
BAYESIAN VARIABLE SELECTION IN CLUSTERING

VIA DIRICHLET PROCESS MIXTURE MODELS

A Dissertation

by

SINAE KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2006

Major Subject: Statistics



BAYESIAN VARIABLE SELECTION IN CLUSTERING

VIA DIRICHLET PROCESS MIXTURE MODELS

A Dissertation

by

SINAE KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Marina Vannucci

Committee Members, Jeffrey D. Hart

David B. Dahl

Arul Jayaraman

Head of Department, Simon J. Sheather

May 2006

Major Subject: Statistics



iii

ABSTRACT

Bayesian Variable Selection in Clustering

via Dirichlet Process Mixture Models. (May 2006)

Sinae Kim, B.S., Pusan National University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Marina Vannucci

The increased collection of high-dimensional data in various fields has raised a strong

interest in clustering algorithms and variable selection procedures. In this disserta-

tion, I propose a model-based method that addresses the two problems simultane-

ously. I use Dirichlet process mixture models to define the cluster structure and to

introduce in the model a latent binary vector to identify discriminating variables. I

update the variable selection index using a Metropolis algorithm and obtain inference

on the cluster structure via a split-merge Markov chain Monte Carlo technique. I

evaluate the method on simulated data and illustrate an application with a DNA

microarray study. I also show that the methodology can be adapted to the problem

of clustering functional high-dimensional data. There I employ wavelet thresholding

methods in order to reduce the dimension of the data and to remove noise from the

observed curves. I then apply variable selection and sample clustering methods in the

wavelet domain. Thus my methodology is wavelet-based and aims at clustering the

curves while identifying wavelet coefficients describing discriminating local features.

I exemplify the method on high-dimensional and high-frequency tidal volume traces

measured under an induced panic attack model in normal humans.
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CHAPTER I

INTRODUCTION

1.1 Motivation

The topic of this dissertation is cluster analysis of high-dimensional data. Particular

interest is in situations where the cost of extracting and processing data forces re-

searchers to generate data sets with few observations and thousands of variables. It

is essential to develop statistical approaches to analyze this type of data sets, since

classical statistical methods do not work well with high dimensional data. Recent

examples of such data come from the field of bioinformatics. Broadly, bioinformatics

refers to the science of informatics as applied to biological research. Informatics is

the management and analysis of data using advanced computing techniques. Bioin-

formatics is particularly important as an adjunct to genomics research, because of the

large amount of complex data this research generates. Yet current classical statistical

methods are not adequate to meet the challenge of analyzing high-dimensional data.

In this dissertation I will propose an application of the developed methodologies

to cancer genomics and, in particular, to the problem of predicting and discovering

cancer subtypes. For many tumor types, it is known that there may exist unknown

subtypes of the cancers. For example, some leukemia cancers have similar morpho-

logical appearances but show different responses to therapy. Thus, cancer researchers

question how many subtypes of cancers exist and how to discriminate patients into

these subgroups. Different subtypes of cancers may respond differently to the target

The format and style follow that of Journal of the American Statistical Association.
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chemotherapy. The discovery of cancer subtypes is therefore imperative to improve

treatments. This leads to the need of cluster analysis. With high-dimensional data,

however, it is often not appropriate to perform clustering of the observations based

on all measured variables. Clusters are often confined to a small set of variables that

contain all the information to classify observations into subgroups. Noisy variables,

which do not have any information to discriminate observations, may mask the true

cluster structures. Thus, it is crucial to identify these informative variables in order

to extract correct estimation, which in turn lead to correct cluster structures.

My ultimate goal in this dissertation is to combine these two methods, clustering

and variable selection, into one model using a Bayesian approach. For clustering I will

adopt a model-based clustering method via Dirichlet process mixture model, and will

accomplish variable selection by introducing a latent vector to identify variables that

reveal the cluster structures. The Bayesian methodologies I will develop for cluster

analysis of high-dimensional data have potential for useful application in cancer ge-

nomics, particularly in the problem of finding better treatments for patients of cancer

subtypes.

Dirichlet process mixture (DPM) models have been used in non-parametric Bayesian

statistics to estimate density functions. The properties of the Dirichlet process enable

the model to uncover clusters and determine the number of clusters. The model allows

a priori infinite number of clusters. It also averts computationally intensive Markov

chain Monte Carlo (MCMC) algorithm such as reversible jump MCMC. One may ar-

gue that the use of DPM models is still computationally intensive (for example, they

may require split-merge algorithms) but it is perhaps more readily implemented. Vari-

able selection in cluster analysis is essential with high-dimensional data. I will use a

stochastic search variable selection (SSVS) method in order to identify discriminating

variables. The method has similarities with the approach first introduced by George
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and McCulloch (1993) as a Bayesian procedure to identify informative subsets of pre-

dictors in a regression model. Bayesian variable selection methods have been widely

used in regression and classification models and many contributions have appeared

in the literature in recent years. Yet, variable selection in cluster analysis has only

recently been studied. Unlike classification and regression models, where response

variables guide the selection, in cluster analysis only the predictors are observed.

My method can be applied to a variety of data or models. In this dissertation,

I will first evaluate the performance of the methodology on simulated data. This

will show quite promising results. I will then apply the method to DNA microarray

gene expression data. Finally, I will explore possible extensions of the proposed

methodologies to the analysis of high-dimensional functional data. Functional data

are discretely measured over a certain period of time. Such data are usually very

noisy. I will first use wavelet shrinkage methods to remove the noise and to reduce

the dimension of the data and then apply my clustering method to the survived

wavelet coefficients. There are many applied fields where functional data arise. In

bioinformatics, for example, this type of data is widely produced in the form of

protein mass spectra or as DNA microarray gene expression measured over time.

Here I choose to illustrate my method on functional data arising from the psychiatric

field, and look at tidal volume data measured during panic attack experiments.

The rest of this chapter has the following sections: Section 1.2 contains a brief

review of Dirichlet process and Dirichlet process mixture models. In section 1.3,

I explain how cluster structures are formed via Dirichlet process mixture models.

Bayesian variable selection is introduced in section 1.4. I conclude the chapter by

explaining the outline of the dissertation.
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1.2 Dirichlet process mixture models

Bayesian nonparametric methodologies have been developed considerably within the

last decades with advances in Markov chain Monte Carlo simulation methods. An-

toniak (1974) and Ferguson (1973) formalized and explored the notion of a Dirichlet

process (DP). Among many authors who have endeavored to cultivate nonparametric

Bayesian approaches with DP priors, many papers by Escobar (1994), MacEachern

(1994), MacEachern and Müeller (1998), Neal (2000) and Escobar and West (1995)

are good references for reviewing the applications of nonparametric Bayesian methods

via a DP.

I will briefly explain how a DP is used in nonparametric Bayesian approaches.

Let xi be a random sample from a distribution F with parameter θi. In the basic

Bayesian formulation, the model for the parameter θi can be defined as

xi|θi ∼ F (θi)

θi ∼ G, (1.1)

and it is completed by imposing a parametric distribution form on the prior distribu-

tion G. Sometimes, however, it is not realistic to assume that the prior distribution

of θi is of a known form, such as multivariate normal distribution or inverse Wishart

distribution. This has motivated the development of nonparametric Bayesian ap-

proaches in a hierarchical set up. One of the approaches is to introduce a Dirichlet

process prior on G (Antoniak 1974; Ferguson 1983). Instead of defining a paramet-

ric form for a prior distribution of θi, one may avoid the restriction by assuming a

random distribution G on θi, which is drawn from a Dirichlet process with a base

distribution (or location) G0 and a concentration parameter (or precision) α. The

definition of the Dirichlet process by Ferguson (1973) can be represented as:
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Definition A random probability distribution G is generated by a Dirichlet pro-

cess, denoted by G ∼ DP(α,G0) if for any partition (A1, · · · , Ak) of the sample

space, the vector of random probabilities G(Ak) follows a Dirichlet distribution, i.e.

(G(A1), · · · , G(Ak)) ∼ Dirichlet(αG0(A1), · · · , αG0(Ak)).

The base distribution G0 is such that E(G) = G0 and has a parametric form. The

concentration parameter α measures the strength of belief in G0. Thus if α takes a

large value, a sampled G is very likely to be G0. From the definition above, a DP

is considered as a distribution function over all possible distributions. Moreover, the

underlying random probability distribution G is discrete with probability one, so that

the support of G consists of a countably infinite set of atoms, drawn independently

from G0. This Bayesian hierarchical model with a DP prior an be written as follows:

xi|θi ∼ F (θi)

θi|G ∼ G (1.2)

G ∼ DP (α,G0)

and it is called a Dirichlet process mixture (DPM) model. Again, a DP provides a

means of placing a distribution on the space of all possible distribution functions.

Thus, the support of the distribution is so large that the distribution of θi is no

longer restricted to lie in the set of distributions, G, as in (1.1), which can be very

small portion of all distribution functions. For example, in a Bayesian parametric

model, G can be assumed to have a multivariate normal distribution. But defining a

DP on G allows the data to a G that is skewed, is multinomial, or departs from the

parametric form G0. Data generated from (1.2) can be partitioned according to the

distinct values of the parameters because of discreteness of DP. In this formulation the

DPM has a obvious interpretation as a flexible mixture model in which the number

of components (clusters) is random.
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There is another useful expression of a DP given by Sethuraman (1994). He

provides it more explicitly in terms of a stick-breaking construction. Considering two

infinite collections of independent random variables, Uj ∼ Beta(1, α) and θk ∼ G0,

for k = 1, 2, · · · . If G ∼ DP(α,G0), then the stick-breaking representation of G is

as follows:

πk(u) = uk

k−1∏

j=1

(1− uj)

G =
∞∑

k=1

πk(u) δ(θk), (1.3)

where δ(θk) is a point mass at θk. The mixing proportions πk(u) are given by

successively breaking a unit length ”stick” into an infinite number of pieces. The

size of each successive piece, proportional to the rest of the stick, is given by an

independent draw from a Beta(1, α) distribution. The expression above makes clear

that G is discrete with probability one. In other words, the support of G consists of

a countably infinite set of atoms, drawn independently from G0. This (1.3) leads to

xi ∼
∞∑

k=1

πk(u)f(·|θk). (1.4)

From (1.4), it is obvious that DPM has an interpretation as a mixture model with an

infinite number of mixture components.

In summary, adopting a DP prior in an hierarchical Bayesian specification of

the type (1.2) leads to a DPM model. The interpretation of a DPM as a Bayesian

hierarchical set-up on a finite mixture model makes it very suitable for cluster analysis.

1.3 Clustering via Dirichlet process mixture models

Mixture models have been widely used in cluster analysis to estimate cluster struc-

tures. Let me assume there are K populations mixing together with their own char-
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acteristic φk, which can be a scalar or a vector. Under the finite mixture models

to be fitted here, each sample xi can be viewed as coming from a population M

which is a mixture of these K populations (say M1, · · · ,MK) with some proportions

p1, · · · , pK , respectively. Then the probability density function of an observation x

in the population M can be represented as of the finite mixture form,

f(x|φ) =
K∑

k=1

pkf(x|φk),

where
∑K

k=1 pk = 1 and pk ≥ 0 for k = 1, · · · , K. When using a mixture model for

cluster analysis, one encounters the question of how many clusters K there are. In

order to estimate K, many approaches have been developed based on likelihood. The

details of cluster analysis using a mixture model are well-explained in McLachlan and

Basford (1988) including estimation of K.

Among many other Bayesian approaches to handle cluster analysis, the use of

DPM models is very attractive because of the fact that one does not need to define K

a priori. DPM models can be adopted for estimating mixture distributions, which are

widely-used for model-based cluster analysis. Since the realizations of a DP are dis-

crete with probability one, these models can be viewed as countably infinite mixtures

(Ferguson 1983). The discreteness implies that samples from G could have a number

of ties. In other words, some θis have same values with other θl, where l = 1, · · · , n,

l 6= i. Thus, the idea of clustering can obviously be seen here. The representation

via the Pólya urn scheme, described by Blackwell and MacQueen (1973), shows the

cluster formation and sample allocation. In (1.2), when G is integrated out over its

prior distribution, the conditional distribution of θi can be represented as following

Pólya urn scheme:

(1) sample θ1 ∼ G0
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(2) sample θ2|θ1 ∼ α
1+α

G0 + 1
1+α

δ(θ1)

:

(i) sample θi|θ1, · · · ,θi−1 ∼ α
i−1+α

G0 + 1
i−1+α

∑i−1
j=1 δ(θj)

:

(n) sample θn|θ1, · · · ,θn−1 ∼ α
n−1+α

G0 + 1
n−1+α

∑n−1
j=1 δ(θj),

where δ(y) is a point mass at y. As can be seen above, it is obvious that a θi

has its own new value randomly selected from G0 with a probability proportional to

α, and is assigned to one of the existing values with a probability proportional to

number of same values previously sampled. At the end, all sampled θi, i = 1, · · · , n

form K clusters with K ≤ n, and each cluster k has its distinct characteristic φk,

k = 1, · · ·K such that θi = φk for a subset of index {i} in cluster k. In other words,

given K, the {θ1, · · · ,θn} are selected from the set φ = (φ1, · · · ,φK) according to

a multinomial distribution. Thus, it is natural to introduce configuration ci for i-th

sample for cluster analysis. Each ci for i = 1, · · · , n tells what cluster a sample xi

goes to. When looking at the number of unique values of estimation of c, one sees the

number of clusters K automatically. This scheme is definitely useful for constructing

clustering idea. I note that G0 determines the prior distribution of model-specific

parameters for clusters.

The idea easily induces a cluster membership variable and conditional prior prob-

ability for configuration of each sample. As associating prior distribution of ci with

data information, I calculate posterior conditional probabilities for updating these

configuration. Specific details about clustering via DPM especially conjugate case

will be shown in Chapter II.
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1.4 Bayesian variable selection

The development of Bayesian variable selection methods has been the focus of sub-

stantial research in recent years. Variable selection in a multiple regression model

implies the selection of the covariates to be included in the model. Traditional selec-

tion procedures include AIC, BIC and Cp. However, when the number of covariates

is large, a computational difficulty is encountered. In order to avoid the computa-

tional issue, more heuristic approaches have been developed that restrict attention to

a smaller number of potential subsets, such as stepwise regression with forward and

backward selection (Miller 1990). In the same spirit of considering small subsets of

potential predictors, George and Mcullouch (1993) proposed a Bayesian approach to

identify subsets of potentially good variables in a multiple regression model. Here,

good variables are identified as those subsets of covariates with large posterior proba-

bility. If the number of variables, denoted p in this dissertation, is enormously large,

it is not feasible to calculate the posterior probabilities of all 2p possible subsets of

variables. In order to solve this problem, George and McCullouch adopted Markov

chain Monte Carlo methods that employed Gibbs sampling. These proceed to sample

from the multinomial posterior distribution on the subset of possible subset choices.

Subsets with high posterior probabilities can then be identified by their more frequent

appearance in the Gibbs sample. George and McCullouch called the method stochas-

tic search variable selection (SSVS). Here I describe their approach with more detail.

The key idea is to introduce a latent binary vector to index the possible subsets of

variables, say γ = (γ1, · · · , γp)t where γj = 1 if the j-th variable is selected and γj = 0

otherwise, for j = 1, · · · , p. This indicator is used to induce a mixture prior on the

regression coefficients. Let me assume a n × 1 response Y be related to the n × p
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predictor matrix X through a model of the form

Y = Xβ + ε, ε ∼ N(0, σ2I),

where β is the p× 1 vector of regression coefficients and ε is a vector of measurement

errors. Not all the covariates inX explain the changes in Y so that variable selection

plays is needed here to identify good variables. The latent binary vector γ is utilized

to induce mixture priors on the regression coefficients of the type

βj ∼ γjN(0, cσ2) + (1− γj)I0,

where βj indicates the j-th element of β and I0 a point mass at 0. The quantity c is

a hyperparameter needed to be specified. If the j-th variable is selected, i.e. γj = 1,

then the j-th regression coefficient βj has a normal distribution. Otherwise, if γj = 0

the coefficient of the corresponding variable does not appear in the model. Thus the

regression model above can be represented in the following hierarchical setup

Y |β,γ, σ2 ∼ N(Xγβγ , σ
2I)

βγ|σ2 ∼ N(0, cσ2Ipγ )

{γj} ∼ Bernoulli(ω), for j = 1, · · · , p.

After integrating out all other parameters in conjugate form, the marginal posterior

distribution f(γ|Y ) ∝ f(Y |γ)f(γ) can be computed. This distribution contains the

information relevant to the variable selection. Based on the data Y , the posterior

probability updates the priors on each of the 2p possible values of γ. Subsets of γ with

high posterior probability f(γ|Y ) identify the submodels supported most by the data

and the prior information f(γ). Thus, f(γ|Y ) provides a ranking that can be used

to select the more promising (or good) submodels. The SSVS by Gibbs or Metropolis

sampling can then be used for posterior sampling. The SSVS is controlled by some
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tuning parameters such as c and ω in the model. Certain guidelines on how to choose

those hyperparameters can be found in George and McCulloch (1993, 1997).

As can be seen above, in the regression model case there are response variables

Y to direct the selection procedure on the predictors. A similar procedure is used

in classification settings (Sha et al. 2004). In classification, the observed outcome is

a categorical variable that takes one of K values identifying the group from which

each sample arises. A multinomial probit model can be used to link the categorical

outcome, Z, to the linear predictors, X, by using a data augmentation approach, as

in Albert and Chib (1993). The approach introduces a latent matrix Y where the

row vector indicates the propensities of sample i to belong to one of the K classes.

The model fitting in the classification setting, however, is a bit more intricate because

the regression model is defined in terms of latent outcomes. The MCMC procedure

needs to account for this and includes a step that updates the latent values Y from

their full conditionals, for example a truncated matrix-variate t-distribution in the

case of a nominal response.

Cluster analysis is a much harder problem, in that there is no response variable

Y to guide the selection. Very few contributions for variable selection in cluster anal-

ysis exist in the current literature. I will review some of those in chapter II, where, in

particular, I will employ the method proposed by Tadesse, Sha and Vannucci (2005).

Their method makes use of the latent vector γ to identify variables that reveal infor-

mation about the cluster structure of the observations.

1.5 Outline of the dissertation

This dissertation is organized as follows. In this chapter I have reviewed DPM and

Bayesian variable selection methods, and have highlighted some of the concepts that
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will be central to the methodology I will propose. In Chapter II, I will introduce

my method for variable selection in clustering via DPM model of high-dimensional

data. In Chapter III, I will explore the performance of the methodology on simu-

lated data and illustrate an application to leukemia cancer microarray data. I will

extend methods to a clustering problem on high-dimensional functional curve data

in Chapter IV and present a case study. Since functional data is usually noisy and

high-dimensional, I will adopt a wavelet shrinkage method to reduce dimension and

to remove noise. I will then perform variable selection on the wavelet coefficients

and apply the clustering method described in Chapter II. In the final chapter I will

conclude the dissertation with a summary of the research and a discussion of some of

my on-going research works and future research plans.
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CHAPTER II

VARIABLE SELECTION IN CLUSTERING VIA DIRICHLET PROCESS

MIXTURE MODEL

2.1 Introduction

In recent years, high-dimensional data sets have become common in various areas

of application. Thousands of variables are collected on a few samples, complicating

inference with standard statistical approaches. Often, the goal of the analysis is to

uncover the group structure of the observations and identify variables that best dis-

tinguish the different groups. A typical example is the analysis of DNA microarray

data, where there is interest in discovering disease subtypes and isolating discrim-

inating genes. The results could lead to a better understanding of the underlying

biological processes and help develop targeted treatment strategies.

The practical utility of variable selection is well recognized and several methods

have been developed for regression and classification models (see George and Mc-

Culloch 1993, Sha et al. 2004, among others). Few contributions have been made

in the context of clustering. This is a more challenging problem since there is no

observed response to guide the selection. In addition, the inclusion of unnecessary

variables could complicate or mask the recovery of the clusters (see Tadesse, Sha and

Vannucci 2005 for a discussion on these issues). Liu, Zhang, Palumbo and Lawrence

(2003) address the problem by first reducing the dimension of the data using principal

component analysis then fitting on the factors a mixture model with fixed number of

clusters. They use MCMC sampling techniques to update the sample allocations and

the number of factors deemed relevant for the clustering. In practice, however, the

number of clusters is not known and there is often interest in evaluating the actual
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variables. In addition, the principal components, which are linear combinations of

all variables, do not have a straightforward interpretation. Recently, Friedman and

Meulman (2004) have proposed an algorithmic approach to cluster observations on

separate subsets of variables. They formulate the problem in terms of distance-based

clustering with weighted variables. They use heuristic search strategies to find an

optimal weighting of the variables while jointly minimizing the clustering criterion.

Their approach works in conjunction with hierarchical clustering, and hence does not

provide inference on the number of clusters nor does it provide a measure of uncer-

tainty for the sample allocations. Model-based approaches have also recently been

proposed. Hoff (2006) adopts a mixture of Gaussian distributions where different

clusters are identified by mean shifts. The model parameters are updated using

Markov chain Monte Carlo (MCMC) sampling techniques and Bayes factors are com-

puted to identify discriminating variables. Both Friedman and Meulman’s and Hoff’s

methods allow separate subsets of variables to discriminate different groups of ob-

servations. Tadesse, Sha and Vannucci (2005) have put forward a variable selection

method where latent variables are introduced to identify discriminating variables and

the clustering is formulated in terms of a finite mixture of Gaussian distributions with

an unknown number of components. They used a reversible jump MCMC technique

to allow for the creation and deletion of clusters. Their modelling approach accounts

for differences in both mean and covariance parameters across components. Unlike

the procedures of Friedman and Meulman and Hoff, this approach assumes that the

same subsets of variables discriminate across all components. However, the variable

selection technique they adopt has the advantage of allowing flexible inference on

both joint and marginal posterior distributions of the variables.

In this chapter, I build on the model of Tadesse, Sha and Vannucci (2005) by

formulating the clustering in terms of an infinite mixture of distributions via Dirichlet
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process mixtures (DPM). Samples from a Dirichlet process are discrete with probabil-

ity one and can therefore produce a number of ties. This model allows us to avoid the

use of the computationally intensive reversible jump MCMC technique. The variable

selection is accomplished by introducing a latent binary vector updated via MCMC.

The method identifies discriminating variables and provides estimates for the num-

ber of components and the sample allocations. The chapter is organized as follows.

In Section 2.2, I give details on the model formulation and the MCMC procedure.

Section 2.3 describes the inference mechanism with samples generated from MCMC.

Section 2.4 concludes the chapter with a brief discussion.

2.2 Model formulation

2.2.1 Clustering via Dirichlet process mixture models

Mixture models are now commonly used for cluster analysis (McLachlan and Bas-

ford 1988; Banfield and Raftery 1993) . In this approach, the data are viewed as

coming from a mixture of distributions, each representing a different cluster. A long

standing issue in all clustering procedures, including mixture models, is the problem

of determining the number of clusters. This can be handled by defining finite mix-

tures with an unknown number of components. Various MCMC sampling techniques,

such as the reversible jump algorithm (Richardson and Green 1997; Tadesse, Sha and

Vannucci 2005) and continuous time Markov birth-death processes Stephens (2000a)

have been proposed to fit this model and allow for creation and deletion of compo-

nents. An alternative approach is to define mixture distributions with a countably

infinite number of components. These models can be implemented by employing a

Dirichlet process prior for the mixing proportions (Antoniak 1974; Ferguson 1983) .

Over the last decade, various MCMC sampling methods for fitting DPM models have
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been developed, making these models useful in practical applications (Escobar 1994;

MacEachern 1994; Escobar and West 1995; MacEachern and Müller 1998).

Let me briefly recall the main feature of a Dirichlet process mixture model

as described in Chapter I. Let X = (x1, . . . ,xn) be conditionally independent p-

dimensional observations arising from a mixture of distributions F (θi). The model

parameters specific to individual i, θi, are assumed to be independent draws from

some distribution, G, which in turn follows a Dirichlet process prior. This leads to

the following hierarchical mixture model:

xi|θi ∼ F (θi)

θi|G ∼ G

G ∼ DP (G0, α),

(2.1)

where G0 defines a baseline distribution for the Dirichlet process prior, such that

E[G] = G0, and α is a concentration parameter. The Pólya urn scheme representation

of the Dirichlet process provides the basis for most computational strategies to fit this

model (Blackwell and MacQueen 1973). Integrating over G allows the θi to be written

in terms of successive conditional distributions:

θi|θ−i ∼
1

n− 1 + α

∑

k 6=i

δ(θk) +
α

n− 1 + α
G0, (2.2)

where δ(θk) is a point mass distribution at θk.

Given number of clusters K, a finite mixture model is expressed as follows:

f(xi|p,θ) =
K∑

k=1

pkf(xi|θk),

where
∑K

k=1 pk = 1 and pk ≥ 0, for k = 1, · · · , K. In general Bayesian hierarchical
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model, the following distributions are set up. This leads to :

xi|ci,φ ∼ F (φci
)

ci|p ∼ Discrete(p1, . . . , pK)

φc ∼ G0

p ∼ Dirichlet(α/K, . . . , α/K),

(2.3)

where the latent variable ci indicates the cluster allocation of sample i and φci
cor-

responds to the identical θi’s. Equivalent models to (2.1) can be obtained by taking

the limit as K → ∞ of finite mixture models with K components above. As shown

in Neal (2000), integrating over the mixing proportions p and taking K →∞ in (2.3)

leads to the following prior for ci:

p(ci = cl for some l 6= i|c−i) =
n−i,k

n− 1 + α

p(ci 6= cl for all l 6= i|c−i) =
α

n− 1 + α
, (2.4)

where n−i,k is the number of cl = k for l 6= i. Thus, sample i is allocated to an

existing cluster with probability proportional to the cluster size and it is assigned to

a new cluster with probability proportional to α. As shown in Antoniak (1974), the

prior probability of observing exactly k distinct clusters is given by

p(K = k|α, n) = nak α
k 1

An(α)
, (2.5)

where the coefficients nak are the absolute values of Stirling numbers of the first kind

and An(x) = na1x+ na2x
2 + · · ·+ nanx

n.

If G0 in (2.3) is a conjugate prior for F , sampling from the posterior distribution

using Gibbs sampling is straightforward. I will consider a procedure where conjugacy

is fully exploited as described by Neal (1992). Integrating out the model parameters

φci
simplifies the algorithm considerably, as the latent indicators ci will then be the
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only parameters to be updated. The conditional probabilities for the ci’s are then

given by:

p(ci = cl for some l 6= i|c−i,xi) = b
n−i,k

n− 1 + α

∫
F (xi;φ)dH−i,k(φ)

p(ci 6= cl for all l 6= i|c−i,xi) = b
α

n− 1 + α

∫
F (xi;φ)dG0(φ), (2.6)

where b is the appropriate normalizing constant, H−i,k is the posterior distribution of

φ based on the prior G0 and all observations xl for which l 6= i and cl = k.

The Gibbs sampler and the sequential importance sampling (MacEachern, Clyde

and Liu 1999), which rely on the Pólya urn-based incremental update suffer from

slow mixing. Several methods have been developed to overcome this problem. One

such approach is the blocked Gibbs sampler of Ishwaran and James (2001) which

updates blocks of parameters. Green and Richardson (2001) have proposed using

split/merge moves in the spirit of their reversible jump MCMC procedure for finite

mixture models (Richardson and Green 1997). Jain and Neal (2004) and Dahl (2004)

have also proposed sampling schemes that involve splitting and merging of clusters to

circumvent the lack of mixing of the standard Gibbs sampler. Here, I make use of Jain

and Neal’s (2004) split-merge MCMC procedure. The method, which is described in

Section 2.3, escapes local modes by separating or combining a group of observations

based on the Metropolis-Hastings algorithm.

2.2.2 Variable selection in clustering

Variable selection in the context of clustering is inherently challenging. Unlike linear

models and classification problems, where the response variable is observed and guides

the selection, here the sample allocations are unknown parameters that need to be

estimated. Stochastic search variable selection techniques (George and McCulloch

1993; Brown, Vannucci and Fearn 1998; among others) have successfully been used



19

in various applications to identify informative predictors. As described in Chapter

I of this dissertation, these methods introduce a latent binary vector γ to index all

possible models and use the γj’s to induce a mixture prior on the corresponding

regression coefficients. Clustering, however, is different from a regression setting and

the following adjustment is needed to define the latent indicators (Tadesse, Sha and

Vannucci 2005):





γj = 1 if variable j defines a mixture distribution

γj = 0 otherwise
. (2.7)

The latent vector γ is therefore used to directly identify variables that discriminate the

different groups. I denote byX (γ) the set of variables that define mixture distributions

and by X(γc) the remaining variables which favor one multivariate density across all

observations.

The goal is to combine the clustering and variable selection tasks and provide

a unified approach. I assume that F (φci
) in (2.3) is an infinite mixture of Gaussian

distributions with component parameters φk = (µk,Σk). Thus, conditional on the

discriminating variables, I have

xi(γ)|ci = k,φk,γ ∼ N (µk(γ),Σk(γ)) (2.8)

and with ψ = (η,Ω), the non-discriminating variables follow

xi(γc)|ψ,γ ∼ N (η(γc),Ω(γc)). (2.9)

The likelihood function therefore consists of the contribution from the clustering

and non-clustering covariates which, assuming no correlation between the two sets of
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variables, is given by

L(c,γ,φ,ψ|X) =

(2π)−
n(p−pγ )

2 |Ω(γc)|−
n
2 exp

{
−1

2

n∑

i=1

(xi(γc) − η(γc))
TΩ−1

(γc)(xi(γc) − η(γc))

}

×
K∏

k=1

(2π)−
nkpγ

2 |Σk(γ)|−
nk
2 exp

{
−1

2

∑

i∈Ck

(xi(γ) − µk(γ))
TΣ−1

k(γ)(xi(γ) − µk(γ))

}
,

where pγ =
∑p

j=1 γj and Ck = {i : ci = k, i = 1, . . . , n} with cardinality nk.

For the prior specification on γ, I consider its elements, γj, to be independent

Bernoulli random variables with common probability,

p(γ) =

p∏

j=1

ωγj(1− ω)1−γj , (2.10)

where ω can be elicited as the proportion of variables expected a priori in the dis-

criminating set. If further knowledge on some of the variables or their interactions is

available, this information can be incorporated in the prior.

As I mentioned above I specify conjugate priors and integrate out the mean

and covariance parameters. I assume, for computational convenience, independence

among the non-discriminating variables and set Ω = σ2Ip×p. I specify the prior

distributions as follows:

µk(γ)|Σk(γ) ∼ N (µ0(γ), h1Σk(γ)) η(γc)|Ω(γc) ∼ N (µ0(γc), h0Ω(γc))

Σk(γ) ∼ IW(δ;Q1(γ)) σ2 ∼ IG(a, b)
,

(2.11)

where IW(δ;Q1) is an inverse Wishart distribution with dimension p, shape parame-

ter δ = n−p+1, n degrees of freedom, and mean Q1/(δ−2) (Brown, 1993). IG(a, b)

is an inverse-gamma density with mean b
a−1

and variance b2

(a−1)2(a−2)
. Small values of

δ lead to a weak prior information. I set δ = a = 3, the smallest integer such that the

mean and variance of the corresponding densities are defined and take Q1 = κ1Ip×p.
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Some care is needed in the choice of κ1 and b. These hyperparameters need to be

specified in the range of variability of the data. I found values close to the mean

variance of the columns of X to yield reasonable results. For the mean parameters,

I take the priors to be fairly flat over the region where the data are defined. Each

element of µ0 is set to the corresponding covariate interval midpoint. Values of h0

and h1 between 10 and 1,000 performed well. These data-based priors ensure that the

prior distributions overlap with the likelihood and that I obtain well-behaved poste-

rior densities. As mentioned in Richardson and Green (1997), in mixture models it

is not possible to be fully non-informative and obtain proper posterior distributions.

This point is also emphasized by Wasserman (2000) who proposed data-dependent

priors in the context of finite mixtures. A comprehensive discussion on various prior

specifications and their effects is provided in Kass and Wasserman (1996). The au-

thors argue that the use of diffuse proper priors in complex statistical models can

lead to posteriors with undesirable properties.

After integrating out the component parameters, the marginalized likelihood becomes

f(X|γ, c) = 2−
n(p−pγ )

2 π−
np
2

K∏

k=1

[
Hk(γ) · |Q1(γ)|

δ+pγ−1

2 ·
∣∣Q1(γ) + Sk(γ)

∣∣−nk+δ+pγ−1

2

]

× H0(γc) ·
[
S0(γc)

]−(a+n/2)
, (2.12)

where Hk(γ) = (h1nk + 1)−
pγ
2

pγ∏

j=1

Γ
(
nk+δ+pγ−j

2

)

Γ
(
δ+pγ−j

2

) ,

H0(γc) = (h0n+ 1)−
p−pγ

2 ba(p−pγ)

p−pγ∏

j=1

Γ (a+ n/2)

Γ(a)
,

Sk(γ) =
∑

i∈Ck

(xi(γ) − x̄k(γ))(xi(γ) − x̄k(γ))
T

+
nk

h1nk + 1
(µ0(γ) − x̄k(γ))(µ0(γ) − x̄k(γ))

T ,

S0(γc) =

p−pγ∏

j=1

[
b+

1

2

{
n∑

i=1

(xij(γc) − x̄j(γc))
2 +

n

h0n+ 1
(µ0j(γc) − x̄j(γc))

2

}]
,
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with x̄k(γ) the sample mean of cluster k, and x̄j(γc) the j-th non-discriminating variable

sample mean. The derivation of the marginalized likelihood can be found in Appendix

A.

2.2.3 Model fitting

I update the variable selection index using repeated Metropolis steps and carry out in-

ference on the cluster structure using the Jain and Neal (2004) split-merge algorithm.

Our MCMC procedure iterates between the following steps:

(I) Update the latent variable selection indicator γ by repeating the following

Metropolis step t times. A new candidate γnew is generated by randomly choos-

ing one of two transition moves:

(i) Add/Delete: randomly pick one of the p indices in γold and change its

value.

(ii) Swap: draw independently and at random a 0 and a 1 in γold and switch

their values.

The new candidate is accepted with probability

min

{
1,
f(γnew|X, c)

f(γold|X, c)

}
, (2.13)

where f(γ|X, c) ∝ f(X|γ, c)p(γ). This stochastic update was suggested for

model selection by Madigan and York (1995) and has been used extensively

for variable selection in linear models by George and McCulloch among others,

and in classification by Sha et al. (2004) . In the context of clustering, I am

dealing with a more complex model where there is no observed outcome to guide

the selection. Instead, the variable selection and the cluster structure evolve

simultaneously. Therefore, to allow the selection to stabilize for a given cluster
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configuration, I repeat the Metropolis steps a number of times. In general, I

found little improvement in the MCMC performance beyond 20 intermediate

Metropolis steps.

(II) Update the latent sample allocation vector c using Jain and Neal’s (2004) split-

merge MCMC procedure. The method proceeds as follows. Start by selecting

two distinct observations, i and l at random uniformly. Let C denote the set of

observations, k ∈ {1, . . . , n}, for which k 6= i, k 6= l, and ck = ci or ck = cl.

(1) If C is empty, a simple random split-merge algorithm is used:

(a) If ci = cl, then

(i) The component is split such that

a new component cspliti /∈ {c1, . . . , cn} is created. The allocations

for the other observations remain unchanged.

(ii) The proposal is accepted with probability

a(csplit, c) = min

[
1,
q(c|csplit)P (csplit)L(csplit|X,γ)

q(csplit|c)P (c)L(c|X,γ)

]
,

where
q(c|csplit)
q(csplit|c) = 1,

P (csplit)

P (c)
= α,

L(csplit|X,γ)

L(c|X,γ)
=

∫
F (xi;φ,γ)dG0(φ,γ) ·

∫
F (xl;φ,γ)dG0(φ,γ)∫

F (xi;φ,γ)F (xl;φ,γ)dG0(φ,γ)
(2.14)

=
(1 + 2h1)

pγ/2

(1 + h1)pγ
·
|Q1(γ)|(δ+pγ−1)/2 · |Q1(γ) + Sil(γ)|(δ+pγ+1)/2

(
|Q1(γ) + Si(γ)| · |Q1(γ) + Sl(γ)|

)(δ+pγ)/2

×
pγ∏

j=1

[
Γ
(
δ+pγ+1−j

2

)]2

Γ
(
δ+pγ−j

2

)
Γ
(
δ+pγ+2−j

2

) ,
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Si(γ) = (1 + h1)
−1(xi(γ) − µ0(γ))(xi(γ) − µ0(γ))

T ,

Sil(γ) = (1 + 2h1)
−1
[
(xi(γ) − µ0(γ))(xi(γ) − µ0(γ))

T

+ (xl(γ) − µ0(γ))(xl(γ) − µ0(γ))
T

+ h1(xi(γ) − xl(γ))(xi(γ) − xl(γ))
T
]
.

(b) If ci 6= cl, then

(i) ci and cl are merged into a single component, cmerge.

(ii) The proposal is accepted with probability

a(cmerge, c) = min

[
1,
q(c|cmerge)P (cmerge)L(cmerge|X,γ)

q(cmerge|c)P (c)L(c|X,γ)

]
,

where
q(c|cmerge)

q(cmerge|c) = 1,
P (cmerge)

P (c)
=

1

α
,

L(cmerge|X,γ)

L(c|X,γ)
=

∫
F (xi;φ,γ)F (xl;φ,γ)dG0(φ,γ)∫

F (xi;φ,γ)dG0(φ,γ) ·
∫
F (xl;φ,γ)dG0(φ,γ)

. (2.15)

(2) If C is not empty, a restricted Gibbs sampling split-merge is used:

(a) Start by building a launch state as follows:

(i) If ci = cl, then split the component such that claunchi /∈ {c1, . . . , cn}

and claunchl = cl.

(ii) If ci 6= cl, then c
launch
i = ci and c

launch
l = cl.

(iii) For every k ∈ C, set claunchk independently and at random with

probability 0.5 to either claunchi or claunchl .

(iv) Perform t intermediate restricted Gibbs sampling scans to allo-

cate each observation k ∈ C to either claunchi or claunchl using the

following conditional distribution

p(ck|c−k,xk,γ) =
n−k,ckA(ck)

n−k,cliA(c
l
i) + n−k,cl

l
A(cll)

, (2.16)
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where

A(ci) =

∫
F (xk;φ,γ)dH−k,ci(φ,γ) =

π−pγ/2
(

h1nci + 1

h1n−k,ci + 1

)−pγ/2 pγ∏

j=1

Γ
(
nci+δ+pγ−j

2

)

Γ
(
n−k,ci

+δ+pγ−j

2

)

×
∣∣Q1(γ) + Sci(γ)

∣∣−(nci+δ+pγ−1)/2

×
∣∣Q1(γ) + S−k,ci(γ)

∣∣(n−k,ci
+δ+pγ−1)/2

,

with S−k,ci(γ) =
∑

j 6=k:cj=ci

(
xj(γ) − x̄ci(γ)

) (
xj(γ) − x̄ci(γ)

)T

+
n−k,ci

h1n−k,ci
+1

(
µ0(γ) − x̄ci(γ)

) (
µ0(γ) − x̄ci(γ)

)T

and Sci(γ) is defined as in equation (2.12).

The derivation of A(ci) is shown in Appendix A. Jain and Neal

(2004) found that the improvement in mixing is minimal after

five intermediate scans. The result from the last restricted Gibbs

sampling scan constitutes the launch state for the split-merge pro-

cedure.

(b) If ci = cl, then

(i) Let cspliti = claunchi and csplitl = claunchl .

(ii) For every observation k ∈ C, perform one final Gibbs sampling

scan from claunch to set csplitk to either cspliti of csplitl using equation

(2.16).

(iii) The allocation for observations k /∈ C ∪ {i, l} remains unchanged,

csplitk = ck.

(iv) Evaluate the proposal by the Metropolis-Hastings acceptance prob-

ability a(csplit, c), where q(csplit|c) is obtained by computing the

Gibbs sampling transition probability from claunch to csplit.
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(c) If ci 6= cl, then

(i) Let cmerge
i = cl and c

merge
l = cl.

(ii) For every observation k ∈ C, let cmerge
k = cl.

(iii) The allocation for observations k /∈ C ∪ {i, l} remains unchanged,

cmerge
k = ck.

(iv) The proposal is accepted with probability a(cmerge, c), where

q(c|cmerge) is the product over k ∈ C of the probabilities of setting

each ck in the original split state to its value in the launch state.

One iteration is completed after performing a full Gibbs sampling scan and

updating all sample allocations ci, i = 1, . . . , n.

The split-merge algorithm helps improve the mixing of the MCMC sampler,

which is a typical problem in fitting mixture models. The problem here is further

aggravated by the inclusion of variable selection. In cases where the sampler still

exhibits poor performance, getting stuck at a local mode and not accepting the

proposed split-merge moves, a tempering scheme can be introduced. One such

approach is the parallel tempering algorithm (Geyer, 1991). A series of distri-

butions that interpolate between the distribution of interest and a distribution

from which sampling is easier are defined, such that ft(c|X,γ) = f(c|X,γ)1/Tt

for t = 1, . . . , T . The procedure consists of the following steps:

1. parallel scan: for each chain with equilibrium distribution ft(.), c
old(Tt)

is updated to cnew(Tt) as described above.

2. state exchange: two neighboring chains, Tt and Tt′ , are randomly chosen

and an attempt is made to swap cnew(Tt) with cnew(Tt′). This update is
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accepted with probability

min



1,

[
f(cnew(Tt′)|X,γ)

f(cnew(Tt)|X,γ)

]( 1
Tt
− 1

T
t′

)

 .

2.3 Posterior inference

The MCMC output can be used to draw inference on the cluster structure and on

the variable selection vector γ. Different inference strategies can be adopted. A com-

mon approach for estimating discrete marginal posterior probabilities uses empirical

relative frequencies. Here, I have chosen to also approximate these distributions

by summing the posterior probabilities over MCMC scans that correspond to the

configuration of interest. I report the inference using both my approach and the

frequency-based estimates, which give concordant results.

2.3.1 Inference on c

For inference on the cluster structure, a commonly used estimate is the maximum a

posteriori (MAP) sample allocation vector, which corresponds to the configuration

with highest conditional posterior probability among those drawn by the MCMC

sampler:

ĉ = argmax
1≤t≤M

p(c(t)|X, γ̂), (2.17)

where γ̂ is the set of variables selected based on the marginal posterior probabilities

of γj from equation (2.20).

Alternatively, one can estimate the latent cluster assignments by identifying the
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configuration with largest posterior probability, ĉ = argmax p(c = c|X), where

p(c = c|X) =

∫
p(c = c,γ|X)

∝
∫
f(X|c = c,γ)p(c = c)p(γ)dγ

≈

∑

t:c=c

f(X|c(t),γ(t))p(c(t))p(γ(t)),

with t indexing the MCMC iterations. The prior probability of a particular configuration

c = c with D distinct mixture components, each of size nk, (k = 1, · · · , D), is given

by

p(c = c) =
αD
∏D

k=1(nk − 1)!∏n
i=1(α + i− 1)

.

I also investigate another estimator that relies on posterior pairwise probabilities

p(ci = cj|X) =

∫
p(ci = cj, c−(i,j),γ|X)dγdc−(i,j)

∝
∫
f(X|ci = cj, c−(i,j),γ)p(ci = cj, c−(i,j))p(γ)dγdc−(i,j)

≈
∑

t:ci=cj

p(X|c(t),γ(t))p(c(t))p(γ(t)), (2.18)

where c−(i,j) is the vector c without the ith and jth elements. With a sample size n

there are
(
n
2

)
such pairwise posterior probabilities, which can be viewed as entries of

a symmetric n × n similarity matrix. An approach proposed by Dahl (2006) which

he refers to as least-squares clustering, estimates the cluster structure by forming

an association matrix at every MCMC iteration. Each cell of the association ma-

trix takes value 1 if the corresponding row and column elements are allocated to

the same cluster and 0 otherwise. The sum of absolute deviations between the en-

tries of the association matrix and those of the similarity matrix is then calculated for

each MCMC output, and the configuration that minimizes the quantity is considered.
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2.3.2 Inference on γ

Inference on variables that discriminate between the different groups can be done

either through the joint posterior distribution of γ or through the marginal posterior

distributions of its elements. The former selects variables based on

γ̂ = argmax
1≤t≤M

p(γ(t)|X, ĉ), (2.19)

where ĉ is the sample allocation estimated via equation (2.18). The latter identifies

the variables with largest marginal posterior probabilities

p(γj = 1|X) =

∫
p(γj = 1,γ(−j)|X, c)dcdγ(−j)

∝
∫
f(X|c, γj = 1,γ(−j))p(c)p(γ)dcdγ(−j)

≈
∑

t:γj=1

f(X|c(t),γ(t))p(c(t))p(γ(t)), (2.20)

where γ(t) corresponds to the vector γ in the model visited at the t-th iteration.

The alternative way to estimate γ is to use the simple frequency,

p(γj = 1|X, ĉ) =
1

M

M∑

t=1

p(γ
(t)
j = 1|X, ĉ). (2.21)

The two (2.20) and (2.21) give the same results of estimation. I confirm this in the

chapter III.

2.4 Discussion

I have proposed a method for simultaneously uncovering cluster structure among ob-

servations and selecting discriminating variables in high-dimensional data. This ap-

proach uses model-based clustering defined via Dirichlet process mixture priors, which

allow for an infinite mixture of distributions. The variable selection is accomplished
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by introducing a latent binary vector updated via MCMC sampling techniques. In

the next chapter I will show that the methods perform well on simulated data. I will

also present an example with DNA microarray data.

The use of infinite mixture models is an attractive alternative to finite mixture

models, which requires a dimension jumping technique to create and delete clusters.

With the DPM models, the number of components is influenced by the sample size n

and the hyperparameter α. The creation and deletion of clusters is naturally taken

care of in the process of updating the sample allocations.

Here, I have put forward a couple of approaches for estimating the sample allo-

cations. One could also draw inference conditional on a fixed number of clusters, say

for instance, conditioning on the value most frequently visited by the MCMC sam-

pler. This, however, has the limitation of using only a subset of the MCMC output.

In addition, with the Gibbs sampling update adopted here, a label switching prob-

lem arises since the likelihood is invariant under permutation of the component labels.

This problem can be handled using Stephen’s relabeling algorithm, where the MCMC

output is post-processed to minimize an appropriate loss function Stephens (2000b).

Alternative posterior estimators can also be obtained using the Rao-Blackwellisation

method or by using decision theoretic approaches.
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CHAPTER III

APPLICATIONS

I assess the performance of the methodology introduced in chapter II using a simu-

lated data and illustrate its application on a real data set from a DNA microarray

study.

3.1 Simulation study

I first investigate the performance of the methodology using simulated data. I gen-

erate a dataset of 15 observations and 1000 variables, where a set of 20 variables are

chosen to separate the observations into four components

xij ∼ I{1≤i≤4}N(µ1, σ
2
1) + I{5≤i≤7}N(µ2, σ

2
2) + I{8≤i≤13}N(µ3, σ

2
3) (3.1)

+I{14≤i≤15}N(µ4, σ
2
4), i = 1, . . . , 15, j = 1, . . . , 20,

where I{.} is the indicator function equal to 1 if the condition is satisfied. Thus, the

first 4 observations are generated from one group, the next 3 come from the second

group, the next 6 are in the third group, and the last 2 fall in the fourth group. The

component parameters µk and σ2
k, k = 1, . . . , 4, are randomly chosen from [-5,5] and

[0.01,1] respectively. The remaining 980 variables, which do not separate the samples

into clusters, are drawn from a standard normal density.

I choose the hyperparameters h1 and κ1 such that h1 × κ1 is close to the mean

of the empirical variances from the p variables. I set h1 = 1000 and found the results

to be quite robust for values of κ1 in the range [5 × 10−4, 2 × 10−3]. For the non-

discriminating variables, I choose b equal to the mean of the variances and found
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Figure 1: Simulated data – α = 1, ω = 10/p: Trace plot for the number of clusters.
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Figure 2: Simulated data – α = 1, ω = 10/p: Trace plot for the number of discrimi-
nating variables.
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h0 values between 10 and 100 to perform well. I report here the results for α = 1,

δ = a = 3, κ1 = 7× 10−4, h0 = 100, b = 0.2 and ω = 10/p. I started an MCMC chain

from a vector γ with 10 randomly selected elements set to 1 and each observation in

a separate cluster. I ran 100,000 iterations and used the first 40,000 as burn-in. At

each MCMC iteration, I performed 20 repeated Metropolis steps to update γ and 3

restricted Gibbs scans with one final Gibbs sampling to update c. I also used the

parallel tempering algorithm with two temperature ladders to further improve the

mixing of the sampler. The temperatures were chosen such that the acceptance rates

for exchanges between neighboring chains are between 0.5 and 0.7.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.000.900.800.700.600.500.400.300.200.100.00

Figure 3: Simulated data – α = 1, ω = 10/p: Pairwise posterior probabilities p(ci =
cj|X) for Estimation based on equation (2.18)

Figures 1 and 2 show respectively the trace plots for the number of clusters
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and the number of discriminating variables. The MCMC sampler stabilized quickly

around models with 3 to 5 clusters and 15 to 20 discriminating variables. I estimated

the cluster allocations as described in Section 3. The posterior sample allocations

estimated using equation (2.17) favored 5 components with the last two observations

assigned to separate clusters. The allocations obtained using the pairwise probabil-

ity estimates of equation (2.18) and the least-square clustering algorithm perfectly

matched the true cluster structure.
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5.955.024.093.172.241.320.39−0.53−1.46−2.38−3.31−4.23

order 1e−4

Figure 4: Simulated data – α = 1, ω = 10/p: Pairwise posterior probabilities
p(ci = cj|X) for Difference between estimates based on equation (2.18) and empirical
frequencies.

Figure 3 displays the pairwise posterior probabilities, p(ci = cj|X), of allocating

observations i and j to the same cluster. The groupings used to simulate the data are
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successfully identified. I found identical results using the frequency-based estimates.

Figure 4 plots the differences between the pairwise posterior probability estimates

using the two approaches. They are in the order of 10−4 suggesting good concordance

between the two estimators.

For the variable selection, I ordered the visited vectors γ (t) according to their

posterior probabilities and identified the “best” subset as the γ̂ from equation (2.19).

This vector contained 17 variables, all of which are among the 20 discriminating

covariates used to simulate the data. I also looked at the marginal posterior prob-

abilities, p(γj = 1|X), which are displayed in Figure 5(a). The x-axis in this plot

corresponds to the variable indices and the spikes indicate variables that have high

posterior probabilities. The same 17 variables were selected at a marginal probabil-

ity threshold of 0.7. I also report the corresponding frequency-based estimates by

(2.21) in Figure 5(b). Again, I note that the same variables are selected with com-

parable marginal probability estimates. This concordance can also be seen in Figure

5(c), which shows for each variable the difference in marginal posterior probability

estimates from the two approaches.

I investigated the sensitivity of the results to the choice of α and ω, which re-

spectively influence the number of clusters and the number of selected variables. In

general, I found the results to be quite robust to the values of these hyperparameters.

Here, I report the results for two different choices of each parameter. I considered

α = 1 and α = 15, which is equal to the sample size. As shown in equation (2.5), the

number of clusters is defined a priori by the sample size n in the data and the choice

of the hyperparameter α.
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Figure 5: Simulated data – α = 1, ω = 10/p: Estimated marginal posterior probabil-
ities p(γj = 1|X) for (a) Estimation based on equation (2.20); (b) Frequency-based
estimation by (2.21); (c) Difference in probability estimates from the two approaches.
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Figure 6: Simulated data: Prior predictive distribution of number of clusters

Figure 6 displays the prior predictive distribution of the number of clusters in

our simulated example for the two values of α considered here. With α = 1, the prior

distribution of the number of components is concentrated between 1 and 6, whereas

with α = 15 between 7 and 14 clusters are expected a priori. For the variable

selection hyperparameter, I chose ω = 10/p and ω = 30/p. The corresponding trace

plots are provided in Figure 7. For these choices, the inference on both the cluster

structure and the selected variables are similar to those described above for α = 1 and

ω = 10/p. The same 15 discriminating variables are selected and the four clusters are

successfully identified. I note, however, that a larger value of α makes the sampler

visit models with more components, although there is still strong support for models

with 3 to 5 clusters (see Figure 7(a)). It appears from Figure 7(b) that a larger

value of α also affects the mixing of the sampler in terms of the variable selection.
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Figure 7: Simulated data: Sensitivity analysis for (a) α = 15 and ω = 10/p: number
of clusters; (b) α = 15 and ω = 10/p: number of discriminating variables; (c) α = 1
and ω = 30/p: number of clusters; (d) α = 1 and ω = 30/p: number of discriminating
variables
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This is not surprising since the cluster structure and the variable selection evolve

simultaneously.

This simulated data is identical to the one used in Tadesse, Sha and Vannucci

(2005), where a finite mixture model with reversible jump MCMC technique was used

to infer the cluster structures. In that paper, a detailed analysis using Friedman and

Meulman’s (2004) COSA algorithm, which performs variable selection in the context

of hierarchical clustering, was also presented. Excellent results were obtained with

the Bayesian reversible jump method, which fully recovered the true cluster structure

and selected 17 of the good variables. Using the COSA approach, neither the single,

average or complete linkage options for the hierarchical clustering were able to recover

the true grouping of the data. The average linkage performed slightly better, being

able to recover one of the clusters and identifying a set of variables that contained 16

of the discriminating covariates. This performance of COSA could be due to the fact

that the method is designed to find clusters for which the discriminating variables

have small variance.

3.2 DNA Microarray data analysis

A typical application where clustering has become a common task is the analysis

of DNA microarray data, where thousands of gene expression levels are monitored

on a few experimental units. This has revived interest in both distance-based and

model-based clustering methods. For example, Medvedovic and Sivaganesan (2002)

used DPM models to cluster genes with similar expression patterns. Our goal here

is different. I want to uncover subclasses among the experimental units and identify

genes that best discriminate between the different groups. This could help identify

disease subtypes and understand some of the heterogeneity in treatment outcome for
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patients receiving similar diagnoses. I illustrate our methodology using the widely

analyzed leukemia data of Golub et al. (1999) and focus on the 38 patients from

the training set. I followed the same pre-processing as other investigators who have

analyzed the data (Dudoit, Frdlyand and Speed 2002) . Expression measures beyond

the threshold of reliable detection were truncated at 100 and 16,000, and probe sets

with intensities such that max /min ≤ 5 and max−min ≤ 500 were removed. This

left 3,571 genes for analysis. The expression readings were log-transformed and each

variable was rescaled by its range. Figure 8 shows a heatmap with all 3,571 genes

for the analysis. As can be seen in the heatmap, it is unfeasible to discover cluster

structures because of many unnecessary genes.

I chose the hyperparameters using similar guidelines to those of the simulated

example. I ran MCMC chains with α set to 1 and 38, which is same as the sample size.

The other hyperparameters were taken to be δ = a = 3, h0 = 100, h1 = 10, κ1 = 0.06,
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Figure 9: Microarray data: Trace plots for (a) Chain 1: number of clusters; (b) Chain
1: number of discriminating variables; (c) Chain 2: number of clusters; (d) Chain 2:
number of discriminating variables.
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b = 0.1 and ω = 20/p under the guideline suggested in Section 3.6. For both values

of α, I ran two MCMC chains with different initial models: (1) all elements of γ set

to 0 except for 10 randomly chosen γj’s; (2) a single randomly chosen γj set to 1. In

all cases, the sampler was started with all observations assigned to one cluster and

200,000 iterations were run with the first 100,000 used as burn-in.
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Figure 10: Microarray data: Pairwise posterior probabilities p(ci = cj|X)

Figure 9 gives the summary trace plots for the number of clusters and the number

of discriminating variables using α = 38. For both chains, the sampler mixed well

mostly visiting models with 4 to 7 components. As for the number of variables,

the chains stabilized near models with 120 discriminating variables. For posterior

inference, I pooled the output from the two MCMC chains by taking the union of the

sets of visited models. The sample allocation estimates using the different approaches
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presented in Section 3 were as follows:

using (2.17) ĉ = (1, 2, 1, . . . , 1, 1, 1, . . . , 1, 1, 1, 1︸ ︷︷ ︸
ALL

, 2, 1, 4, 5, 3, 2, 3, 6, 2, 2, 7︸ ︷︷ ︸
AML

)

using (2.18) ĉ = (1, 2, 1, . . . , 1, 2, 1, . . . , 1, 2, 1, 1︸ ︷︷ ︸
ALL

, 2, 1, 4, 5, 3, 2, 3, 6, 2, 2, 7︸ ︷︷ ︸
AML

)

The allocations based on the posterior pairwise probability estimates from equa-

tion (2.18) and the empirical frequencies from the MCMC output were identical.

Figure 10 displays a heatmap of the pairwise posterior probabilities, p(ci = cj|X).

The first 27 indices correspond to the acute lymphoblastic leukemia (ALL) and the

last 11 to the acute myeloid leukemia (AML) patients.

500 1000 1500 2000 2500 3000 3500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

gene index

di
ffe

re
nc

e 
in

 m
ar

gi
na

l p
os

te
rio

r 
pr

ob
ab

ili
tie

s

Figure 11: Microarray data: Concordance of results across MCMC chains

I note that, except for patient 25, and to a lesser extent patients 2, 12 and 20, all

pairs of observations among the ALL group have a high probability of being assigned

to the same cluster. The AML group instead exhibits less homogeneity. Thus, all
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Figure 12: Microarray data: Marginal posterior probabilities p(γj = 1|X)

results indicate that I am able to successfully separate the ALL and AML patients

and suggest that there are potential subgroups among the AML’s.

For inference on the variable selection, I computed the marginal posterior proba-

bilities of the γj’s. Figure 11 displays the difference in marginal posterior probabilities

for each gene across the two MCMC chains. I note that there is good concordance

in the results despite the different starting points. This suggests that similar regions

were visited by the two chains.

After pooling the output, I recomputed the marginal posterior probabilities,

which are displayed in Figure 12. There were 116 genes with marginal posterior

probabilities greater than 0.7. A heatmap of the selected genes is given in Figure

13, where the columns correspond to the leukemia patients and the rows represent

the log gene expression levels. I note that these genes clearly discriminate the ALL

(columns 1 to 27) and AML (columns 28 to 38) patients. The latter group is quite
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Figure 13: Heatmap of 116 genes selected by method

heterogeneous so that the result might provide the evidence of existence of subclasses

in AML group.

I also looked at the genes selected based on the γ̂ vector from equation (2.19).

This set contained 120 genes that included all the 116 selected with the marginal

inference. A large number of the genes identified by our method to discriminate

the observations into the different subgroups are known to be implicated with the

differentiation or progression of leukemia cells. I report some of the selected genes in

Table 1.
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Table 1: Some selected genes with known association to leukemia

Gene Description

AR The amphiregulin gene is localized in chromosomal region 4q13-

4q21, a common breakpoint for ALL.

CA2 Expressed in most patients with leukemic blast cells.

CAV1 Hematological cells express caveolin-1 in certain states of cell

activation and are believed to be a useful marker for adult T

cell leukemia diagnosis.

CD1d&CD1c

antigens

Significantly down-regulated in B cell chronic lymphocytic

leukemia cells.

CD14 antigen Maps to a region of chromosome 5 that contains a cluster of

genes encoding several myeloid-specific growth factors and fre-

quently deleted in certain myeloid leukemias.

CLC Believed to be associated with myeloid cell differentiation into

specific lineage leukemias and found to be significantly down-

regulated in AML patients with high white blood cell count.

Cystatin A Cystein protease inhibitor that induces apoptosis of leukemia

cells.

ELA2 Elastase 2 cleaves the fusion protein generated by the translo-

cation associated with promyelocytic leukemia.

ID4 Putative tumor suppressor silenced by promoter methylation in

the majority of human leukemias.

IEX-1 Involved in modulation of apoptosis and highly expressed in

acute promyelocytic leukemia cell lines.
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Table 1: Continued

Gene Description

IFN-alpha Induces expression of myeloblastin and a specific T-cell response

in chronic myeloid leukemia.

IL6 & IL8 These cytokines are elevated in activated T-cells in large gran-

ular lymphocytic leukemia.

LTF Lactoferrin can transactivate Human T cell leukemia virus type

I, which causes adult T cell leukemia and lymphoma.

MNDA Correlated with myeloid and monocytic differentiation of acute

leukemia, and expressed in M3 type leukemia but absent in ALL.

MT1G The metalloprothionein gene cluster is mapped to 16p22, a

breakpoint found in a subgroup of patients with AML.

PF4 Useful marker for categorizing megakaryocytic leukemic cells.

PRAME Expressed in acute leukemia samples, with highest association

in AML tumors carrying t(8;21) or t(15;17) chromosomal abnor-

malities that have a relatively favorable prognosis.

PTAFR Increased level in eosinophilic leukemia cell line.

THBS1 Methylation of THBS1 is associated with the absence of the

Philadelphia chromosome and a favorable prognosis for ALL pa-

tients.

TRAIL Induces apostolic cell death in most chronic myelogenous and

acute leukemia-derived Ph1-positive cell lines.

Tyrosine

phosphatase 1

Primarily expressed in hematopoietic cells, it functions as an

antagonist to the growth-promoting and oncogenic potentials

of tyrosine kinase. It has been proposed as a candidate tumor

suppressor gene in leukemia, lymphoma and other cancers.
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Figure 14: Microarray data: Trace plots with α = 1 for (a) Chain 2: number of
clusters; (b) Chain 2: number of discriminating variables.

I repeated the analysis with α = 1. Figure 14 shows trace plots of the number of

clusters and the number of discriminating variables for one of the chains. It visited

models with 3 to 6 clusters and around 120 discriminating variables. I note again a

slightly slower mixing for smaller values of α, with the chain reaching 120 variables

only at around iteration 140,000 (see Figures 9(b) and 9(d) for comparison with a

larger α value). The posterior sample allocations were given by:

using (2.17) ĉ = (1, . . . , 1, 1, 1, . . . , 1, 1, 1, 1︸ ︷︷ ︸
ALL

, 2, 2, 4, 3, 3, 2, 3, 6, 2, 2, 5︸ ︷︷ ︸
AML

)

using (2.18) ĉ = (1, . . . , 1, 2, 1, . . . , 1, 2, 1, 1︸ ︷︷ ︸
ALL

, 2, 2, 4, 5, 3, 2, 3, 6, 2, 2, 5︸ ︷︷ ︸
AML

)

The ALL and AML samples are successfully separated. Samples 12 and 25 from the

ALL class appear to be closer to some of the observations among the AML group.

Again, I note more heterogeneity among the latter suggesting potential AML sub-

types. The posterior inference on the variable selection identified 100 genes based

on marginal posterior probabilities greater than 0.7, and 112 genes based on the γ̂
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vector with highest joint posterior probability. These were all included in the set of

discriminating genes identified above.

3.3 Conclusion

I have applied the method described in chapter II to a simulated data and a DNA

microarray data. The results from both applications were quite promising for discov-

ering the correct cluster structures and for identifying discriminating genes. In the

simulation study, the method uncovered the 4 true clusters with 17 selected discrim-

inating variables. According to the result of the analysis on leukemia cancer DNA

microarray data which consist of ALL and AML patients, most ALL patients have

been successfully discovered. The result provided the evidence of existence of cancer

subtypes among AML patients. From the literature, in fact, there exist 8 subtypes in

AML, each of which has special and clinical laboratory features. About 120 genes se-

lected by the method are known to be associated with progression or differentiation of

leukemia cancer. As can be seen the result of application to leukemia DNA microar-

ray data, I expect the method to be very useful to discover new subtypes of cancers.

Eventually, this effort will contribute to improve the target-specific treatments for the

patients with unrevealed cancer subtypes.
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CHAPTER IV

CASE STUDY: WAVELET-BASED BAYESIAN CLUSTER ANALYSIS OF

TIDAL VOLUME CURVES

4.1 Introduction

With advanced technology, high-dimensional data are commonly generated from a va-

riety of research fields. One special type is high-dimensional functional data measured

over a certain period of time. Functional data comprise functions as data for each

subject. For example, in the bioinformatics area, temporal gene expression profiles

discretely measured during cell cycle time provide a paramount information of gene

function. In order to acquire knowledge of different biological funtions/pathways of

genes, researchers are attentive to classify those gene expression profiles into small

subgroups with different functional characteristics. In the analysis on this type of

data, they consider an expression profile curve as a datum for each gene. Like this,

the basic idea of functional data analysis (FDA) is that one should think of the ob-

served data functions as single entities, rather than merely a sequence of individual

observations. In practice, functional data are usually observed and recorded dis-

cretely even though there exist, in fact, countably infinite number of measurements

in a latent true function.

One of the first steps in FDA is a data representation (in functional form) using

interpolation and smoothing (Ramsay and Silverman 1997). If the discretely observed

data are assumed to have no error, then the converting process is called interpolation.

On the other hand, if they have some observational error that needs to be elimi-

nated, then the converting procedure from the discrete data to functions may require
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smoothing. In this case, the measured data yi = (yi1, · · · , yip) can be represented as

yij = f(tj) + εj, j = 1, · · · , p

where tj is j-th time point and εj is the observational error at tj. There are several

techniques to represent functional data yi as smooth functions. One of the most pop-

ular smoothing procedures involves representing the function by a linear combination

of K known basis functions i.e.

f(t) =
K∑

k=1

ckϕk(t),

where ck is a coefficient and ϕk is a basis function. There are many types of basis

functions such as Fourier, polynomial, regression spline and wavelet bases. Among

these many basis functions, how to choose a good basis function depends on how

good the approximation is with relatively small number of basis functions and on the

degree of information which coefficients provide about the data. In this chapter, I

adopt wavelet bases since the data I will analyze are measured in time domain and

look non-stationary or irregular. The first definition of wavelets can be attributed to

Morlet, Arens, Fourgeau and Giard (1982). Currently, the term wavelet is usually

associated with a wavelet function such that the translations and dilations of the

function constitute an orthonormal basis. In other words, wavelets are families of

orthonormal basis functions that can be used to parsimoniously represent other func-

tions. For example, in L2(R), an orthogonal wavelet basis is obtained by dilating and

translating a mother wavelet ψ as ψjk = 2j/2ψ(2jx− k) with j, k integers. A function

f can then be represented by the wavelet series f(x) =
∑

j,k djkψjk(x), with wavelet

coefficients dik =
∫
f(x)ψjk(x)dx describing features of the function f at the spatial

locations indexed by k and scales indexed by j (see Appendix B for more information

about wavelet transformations and wavelet shrinkage). Here I apply discrete wavelet
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transformations (DWTs) to project discrete data from the time domain to the wavelet

domain.

In the next section, I introduce wavelet-based Bayesian clustering method based

on the variable selection in cluster analysis described in the previous chapter. I then

apply my method to tidal (or breath) volume measured on subjects under 3 different

chemical injections that may induce panic attack. The research investigators want to

examine the overall data for evidence of separation of the outcomes into groups. The

cluster analysis does not use any knowledge about subjects belonging to different ex-

perimental conditions. This analysis was requested by a Data Monitoring Committee

(DMC) as a preliminary step to provide an evidence that a certain chemical is an

inducer of panic attacks by isolating the group experienced this chemical from the

other groups.

4.2 Wavelet-based Bayesian clustering of functional Data

I extend a Bayesian method described in chapter II to high-dimensional functional

data. The approach performs cluster analysis on the samples and selection of the

relevant variables that discriminate observations. The functional adaption I exploit

here results in a method that simultaneously reveals cluster structures among obser-

vations while identifying discriminating local features of the curves via the selection of

the corresponding wavelet coefficients. My approach is model-based and uses Dirich-

let process mixture priors that allow an infinite mixture of distributions to refine

the observations revealing true cluster structures. I apply this clustering method to

the wavelet decompositions of the data and add a variable selection mechanism to

the model. The ability of wavelets to describe curve features at different levels of

resolution gives us the option of selecting discriminating features at different time
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bandwidths.

Let Y = (y1, · · · ,yn) be equal to a n × p matrix with each row representing a

vector of observations of a function taken at p equally spaced points. Here, I assume

p is power of 2. I apply a wavelet transform to each row of Y . This results in a

matrix D = YW ′ of wavelet coefficients. I slightly abuse the notation here by as-

suming thatD contains wavelet coefficients not affected by noise in the data. In other

words, the matrix contains all scaling coefficients and survived wavelet coefficients

after wavelet shrinkage (or thresholding) procedure. I model D as n independent

observations di arising from a mixture of distribution F (θi). Now I have the same

models as I described in chapter II. In the previous chapter, cluster analysis has been

conducted in data domain, but here all analysis would be done in the wavelet do-

main. A cluster analysis is completed by a Dirichlet process mixture model set up,

where the creation and deletion of clusters is naturally taken care of in the process

of updating the sample allocations and avoids computationally intensive algorithm,

such as reversible jump MCMC. A DPM model provides the conditional prior proba-

bility of each configuration. With conjugate priors for model-specific parameters, the

conditional posterior probabilities are easily calculated.

Variable selection, or feature selection is accomplished by introducing latent in-

dicator vector γ with γj = 1 if j-th wavelet coefficient defines a mixture distribution

and γj = 0 otherwise. Then matrix D is divided into two parts: one for helping clus-

tering and the other with no information about clustering. Here, I denote by D(γ)

the set of coefficients that reveals cluster structures and by D(γc) the remainder for

unusable coefficients. Thus, D(γ) has a mixture of distributions and D(γc) favors one

multivariate density across all observations. As I defined before, each row vector di(γ)

of D(γ) in cluster k is assumed to have a multivariate normal distribution with model

parameters φk = (µk(γ),Σk(γ)). All row di(γc)s, i = 1, · · · , n have a single standard
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normal distribution N (η(γc),Ω(γc)). Conjugate prior distributions have been adopted

for mean vectors and covariance matrices.

In order to estimate cluster membership and selected coefficients, MCMC pro-

cedures are performed. For updating γ, I adopt repeating a Metropolis algorithm

several times. A split-merge algorithm for updating configuration vector for observa-

tions improves a mixing problem. Estimates of these two vectors are based on samples

resulting through MCMC.

4.3 Case study: Panic attack

The functional adaptation describes here was motivated by a collaboration on an on-

going study that looks at high-dimensional, high-frequency measurements of breath

tidal volume on a number of individuals, undergoing chemical interventions that may

induce panic attacks. This is part of an interdisciplinary effort that involves inves-

tigators at the New York State Psychiatric Institute, at Columbia University. The

overall goal is to create a model of the clinical panic attack in normal human subjects,

as it occurs in individuals affected by panic disorder. The section consists of the fol-

lowing: data explanation, experimental design and goal, pre-processing of data, noise

removal process by wavelets, and application of Bayesian variable selection via clus-

tering. The case study is a preliminary step to see if there is a lactate effect inducing

panic attacks. If cluster analysis confirms the separation of a group of subjects with

the injection of lactate from the other observations, it will provide the evidence that

supports the investigator’s claim.
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4.3.1 Data

Sodium lactate reliably produces panic attacks in patients with panic disorder (Liebowitz

et al. 1985). Normal individuals who do not have panic disorder, rarely have such

reactivity to lactate. A distinctive feature of lactate induced panic attack is a consid-

erable increase in tidal volume (Goetz et al. 1993). Klein (1993) suggested that the

spontaneous panic attack may be present due to a hypersensitive alarm system for

detecting signals of impending suffocation, such as rising levels of CO2 or brain lac-

tate. The endogenous opioid system is an important central regulator of respiratory

drive. An exogenous opioid, such as morphine, blunts sensitivity to CO2 (Fleetham et

al. 1980). Conversely, naloxone, an opioid receptor antagonist, increases the ventila-

tory response to hypercapnic hypoxia normal human controls (Akiyama et al. 1993).

Naloxone pretreatment may make normal individuals who putatively have an intact

opioid system, vulnerable to the marked anxiogenic and respiratory effects of lactate.

In a pilot study, Sinha, Goetz, and Klein (2006) found that lactate after naloxone,

administered to normal individuals, produced a marked increase in tidal volume that

exceeded previous results from infusing only lactate. Surprisingly, lactate, despite

producing a metabolic alkalosis, is a tidal volume stimulant, as has been shown in

both normal humans and rats.

A randomized study with normal subjects was designed to test the investiga-

tors’ hypothesis. Subjects, healthy normal male and female adult volunteers, not

affected by either any psychiatric or significant medical illness, were randomized to

three groups. They received either naloxone followed by lactate or saline followed by

lactate or naloxone followed by saline. The hypothesis was that subjects receiving

the naloxone-lactate sequence will have greater increases in tidal volume during the

lactate phase than subjects in the other two groups. The naloxone-saline sequence
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should have lesser effects than the saline-lactate sequence. The randomization was

unequal (3:3:1), with smallest number of subjects in the saline-lactate group, since

prior experience with this sequence in normal subjects produced relatively minor in-

crements in tidal volume. Establishing a lack of naloxone-saline effect was considered

crucial. Respiratory and other physiological measurements were taken during the

experiment, together with qualitative information measured via questionnaires and

interviews. I report a cluster analysis performed on preliminary data from this on-

going study, when 50% of the planned sample size had completed the study. The

cluster analysis do not use any knowledge about subjects belonging to different ex-

perimental conditions.

4.3.2 Experimental study

The experiment on each individual consisted of four phases:

(i) Phase I (baseline): Approximately 30 minutes. The subject has sensors and

intravenous lines placed within 5 minutes while supine. This phase provides

baseline measurements for each subject. Patency is maintained by slow saline

drip, slowly increased to normal flow prior phase II. All infusion adjustments

are made without the subject’s knowledge. Personnel and subjects are blind to

infusion contents. All randomized infusion sequences are set up in advance by

the Research Pharmacist who maintains a secret subject listing.

(ii) Phase II (first infusion): Approximately 20 minutes. Subjects receive either

naloxone over approximately the first 3 to 5 minutes, within the saline flow, or

just stay on saline.

(iii) Phase III (second infusion): Approximately 20 minutes. Subjects who received

naloxone at the first infusion are switched to either saline or lactate, and those
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that received only saline at the first infusion are switched to lactate. The

infusion of the experimental component in the saline flow lasts approximately

20 minutes.

(iv) Phase IV (recovery): Approximately 120 minutes. The subject remains supine,

with minimal saline flow. This period allows clinical observation as well as

exploration of possible prolonged effects.

Thirty five subjects completed all phased of the experiment. The study is double-

blinded since both investigators and volunteers do not have any knowledge of which

chemicals were injected in both phase II and III. One subject showed a tidal vol-

ume (Vt) pattern that looked very different with respect to other subjects and was

eliminated from the analysis. Recently, the true allocations of chemical (which chem-

ical combination goes to whom) have been revealed after my analysis has been done.

There were 15, 14 and 6 subjects in the three groups ”N+S” (Naloxone – Saline),

”N+L” (Naloxone – Lactate), and ”S+L” (Saline – Lactate), respectively. The re-

moved one turned out to be in S+L group, and confirmed the subject react very

peculiarly to injection comparing to others in the same group. The measuring and

data recording device was the lifeShirt (Wilhelm, Roth and Sackner 2003), a garment

recently developed with embedded inductive plethysmography sensors for continuous

ambulatory monitoring of respiration and other physiological functions.

4.3.3 Pre-processing procedure

Each subject has a different Vt baseline. I therefore performed baseline adjustment

by calculating the median Vt for each subject during phase I, which provides baseline

measurements for each subject. Then I considered three ways to adjust for baseline

effect: (a) subtracting the median from the Vt trace of each subject; (b) dividing the
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Vt trace by the median; (c) taking log of (b). Results from the statistical analysis

I performed did not show any particular sensitivity to these different procedures for

baseline adjustment. Here I conduct the analysis with baseline-adjusted data using

method (a).

Data are massive. During the experiment Vt measurements were automatically

saved 50 times per second from the measurement device. I reduced dimension by

considering traces obtained taking one every k-th data points. I examined plots of

several reduced trace to make sure I was preserving important features of the data

and decided on k = 25 as a safe choice. This gave me two measurements per second.

In the analysis I considered data over a time window covering second infusion. For the

second infusion, based on their previous experience with lactate infusions investigators

do not expect a quick onset of effect during phase III. For the analysis I considered

only the set of curves during second infusion because the hypothesized interactive

effect of naloxone was expected during the subsequent infusion. Thus I used data

measured over approximately 17 minutes before the end of the infusion. Figure 15

shows raw Vt with 51,200 data points in specified time window, covering second

infusion. Figure 16 contains baseline adjusted Vt traces of all subjects with 2,048

data points, which are chosen at every 25-th in the whole time window.

4.3.4 Noise removal by wavelet methods

Processed traces looked very noisy as in Figure 16 with data I used for the analysis.

Noise in the data can greatly affect clustering. Once one takes wavelet transformations

of the data, the noise component can be easily removed. In my approach, I use a

wavelet transformation also as a way to achieve a great reduction in dimension when

fitting the clustering model which is performed in next section. The first step of

the noise removal process is accomplished by applying a wavelet transform to the
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Figure 15: Raw data: 51,200 data points
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Figure 16: Baseline-adjusted Vt: 2,048 data points



60

data. Then one may do either mapping wavelet coefficients that fall below a chosen

threshold to 0 (hard thresholidng) or shrinking the remaining coefficients toward 0

(soft thresholding). One can opt between universal or adaptive rules to choose the

threshold. The former applies the same threshold, i.e. identical cut-off value for all

wavelet coefficients, whereas the latter used a threshold that depends on the resolution

level of the wavelet coefficients. An inverse wavelet transform is then applied to the

thresholded coefficients leading to a smoothed estimate of the true signal.

In general, I noticed that the universal hard threshold removes lots of coefficients

while the universal soft threshold tends to attenuate some of the distinctive features

of the traces, such as the peaks. The adaptive soft thresholding approach, on the

other hand, does a better job at preserving the peaks. As a result of this investi-

gation, I chose to apply the Donoho and Johnstone SureShrink wavelet shrinkage

with adaptive threshold. I used standard discrete wavelet transforms (DWT) with

Daubechies wavelets with 4 vanishing moments. Wavelets with a higher number of

vanishing moments have better regularity properties. On the other hand, the support

of the wavelets increases with the regularity and boundary effects may arise in the

DWT, so that a trade-off is often necessary.

By applying inverse discrete wavelet transforms (IDWT) to the wavelet coefficients

that survive the thresholding step, I can reconstruct the Vt curves without noise.

Figure 17 shows reconstructed curves for 3 randomly selected subjects, during the

infusion. Note that how curve features show up more clearly in the reconstructed

curves.

4.3.5 Bayesian cluster analysis

I performed the cluster analysis I described in the Section 3, to investigate whether

the data would naturally separate into ”groups” or clusters. In the context, curves
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Figure 17: Reconstructed Vt with survived coefficients

belonging to the same group correspond to subjects that show similar Vt patterns

during the time lag under consideration. For calibration purposes and in order to

stabilize the variation in the data, I normalized the baseline adjusted Vt traces. This

step is often crucial with multivariate statistical analyzes. Traces were normalized by

subtracting the sample mean and dividing by the sample standard deviations.

I apply the non-parametric Bayesian approach for clustering to wavelet coefficients

as described in previous Section. Clustering based on wavelet coefficients, rather than

on curves, allows us to achieve a great reduction in dimensionality without losing

critical information on the curves. A wavelet decomposition in fact can capture lo-

cal features of curves with a small number of coefficients. Due to the properties of

wavelets, wavelet coefficients describing local features will survive the procedure of

noise removal. With my approach further dimension reduction is achieved via the se-

lection mechanism built into the Bayesian procedure for clustering, where coefficients
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Figure 18: Trace plot of number of clusters
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Figure 20: Cluster analysis during the 2nd infusion

that capture only the discrimination features of the curves are identified.

For the analysis here, I kept all coefficients that survived the thresholding proce-

dure for at least 20% of the curves. This left approximately 500 wavelet coefficients

for the analysis. Under the same criteria described in Chapter II, I set α = 34,

h0 = 100, h1 = 100, κ1 = 0.01 and b = 0.003. I used 50,000 iterations with 20,000

burn-ins. Figure 18 and Figure 19 show plots of the MCMC traces for the number

of clusters and the number of the included wavelet coefficients, respectively. The
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majority of the models visited during the MCMC had between 13 and 18 wavelet

coefficients included. Most of the sampled cluster allocations had 4 to 5 clusters. As

can be seen in figures, both samplers stabilize after 10,000 iterations.

In order to estimate both cluster membership and selected variables based on

the MCMC output, I use the MAP method for estimating the configuration and

marginal posterior probabilities for selecting variables. The MAP estimate for the

cluster allocations resulted in one large cluster with 22 subjects, one smaller cluster

with 9 subjects and 3 one-subject clusters. Figure 20 shows the baseline adjusted

2nd infusion traces plotted by cluster allocation. The large cluster with 22 subjects

is depicted in the upper plot, the smaller cluster with 9 subjects in the middle plot

and the 3 one-subject clusters in the lower plots. The results of this analysis suggest

a clear separation of the curves. In particular, curves in the smaller clusters appear

to have more irregular features, such as peaks, than those belonging to the bigger

cluster.

Figure 21 shows the marginal posterior probabilities of γj. In order to gain in-

sights on the differences in features among curves belonging to the different clusters,

I looked at the scales of the selected wavelet coefficients. As previously described,

coefficients at coarser levels of the wavelet transform describe features at lower fre-

quency ranges and larger time periods. In this study, 15 wavelet coefficients were

included in the ”best” model, i.e., the subset of coefficients with highest posterior

probability among those visited during the MCMC. The same subset was found by

inspecting coefficients with largest marginal posterior probability of inclusion. Among

these 15 selected coefficients, the majority belonged to the intermediate levels of the

transform, in particular to the two levels that capture changes in the data over time

periods of lengths of approximately 84t and 164t, respectively, and frequency in-

tervals [ 1
324t

, 1
164t

] and [ 1
644t

, 1
324t

], respectively, with 4t = 0.5sec. Discriminating
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Figure 21: Marginal posterior probability of γj = 1

features of the curves are therefore local features spanning over relatively short time

periods, such as the peaks of the smaller clusters.

I also looked at whether the clustering analysis showed any particular structure

related to the interventions received by the subjects. Figure 22 contains group mean

curves of cluster 1 with 22 subjects and cluster 2 of 9 samples. When comparing the

cluster allocations with the group label information I noticed that 85% of the subjects

receiving lactate during the second infusion belonged to the large cluster (cluster 1),

and the 60% of the subjects on saline during the second infusion belonged to the

smaller clusters. My results therefore supported a separation between the lactate and

non-lactate groups during the second infusion.
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Figure 22: Group mean curves based on cluster allocations

4.4 Discussion

I have extended the variable selection in clustering via Dirichlet process mixture

(DPM) models to high-dimensional functional data. Due to high-dimensionality and

noise on functional data, I have applied a wavelet transformation (wavelet shrinkage)

on the data to reduce dimensions and to remove noise. Then the model-based clus-

tering method via DPM model is applied to distinguish individual curves into small

subgroups with a few informative wavelet coefficients.

I specifically employed the method to assist investigators in a study of tidal vol-

ume traces during induced panic attacks. The study planned for an unblinded overall

(not by treatment group) interim analysis of the efficacy data when 50% of the study

samples had completed the interventions. The Data Monitoring Committee (DMC)

wanted to examine the overall data for evidence of separation of the outcomes into
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groups. For the analysis I used a Bayesian procedure for model-based clustering that I

adapted to functional data. The clustering analysis did not use any knowledge about

subjects belonging to different experimental conditions. Classical clustering meth-

ods, such as linkage methods and k-means, highly depend on the distances among

observations and often require the number of clusters to be pre-specified. I trans-

formed curves into wavelet decompositions and performed cluster analysis based on

wavelet coefficients. This allowed to remove noise from the data and to achieve a

great reduction in dimensionality. My approach to clustering was model-based and

used Dirichlet process mixture priors that allow an infinite mixture of distributions

to refine observations to discover the correct cluster structures.

Results from the cluster analysis did suggest a separation of the subjects into

groups during the time of the second infusion. In particular, I found one large cluster

containing 22 subjects, a smaller cluster containing 9 subjects and 3 single-subject

clusters. With respect to the actual treatment labels, the clustering analysis success-

fully isolated the lactate subjects from the non-lactate.
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CHAPTER V

CONCLUSION

Thanks to advanced technology, high-dimensional data have arisen from diverse re-

search fields, and especially in bioinformatics. Such data are characterized by a few

observations and thousands of variables. Many classical statistical methods have

been applied to answer various questions originating from high-dimensional data,

such as class prediction for new observations and estimation of cluster structures.

Such methods are often not feasible with high-dimensional data and also lead to in-

correct estimations, due to too many irrelevant variables and redundant information.

In cancer genomics, the main research interest of this dissertation, identification of

discriminating genes of cancer subtypes is a crucial problem since potential subtypes

of a cancer might respond differently to current target therapies. Tumors with sim-

ilar histopathological appearance can follow significantly different courses and show

different response to therapy. Thus it is essential to develop clustering methods

to discover subclasses using a few informative variables. In this dissertation, I have

developed a method that allows both variable selection and clustering to evolve simul-

taneously in search for the discriminating variables and the correct cluster structures.

The methods I developed allow the same subset of variables across observations to

discriminate the different clusters. Dirichlet process mixture (DPM) models allow an

infinite mixture on the observations in order to find the correct cluster structures.

This clustering method has several advantages: (i) there is no need to define a num-

ber of clusters before defining a model or to impose an explicit prior on the number

of clusters in Bayesian framework; (ii) there is no need for computationally intensive

algorithms such as reversible jump MCMC in order to update the cluster allocations.
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To do variable selection, I have introduced a latent vector and adopted a stochastic

search method to identify discriminating variables. I have evaluated my method on

simulated data, leukemia cancer DNA microarray data and tidal volume functional

data. The results from different application studies have confirmed that the methods

are very useful. With high-dimensional data, I have expanded the developed approach

by projecting time-functional data into wavelet domain.

Several extensions are possible for future work. First, there is a correlation prob-

lem I need to handle. In writing a likelihood, I assume the independence between

discriminating and non-discriminating variables for computation convenience. In mi-

croarray study, it is true that some genes are highly correlated with other genes in

their biological functional aspects. In other words, some genes which are identified as

discriminating ones may be associated with other genes which are found to be non-

discriminating. In this case, those discriminating genes may not be selected in the

model due to high correlation with non-discriminating genes, or non-discriminating

genes would be selected for the same reason. Currently it is not possible to include

a correlation structure between these two types of variables in a model. But it is

essential to consider the correlation in a model since there may be many discrimi-

nating genes which are correlated with ones in non-discriminating part or vice versa.

In the future I expect that the method will be more improved to identify the most

informative variables to reveal correct cluster structures. Another approach to handle

this correlation problem is to employ correlation structure in a prior distribution of

variable selection vector, γ. In my current work, I adopt an independent Bernoulli

distribution on each γj. For the same reason described above, this also needs im-

provement.

Next, combining two different types of methods in a model always slows and

hinders the convergence of MCMC samplers. In usual, inclusion of variable selection in
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clustering make algorithm slow and inefficient. In my current approach, a Metropolis

step is repeated several times in variable selection steps to allow samplers to stabilize

for a given sample allocation. I adopt a Split-Merge algorithm through Metropolis-

Hastings steps to solve this problem. In order to solve mixing problem more, I also

add a tempering scheme to a Split-Merge. Exploiting these two or more algorithm

may help to solve slow convergence and mixing problem. But for example, it is not

easy to determine what distribution samplers are drawn from in parallel tempering

case. Thus, it is necessary to develop a new algorithmic MCMC method for variable

selection and cluster analysis to save computational time and improve mixing in

mixture models.

Finally, it might be more accurate to find a way to incorporate other available

covariates with target clustering data. For example, gene expressions measured on

lung cancer tissue are highly heterogeneous. Thus, each observation tends to create

its own clusters based on gene expression. Researchers in cancer studies have other

informative variables rather than gene expression and want to take into account these

variables in cluster analysis. If there is evidence between gene expressions and those

variables, it is possible to set up a model for those variables in a linear relationship.

For my future study, I am currently working on varying-feature selection in clus-

tering method. Varying-feature selection method has been widely studied in image

analysis. The meaning of ”varying-feature” is that there are different sets of fea-

tures to distinguish different images. For example, when discriminating images of

”clouds” and ”lions” in a picture, one should use different partial features of each

image. Sometimes it is more realistic to assume there are different features or vari-

ables to discriminate observations into different clusters. It is not just restricted to

image analysis. For instance, there are 3 groups in the data, say Group 1, Group 2

and Group 3. There is a set of variables to discriminate Group 1 and Group 2, and
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another set of variables, which may or may not have some overlapping variables with

the former variable group, to distinguish between Group 1 and Group 3. It would be

the same for the other group comparisons. For example, in bioinformatics problem,

it is in high demand to identify regulatory cis-elements (or motifs or Transcription

Factor Binding Site (THBS)) to separate gene expressions into different group. But

it may be ideal to spot the different sites for different functional groups of gene ex-

pression profiles. I am currently working to implement a varying feature selection

method in classification/clustering on regression model set up.

Recently, the study on cluster analysis and/or variable selection method in high-

dimensional data has become a very challenging area in statistics/bioinformatics. A

Bayesian clustering approach via Dirichlet process mixture models has been one of the

most promising methods to do cluster analysis. But there are still many mysterious

doors to be opened to correctly discover cluster structures in high-dimensional data,

and to identify discriminating variables.
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APPENDIX A

The purpose of this appendix is to give details on the derivations of marginalized full

conditionals (2.12) and A(ci) in (2.16) Chapter II. III .

1. Marginalized full conditional distribution in (2.12)

f(X|γ, c) = 2−
n(p−pγ )

2 π−
np
2

K∏

k=1

[
Hk(γ) · |Q1(γ)|

δ+pγ−1

2 ·
∣∣Q1(γ) + Sk(γ)

∣∣−nk+δ+pγ−1

2

]

× H0(γc) ·
[
S0(γc)

]−(a+n/2)
,

where Hk(γ) = (h1nk + 1)−
pγ
2

pγ∏

j=1

Γ
(
nk+δ+pγ−j

2

)

Γ
(
δ+pγ−j

2

) ,

H0(γc) = (h0n+ 1)−
p−pγ

2 ba(p−pγ)

p−pγ∏

j=1

Γ (a+ n/2)

Γ(a)
,

Sk(γ) =
∑

i∈Ck

(xi(γ) − x̄k(γ))(xi(γ) − x̄k(γ))
T

+
nk

h1nk + 1
(µ0(γ) − x̄k(γ))(µ0(γ) − x̄k(γ))

T ,

S0(γc) =

p−pγ∏

j=1

[
b+

1

2

{
n∑

i=1

(xij(γc) − x̄j(γc))
2 +

n

h0n+ 1
(µ0j(γc) − x̄j(γc))

2

}]
,

with x̄k(γ) the sample mean of cluster k, and x̄j(γc) the j-th non-discriminating vari-

able sample mean.

<Derivation>

f(X|γ, c) =

∫

σ2

∫

Σ

∫

η

∫

µ

f(X|γ, c,µ,η,Σ, σ2)f(µ|Σ,γ)f(Σ|γ)

× f(η|Ω,γ)f(Ω|γ) dµdηdΣdσ2

=

∫

σ2

∫

η

f(X|γ,η, σ2)f(η|γ, σ2)

p−pγ∏

j=1

f(σ2) dηdσ2

×
∫

Σ

∫

µ

f(X|γ, c,µ,Σ)f(µ|γ,Σ)f(Σ|γ) dµdΣ
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The former integration part above is non-discriminating part and the latter discrim-

inating part. I assume the independence between these two types of variables. I will

first calculate the integration related to non-discriminating variables.

∫

σ2

∫

η

f(X|γ,η, σ2)f(η|γ, σ2)

p−pγ∏

j=1

f(σ2) dηdσ2

=
n∏

i=1

∫

σ2

∫

η(γc)

[
(2π)−

p−pγ
2 |h0σ

2I|− 1
2 exp

{
− 1

2h0σ2
(xi(γc) − η(γc))

t(xi(γc) − η(γc))

}]

× (2π)−
p−pγ

2 |σ2I|− 1
2 exp{− 1

2σ2
(η(γc) − µ0(γc))

t(η(γc) − µ0(γc))}

×
p−pγ∏
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Γ(a)
(σ2)−(a+1) exp{− b

σ2
}
]
dη(γc)dσ

2

= (2π)−
(n+1)(p−pγ )

2

(
ba
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)p−pγ
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−

n(p−pγ )

2
0

×
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−(p− pγ)b

σ2
− 1

2σ2
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µt
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)}

×
∫
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)

Similarly, the integration of mean vector µ and covariance matrix Σ is derived as

follows:

∫

Σ

∫

µ

f(X|γ, c,µ,Σ)f(µ|γ, c,Σ)f(Σ|γ, c) dµdΣ
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=

∫
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2. A(ci) in (2.16)

A(ci) =

∫
F (xk;φ,γ)dH−k,ci(φ,γ) =

π−pγ/2
(

h1nci + 1

h1n−k,ci + 1

)−pγ/2 pγ∏

j=1

Γ
(
nci+δ+pγ−j

2

)

Γ
(
n−k,ci

+δ+pγ−j

2

)

×
∣∣Q1(γ) + Sci(γ)

∣∣−(nci+δ+pγ−1)/2 ∣∣Q1(γ) + S−k,ci(γ)

∣∣(n−k,ci
+δ+pγ−1)/2

,

with S−k,ci(γ) =
∑

j 6=k:cj=ci

(
xj(γ) − x̄ci(γ)

) (
xj(γ) − x̄ci(γ)

)T

+
n−k,ci

h1n−k,ci
+1

(
µ0(γ) − x̄ci(γ)

) (
µ0(γ) − x̄ci(γ)

)T

and Sci(γ) is defined as in equation (2.12).

<Derivation>

∫
F (xk);φ,γ)dH−k,ci(φ,γ) =

∫
F (xk;φ,γ)

F (x−k;φ,γ)dG0(φ,γ)∫
F (x−k,ci ;φ,γ)dG0(φ,γ)

=

∫
F (xci ;φ,γ)dG0(φ,γ)∫
F (x−k,ci ;φ,γ)dG0(φ,γ)

.

The difference between top and bottom of the fraction above is whether data x used

in calculation includes elements k in C. The top part includes all observations with

same configuration ci, and the bottom excludes the elements in C with configuration

ci. The calculation is very obvious from the marginalized likelihood above.
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APPENDIX B

The purpose of this appendix is to give the introduction of wavelets needed to under-

stand Chapter IV .

1. Some background of Wavelets

It is well-known that a function f can be represented by a set of orthogonal basis

functions. Wavelets are sets of orthonormal basis functions generated by dilation and

translations of basic parent function: scaling function (also called father wavelet) φ

which typically resembles a kernel function, and mother wavelet (also called wavelet

function) ψ which explains oscillation. For better understanding for wavelets, I will

start with the explanation of multiresolution analysis (MRA). A MRA is a sequence

of closed subspaces Vn, n ∈ Z in L2(R) satisfying

· · · ,⊂ V−2,⊂ V−1,⊂ V0,⊂ V1,⊂ V2,⊂, · · · ,

with ”difference space”Wj = Vj+1ªVj where j = · · · ,−1, 0, 1, · · · . When a sequence

of subspaces satisfies MRA properties (see Vidakovic 1999), there exists an orthonor-

mal basis ψjk(x) = 2j/2ψ(2jx − k) with integers j and k for L2(R). In other words,

the orthonormal wavelet basis ψjk is obtained by dilating and translating a mother

wavelet ψ. For L2(R) =
⊕∞

j=−∞Wj, a function f can then be represented by the

wavelet series

f(x) =
∑

j,k

djkψjk(x), (2.1)

with wavelet coefficients djk = 〈f, ψjk〉 =
∫
f(x)ψjkdx describing features of the

function f at the spatial locations indexed by k and scales indexed by j. Other ”chil-

dren” wavelets are generated by translations of the scaling function φ and dilations
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and translations of the mother wavelet ψ using the following relationships:

φj0k(t) = 2j0/2 φ(2j0t− k),

ψjk(t) = 2j/2 ψ(2jt− k), j = j0, j0 + 1, · · · ; k ∈ Z (2.2)

for some fixed j0 ∈ Z, where Z is the set of integers.

Given the wavelet bases defined above, a function f ∈ L2(R) = Vj0⊕{
⊕∞

j=j0
Wj}

is represented in a corresponding wavelet series as:

f(t) =
∑

k∈Z

cj0kφj0k(t) +
∞∑

j=j0

∑

k∈Z

djkψjk(t), (2.3)

where cj0k = 〈f, φj0k〉 and djk = 〈f, ψjk〉. Note that 〈·, ·〉 is the standard L2-inner

product of two functions: 〈g1, g2〉 =
∫

R
g1(t)g2(t)dt.

2. Wavelet transformation and shrinkage

Wavelets have been extremely successful as a tool for the analysis and synthesis

of discrete data. Let y = (y1, · · · , yp)′ be observations of a function taken at p equally

spaced time points. I assume p to be a power of two for computational convenience

in this chapter. A fast algorithm, the discrete wavelet transformation (DWT), exists

for decomposing y into a set of p wavelet coefficients, Mallat (1989), in only O(p)

operations. A wavelet transformation with j = 1, · · · , J levels (or scales) can be seen

as a cumulative measure of the variation in the data over regions proportional to the

J scales, with coefficients at coarser levels, i.e. for increasing values of j, describ-

ing features at lower frequency ranges and larger time periods, Percival and Walden

(2000). Although it operates in practice by means of linear recursive filters, the DWT

can be also represented in matrix form as d = Wy with W an orthogonal matrix

corresponding to the discrete wavelet transform and d a vector of wavelet coefficients

describing features of the function at the J scales. An algorithm for the inverse recon-

struction, the inverse DWT (IDWT), also exists. There are many different wavelet
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families: Harr’s, Shannon’s, Meyer’s, Franklin’s and Daubechies’. In my research

work, I choose to use Daubechies’s wavelets. Daubechies (1992) first proposed a

class of wavelet families which have compact support ensuring a good localization in

time and maximum number of vanishing moments for any given smoothness. These

properties allow an effective and parsimonious representation of functions with local

behavior, which is why Daubechies wavelets are extensively used in applications. One

will use the symbol Daub#N, N ∈ N for Daubechies wavelet with vanishing moment

N . The mother wavelet of the family Daub#N has a compact support of length

2N − 1 and N vanishing moments, that is ψ is orthogonal to all polynomials with

order ≤ N such that
∫

R

xkψ(x)dx = 0, k = 0, 1, · · · , N.

For larger N , one has wavelets with wider but more regular support.

Wavelet shrinkage refers to the estimation of a function from noisy observations

and it is a well-known application of wavelets. Wavelet shrinkage usually refers to

reconstructions obtained from the shrunk wavelet coefficients, which means that a

wavelet transformation is applied to the data and the noise is removed by thresholding

or shrinking the smallest wavelet coefficients. Donoho and Johnstone (1994, 1998)

suggest a simple recipe for wavelet estimation by the following three steps.

Step 1. Transform the observations yi, i = 1, · · · , n to the wavelet domain by

applying a discrete wavelet transformation. The result is a sequence of wavelet

coefficients di, i = 1, · · · , n.

Step 2. Estimate σ, which is a standard deviation at noise level. Use this

estimator to threshold (or shrink) the wavelet coefficients.

Step 3. Invert the thresholded (shrunk) coefficients, recovering the estimator of

the function f̂i.
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The most common thresholding rules are hard and soft, which are expressed as follows

respectively:

δh(d, λ) =





0 if |d| ≤ λ

d if |d| > λ,

and

δs(d, λ) =





0 if |d| ≤ λ

d− λ if d > λ

d+ λ if d < −λ
where d indicates wavelet coefficients and λ ≥ 0, d ∈ R. As can be seen above, hard

threshold rule ”keep (keep the coefficients)” or ”kill (replace 0 with coefficients)”

wavelet coefficients whereas soft thresholding is a ”shrink” or ”kill” rule. The thresh-

old λ should be estimated from data. Thus, thresholding allows the data itself to

decide which wavelet coefficients are significant.

There are a variety of approaches to estimate the threshold level λ. They can be

categorized into two groups: global threshold and level-dependent threshold. With the

first group of thresholds, a single value λ would be applied to all wavelet coefficients.

There also exist a level-dependent value λj for each resolution level j = j0, · · · , J −1.

I will introduce two of them from each category: universal threshold and SureShrink.

The threshold λ =
√
2 log nσ is called universal threshold by Donoho and Johnstone

(1994). There are several methods to estimate σ which is usually unknown. Most

of the choices to estimate σ involve the wavelet coefficients at fine scales. Often,

only the finest scale is used to estimate the variance of noise. The signal-to-noise

ratio is usually small at high resolutions and, if the signal is not too irregular, the

finest scale should contain mainly noise. Moreover, the finest scale contains 50% of
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all coefficients. Some standard estimators of σ are

σ̂ =

√√√√ 1

n/2− 1

n/2∑

i=1

[d
(J−1)
i − d̄(J−1)]2,

where d̄(J−1) is a mean of wavelet coefficients at level J − 1, or a more robust MAD

(median absolute deviation from the median),

σ̂ = 1.4826×MEDIAN[|d
¯

(J−1) −MEDIAN(d
¯

(J−1)|)]

where d
¯

(J−1) is the vector of finest detail coefficients.

The adaptation in SureShrink is achieved by specifying thresholds level-wise.

SURE(d, λ) = k − 2
k∑

i=1

I(|di| ≤ λ) +
k∑

i=1

min(|di|, λ)2 (2.4)

The threshold level λ is set so as to minimize the estimate SURE(d, λ) for a given

wavelet coefficients,

λsure = arg min
0≤λ≤λU

SURE(d, λ). (2.5)

The threshold λsure and the soft-thresholding rule are the core of the level dependent

procedure Donoho and Johnstone call this SureShrink. If the wavelet representation

at a particular level is not too sparse, the SURE threshold is used. Otherwise, the

universal threshold is selected. The level j is considered sparse if

s2
j ≤

1
√
nj

log2 n
3/2
j ,

where nj is the number of coefficients in the j-th level, and s2
j =

1
nj

∑nj
k=1(d

2
jk− 1). It

is common for all thresholding rules to set to 0 the coordinates of a vector d, which

is subjected to thresholding, if they are smaller in absolute value than the threshold

λ.

Bayesian approaches have also been proposed that use mixture priors on the

wavelet coefficients. The recent review paper of Antoniadis, Bigot and Sapatinas
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(2001) provides an exhaustive review of the different approaches, classical and Bayesian,

and related extensions. All these approaches are limited to the single function setting.

Wavelet-based methods for the analysis of multiple curves are described by Brown,

Fearn and Vannucci (2001) who considered regression models to relate a multivariate

response to functional predictors, applied wavelet transforms to the curves, and used

Bayesian selection methods to identify features that best predict the responses. Van-

nucci, Sha and Brown (2005) considered classification problems and extended wavelet

methods to probit models. Also, Morris, Vannucci, Brown and Carroll (2003) applied

ideas of wavelet regression to the setting of nested functional modelling.
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