Define the population total as

T =
∑

hik∈s

yhik.

We assume that the population is divided into C poststrata with size, Mc. Then the

number of units in c-th post-stratum is

Mc =
L∑

h=1

Nh∑

i=1

Mhi∑

k=1

δhikc,

where (assume design weight whik = whi for all k) δhikc is the indicate function which

identifies if each yhik is in that poststratum or not. That is, it is defined as

δhikc =







1 if yhik ∈ c-th poststratum

0 if not .

In figure 1, the structure of poststratification is graphically expressed.

Figure 1: Poststratification
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Population total can be described as sum of poststrata total

T̂ =

L∑

h=1

nh∑

i=1

whiT̂hi

=
∑

h

∑

i

whiMhiȳhi

=
∑

h

∑

i

whiMhi

1

mhi

∑

c

mhi∑

k=1

yhikδhikc

=
∑

h

∑

i

whiMhimhic

mhi

∑

c

ȳhic

=
∑

h

∑

i

∑

c

Shicȳhic

=
∑

c

T̂c,

where T̂c =
∑

h

∑

i Shicȳhic. And if replace yhik by δhik which is indicator variable,

then we obtain estimator of Mc.

M̂c =
∑

h

∑

i

Shic

(

=
∑

h

∑

i

Shicδhikc

)

,

where Shic = whiMhimhic/mhi and mhic is the number of units in poststratum c among

mhi units in (hi)-cluster Mc is assumed to be known and seems to be used for better

estimation. Then the poststratified estimator of the total is suggested as follows

T̂pst =
∑

c

R̂cT̂c,

where R̂c = Mc/M̂c.

Adjustment factor R̂c plays a very important role as balancing the weights of each

poststrata estimate cause when too many elements are selected from a poststratum,

R̂c gets smaller then gives a smaller weight to poststratum estimate, T̂c and too

small size sample from the poststratum adjusts R̂c to be bigger for more weight. So

poststratified estimator is calculated based on the combination of both sample and

population level information. GREG estimator can be expressed as following
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T̂w =
∑

k∈s

akyk + (X − X̂a)
′(
∑

k∈s

akxkx
′
k)

−1
∑

k∈s

akxkyk

= T̂a + (X − X̂a)
′β̂,

where X̂a =
∑

k∈s xkak, X =
∑

k∈U xk.

If we assume the auxiliary vector, xk, to be (

c−1
︷ ︸︸ ︷

0, ..., 0, 1, 0, ..., 0)′ when yk is in c-th

poststratum, xk is the indicator variable and X =
∑

k∈U xk is the vector of known

population total of poststrata = (M1, M2, ..., Mc)
′. Let the weight ak to be 1/πk, then

X̂a becomes (M̂1, M̂2, ..., M̂c)
′, where M̂c =

∑

k∈sc

1
πk

xk whic is the Horvitz-Thompson

estimate of poststrata size, (M1, M2, ..., Mc)
′ and β̂ = (T̂1/M̂1, T̂2/M̂2, ..., T̂c/M̂c)

′.

Then we are ready to show that poststratified estimator is the special case of the

GREG estimator (Yung and Rao 1996). The following justifies the poststratified

total estimator is the special case of the generalized regression estimator:

T̂w = T̂π + (X − X̂π)′β̂

= T̂π +

















M1

...

MC









−









M̂1

...

M̂c

















′ 







T̂1/M̂1

...

T̂c/M̂c









= T̂π +
M1 − M̂1

M̂1

T̂1 + · · · + Mc − M̂c

M̂c

T̂c

= T̂π −
∑

c

T̂c +
M1

M̂1

T̂1 · · +
Mc

M̂c

T̂c

=
∑

c

Mc

M̂c

T̂c

= T̂pst.
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CHAPTER VI

VARIANCE ESTIMATION

6.1 Variance Estimator in Estimating Population Total

Then variance of T̂ is

var(T̂ ) = var(

L∑

h=1

r̄h)

=
L∑

h=1

1

nh

var(rhi)

≈
L∑

h=1

1

nh

s2
rhi

=

L∑

h=1

1

nh(nh − 1)

nh∑

i=1

(rhi − r̄h)
2.

The variance estimator can be expressed in another way as follows:

ˆvar(T̂ ) =
L∑

h=1

1

nh(nh − 1)

nh∑

i=1

(rhi − r̄h)
2

=
L∑

h=1

1

nh(nh − 1)

nh∑

i=1

(

mhi∑

k=1

nhwhikyhik −
1

nh

nh∑

i=1

mhi∑

k=1

nhwhikyhik)
2

=

L∑

h=1

nh

nh−1

nh∑

i=1

(

mhi∑

k=1

whikyhik −
1

nh

nh∑

i=1

mhi∑

k=1

whikyhik)
2

=
L∑

h=1

nh

nh−1

nh∑

i=1

(zhi − z̄h)
2,

where zhi =
∑

k whikyhik.

6.2 The Jackknife Method

An subsample replication technique, called the jackknife, has been suggested as a

broadly useful method of variance estimation. The jackknife derives estimates of the
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parameter of interest from each of several subsamples of the parent sample, and then

estimates the variance of the parent sample estimate from the variability between the

subsamples estimates.

The jackknife is less dependent on model assumptions and does not require the

formula which is usually needed by the traditional way. However, it needs repeatedly

calculating the statistic n times, which was practically impossible in the old days. The

latest computing technique has made it possible for us to use the jackknife method.

The jackknife has become a popular and useful tool in statistical way. Many agencies

have computer software to implement the computation of the jackknife method.

The jackknife method was originally introduced to estimate the bias of an estima-

tor by Quenouille(1949). It can be calculated by deleting one datum value each time

from n sampled values and reproducing the estimator using n − 1 remaining sample

data. Let Tn be the estimator of unknown parameter θ based on n sample data such

as Tn = Tn(x1, x2, ..., xn−1, xn). And the bias of Tn is bias(Tn) = E(Tn) − θ. Here

we need to define one more variable Tn−1,i = Tn−1(x1, x2, .., xi−1, xi+1, .., xn) which is

based on n − 1 observations. Now we have Quenouille’s jackknife bias estimator as

bj = (n − 1)(T̄n − Tn),

where T̄n = 1
n

∑n

i=1 Tn−1,i. Also the bias reduced jackknife estimator of θ is

Tjack = Tn − bj = nTn − (n − 1)T̄n.

The jackknife estimators bj and Tjack can be justified as

bias(Tjack) = bias(Tn) − E(bj) = − b

n(n − 1)
+ O(

1

n2
).

The bias of Tjack is of order 1
n2 . The jackknife method produces a bias reduced

estimator by removing the first order term in bias(Tn). Furthermore, it can lead to
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the following (Shao, 1995)

Tjack = nTn − (n − 1)T̄n

= nTn − (n − 1)
1

n

n∑

i=1

Tn−1,i

=
1

n

n∑

i=1

{nTn − (n − 1)Tn−1,i}

=
1

n

n∑

i=1

T̃n−1,i.

Tukey(1958) established that the jackknife also can be used in variance estimation

and, for finite population, the jackknife technique was first introduced by Durbin

(1959). Tukey suggested two conjectures to justify the jackknife variance estimation:

• T̃n,i,i = 1, ..., n are iid

• var(T̃n,i) ≈ var(
√

nTn)

If these two conjectures are satisfied, the var(Tn) ≈ 1
n
var(T̃n,i). Then the jackknife

variance estimator is

vjack =
1

n
ˆvar(T̃n,i)

=
1

n(n − 1)

n∑

i=1

(T̃n,i −
1

n

n∑

j=1

T̃n,j)
2

=
1

n(n − 1)

n∑

i=1

{nTn − (n − 1)Tn−1,i −
1

n

n∑

j=1

(nTn − (n − 1)Tn−1,j)}2

=
1

n(n − 1)

n∑

i=1

{−(n − 1)Tn−1,i +
1

n

n∑

j=1

(n − 1)Tn−1,j}2

=
n − 1

n

n∑

i=1

(Tn−1,i −
1

n

n∑

j=1

Tn−1,j)
2.

According to formula of var(T̂ ), variance of the total estmator, T̂ , equals to sum of

variances of h strata,
∑L

h=1 var(r̄h), which can be produced based on the assumption
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that samplings between strata are independent. So jackknife method can be applied

to estimate each variance of strata then jackknife variance estimate is produced by

summing them up. For stratum h, jackknife variance estimator is

vjack(T̂h) =
nh − 1

nh

nh∑

i=1

(T̂(hi) − T̂h)
2.

Then we have the jackknife variance estimator of population total estimate

vjack(T̂ ) =
L∑

h=1

nh − 1

nh

nh∑

i=1

(T̂(hi) − T̂h)
2,

where T̂(hi) = Tn−1,i which is calculated based on n − 1 remaining sample data after

deleting i-th cluster in h-th stratum. Furthermore, we can show that the jackknife

estimator above is equivalent to the customary variance estimator by the following

justification:

vjack(T̂h) =
nh − 1

nh

nh∑

i=1

(T̂(hi) − T̂h)
2

=
nh − 1

nh

nh∑

i=1

{ 1

nh − 1
(zh,1 + zh,2 + · · · + zh,nh−1 + zh,nh

− nhzh,i)}2

=
1

nh(nh − 1)

nh∑

i=1

(nhzhi −
nh∑

i=1

zhi)
2

=
1

nh(nh − 1)

nh∑

i=1

(nh

∑

k

whikyhik −
nh∑

i=1

∑

k

whikyhik)
2

=
nh

nh − 1

nh∑

i=1

(
∑

k

whikyhik −
1

nh

nh∑

i=1

∑

k

whikyhik)
2

=
nh

nh−1

nh∑

i=1

(zhi − z̄h)
2,

where zhi =
∑

k whikyhik.

We note that in the linear case such as the population total, the customary

variance estimator is equal to the jackknife estimator.
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6.3 Linearization Variance Estimator

1st order Taylor series expansion for R̂cT̂c at (Mc, Tc) is

R̂cT̂c = Mc

T̂c

M̂c

≈ Mc

{ Tc

Mc

+
1

Mc

(T̂c − Tc) −
Tc

M2
c

(M̂c − Mc)
}

= Tc + T̂c −
M̂c

Mc

Tc.

Then we have the following

T̂pst − T =
∑

c

(R̂cT̂c − Tc)

=
∑

h

∑

i

1

mhi

∑

k

∑

c

whiMhiδhikc(yhik −
T̂c

M̂c

)

=
∑

h

∑

i

ghi

(

=
∑

h

1

nh

∑

i

nhghi

)

=
∑

h

ḡ∗
h,

where

ghi =
1

mhi

∑

k

∑

c

whiMhiδhikc(yhik −
T̂c

M̂c

)

=
∑

c

Shic(ȳhic − µ̂c)

=
∑

c

Shicghic

and d∗
hi(= nhdhi) are iid, i = 1, ..., nh. Then we can obtain the variance estimator of

T̂pst,

vL(T̂pst) =
∑

h

1

nh(nh − 1)

nh∑

i=1

(g∗
hi − ḡ∗

h)
2

=
∑

h

nh

nh − 1

nh∑

i=1

(ghi − ḡh)
2,

provided that vL(T̂pst − T ) ≈ vL(T̂pst). However, vL(T̂pst) actually estimates v(T̂ ),

but not v(T̂pst) (Valliant, 1993). Rao (1985) suggested another estimator which is
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adjusted by R̂c = Mc/M̂c

v∗
L(T̂pst) =

∑

h

nh

nh − 1

nh∑

i=1

{ ∑

c

R̂c(ghic − ḡhc)
}2

,

where ghic = 1
mhi

∑

k∈shi
whiMhiδhikc(yhik − T̂c

M̂c
) = Shic(ȳhic − µ̂c).

6.4 Jackknife Linearization Variance Estimator

The following is the jackknife variance estimator for the poststratified total estimator:

vJ(T̂pst) =
∑

h

nh − 1

nh

nh∑

i=1

(

T̂pst(hi) − T̂pst

)2

=
∑

h

nh − 1

nh

nh∑

i=1

( ∑

c

R̂c(hi)T̂c(hi) −
∑

c

R̂cT̂c

)2

=
∑

h

nh − 1

nh

nh∑

i=1

{ ∑

c

(R̂c(hi)T̂c(hi) − R̂cT̂c)
}2

,

where

T̂pst(hi) =
∑

c

R̂c(hi)T̂c(hi) =
∑

c

Mc

M̂c(hi)

T̂c(hi).

Note that M̂c(hi) and T̂c(hi) are estimated after deleting (hi)-cluster and (adjusted)

linearization variance estimator is

v∗
L(T̂pst) =

∑

h

nh

nh − 1

nh∑

i=1

{ ∑

c

R̂c(ghic − ḡhc)
}2

.

According to Valliant (1993), the standard Taylor expansion of R̂c(hi)T̂c(hi) at

(M̂c,T̂c) is

R̂c(hi)T̂c(hi) =
Mc

M̂c(hi)

T̂c(hi)

≈ Mc

M̂c

T̂c +
Mc

M̂c

(T̂c(hi) − T̂c) −
Mc

M̂c

2 T̂c(M̂c(hi) − M̂c)

= R̂cT̂c + R̂c(T̂c(hi) − T̂c) − R̂c

T̂c

M̂c

(M̂c(hi) − M̂c)

= R̂cT̂c + R̂c(T̂c(hi) − T̂c) − R̂cµ̂c(M̂c(hi) − M̂c).
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Also we can rewrite T̂c as

T̂c =

L∑

h=1

nh∑

i=1

Shicȳhic

=
∑

h

∑

i

ỹhic =
∑

h

nh

1

nh

∑

i

ỹhic

=
∑

h

nh
¯̃yhc.

Then the estimate of Tc without one missing cluster is computed as

T̂c(hi) = nh
¯̃yhc(hi) +

∑

h6=h′

nh′
¯̃yh′c

= nh

(nh
¯̃yhc − ỹhic

nh − 1

)

+
∑

h6=h′

nh′
¯̃yh′c

=
nh

nh − 1
(nh

¯̃yhc − ¯̃yhc + ¯̃yhc − ỹhic) +
∑

h6=h′

nh′
¯̃yh′c

=
nh

nh − 1
(¯̃yhc − ỹhic) + nh

¯̃yhc +
∑

h6=h′

nh′
¯̃yh′c

=
nh

nh − 1
(¯̃yhc − ỹhic) + T̂c.

Furthermore,

T̂c(hi) − T̂c =
nh

nh − 1
(¯̃yhc − ỹhic)

= − nh

nh − 1
(ỹhic −

1

nh

∑

i

ỹhic)

= − nh

nh − 1
(Shicȳhic −

1

nh

∑

i

Shicȳhic).

By just replacing yhik by δhikc, we obtain

M̂c(hi) − M̂c = − nh

nh − 1
(Shic −

1

nh

∑

i

Shic).
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Then plug these expressions into the standard Taylor expansion, we have

R̂c(hi)T̂c(hi) − R̂cT̂c = R̂c(T̂c(hi) − T̂c) − R̂cµ̂c(M̂c(hi) − M̂c)

= −R̂c

nh

nh − 1
(Shicȳhic −

1

nh

∑

i

Shicȳhic)

+R̂cµ̂c

nh

nh − 1
(Shic −

1

nh

∑

i

Shic)

= −R̂c

nh

nh − 1

(

Shicȳhic −
1

nh

∑

i

Shicȳhic

−Shicµ̂c +
1

nh

∑

i

Shicµ̂c

)

= −R̂c

nh

nh − 1

{

Shic(ȳhic − µ̂c) −
1

nh

∑

i

Shic(ȳhic − µ̂c)
}

.

Also, pluging this equation into the formula of the jackknife variance estimator, we

finally obtain that

vJL(T̂pst) =
∑

h

nh − 1

nh

∑

i

{ ∑

c

(R̂c(hi)T̂c(hi) − R̂cT̂c)
}2

=
∑

h

nh − 1

nh

∑

i

[∑

c

−R̂c

nh

nh − 1

{

Shic(ȳhic − µ̂c)

− 1

nh

∑

i

Shic(ȳhic − µ̂c)
}]2

=
∑

h

nh

nh − 1

∑

i

{ ∑

c

R̂c(ghic −
1

nh

∑

i∈sh

ghic)
}2

=
L∑

h=1

nh

nh − 1

nh∑

i=1

{ ∑

c

R̂c(ghic − ḡhc)
}2

= v∗
L(T̂pst).

The essential steps of the derivation above can be found in Yung and Rao (1996).
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6.5 New Proposed Linearization Variance Estimator

Furthermore, we considered 2nd order Taylor series expansion for R̂cT̂c at (Mc, Tc)

which is evaluated as

R̂cT̂c = Mc

T̂c

M̂c

≈ Mc

{ Tc

Mc

+
1

Mc

(T̂c − Tc) −
Tc

Mc
2 (M̂c − Mc)

+
Tc

Mc
3 (M̂c − Mc)

2 − 1

Mc
2 (T̂c − Tc)(M̂c − Mc)

}

= Tc + T̂c −
M̂c

Mc

Tc

+
Tc

Mc
2 (M̂c − Mc)

2 − 1

Mc

(T̂c − Tc)(M̂c − Mc)

= Tc + T̂c(2 − M̂c

Mc

) + Tc

{(M̂c

Mc

)2

− 2
M̂c

Mc

}

= Tc + (2 − M̂c

Mc

)(T̂c −
M̂c

Mc

Tc).

Then, we have

T̂pst − T =
∑

c

(R̂cT̂c − Tc)

=
∑

c

(2 − M̂c

Mc

)(T̂c −
M̂c

Mc

Tc)

=
∑

h

∑

i

∑

c

∑

k

whiMhi

mhi

(yhikδhikc −
T̂c

M̂c

)(2 − 1

R̂c

)

=
∑

h

∑

i

1

mhi

∑

c

(2 − 1

R̂c

)Shic(ȳhic − µ̂c)

=
∑

h

∑

i

ghi =
∑

h

1

nh

∑

i

nhghi

=
∑

h

ḡ∗
h,

where ghi = 1
mhi

∑

c(2 − 1

R̂c
)Shic(ȳhic − µ̂c) and g̃∗

hi(= nhg̃hi) are iid, i = 1, ..., nh.
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Therefore, variance of T̂pst is

v∗∗
L (T̂pst) =

∑

h

1

nh(nh − 1)

nh∑

i=1

(g∗
hi − ḡ∗

h)
2

=
∑

h

nh

nh − 1

nh∑

i=1

(g̃hi − ḡh)
2

=
∑

h

nh

nh − 1

nh∑

i=1

{ ∑

c

(2 − 1

R̂c

)(ghic − ḡhc)
}2

.

Comparing this to the standard linearization estimator, the second-order lin-

earization variance estimator has the function of the adjustment factor, 2 − 1/Rc.

This function works like the ratio, Rc, but slightly different. If the value of Rc is

around 1, both have the values close to 1. But for extremely unbalanced case such

that the values are far from 1, 2 − 1/Rc gives smaller weights for each poststratum.

So 2 − 1/Rc also has the functionality of balancing weights for poststrata which can

reduce the bias from the unbalanced sampling. Rao’s adjusted variance estimator can

be obtained by adding the ratio adjustment factor, Rc to the standard linearization

variance estimator. We note that Mc/M̂c converges in probability to 1. So, there is no

harm in switching vL to v∗
L since v∗

L is asymptotically equivalent to vL. If the Taylor

expansion is expanded to the second-order, we have the new linearization variance

estimator with the function, 2 − 1/Rc. This function came from the process of the

second-order Taylor approximation. So the second-order estimator has the function

which balances weights for the poststrata while the standard linearization variance

estimator, vL, does not have. We know that the new variance estimator is equivalent

to v∗
L and vL. Because the function, 2 − 1/Rc, also converges in probability to 1.

Therefore, its adjusted version also can be suggested as

v∗∗
adj,L(T̂pst) =

∑

h

nh

nh − 1

nh∑

i=1

{ ∑

c

R̂c(2 − 1

R̂c

)(ghic − ḡhc)
}2

,

where ghic = 1
mhi

∑

k∈shi
whiMhiδhikc(yhik − Tc

Mc
) = Shic(ȳhic − µ̂c). vL(T̂pst), v∗∗

L (T̂pst)
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and v∗∗
adj,L(T̂pst) are all asymptotically equivalent, because R̂c

p→ 1.

We also can consider that poststratification is made across on the clusters, not

the units within cluster.

Mc =
∑

h

Nh∑

i=1

Mhi∑

k=1

δhic

=
∑

h

Nh∑

i=1

δhicmhi.

Then, population total estimator, T̂ can be expressed in different way as follows,

T̂ =
∑

h

nh∑

i=1

whiT̂hi

=
∑

h

∑

i

whiMhiȳhi

=
∑

c

∑

h

∑

i

Shiδhicȳhi

=
∑

c

T̂c.

Now we know

T̂c =
∑

h

∑

i

Shiδhicȳhi.

By replacing ȳhi by δhic, then

M̂c =
∑

h

∑

i

Shi

(

=
∑

h

∑

i

Shiδhic

)

,

which is identical to M̂c when mhic = mhi (Shi = whiMhi ). Therefore,

vL(T̂pst) =
∑

h

1

nh(nh − 1)

nh∑

i=1

(g∗
hi − ḡ∗

h··)
2

=
∑

h

nh

nh − 1

nh∑

i=1

(ghi − ḡh·)
2.

We also apply second order linearization to jackknife variance estimator. By

linearizing, second-order jackknife linearization variance estimator can be obtained.
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Second-order Taylor expansion of R̂c(hi)T̂c(hi) at (M̂c,T̂c) is

R̂c(hi)T̂c(hi) =
Mc

M̂c(hi)

T̂c(hi)

≈ Mc

M̂c

T̂c +
Mc

M̂c

(T̂c(hi) − T̂c) −
Mc

M̂c

2 T̂c(M̂c(hi) − M̂c)

+
T̂c

M̂3
c

(M̂c(hi) − M̂c)
2 − 1

M̂2
c

(T̂c(hi) − T̂c)(M̂c(hi) + M̂c)

= R̂cT̂c + R̂c

{

T̂c(hi) − T̂c −
T̂c

M̂c

M̂c(hi) + T̂c

+
T̂c

M̂2
c

(M̂c(hi) − M̂c)
2 − 1

M̂c

(T̂c(hi) − T̂c)(M̂c(hi) + M̂c)
}

= R̂cT̂c + R̂c

{

T̂c(hi) −
M̂c(hi)

M̂c

T̂c +
M̂2

c(hi)

M̂2
c

T̂c + T̂c − 2
M̂c(hi)

M̂c

T̂c

−M̂c(hi)

M̂c

T̂c(hi) + T̂c(hi) +
M̂c(hi)

M̂c

T̂c − T̂c

}

= R̂cT̂c + R̂c

{

2
(

T̂c(hi) −
M̂c(hi)

M̂c

T̂c

)

− M̂c(hi)

M̂c

(

T̂c(hi) −
M̂c(hi)

M̂
T̂c

)}

= R̂cT̂c + R̂c

{(

2 − M̂c(hi)

M̂c

)(

T̂c(hi) −
M̂c(hi)

M̂c

T̂c

)}

.

Then we have

R̂c(hi)T̂c(hi) − R̂cT̂c = R̂c

(

2 − M̂c(hi)

M̂c

)(

T̂c(hi) −
M̂c(hi)

M̂c

T̂c

)

.

Therefore,

v∗
JL(T̂pst) =

∑

h

nh − 1

nh

nh∑

i=1

{ ∑

c

(R̂c(hi)T̂c(hi) − R̂cT̂c)
}2

≈
∑

h

nh − 1

nh

nh∑

i=1

{ ∑

c

R̂c

(

2 − M̂c(hi)

M̂c

)(

T̂c(hi) −
M̂c(hi)

M̂c

T̂c

)}2

.

The second-order jackknife linearization variance estimator is very similar to the

adjusted version of the second order linearization variance estimator that we proposed
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before. It has M̂c(li)/M̂c and T̂c(li) instead of M̂c/Mc and T̂c(li). However, v∗
JL needs to

compute M̂c(li) and T̂c(li) which require extensive calculations as the standard jackknife

estimator does. So it may not be preferred to the jackknife variance estimator with

respect to time and cost.
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CHAPTER VII

SIMULATION STUDY I

To observe and compare the performances of variance estimators which include the

standard linearization estimtor vL, the jackknife linearization estimator vJL, the sec-

ond order linearization estimator v∗∗
L and its adjusted version v∗∗

adj,L , we generate

a population with 50, 000 with four poststrata. The values of yhik are generated

from four different normal distributions (poststrata) with given means (µ1, µ2, µ3,

µ4)=(40, 60, 80, 100) and standard deviations (σ1, σ2, σ3, σ4)=(8.94, 10.95, 12.65,

14.14). Poststrata sizes are randomly determined and assigned as (9,561, 18,800,

6,163, 15,476) respectively. All 50,000 units are randomly apportioned into 10 strata

and 800 clusters with equal probabilities. Consequently, each stratum has 80 clusters

and cluster size varies from 40 to 89. After the clustered population is obtained,

iterative drawings of sample should be carried under designed sampling plan.

First, we consider one-stage sampling scheme. One-stage is a special case of two-

stage sampling design. Because if all the units are selected within sampling clusters

under two-stage sampling design, this becomes a single stage. The largest cluster size

of the generated population is 89. If we select 89 units within all the sampling clusters,

which covers all the units in, that is equivalent to one-stage cluster sampling. Hence,

calculations of variance estimators for both one-stage and two-stage are carried in

the same manner. In one-stage sampling, we selected 1,000 independent samples.

At each sample, nh clusters were selected from each hth-stratum with probability

proportional to cluster size. We repeated this with four different numbers of sampling

clusters nh = 4, 6, 8, 10 respectively, for i = 1, ..., 10 per stratum with selecting all the

units in the clusters.
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The sampling method used under two-stage cluster sampling plan is that pps at

first stage and srs at second stage. This yields equal selection probabilities for all

units. The selection probability of j-th unit in i-th cluster is

πij =
nMi

M

mhi

Mi

=
nmhi

M
.

Eight clusters per stratum are selected with pps so total eighty clusters out of eight

hundreds population clusters are sampled at the first stage. For each sampling cluster,

mhi = 6, 10, 14, 18 units within cluster are drawned respectively. If number of units

in a cluster is smaller mhi, all the units in that cluster are taken. So total sample size

for each time of sampling is not fixed but similar. Empirical mean sqaure error or

say ‘vE’ is calculated for each variance estimator based on 1,000 samples defined by

vE =
1

1000

1000∑

i=1

(T̂pst,i − T )2,

where T̂pst,i is the estimated total for the i-th generated sample (i = 1, 2, ..., 1000).

Mean sqaure error and relative bias are used to measure the precision and performance

for each variance estimator based on the sample size.

MSE =
1

1000

1000∑

i=1

(v̂i − vE)2,

Relative bias =
1

1000

∑

i vi

vE

− 1,

where v̂i is the variance estimate for the i-th generated sample (i = 1, 2, ..., 1000).
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The second order linearization estimator, v∗∗
L , performs as well as vL and vJL

for both one and two-stage. We also used a real finite population which is called

third grade population. It consists of 2,427 students who participated in the Third

International Mathematics and Science Study (Caslyn, Gonzales and Frase, 1999).

The methods used in conducting the original study are given in TIMSS International

Study Center (1996). The population consists of only students from the United States

and it has four regions which are strata. Clusters are schools while units within clus-

ters are the students. We limit the variable of interest be the total math score of the

population and let the poststrata to be the ethics which has eight categories in this

study. n1 = 11, n2 = 16, n3 = 10, n4 = 23 clusters are selected from stratum with

proportional allocation and m = 4, 8, 12, 16 units are sampled within each cluster, re-

spectively. 1,000 simulations for each different number of sampling units shows similar

result to simulated population. v∗∗
L still estimates the variance of the poststratified

estimator well.

In Tables 6 and 7 and from Figures 2 to 9, poststratified estimator shows much

better performance than standard estimator. Performances of the variance estimators

are shown in Tables 8 and 9 and from Figures 10 to 14. We also recorded the results

of the simulations on the third grade data in Tables 10 and 11.
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Table 6: Point estimators at one-stage on the simulated population

T̂ T̂pst

Relative bias m = 4 -0.01 0.00
m = 6 0.00 0.00
m = 8 -0.01 0.00
m = 10 -0.01 0.00

MSE(÷107) n = 4 51.7 8.09
n = 6 33.3 5.19
n = 8 25.8 3.87
n = 10 18.2 2.80

Table 7: Point estimators at two-stage on the simulated population

T̂ T̂pst

Relative bias m = 6 -0.01 0.00
m = 10 -0.01 -0.01
m = 14 -0.01 0.00
m = 18 0.00 0.00

MSE(÷108) m = 6 30.34 4.00
m = 10 17.96 2.71
m = 14 12.55 1.73
m = 18 8.74 1.39
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Table 8: Variance estimators at one-stage on the simulated population

VL VJL V ∗∗
L V ∗∗

adj,L

Relative bias m = 4 0.002 0.002 0.001 0.003
m = 6 0.021 0.021 0.020 0.022
m = 8 0.022 0.022 0.021 0.022
m = 10 0.076 0.076 0.075 0.076

MSE(÷1013) m = 4 16.17 16.09 16.04 16.18
m = 6 4.300 4.284 4.238 4.335
m = 8 1.890 1.894 1.876 1.922
m = 10 2.841 2.838 2.814 2.860

Table 9: Variance estimators at two-stage on the simulated population

VL VJL V ∗∗
L V ∗∗

adj,L

Relative bias m = 6 0.014 0.017 0.011 0.026
m = 10 -0.035 -0.028 -0.037 -0.028
m = 14 0.025 0.023 0.026 0.029
m = 18 0.007 0.005 0.007 0.011

MSE(÷1014) m = 6 27.57 28.68 26.97 34.20
m = 10 11.54 11.30 11.94 10.87
m = 14 4.999 5.092 4.894 5.499
m = 18 2.399 2.415 2.387 2.510
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Table 10: Point estimators at two-stage on the third grade population

T̂ T̂pst

Relative bias m = 4 -0.01 -0.01
m = 12 -0.01 -0.01

MSE(÷108) n = 4 2.45 2.00
n = 12 1.75 1.26

Table 11: Variance estimators at two-stage on the third grade population, n1 =
11, n2 = 16, n3 = 10, n4 = 23

VL VJL V ∗∗
L V ∗∗

adj,L

Relative bias m = 4 0.055 0.056 0.037 0.075
m = 12 0.105 0.101 0.089 0.109

MSE(÷1015) m = 4 2.039 2.207 1.807 3.378
m = 12 1.420 1.349 1.169 1.618
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Figure 2: Point estimates of population total on 1,000 samples from the simulated
population under one-stage cluster sampling, n = 4
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Figure 3: Point estimates of population total on 1,000 samples from the simulated
population under one-stage cluster sampling, n = 6
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Figure 4: Point estimates of population total on 1,000 samples from the simulated
population under one-stage cluster sampling, n = 8
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Figure 5: Point estimates of population total on 1,000 samples from the simulated
population under one-stage cluster sampling, n = 10
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Figure 6: Point estimates of population total on 1,000 samples from the simulated
population under two-stage cluster sampling, selecting eight clusters per stratum and
m = 6 units in each cluster
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Figure 7: Point estimates of population total on 1,000 samples from the simulated
population under two-stage cluster sampling, selecting eight clusters per stratum and
m = 10 units in each cluster
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Figure 8: Point estimates of population total on 1,000 samples from the simulated
population under two-stage cluster sampling, selecting eight clusters per stratum and
m = 14 units in each cluster
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Figure 9: Point estimates of population total on 1,000 samples from the simulated
population under two-stage cluster sampling, selecting eight clusters per stratum and
m = 18 units in each cluster
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Figure 10: Variance estimates based on 1,000 samples from the simulated population
under two-stage cluster sampling, selecting eight clusters per stratum and m = 6
units in each cluster
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Figure 11: Variance estimates based on 1,000 samples from the simulated population
under two-stage cluster sampling, selecting eight clusters per stratum and m = 10
units in each cluster
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Figure 12: Variance estimates based on 1,000 samples from the simulated population
under two-stage cluster sampling, selecting eight clusters per stratum and m = 14
units in each cluster
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Figure 13: Variance estimates based on 1,000 samples from the simulated population
under two-stage cluster sampling, selecting eight clusters per stratum and m = 18
units in each cluster



60

1.0 2.0 3.0 4.0

0
.0

2
4

5
5

0
.0

2
4

6
0

0
.0

2
4

6
5

0
.0

2
4

7
0

0
.0

2
4

7
5

one−stage

n=4

1.0 2.0 3.0 4.0

0
.0

2
2

2
0

.0
2

2
4

0
.0

2
2

6

n=6

1.0 2.0 3.0 4.0

0
.0

1
5

7
0

0
.0

1
5

8
0

0
.0

1
5

9
0

0
.0

1
6

0
0

n=8

1.0 2.0 3.0 4.0

0
.0

1
7

3
0

.0
1

7
5

0
.0

1
7

7

n=10

1.0 2.0 3.0 4.0

0
.0

1
7

0
.0

1
8

0
.0

1
9

0
.0

2
0

0
.0

2
1

two−stage

n=8,m=6

1.0 2.0 3.0 4.0

0
.0

1
5

0
0

.0
1

5
5

0
.0

1
6

0

n=8,m=10

1.0 2.0 3.0 4.0

0
.0

1
6

5
0

.0
1

7
0

0
.0

1
7

5
0

.0
1

8
0

n=8,m=14

1.0 2.0 3.0 4.0

0
.0

1
2

3
0

.0
1

2
5

0
.0

1
2

7

n=8,m=18

Figure 14: Relative mse,
∑1000

i=1 (vi−vE

vE
)2/1, 000, of variance estimators in one-stage and

two-stage where n = number of sampling cluster per stratum, m = number of units
within each sampling cluster: in order of standard variance estimator(1), jackknife
linearization estimator(2), second order linearization estimator(3) and its adjuster
version(4)
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CHAPTER VIII

SIMULATION STUDY II

8.1 Homogeneous vs Nonhomogeneous

We generate two populations of size, 40, 483 and 59, 891, both of which have eight

poststrata. The values of ylik are generated from each of different poststrata. We

assumed each poststrata follows normal distribution with given mean and standard

deviation. And the sizes of poststrata are randomly assigned. For the first generated

population, all 40,483 units are apportioned into 20 strata and 800 clusters. Con-

sequently, each stratum has 80 clusters and cluster size varies from 40 to 89. After

the clustered population is obtained, iterative drawings of sample should be carried

under designed sampling plan. The second population is created exactly same way

except it has 10 strata. It has also 800 clusters. However, the distribution of cluster

means in the first population is quite homogeneous but pretty heterogeneous in the

second population. So we can compare the performance of the variance estimators if

they are applied to different situations.
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We considered 2 different configurations of sampling for each of two generated

populations denoted by case A and B for the first population and case C and D for

the second one. A is sampling 10 clusters with pps per each stratum and subsampling

10 units within each sampled cluster. B is (7, 10) which is 7 clusters per stratum and

10 units in each cluster. For the second population, C = (10, 15) and D = (15, 10).

If number of units in a cluster is smaller mli, all the units in that cluster are taken.

So total sample size for each time of sampling is not fixed but similar.

The result for the variance estimators in the heterogeneous case which is popula-

tion 2 are recorded in Tables 14 and 15. With respect to MSE, v∗∗
L performs very well

here. It has 16.9% and 12.4% smaller MSE than vJL. It also has the shortest interval

among the 4 competitors. However, 4 estimators perform similarly in the categories

of the relative bias and the coverage. Every estimators shows almost 95% coverage

and good relative bias between 1.7% and 3.2%.

In the population 1, the homogeneous one, v∗∗
L has the smallest MSE but the

differences are smaller than in the population 2. Its MSE is just 2.7% and 1.2%.

It is difficult to drive any solid conclusion such that one of the estimators is

superior to others based on the results. Because, the difference is not significant. But

it looks clearly that the two new estimators, v∗∗
L and v∗∗

adj,L can be considered as good

candidates for the variance estimators of the poststratified estimator.

The results of the simulations for homogeneous case and nonhomogeneous case

are shown in from Tables 12 to 15 and from Figures 15 to 22.
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Table 12: Case A in homogeneous population

VL VJL V ∗∗
L V ∗∗

adj,L

MSE(÷1013) 2.93 3.03 2.87 3.53
Relative bias 0.006 0.007 0.004 0.011
Coverage 0.947 0.947 0.946 0.949
Lengths 38,502 38,534 38,425 38,676

Table 13: Case B in homogeneous population

VL VJL V ∗∗
L V ∗∗

adj,L

MSE(÷1013) 9.23 9.38 9.15 10.59
Relative bias 0.003 0.004 0.001 0.009
Coverage 0.948 0.948 0.947 0.950
Lengths 37,664 37,699 37,595 37,839
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Table 14: Case C in nonhomogeneous population

VL VJL V ∗∗
L V ∗∗

adj,L

MSE(÷1014) 1.108 1.193 1.020 1.617
Relative bias 0.020 0.017 0.023 0.032
Coverage 0.956 0.954 0.953 0.956
Lengths 44,595 44,719 44,444 45,116

Table 15: Case D in nonhomogeneous population

VL VJL V ∗∗
L V ∗∗

adj,L

MSE(÷1013) 6.399 6.792 6.044 9.008
Relative bias 0.009 0.011 0.006 0.019
Coverage 0.944 0.944 0.942 0.946
Lengths 44,506 44,604 44,364 45,941
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Figure 15: Point estimates of population total on 1,000 samples from the homogeneous
simulated population when A configuration
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Figure 16: Point estimates of population total on 1,000 samples from the homogeneous
simulated population when B configuration
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Figure 17: Point estimates of population total on 1,000 samples from the heteroge-
neous simulated population when C configuration
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Figure 18: Point estimates of population total on 1,000 samples from the heteroge-
neous simulated population when D configuration
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Figure 19: Variance estimates of population total on 1,000 samples from the homo-
geneous simulated population when A configuration
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Figure 20: Variance estimates of population total on 1,000 samples from the homo-
geneous simulated population when B configuration



71

0 200 400 600 8001
.0

 e
+

0
8

1
.3

 e
+

0
8

1
.6

 e
+

0
8

Standard variance estimator

C

0 200 400 600 8001
.0

 e
+

0
8

1
.3

 e
+

0
8

1
.6

 e
+

0
8

Jackknife linearization variance estimator

0 200 400 600 8001
.0

 e
+

0
8

1
.3

 e
+

0
8

1
.6

 e
+

0
8

Second order linearization estimator

C

0 200 400 600 8001
.0

 e
+

0
8

1
.3

 e
+

0
8

1
.6

 e
+

0
8

Adjusted second order linearization estimator

Figure 21: Variance estimates of population total on 1,000 samples from the hetero-
geneous simulated population when C configuration
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Figure 22: Variance estimates of population total on 1,000 samples from the hetero-
geneous simulated population when D configuration
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CHAPTER IX

CONCLUDING REMARKS

Yung and Rao (1996) studied the jackknife variance estimator, the jackknife lineariza-

tion estimator and the standard linearization estimator through a simulation study

based on the finite population of 10,841 persons included in the september 1988 Cur-

rent Population Survey (CPS). Their results showed that these methods estimate the

mean squared error of the poststratified estimator well unconditionally. vJL is more

preferred to vJ for its simplicity and it also performs as well as vJ . However, vJL

and vL has the disadvantage that both need the separate formula derivations. The

second-order linearization variance estimator which we proposed in this paper, is as

simple to be computed as the standard linearization estimator. Its performance is as

good as vL and vJL based on the simulation result in both generated populations and

real population. As for the estimating variance of the poststratified population total

estimator, the second-order linearization estimator is preferred because it is com-

putationally as simple as the standard linearization estimtor vL, and the jackknife

linearization estimator vJL. Also theoretically, it might have more accuracy from the

extension to the second order of the Taylor linearization.

The use of the second order Taylor linearization created the new adjustment

factor for the poststrata weights and it is the function of Rc which also plays role

of balancing weights for the poststrata in the standard estimator. This can also

be applied to the linearization estimator of another type of generalized regression

estimator which might be associated with different distance function other than the

poststratified estimator for the population total that we considered here.
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