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ABSTRACT 

Energy Landscape and Electric Field Mediated 

Interfacial Colloidal Assembly. (May 2007) 

Pradipkumar Bahukudumbi, B.E., University of Madras; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Ali Beskok 
                                                                  Dr. Malcolm Andrews  

 
 
 

Chemically and physically patterned surfaces can be used as templates to guide 

nano- and micro- scale particle assembly, but the design is often limited by an inability 

to sufficiently characterize how pattern features influence local particle-surface 

interactions on the order of thermal energy, kT.  The research outlined in this dissertation 

describes comprehensive optical microscopy (i.e. evanescent wave, video) 

measurements and analyses of many-body and multi-dimensional interactions, dynamics 

and structure in inhomogeneous colloidal fluid systems.  In particular, I demonstrate 

how non-intrusive observation of an ensemble of particles diffusing past each other and 

over a physically patterned surface topography can be used to obtain sensitive images of 

energy landscape features.  I also link diffusing colloidal probe dynamics to energy 

landscape features, which is important for understanding the temporal imaging process 

and self-assembly kinetics.  A complementary effort in this dissertation investigated the 

use of external AC electric fields to reversibly tune colloidal interactions to produce 

metastable ordered configurations.  In addition, the electrical impedance spectra 
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associated with colloidal assemblies formed between interfacial microelectrode gaps was 

measured and consistently modelled using representative equivalent circuits.   

Significant results from this dissertation include the synergistic use of the very 

same colloids as both imaging probes and building blocks in feedback controlled self-

assembly on patterns.  Cycling the AC field frequencies was found to be an effective 

way to anneal equilibrium colloidal configurations.  Quantitative predictions of 

dominant transport mechanisms as a function of AC electric field amplitude and 

frequency were able to consistently explain the steady-state colloidal microstructures 

formed within electrode gaps observed using video microscopy.  A functional electrical 

switch using gold nanoparticles was realized by reversibly forming and breaking 

colloidal wires between electrode gaps.  Extension of the concepts developed in this 

dissertation suggest a general strategy to engineer the assembly of colloidal particles into 

ordered materials and controllable devices that provide the basis  for numerous 

emerging technologies (e.g. photonic crystals, nanowires, reconfigurable antennas, 

biomimetic materials). 
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1. INTRODUCTION 

1.1. Background 

Templated colloidal self-assembly1 refers to processes in which colloids 

autonomously and reversibly organize themselves on energetic surface patterns2.  While 

many processes are often claimed as "templated colloidal self-assembly", it is the rare 

exception when colloids are actually assembled on any surface without the assistance of 

external control involving manipulation with fields such as shear, electric, magnetic, 

optical, etc.  Although macroscopic intuition, and frustration with random Brownian 

motion, provides the understandable motivation for implementing processes that involve 

assembly by human intervention extended into the microscopic world via external fields, 

nanoscale self-assembly requires a paradigm shift to embrace Brownian motion, not only 
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as a source of disorder, but also as the natural motion essential to dynamic self-assembly 

processes in systems described by statistical mechanics (interplay of potential energy 

and entropy - free energy). 

Beyond the limited number of studies investigating colloidal assembly processes 

without external intervention, reports of truly thermodynamically reversible colloidal 

self-assembly are even less common.  Reversible colloidal self-assembly requires that 

initially disorganized collections of colloids can be repeatedly assembled into organized 

structures and completely disassembled ad infinitum by simply tuning a thermodynamic 

variable (changing a macroscopic intensive variable without appreciable gradients on the 

length scale of the thermodynamic system, e.g. temperature).  For example, the most 

common type of templated colloid assembly employs strong attractive interactions (e.g. 

convective forces due to evaporation, oppositely charged surfaces) to cause irreversible 

deposition of colloids on surfaces 3,4, but such an approach is clearly not reversible and 

generally gives rise to disordered aggregates or gels rather than organized structures 

such as crystals.  Because uncontrolled drying of monodisperse colloids easily produces 

polycrystalline structures, many studies have attempted to maximize crystalline domain 

size using controlled drying approaches5,6.  Despite initial promising results, colloidal 

crystals prepared with drying techniques are too disordered for practical use.   

In general, approaches to interfacial colloidal assembly can be categorized as (1) 

equilibrium “self assembly” processes where particle configurations are a direct 

consequence of interparticle forces only, (2) non-equilibrium “driven assembly” 

processes where metastable structures exist solely due to external forces, or (3) a 
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combination of these two cases.  Equilibrium methods to create thermodynamic colloidal 

assembly include manipulating colloidal forces,7 interactions with templates,1,3,8-10 or 

thermodynamic gradients.11  Examples of non-equilibrium methods to generate 

metastable ordered colloidal structures include applying electric,12,13 magnetic,14 

optical,15-17 and flow18,19 fields, or manipulating sample orientation relative to gravity20. 

Although the concept of using strong attraction to place a building block in a specified 

location follows again from macroscopic intuition (i.e. how we assemble macroscopic 

objects or functional devices), such an approach is inherently unsuccessful at the 

microscale because it dominates/suppresses the weak interactions that are essential to 

autonomous and reversible self-assembly processes. 

Using these approaches independently is ineffective as reliable colloidal 

assembly schemes because equilibrium methods tend to form dynamically arrested 

structures, and non-equilibrium methods produce inherently metastable configurations.  

To design robust processes for interfacial colloidal assembly, the complex interplay of 

thermodynamic and kinetic factors must be explicitly considered and optimized in a 

single process; an intelligently designed process must specify both a thermodynamically 

favored structure and a suitable kinetic pathway.  The primary limitation to 

implementing such reversible assembly processes is a lack of basic knowledge 

connecting colloid interactions to the thermodynamics and kinetics of interfacial 

colloidal assembly. 

One of the major fundamental difficulties with understanding colloidal self-

assembly on energy landscapes (templates) is the ability to know all relevant interactions 
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between colloids and surface regions and to understand how their precise balance 

produces a given equilibrium colloidal configuration/structure on a patterned surface.  

Although statistical mechanics has been applied with success to understand equilibrium 

phase behavior and structures of some of the most basic, model, bulk, homogeneous, 

single component materials (such as argon) as well as more complex molecules besides 

noble gases (such as water for instance), the application of these methods to 

inhomogeneous colloidal fluids and phase transitions of such fluids next to patterned 

surfaces is still in its infancy.   

To avoid misinterpretation, it is important to clarify the meaning and significance 

of certain keywords used repeatedly throughout this dissertation.  As a matter of 

terminology, colloidal particles above patterned substrates that modulate equilibrium 

density distributions are referred to as inhomogeneous colloidal fluids.  A physically 

varying topography patterned on a glass substrate is referred to as an energy landscape. 

This jargon is intended to convey a literal gravitational potential energy surface, very 

much like the potential energy changes associated with climbing over a hilly terrain on 

the earth's surface.  However, in contrast to sampling the earth's energy landscape by 

doing work (e.g. using engine, muscles), the colloids make excursions (and 

configurational changes) to sample positions on the potential energy landscape as the 

result of thermal energy fluctuations.   

Here, we also note the relevance and differences of our measurements of 

colloidal fluids on very real and literal potential and free energy landscapes with the 

energy landscapes used in the glasses and protein folding literature.  Energy landscapes 
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in general are a theoretical construct used to understand glass formation and protein 

folding, where configurations having different free energies navigate between 

intermediate configurations by overcoming free energy barriers. The timescale 

associated with overcoming these energy barriers determines the self-diffusion 

processes.  Simple liquids at high temperatures have no free energy barriers and so 

different configurations can form quite easily and rapidly.  If a liquid configuration gets 

trapped in a local minimum with high free energy barriers all around it, the configuration 

is said to be a glass (kinetically arrested) because it cannot surmount the free energy 

barriers and rearrange on experimental timescales (a folding protein can also get stuck in 

such a trapped configuration; as another trivial example, a perfect bi-crystal cannot be 

converted into a perfect single crystal without first melting it).  So energy landscapes, 

although abstract, determine the free energy barriers between different configurations, 

their lifetimes, and colloid self diffusion coefficients.   

1.2. Objectives and Significance 

This dissertation aims to contribute to the understanding of how to design, 

control, and optimize both thermodynamic and kinetic aspects of 2D interfacial colloidal 

assembly on homogeneous, patterned and electrode surfaces.  The overall approach is to 

use advanced optical microscopy techniques (i.e. total internal reflection (TIRM)21 and  

video (VM)22 
 

microscopies) to measure interactions, dynamics, and structure in 

interfacial colloidal processes, and then use appropriate theoretical tools (i.e. Monte 

Carlo (MC) 23,24) to interpret and predict such observations. The goal is to understand 

interfacial colloidal assembly on energy landscapes as a fundamental phenomenon 
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important to complex fluid technologies and emerging advanced material applications. 

Central questions related to attaining these objectives are: 

•  How do particle-particle, particle-surface, and particle-field interactions on the 

order of kT control equilibrium colloidal assembly7 on homogeneous and 

patterned surfaces?  

• How can equilibrium properties and dynamics of 2D inhomogeneous colloidal 

fluids be connected to patterned surface topographies via measured free energy 

and potential energy landscapes? 

• How can colloidal particle configurations and dynamics be manipulated with 

electric fields to navigate free energy landscapes to avoid kinetically trapped 

microstructures?25-27 

The strategy adopted in this dissertation to address these issues consists of a 

systematic series of experiments to understand how energy landscapes and external 

electric fields independently, and in combination, influence equilibrium colloidal 

assembly and the kinetic pathways in 2D crystallization.  The overarching objective of 

this research, therefore, is to extend and develop methods that exploit the use of 

diffusing colloidal probes to directly measure colloidal interactions in order to 

understand and control both equilibrium and non-equilibrium colloidal assembly 

processes on substrates.  The specific objectives of this research work are summarized 

below: 

• Quantitatively analyze concentrated diffusing colloidal probes on energy 
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landscape features as a basis to predict how colloidal particles self-assemble on 

patterned surfaces as well as a new paradigm/modality for imaging surfaces.  The 

latter concept is also related to understanding both equilibrium and dynamic 

aspects of how colloids sample energy landscapes, which is a simplified, 

illustrative model problem related to configurational/conformational 

rearrangements of generic importance to statistical mechanics with applications 

such as glass transitions and protein-folding. 

• Employ external electric fields to reversibly tune interactions between colloidal 

particles and facilitate assembly of ordered metastable structures. 

• Manipulate colloidal assemblies between interfacial microelectrode gaps using 

electrokinetic transport mechanisms and simultaneously measure the associated 

electrical impedance spectra.  Consistently model the electrical properties using 

representative equivalent circuits that can be directly integrated into 

reconfigurable devices in the future to reversibly tune interfacial AC 

electromagnetic properties. 

• Engineer devices and multifunctional materials using ordered colloidal structures 

(e.g. nanowires) and encapsulated microspheres as functional components. 

The significance of the dissertation work derives from the prevalence of colloidal 

sized components (1 nm – 10 µm) in numerous industrial complex fluids including 

emulsions, ceramics,28,29 pastes,30 coatings,31 composites,32 foods, minerals, and  
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Figure 1.1.  (top) Computer rendering of an all-optical integrated circuit based computer 
using photonic band gap materials engineered using colloidal particles. (bottom) Solids-
state/MEMS based jamming device being redesigned with colloidal microfluidic 
networks to realize new range of dynamically reconfigurable surface electromagnetic 
properties and response to radio frequency signals. 
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pharmaceuticals,33 but also as essential building blocks in emerging technologies based 

on nanostructured materials such as protein crystals,34 magnetic storage devices,14 

chemical & biological sensors,35 optical switches,36 and photonics.5  To demonstrate the 

importance of developing fundamental measurements and models to solve problems 

involving manipulating colloidal structure, we provide examples of a material (photonic 

crystal) and device (reconfigurable antennas) of the future in Fig. 1.1.  The importance 

of photonic band gap (PBG) materials can be understood via their analogy to electronic 

band gap materials (semiconductors) used in computers that trap electrons in low and 

high energy states to generate 0s and 1s in the binary computer language.  The PBG 

materials37 are intended to accomplish the same thing with photons to create computers 

based on optical integrated circuits, which has numerous potential advantages over this 

generation computers (higher speed, lower power requirement and higher information 

density).  In the other example, electronically reconfigurable antennas (ERA) that 

employ embedded microwave circuits containing devices with controllable impedance 

characteristics to adaptively tune (radio frequencies) surface properties have been 

reported in the literature (Fig. 1.1).  An ERA can provide new capabilities for military 

and commercial vehicles, such as enhanced communication links, while reducing 

observable signatures and power requirements.  

While these two examples may seem unrelated, we identify a common ground in 

this dissertation by using assembled colloidal structures as functional units in both 

applications.  For instance, a basic requirement of PBG materials is a periodic structure 

on length scales comparable to the wavelength of light, which can be realized by 
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assembling micron-sized colloidal particles into three-dimensional crystals.  On the other 

hand, integrated microfluidic/microelectronic networks containing metallic particles that 

provide the ability to tune local interfacial AC electromagnetic properties (via the 

formation of colloidal nanowires for example) can be used to produce unique ERA 

device responses that cannot currently be realized via static, solid-state materials (due to 

limited reconfigurability) or MEMS systems (due to scalability).   

1.3. Dissertation Outline 

This dissertation is organized as follows:  Section 2 briefly reviews the 

characteristic interaction potentials in systems containing spherical colloidal particles 

immersed in an aqueous solution.   In addition, the theoretical aspects concerning optical 

microscopy techniques used to measure colloidal interactions and Monte Carlo 

simulations are discussed.  Section 3 provides details of the colloidal systems and optical 

microscopy experiments including protocols for fabricating physical and chemical 

patterns on glass substrates.  Sections 4-7 contain the results from this research work.  

Detailed video microscopy measurements and an inverse Monte Carlo analysis of 

diffusing colloidal probes as a means to image three dimensional free energy and 

potential energy landscapes due to patterned surfaces are described in Section 4.   The 

use of external electric fields to sensitively tune interactions between colloidal particles 

to form ordered structures is demonstrated in Section 5.  Section 6 reports in situ 

measurements of the reversible, directed assembly of metallic nanoparticle 

microstructures and their associated impedance properties on surfaces between 

interfacial gold film microelectrodes.  Bovine-Serum-Albumin (BSA) based 
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encapsulated colloidal particles are synthesized in Section 7 with the intention of being 

manipulated using external fields to engineer self-healing materials in the future.  A 

summary of the findings of this dissertation is provided in Section 8.  Finally, current 

and future work not presented as part of this dissertation is summarized in Section 9. 
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2. THEORY 

2.1 Synopsis 

In the following, we briefly review the characteristic interactions active in 

systems containing spherical colloidal particles immersed in an aqueous solution.  The 

primary points to be made are the ability of theory to predict at least semi-quantitatively 

these interaction forces, and the rapidly growing ability to measure them directly via the 

surface forces apparatus, atomic force microscopy, optical tweezers, and other 

microscopy techniques.  Here, we focus exclusively on the theoretical aspects 

concerning optical microscopy techniques used in this dissertation to sensitively measure 

colloidal interactions on the order of kT.  This includes Ensemble Total Internal 

Microscopy (ETIRM) used to measure particle-wall interactions, and a technique using 

concentrated Diffusing Colloidal Probes (DCP) to quantitatively image patterned energy 

landscapes (see Section 4). 

2.2 Colloidal and Surface Forces 

To gain fundamental insights into the stability of colloidal dispersions and their 

equilibrium microstructures, it is important to understand the forces acting upon and 

among particles, which include viscous forces that originate in response to particle 

motion, Brownian forces due to the thermal energy of molecules in the solvent, and 

physico-chemical forces controlled by the chemical composition of the solvent, solutes, 

and the particles20.  In a colloidal dispersion pair-wise additive potentials or potentials of 
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mean force are used to account for the effect of both the solvent and any solutes on the 

interactions between particles.  Hydrodynamic and Brownian forces are dissipative in 

nature, and do not appear in the interaction potential as a consequence of the fluctuation 

dissipation theorem.  Here, we simply consider the dispersion to be a pseudo-one 

component system that is fully characterized by the interaction potential u(r, h), the 

number density, and the temperature.  A wide variety of forces contribute to u(r, h) and 

their magnitudes can be sensitively tuned by adjusting the physical chemistry of the 

dispersion.   

It is useful to distinguish the colloidal particle-wall interactions from the particle-

particle interactions.  The total potential energy profile for a single colloidal particle 

levitated above a charged wall can be calculated by summing the surface and body 

forces acting on the particle.  For experiments presented in this dissertation, important 

interactions include electrostatic, van der Waals, and gravitational forces.  The net 

separation dependent potential energy profile is given by the superposition of these 

relevant interactions as, 

 ( ) ( ) ( ) ( )edl grav vdwu h u h u h u h= + +  (2.1) 

where h is the separations between particle surfaces and the substrate surface, uedl(h) is 

the interaction between overlapping electrostatic double layers on the particle and wall, 

ugrav(h) is the gravitational potential energy due to the buoyant weight of the particle, and 

uvdw(h) is the continuum van der Waals attraction between the particle and wall mediated 

by the aqueous electrolyte medium. 
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For an ensemble of colloidal particles next to a planar surface confined by 

gravity, the effective inter-particle potential is calculated by summing the surface forces 

and can be represented as: 

 ( ) ( ) ( )edl vdwu r u r u r= +  (2.2) 

where r is the separation between two colloidal particle centers.  Now we will briefly 

review the three most common colloidal interactions, electrostatic repulsion, van der 

Waals (vdW) or dispersion attraction, and depletant-induced interaction, in the following 

sub-sections. 

 

2.2.1 Electrostatic interactions  

In aqueous solutions, ionic functional groups on surfaces can dissociate or partition 

into the solution, thereby generating a net charge on the surface and an effective electric 

field in the solution.  The Debye length κ-1, which varies from 0.3 nm in a 1 M salt 

solution to 30 nm in 0.1 mM, represents the length scale over which the surface potential 

decays to zero.  In other words, the Debye length represents the screening length over 

which the ions attracted to a charged surface from the bulk neutralize the surface 

charge20.  For thin electrical double layers where the Debye length is smaller than 

particle-wall surface separations (κh>1) and much smaller than the sphere radius (κa>1), 

the electrostatic interactions between particles and wall surfaces, uedl(h), is accurately 

described using non-linear superposition and the Derjaguin approximation.  For the 

specific case of 1:1 electrolyte, the interaction is given as,21  
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 ( ) exp( )edl pwu h B hκ= −  (2.3) 
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where a is particle radius, ε is the dielectric permittivity of water, k is Boltzmann's 

constant, T is absolute temperature, e is the elemental charge, ψp and ψw are the Stern 

potentials of the particle and the wall, κ-1 is the Debye length, C is the bulk electrolyte 

concentration, and NA is Avagadro's number.  Eq. (2.4) is based on the interactions 

between a particle with radius a and an infinite wall.  According to the Derjaguin 

geometric correction, the electrostatic interactions between identical particles is half the 

interaction between particles and infinite plates and is given by: 

 ( 2 ) exp( ( 2 ))edl ppu r a B r aκ− = − −  (2.6) 
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where r is the center-to-center vector between particles.  The repulsive potential near 

particle contact is generally large relative to the thermal energy kT.  In experiments 

described in this dissertation carried out at moderate to low ionic strengths, electrostatic 

repulsions are generally sufficient to stabilize the colloidal particles against dispersion 

attractions. 
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2.2.2 Gravitational interactions  

The gravitational potential energy is the buoyant particle weight, G, multiplied by 

its height, h, above the wall.  The buoyant particle weight is the product of gravitational 

acceleration, g, and the buoyant particle mass, m, which depends on particle volume and 

density difference between the particle and the fluid.  The gravitational potential energy 

is given by, 

 ( ) 3( ) 4 3 ( )grav p fu h Gh mgh a ghπ ρ ρ= = = −  (2.8) 

where ρp and ρf are the particle and fluid densities, and g is the acceleration due to 

gravity. 

 

2.2.3 van der Waals interactions  

Attractive van der Waals (vdW) potentials arises from electromagnetic 

fluctuations due to a mismatch in the particle and medium dielectric properties, and can 

be determined by first computing the Hamaker "function", A132(l), between two half-

spaces, composed of materials #1 and #2, separated by distance l of medium #3 as,38,39 
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where i=(-1)0.5, h  is Planck’s constant divided by 2π, c is the speed of light in vacuum, k 

is Boltzmann's constant, T is absolute temperature, and εk(ω) is the dielectric spectrum of 

material k.  The prime (') next to the summation indicates that the first term (n=0) is 

multiplied by ½(1+2κl)exp(-2κl) where κ−1 is the Debye screening length.  The 

Hamaker function is computed as an infinite summation over regularly spaced 

frequencies and accurately captures the effect of the intervening medium on the 

electromagnetic interaction between the colloidal particles.  The dielectric spectra for 

water and silica was reported by Bevan and Prieve40 and the dielectric spectra of gold 

was reported by Parsegian and Weiss41.  The van der Waals interaction between a sphere 

and a half space is accurately described using Derjaguin approximation as,40,42 

 132
2

( )( )
6vdw

h

A lau h dl
l

∞

= − ∫  (2.10) 

The vdW attraction increases smoothly from the rapidly decaying far-field limit to 

values that are large relative to kT at small separations.  For convenience, the particle-

particle and particle-wall vdW interactions in this dissertation are represented by non-

integer power-law decay fits to the continuum Lifshitz theory given by40 
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where a is the particle radius and A and p are fitting parameters.  The vdW attraction 

between silica colloids and chemical patterns (gold tiles patterned on a glass substrate) 

was calculated using Eq. (2.12) in Sections 4 and 9. 
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2.2.4 Depletion potentials between colloids & surfaces 

The attractive depletion potential between colloids and surfaces in the presence 

of unadsorbing macromolecules, nanoparticles or micelles can be computed by using the 

Asakura-Oosawa (AO) model.43  For all geometries, the AO potential is a function of the 

volume from which unadsorbed species are excluded, Vex, and the osmotic pressure, Π, 

of the depletant as,20 

 ( ) ( )exu r V r= Π  (2.13) 

It can be easily demonstrated that the mean force is identically equal to the osmotic 

pressure exerted by the depletant on a surface enclosing the particle plus the depletion 

region.  When the depleted regions around the colloidal particles overlap, the depletant is 

excluded from the gap and the osmotic pressure generates a net attraction proportional to 

the projected area of overlap between the spherical volumes enclosing the two 

particles20. For the particle-particle geometry, the AO depletion potential can be 

expressed as,44 

 ( ) ( ) ( )
33

3
4 3( ) 1
3 4 16

pp
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ij ij

r ru r a L
a L a L

π ⎛ ⎞
⎜ ⎟= − + − + Π
⎜ ⎟+ +⎝ ⎠

 (2.14) 

where L is the radius of the depletant, and aij is the arithmetic mean of the interacting 

particle radii.  For the particle-surface geometry, the AO depletion potential can be 

expressed as,45 

 ( )
3

2 2( ) 4 4
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Depletion interactions using micellar depletants were used in this dissertation to 

assemble attractive colloidal crystals.  The range of interaction and the depth of the 

potential energy well in the experimental systems were calculated using Eq. (2.16) and 

(2.17) as a function of particle size and depletant concentration. 

2.3 Total Internal Reflection Microscopy (TIRM) 

Ensemble Total Internal Reflection Microscopy (ETIRM)46 is a method for 

measuring the potential energy of interaction between many single colloidal particles 

and a planar charged surface. This technique was originally developed by Prieve, Lau 

and Lanni47 for measuring single-particle interactions and has seen continued 

development over the last decade (see review article by Prieve21 for a history of 

development of this technique).  ETIRM uses integrated evanescent wave scattering and 

video microscopy techniques to monitor the three-dimensional trajectories of colloids 

near planar surfaces.  Such measurements can be analyzed to yield many single-colloid 

surface potential energy profiles as well as an ensemble average colloid-surface potential 

energy profile by averaging over all colloids and surface regions sampled by the laterally 

diffusing colloids. 

Evanescent waves generated by total internal reflections are scattered by 

colloidal particles levitated above a surface.  In the ETIRM experiment, the scattering 

intensity of a single levitated colloid in an evanescent wave can be used to determine the 

instantaneous particle-wall separation, h, above a wall using the following 

expression,21,48  



 

 

20

 ( ) ( )0 expI h I hα= −  (2.18) 

where I  is the scattered intensity, I0 is the intensity at particle-wall contact or zero 

separation, h=0, and α-1 is the evanescent wave decay length given by, 

 ( )2 2
1 1 2

4 sinn nπα θ
λ

= −  (2.19) 

where n1 and n2 are the refractive indices of the incident and transmitted media, and θ1 is 

the incident angle.  Using Eq (2.18), measurements of scattering intensity from single 

levitated particles can be used to monitor their height fluctuations due to Brownian 

excursions normal to the wall.  The probability of sampling each height above the 

surface is related to the potential energy at that elevation by Boltzmann's equation,21  

 ( )( ) exp u hp h A
kT

⎡ ⎤= −⎢ ⎥⎣ ⎦
 (2.20) 

where p(h) is the probability density of heights sampled by a single particle, u(h) is the 

particle-wall potential energy profile, and A is a normalization constant related to the 

total number of height observations.  It is worth noting that the equilibrium Boltzmann 

distribution, exp(-u(h)/kT), is the stationary, i.e., time-independent solution of the 

Smoluchowski diffusion equation, and the system asymptotically approaches this 

solution under equilibrium.  By measuring the number of times a particle samples each 

height during the course of an experiment, a particle height histogram, n(h), can be 

measured from time dependent height fluctuations.  With a large number of observations 

to ensure sufficient statistical sampling, n(h) can be considered a good approximation of 
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the probability density of heights, p(h).  The potential energy relative to a reference state 

can determined by measuring n(h), substituting for p(h) in Eq. (2.20), and then 

rearranging as46, 

 
( ) ( ) ( )

( )
lnref refu h u h n h

kT n h

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (2.21) 

where href is often chosen as hm, which is the most probable height sampled in n(h).  This 

relative separation scale is generally referenced to particle-wall contact at h=0, which is 

most commonly determined by measuring I0 in Eq (2.18).21  The measured potential 

energy profile is only due to the conservative forces and is unaffected by dissipative 

hydrodynamic forces.   

2.4 Energy Landscapes from 2D Colloid Distributions 

Consider a quasi two-dimensional system, with N colloidal particles of radius, a. 

The average area fraction of particles in the system is φ=ρavgπa2, where ρavg is the 

average number density.  For sub-monolayer colloidal fluids confined by gravity above a 

uniform surface, the density is homogeneous in the 2D plane parallel to the wall 

containing the colloids.  For a similar fluid adjacent to a chemically or physically 

patterned substrate, interactions of colloidal particles with the underlying wall surface 

will cause lateral density variations.  Such density variations can be described in 2D 

colloidal fluids approaching infinite dilution by Boltzmann's equation as, 
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where u(x,y) is the local dependent interaction potential between single colloids and the 

underlying substrate, which can be referred to as a potential energy landscape, and ρ(x,y) 

is the time averaged 2D colloidal density.  In other words ρ(x,y) is the probability of 

finding a colloidal particle in a given x, y position. We assume that the inhomogeneous 

fluid can be treated as quasi 2D since the height variations are less than the colloid 

radius and the coverage is sub-monolayer.  In the experiments with physical patterns 

reported in Section 4, the surface is clearly 3D, but colloids are confined to a thin region 

that is small compared to the radius.  As the concentration of colloidal particles 

increases, multi-particle packing effects and many-body interactions become important 

and the Boltzmann inversion of concentrated ρ(x, y) will yield a position dependent 

potential of mean force, w(x, y), which we refer to as a free energy landscape in this 

dissertation.  This effectively captures the average interaction between a single colloid 

and each surface location as mediated by all nearby and intervening colloids. 

An "inverse" statistical mechanical analysis is the formal method for working 

backward from the measured inhomogeneous fluid microstructure captured by ρ(x, y). 

The goal is to extract the interaction of single colloids with the underlying physically 

patterned surface, which we refer to as a potential energy landscape, u(x, y).  To 

accurately recover u(x, y) by accounting for many-particle effects, we have developed an 

inverse Monte Carlo (MC) simulation method.  Monte Carlo (MC) simulations are 

traditionally used in a "forward" fashion to predict ρ(x,y) for a given u(x,y).  Conversely, 

the inverse MC algorithm employs iterative forward canonical MC simulations with 

different guesses for u(x, y) until a simulated ρS(x, y) is obtained in agreement with the 
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measured ρ(x, y).  To ensure rapid convergence to a unique solution, revised estimates 

for energy landscapes are obtained in an iterative fashion using, 

 ( ) ( ) ( )s i i s i1
, ,  (x, y) (x, y) (x, y)

i i
u x y u x y kTα ρ ρ ρ

+
= + −⎡ ⎤⎣ ⎦  (2.23) 

where α is a damping parameter often empirically adjusted between 0 and 1 to optimize 

convergence.  The value of 0.5α =  worked well for all cases we have examined. An 

advantage in using this potential perturbation routine is that no numerical problems arise 

when ρs(x,y)=0. 

The free energy landscape, u(x, y)0=w(x, y)=ln[ρ(x, y)] is used to initialize the 

inverse MC algorithm.  The algorithm in Eq. (2.23) is sufficiently robust that 

convergence to a unique global solution is still obtained if u(x, y)0=0.  This procedure is 

repeated until convergence is obtained as determined by some tolerance in the root mean 

square (rms) error averaged over all surface positions between ρs(x,y) and the specified 

inhomogeneous fluid distribution ρ(x,y) as, 

 ( ) ( )( )
0.5

2

1 1

1 , ,
X Y

i s j k j ki
j k

x y x y
XY

χ ρ ρ
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑∑  (2.24) 

where χi is the rms error for a given iteration. With convergence of ρs(x,y) to ρ(x,y), a 

unique solution is obtained for the potential energy landscape  provided that more than 

one u(x,y) does not satisfy Eq. (2.23) within the specified tolerance. The simulation was 

stopped if the solution diverged (rms error increases) or if the convergence was 

oscillatory.  The evolution of the R-square correlation, a parameter that quantifies the  
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variation of the simulated distribution function ρs(x,y) from the measured ρ(x,y), is  
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Figure 2.1.  The R-square error between the simulated and measured density distribution 
functions plotted as a function of the number of iMC iterations.  The convergence 
characteristics correspond to diffusing colloidal probe microscopy experiments 
described in Section 4 for two particle concentrations, φeff=0.14 (red) and φeff=0.28 
(black). 
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shown in Fig. 2.1 for two iMC simulations described later in Section 4.  The R-square 

value is a fraction of the variance in the data and approaches unity as the regression 

approaches a perfect fit.  Figure 2.1 is included in this section to illustrate the fact that 

the iMC simulation algorithm uniformly converges to a unique solution in typically less 

than 100 iterations. 

Another important issue concerning convergence of iMC algorithms is the 

statistical quality of measured distribution functions.  However, there are no available 

criteria to independently assess if the statistical quality of the experimental data collected 

is good enough for the iMC method.  It is possible that a very noisy experimental target 

function can introduce additional local minima, and impede convergence by allowing the 

possibility for the optimization routine in the iMC method to be stuck in one of the local 

minima while scanning for the global minimum. While more elaborate algorithms that 

facilitate escape from any local minima in the solution space can improve the ability to 

obtain a unique u(x,y) in the presence of significant experimental noise, this was not 

considered in this work and reserved for future study.  The details of the inverse Monte 

Carlo algorithm are represented as a flowchart in Fig. 2.2. 
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3. EXPERIMENTAL METHODS 

3.1 Materials 

3.1.1 Colloidal particles  

A variety of colloidal particles (types and sizes) supplied by different vendors 

were used in this dissertation without further purification.  Nominal 2.34 µm silica 

colloids purchased from Bangs Laboratories (Fishers, IN) were used as diffusing 

colloidal probes to image energy landscapes in Section 4.  Colloidal assembly 

experiments with electric fields were conducted using both dielectric and metallic 

particles.  In Section 5, 3 µm silica colloids purchased from Bangs Laboratories (Fishers, 

IN), and Polystyrene microspheres (4 µm and 4.9 µm) purchased from Interfacial 

Dynamics Corporation (Portland, OR) were used in experiments with normal electric 

fields due to homogeneous and patterned electrode surfaces.  Polydisperse metallic gold 

nanoparticles (Alfa Aesar, Ward Hills, MA) with an average diameter of 800nm were 

used in experiments with the interdigitated planar microelectrodes in Section 6. The 

manufacturer reported particle densities were ρSiO2=1.96 g/ml, ρPS=1.05 g/ml, 

and ρAu=19,000 g/ml.  In each experiment, particles were diluted in aqueous electrolyte 

solutions to obtain bulk particle concentrations that produced desired interfacial 

concentrations after sedimentation equilibrium was attained.   

3.1.2 Ionic solution 

The water used in these studies was deionized (DI) water from an in-house 

purification system.  It typically had a conductivity of around 1 µS cm-1.  Electrolyte 
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solutions were prepared using analytical grade NaHCO3 (Sigma), NaCl (Aldrich) and 

KOH (Fisher) without further purification.  Typically 0.15 or 1.0 mM NaHCO3 or KOH 

was used in the colloidal assembly experiments with external electric fields in Sections 5 

and 6.  All experiments in Section 4 were performed using DI water.  The pH of the 

electrolyte solutions was maintained well above the isoelectric point of the colloidal 

particles to ensure a negative surface charge. 

 

3.1.3 Glass substrates and electrodes 

Microscope glass slides from Corning (Corning, NY) were used as substrates in 

all experiments reported in this work.  For the experiments with electric fields, two types 

of electrodes were used: gold, a conductor; and tin-doped indium oxide (ITO), a 

semiconductor.  Optically transparent Indium-Tin-Oxide (ITO) electrodes were supplied 

by Delta Technologies and consisted of a 150nm thick layer of ITO deposited on a 1.1 

mm thick glass slide.  The sheet resistance was reported by the manufacturer to be 10 

Ω/sq.  Interdigitated gold microelectrodes were patterned on glass substrates using 

standard photolithography techniques described later in this section.  To check for the 

quality of electrodes and the presence of a good conducting film, the resistance of the 

electrodes was measured prior to use.  Electrical connections to the ITO electrode were 

made using conductive silver epoxy, while the gold electrodes allowed connecting wires 

to be soldered onto the contact pads in the microelectrode geometry.   
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3.1.4 Cleaning procedures and cell preparation  

Glass surfaces were cleaned with piranha solution (3:1 mixture of 99% H2SO4 to 

35% H2O2) for 1 hr to remove organic contaminants and increase the surface charge.  

The ITO and gold electrodes were cleaned using sequential washes with 200 proof 

ethanol and deionized water.  It is important to avoid using acetone to clean ITO 

electrodes as ketones deposit a film residue on the surface thereby passivating the 

electrode.  Laboratory grade ethanol also contains ketone as a denaturant, making it 

necessary to use absolute ethanol for cleaning the ITO electrodes.  After washing the 

substrates with deionized water (DI) and drying with high purity nitrogen prior to use, 

polydimethylsiloxane (PDMS) or Viton O-ring (10mm ID x 12 mm OD, McMaster Carr, 

Los Angeles, CA) spacers were attached to the glass surface to produce a small batch 

sedimentation cell.  Viton O-rings were attached to the glass slides with quick setting 

epoxy or vacuum grease; PDMS spacers could be sealed to clean glass surface without 

adhesives due to low-density chemical bonding between the free silanol groups in the 

PDMS and oxide on the glass surface. The density of chemical bonding can be increased 

substantially by exposing the PDMS to oxygen plasma before attachment.   

3.1.5 Material characterization  

The size of the colloidal particles was characterized using 1) dynamic light 

scattering (DLS) (ZetaPALS instrument, Brookhaven Instrument Corp., Holtsville, NY), 

2) ensemble averaged Total Internal Reflection Microscopy (ETIRM) measurements of 

particle-wall interaction potential, 3) pair distribution functions of colloids dried on a 

microscope slide, and 4) Confocal Laser Scanning Microscopy (CLSM) (LSM 5 
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PASCAL, Zeiss, Germany).  In DLS measurements, the colloidal particles were 

dispersed in a 1mM NaCl solution, and approximate size distributions were obtained 

using standard procedures applying cumulate analysis provided in the DLS software.  

The average colloidal particle diameter can also be extracted from the ETIRM measured 

gravitational potential energy, as explained in Section 2.  The position of the first peak in 

the radial distribution function constructed for colloidal ensembles dried on a 

microscope slide can also provide an estimate of the particle size.  In CLSM 

measurements, colloidal particles were first dispersed in DI water to obtain bulk particle 

concentrations that produced monolayer concentrations after sedimentation.  The 

colloidal dispersion was then allowed to sediment in a batch sedimentation cell for a 

couple of hours after which ~0.05% (weight) Rhodamine 6G (Aldrich, Milwaukee, WI) 

and 1 M NaCl solution was injected into the cell to generate a fluorescent medium.  A 

100X oil immersion objective (N.A. = 1.4) was used to capture images in the fluorescent 

mode.  92µm x 92µm images were obtained with 2048 x 2048 resolution to produce 

~45nm pixels, which allowed centroid location to within ~20nm using typical particle 

tracking algorithms. An image processing algorithm using fast Fourier transform (not 

described in this dissertation) was used to find the center and diameter from the cross 

section of the particle.  Figure 3.1 illustrates the use of methods 1 and 3 detailed above to 

determine the size of silica colloids used as diffusing colloidal probes in Section 4.  

Figure 3.2 illustrates the use of confocal microscopy (method 4) to characterize the size 

distribution of 4 µm PS colloids used in Section 5. 
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Figure 3.1.  (a) Radial distribution function for nominal 2.34 µm silica colloids dried on 
a microscope slide with first peak at r = 2a = 2.20 µm.  Inset shows the first peak 
magnified and the solid line (—) is a log-normal fit. (b) Dynamic light scattering data 
measured log-normal distribution of nominal 2.34 µm silica colloids with most probable 
size of 2a = 2.23 µm and a polydispersity of 7 %. 
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Figure 3.2.  (a) Confocal image of nominal 4 µm PS particles, (b) Processed image 
indicating the center and circumference of individual colloidal particles, and (c) Size 
distribution of nominal 4 µm PS particles with most probable size of 2a=3.66 µm, 
constructed from processed images. 
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The zeta potential of the colloids as a function of pH and ionic strength was 

measured using dynamic light scattering and phase analysis light scattering 

measurements (ZetaPALS, Brookhaven Instrument Corporation, Holtsville, NY).  The 

ionic strength and pH of the ionic solution was determined by pH and conductivity 

measurements (Accumet® research, AR20, Fisher Scientific). 

3.1.6 Power supply and impedance analyzer 

A Kepco Power supply unit (ATE 55-10DM, 0-55 V, 0-10 A) was used in the 

colloidal assembly experiments with DC fields in Section 5. The potential drop and 

current across the electrodes was measured using a Fluke 187 digital multimeter. An 

Agilent 33120A function generator was used to apply an alternating potential (ω=10 Hz 

– 1 MHz, voltage=0.5 V – 2.5 V peak to peak) to the electrodes.  A Tektronix TDS210 

two channel oscilloscope was used to monitor the applied AC signal.  Reversing the 

electrical connections to the electrodes from the function generator produced no change 

in the measured behavior, which means there was zero DC bias in the electronics. 

A Hewlett-Packard HP 4194A impedance analyzer tested and calibrated using an 

open/short circuit compensation routine recommended by the manufacturer, was 

connected in series with the function generator and the electrodes to make impedance 

measurements.  The analyzer was interfaced to a laboratory PC using a LAB-VIEW 8.0 

program (National Instruments) to collect raw data (impedance magnitude, ⏐Z⏐, and the 

phase angle, δ), as a function of frequency from 100 Hz to 1 MHz. All the impedance 

measurements were made at a nominal oscillator voltage level of 0.25 V.   
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3.2 Microscopy Techniques 

3.2.1 Ensemble total internal reflection microscopy (ETIRM)  

Fig 3.3 shows a schematic representation of an optical microscope (Axioplan 2, 

Zeiss, Germany) and CCD camera setup for dynamically tracking and monitoring 

evanescent wave scattering from levitated colloidal particle ensembles (see inset).  An 

O-ring/cover glass batch sedimentation cell (or a flow cell) is optically coupled to a 68° 

dovetail prism (Reynard Corp., CA) using index matching oil (n=1.515).  The prism is 

then mounted on a three point leveling stage.  In particle-wall potential energy 

measurements, a 40X objective (NA=0.65) and 1.6X magnifying lens were used in 

conjunction with a 12 bit CCD camera (ORCA-ER, Hamamatsu, Japan) operated at 4x 

binning (128µm x 97µm images were obtained with 336 x 256 resolution to produce 

~379nm pixels).  Images were recorded at 27 frames/sec with a total observation time of 

37 minutes to produce images stacks of 6.0x104 frames. A 15 mW, 632.8 nm Helium-

Neon laser (Melles Griot, Carlsbad, CA) provided photons for the generation of an 

evanescent wave with a decay length of 236 nm (ng=1.515, nw=1.333).  While large 

penetration depths allow particle heights to be measured over a larger range (needed for 

experiments with DI water), small penetration depths lead to greater sensitivity. 

To track each particle’s three dimensional trajectory, we use typical image 

analysis algorithms22 coded in Fortran to locate x,y center coordinates (~10 nm) on each  

scattering pattern, and integrate each particle’s scattering intensity to obtain the center 
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Figure 3.3.  Schematic illustration of the ETIRM apparatus with HeNe laser, prism, 
batch cell, microscope, CCD camera, and data acquisition PC.  Insets shows schematic 
representation of levitated particle scattering evanescent wave with intensity, I(h), as a 
function of particle-wall surface separation, h.  CCD image from top view of levitated 
particles scattering evanescent wave (white spots) with transmitted light illuminating 
particles (dark rings) is also shown. 
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Figure 3.4.  TIRM measurements of particle-wall interaction potential between 2.34 µm 
silica colloids in DI water interacting with a glass substrate. (a) Ensemble averaged 
particle-wall distribution function. (b) Ensemble averaged particle-wall potentials 
determined from the probability density function in (a) using Boltzmann’s equation (Eq. 
(2.1)). Solid lines (—) are theoretical DLVO fits to the measured potential. 
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height above the bottom surface, z (~1 nm) (see Section 2 and Fig. 3.3).  Figure 3.4 

shows representative results from a typical ETIRM experiment that measured the 

ensemble particle-wall interaction potential between 2.34 µm silica colloids in DI water 

interacting with a glass substrate.  An average particle size of 2.27 µm and a Debye 

screening length of κ-1=89nm, was obtained from the theoretical fits to the measured 

potential energy profile.  These measurements provide essential information important to 

the experiments described in Section 4.  

3.2.2 Video microscopy (VM)  

Diffusing colloidal probe tracking measurements were conducted using an 

inverted microscope (Axiovert 100A, Zeiss).  The sedimentation batch cells were placed 

on a three point levelling stage and adjusted for particle migration prior to the 

experiment. Bright field digital images were obtained using a 63X objective (NA=0.75, 

Zeiss) and a 1.6X magnifying lens in conjunction with a 12 bit CCD camera (ORCA-

ER, Hamamatsu) operated with 2x binning.  A sequence file of equilibrium particle 

configurations was recorded at 18 Hz, with total observation times depending on the 

nature of the experiment.  66µm x 41µm images were obtained with 608 x 404 

resolution to produce ~100nm pixels, which allowed centroid location to within ~50nm 

using typical particle tracking algorithms.22 The details of the image analysis algorithm 

used are not repeated in this dissertation for the sake of redundancy.  All image analysis 

was performed using single-processor PC's and multi-page TIFF files containing up to 

105 608 x 404 separate images. 
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3.2.3 Atomic force microscopy 
 

The physical landscapes microfabricated on glass substrates were imaged using 

Atomic Force Microscopy (AFM) amplitude and height images. AFM images were 

acquired in air under ambient conditions using a Nanoscope IIIa multimode scanning 

probe (Veeco Digital Instruments, Santa Barbara, CA) operated in tapping mode (scan 

rate = 0.15 Hz).  Silicon nitride cantilever tips with a spring constant of 0.06 N/cm, and a 

tip radius of curvature of <10 nm were used.  When operated in tapping mode, the 

cantilever assembly is oscillated at a frequency just below the resonant frequency (≈300 

kHz) using a piezoelectric crystal.  The depth and periodicity of the physical features to 

be imaged would require a much slower scan speed if the AFM was to be operated in 

contact mode.  The height information from the high resolution topographical scan (512 

x 512 pixels) was exported from the AFM software and re-binned at a lower resolution 

(pixel=1.6µm) for direct comparison with diffusing colloidal probe generated images 

having an identical resolution as described in Section 4.   

3.3 Microfabrication 

3.3.1 Patterning physical patterns on glass substrates 

Conventional photolithographic techniques (Fig 3.5) were used to create the 

patterned glass substrates used in this study, and all microfabrication steps were 

conducted in a class 1000 clean room. To begin, microscope slides (pre-cleaned Gold 

Seal® micro slides, Gold Seal® Products, Portsmouth, New Hampshire) were immersed 

in piranha solution (3:1 mixture of H2SO4 to 30% H2O2; caution: dangerous oxidizing 
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agent) for 1 hour to remove organic contaminants. Slides were then rinsed thoroughly 

with DI water and dried with a stream of compressed air, and further baked at 200 ºC for 

5 minutes in a contact hotplate to dehydrate the surface. 

A SU-8 2002 (MicroChem, Newton, MA) photoresist layer, ~ 1 µm thick, was 

applied to the slides by dispensing 1 ml of photoresist onto the glass substrate and 

spinning it at 4000 rpm for 30 seconds. Physical patterns were created with negative 

photoresist (SU-8 2002) instead of positive resist, because of the reduced susceptibility 

to etching with the crosslinked mask.  The photoresist was soft baked on a hotplate at 95 

ºC for 2 minutes and exposed to ultraviolet (UV) light through a patterned mask for 20 

seconds. Following exposure, a two-step post expose bake was performed 1) 1 minute at 

65 ºC, and 2) 1 minute at 95 ºC,  to selectively cross-link the exposed portions of the 

photoresist film. The substrate was then immersed in MicroChem’s SU-8 developer for 

60 seconds. Following development, the photoresist pattern was placed in a reactive ion 

etcher (CS-1701, March Plasma Systems, CA) and exposed to oxygen plasma for 30 s at 

200 W and with an O2 flow rate of 0.3 cm3/s to remove any photoresist and developer 

residue on the glass regions.   

Physical landscapes on glass (Fig 3.6) were microfabricated by using 50% 

hydrofluoric acid to isotropically etch the glass within the exposed SU-8 pattern. The 

etch process was halted after ~3 s by thoroughly rinsing the substrate in DI water to 

dilute the etchant. A uniform oxide layer was formed over the entire surface by treating 

the patterned glass in piranha solution (3:1 of H2SO4:H2O2) for 1 hr prior to conducting 

surface imaging experiments using colloidal particles. 
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Figure 3.5.  Schematic representation of the general microfabrication steps used to 
pattern physical features on a glass substrate.  
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Figure 3.6.  (top-bottom, left-right) CCD images of physically patterned glass substrates 
containing square arrays of varying sizes (a) 8 µm x 8 µm, (b) 20 µm x 20 µm, (c) 25 
µm x 20 µm, and (d) 50 µm x 50 µm.  
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3.3.2 Patterning chemical patterns on glass substrates 

Chemical micropatterns were fabricated using conventional photolithographic 

techniques in a class 1000 clean room (Figs 3.7 and 3.8). Microscope slides were first 

immersed in piranha solution (3:1 mixture of 99% H2SO4 to 35% H2O2) for 1 hr to 

remove organic contaminants. Slides were then rinsed thoroughly with DI water and 

blown dry with air. An S1813 photoresist layer (~1.5 µm thick) was applied to the slides 

by dispensing 1 ml of photoresist onto the preheated (115 ºC) glass substrates and 

spinning at 3000 rpm for 30 s. The photoresist was soft baked on a hotplate for 60 s at 90 

ºC and then exposed to ultraviolet (UV) light through a patterned chrome mask for 4 s. 

Before being immersed in MF 319 developer for 60 s, the UV-exposed photoresist film 

was post baked for 120 s at 115 ºC. Following development, the photoresist pattern was 

placed in a reactive ion etcher (CS-1701, March Plasma Systems, CA) and exposed to 

oxygen plasma for 30 s at 200 W with an O2 flow rate of 0.3 cm3/s to remove any 

photoresist and developer residue on the glass regions. Slides with patterned photoresist 

were placed in a metal evaporator chamber (Edwards, BOC 306) and a 3 nm-thick layer 

of Cr was deposited at 1 Å/s followed by the Au layer at the same rate. Au thicknesses 

ranged from 3 to 15 nm, depending on the experiment conducted.  

An alternative method to fabricate patterned Au films on glass microscope slides 

without using any photoresist is by metal evaporation using TEM grids as masks.  Glass 

slides are re-cleaned prior to metal deposition by soaking in piranha solution (3:1 

H2SO4:H2O2) for 1hr and then rinsing with DI water.  TEM grids are placed in top of 

glass slide surfaces in a metal evaporation chamber.  A 2-3 nm Cr layer is initially  
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deposited at 0.15 nm/s to improve Au film adhesion and then 2-15 nm Au films are 

deposited at 0.15 nm/s.   

 
 
   

 
 
 
Figure 3.7.  Schematic representation of the general microfabrication steps used to 
create chemical patterns on a glass substrate. 
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Figure 3.8.  (top-bottom, left-right) CCD images of chemically patterned substrates 
containing square arrays of varying sizes (a) 20 µm x 20 µm, (b) 25 µm x 25 µm, (c) 45 
µm x 45 µm, and (d) 50 µm x 50 µm.  The darker regions correspond to a 10 nm Au film 
vapor deposited onto a glass surface through a photoresist mask.  
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4. IMAGING ENERGY LANDSCAPES WITH CONCENTRATED DIFFUSING 

COLLOIDAL PROBES 

4.1. Synopsis 

The ability to locally interrogate interactions between particles and energetically 

patterned surfaces provides essential information to design, control, and optimize 

template directed self-assembly processes.  Although numerous techniques are capable 

of characterizing local physicochemical surface properties, no current method resolves 

interactions between colloids and patterned surfaces on the order of the thermal energy 

kT, which is the inherent energy scale of equilibrium self-assembly processes.  Here, we 

describe video microscopy measurements and an inverse Monte Carlo analysis of 

diffusing colloidal probes as a means to image three dimensional free energy and 

potential energy landscapes due to physically patterned surfaces.  In addition, we also 

develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated 

diffusing probes on energy landscapes, which is important to the temporal imaging 

process and to self-assembly kinetics.  Extension of the concepts developed in this work 

suggest a general strategy to image multi-dimensional and multi-scale physical, 

chemical, and biological surfaces using a variety of diffusing probes (i.e. molecules, 

macromolecules, nanoparticles, colloids). 
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4.2. Introduction 

The ability of microscopic components to autonomously and reversibly self-

assemble on energetic templates is broadly considered as an enabling process to 

numerous emerging technologies.1,2,8  As a result, there is intense interest in 

understanding how thermal motion, particle interactions, template features, and potential 

fields can be optimally coupled to elicit desired material and device responses.  One 

fundamental hurdle to specifying design rules and control parameters in self-assembly 

processes arises from current limitations on directly interrogating multi-body and multi-

dimensional kT-scale interactions that influence equilibrium and dynamic structures on 

energetic templates.  Although statistical mechanics has been applied with success to 

understand equilibrium phase behavior and structures of some of the most basic, model, 

bulk, homogeneous, single component materials, the application of these methods to 

inhomogeneous fluids and phase transitions of such fluids next to patterned surfaces is 

still in its infancy. 

To robustly design and control such templated colloidal self-assembly processes 

in an informed manner, it is essential to be to able to directly and quantitatively measure, 

interpret, and predict the connections between equilibrium structure formation and the 

weak forces operating between colloids and surface pattern features.  In other words, to 

render the design of such assembly processes as anything other than an art form, it is 

necessary to gain fundamental understanding such that a priori principles can be used to 

intelligently specify the range and magnitude of colloidal and patterned surface 

potentials and the minimum number of thermodynamic variables to specify the system 
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(i.e. Gibb's phase rule).  Likewise, to apply standard feedback loop control to templated 

colloidal self-assembly processes, it is necessary to know how to tune a controllable 

variable to elicit the desired response in some process variable, which is basically 

structure in this case.  For example, if a desired structure is not forming in a given 

assembly process, the ideal way to control the process is to know how to tune some 

thermodynamic variable based on a first principles model of how the structure should 

respond to such a change to bring the process variable into agreement with the set 

variable (the alternative to a first principles model is the learned behavior of a given 

process, which is fine for an already known process over a relatively narrow range of 

conditions, but does not guide the initial design of processes from an infinitely available 

variable phase space).   

Scanning probe techniques represent the state-of-the-art for "imaging" 

physical,49-51 chemical,52,53 and biomolecular,54,55 patterned surfaces by monitoring 

mechanical deflections of cantilevers at different positions relative to surfaces.  

However, such methods cannot resolve interactions too weak to produce measurable 

cantilever deflections.  From another perspective, active probe manipulation that enables 

scanning inherently requires forces stronger than those involved in autonomous self-

assembly processes that do not allow any external manipulation.  As a result, scanning 

probes perturb any system equilibrated via characteristic interactions weaker than probe 

forces exerted in the measurement process.56 

Here, we demonstrate how non-intrusive observation of an ensemble of colloids 

diffusing past each other and over physical pattern features can be used to sensitively 
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image surface topographies.  In particular, we analyze how different interfacial 

concentrations of Diffusing Colloidal Probes (DCP) sample pattern features using an 

Inverse Monte Carlo (IMC) algorithm, which we exploit to interrogate free energy and 

potential energy landscapes on the order of the thermal energy kT.  Because 

consideration of many-colloid packing effects in addition to the potential energy 

landscape presents a non-trivial analytical theoretical problem (that might be tackled via 

Density Functional Theory (DFT) for example), in practice we use inverse Monte Carlo 

simulations to determine the potential energy landscape from the measured 

inhomogeneous fluid structure.  In addition, we also develop a simple expression for 

self-diffusion of DCP on landscape features by capturing the combined effects of multi-

body hydrodynamic interactions, particle escape rates from free energy wells, and 

cooperative rearrangements associated with particles moving through their coordination 

shell. 

Complexity is minimized in this initial study by using colloids having purely 

electrostatic repulsive interactions with each other and the underlying patterned surface.  

As will be discussed in further detail, the physical variation of the surface topography is 

small compared to the colloid dimensions and the gravitational length scale is much less 

than the colloid dimension (~ 0.1) so that such systems can be considered as quasi two 

dimensional (2D).  The phase behavior of such quasi 2D colloidal fluids can be modeled 

with a single thermodynamic variable, the effective hard disk area fraction, to produce 

only a single fluid phase at concentrations short of fluid-solid co-existence (and 

generally only a single hexagonal close packed solid phase).  Although such fluids are 
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laterally homogeneous when observed next to a physically and chemically uniform 

surface, the introduction of a physically pattern underneath an effective hard disk fluids 

produces density variations as the result of the potential energy landscape that is 

mediated by gravitational interactions only.  However, because many-colloid packing 

effects also modulate the colloidal fluid structure in combination with the underlying 

potential energy landscape, there exists a free energy landscape that is required to 

connect all energetic and entropic contributions. 

By passively monitoring DCP, our method exploits stochastic thermal motion as 

a natural gauge of kT-scale energy landscape features rather than avoiding it as an 

undesirable complication of microscopic systems.  Our approach is ultimately intended 

to provide an opportunity to synergistically employ the very same colloids as both 

imaging probes and building blocks in feedback controlled self-assembly on patterns.   

4.3. Experimental Section 

Nominal 2.2µm SiO2 colloids (Bangs Labs) with a reported density of ρSiO2=1.96 

gram/ml were used as DCP.  They were diluted in aqueous de-ionized water to obtain 

desired interfacial concentrations after sedimentation onto the patterned surface.  Two 

average DCP concentrations were investigated with effective area fractions of φeff=0.14 

and φeff=0.28, where φeff=ρavgπaeff
2, ρavg is the average number density, and aeff is the 

effective colloid radius from the first peak in the projected 2D radial distribution 

function, g(2aeff).57  Measurements of g(2aeff) and the most probable colloid-wall 

separation, p(hm), over the homogeneous glass surface57 indicated a uniform distance of 
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closest approach between colloids and the surface of ~500 nm due to electrostatic 

repulsion. 

DCP tracking measurements were conducted using an inverted microscope 

(Axiovert 100A, Zeiss).  Bright field digital images were obtained using a 63X objective 

(NA=0.75, Zeiss) in conjunction with a 12 bit CCD camera (ORCA-ER, Hamamatsu).  

For interfacial DCP concentrations of φeff=0.14 and φeff=0.28, images were recorded at 

18 frames/sec with total observation times of 83 and 134 minutes to produce image 

stacks of 9.0x104 frames and 1.5x105 frames.  66µm x 41µm images were obtained with 

608 x 404 resolution to produce ~100nm pixels, which allowed centroid location to 

within ~50nm using typical particle tracking algorithms.22 

4.4. Results and Discussion  

4.4.1 Concentrated diffusing colloidal probes on patterned surfaces 

To investigate the use of DCP to image energy landscapes, we first 

microfabricated a model surface pattern consisting of an array of nearly harmonic 

potential wells.  Quick HF exposure of a photomask on a glass slide yielded an array of 

nominal 13µm x 13µm x 800nm features with 3µm separation over a 1mm x 0.5mm 

area.  The physically varying topography was characterized via AFM (Nanoscope III, 

Veeco Digital Instruments) amplitude and height images (Figs. 4.1 A, B).  The AFM 

amplitude image reveals fine microstructure due to the etching procedure, whereas the 

height image is rendered at a lower resolution (~1µm2 pixels) for comparison with 

surface topographies imaged using DCP. 
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We then tracked the centers of concentrated 2.2µm SiO2 colloids diffusing over 

the patterned surface topography (Fig. 4.1).  The DCP are confined as sub-monolayer 

colloidal fluids on the patterned surface by gravity, but remain levitated above the 

surface and stable against aggregation by repulsive electrostatic interactions in de-

ionized water.  Static images show instantaneous DCP configurations for two average  
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Figure 4.1.  AFM (A) amplitude and (B) height images of a physically patterned glass 
microscope slide.   
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Figure 4.2.  Optical microscopy images of equilibrium configurations of levitated 2.2µm 
SiO2 colloids on the patterned surface with concentrations of (A) φeff=0.14 and (B) 
φeff=0.28.   
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surface concentrations with effective area fractions of φeff=0.14 and φeff=0.28 (Figs. 4.2 

A, B).  These images clearly illustrate how the local DCP concentration is modulated by 

the underlying 3D surface topography.  To avoid misconceptions from the static images 

in Figs. 4.2 A, B, it should be noted that DCP are not irreversibly deposited or 

completely localized within pattern features but continuously diffuse over the entire 

surface in dynamic equilibrium. 

We then characterized the time-averaged equilibrium distributions of DCP on the 

patterned surface topography (Figs. 4.2 A, B) as 2D density profiles, ρ(x, y) (Figs. 4.3 A, 

B).  Such 2D ρ(x, y) sufficiently capture the equilibrium DCP sampling of the surface 

with the assumption that DCP are distributed as quasi-2D inhomogeneous fluids.  This 

assumption is based on the fact that both the variations in h(x, y) and the DCP excursions 

normal to the surface are small compared to the colloid diameter (~2.2µm).  Measured 

ρ(x, y) were constructed by (1) locating DCP x, y center coordinates to within ~50nm in 

~105 images, (2) creating 2D population histograms on a grid of ~1µm2 pixels, and (3) 

normalizing by the average number density, ρavg, in each case.  The pixel dimensions, 

observation period, and number of frames were optimized based on DCP self-diffusion 

timescales and as a compromise between lateral resolution and statistical noise in the 

measured ρ(x, y). 
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4.4.2 Free energy and potential energy landscapes 

We then set out to interpret measured ρ(x, y) (Figs. 4.3 A, B) as images of the 

underlying energy landscape by understanding how DCP sample the physical surface 

topography in the presence of gravity and multi-particle packing effects.  Our approach 
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Figure 4.3.  Time averaged 2D colloid density, ρ(x, y), from colloid centers located in 
the (A) low and (B) high concentration cases in Figs. 4.2 A, B. 
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was to determine the position dependent interaction of a single DCP with the underlying 

surface, which we refer to as a potential energy landscape, u(x, y).  To obtain the 

underlying surface topography, h(x, y), from measured u(x, y), the relative height can be 

related to the relative gravitational potential energy of DCP at different surface positions 

as, 

 ( ) ( ) ( ) ( ) 3, , , 4 3h x y u x y G u x y a gπ ρ⎡ ⎤= = ∆⎣ ⎦  (4.1) 

where ∆ρ is the colloid and medium density difference, and g is acceleration due to 

gravity.  As a result, it is only necessary to obtain u(x, y) from DCP measured ρ(x, y) to 

image the physical surface topography in Figs. 4.1 A, B. 

To understand the role of multi-particle packing effects in these experiments, we 

first review the straightforward analysis of a single 2.2µm SiO2 DCP within a single 

feature (Fig. 4.4).  Although Boltzmann's equation, u(x, y)=-ln[ρ(x, y)], provides a 

simple and direct method for relating u(x, y) to ρ(x, y), it is only applicable in the limit of 

infinitely dilute DCP surface concentrations.  Naively using the Boltzmann inversion to 

analyze ρ(x, y) obtained using concentrated DCP as in Figs. 4.3 A, B produces energy 

landscapes (Figs. 4.5, 4.6) that display obvious differences with the AFM measured 

surface (Fig. 4.1 B) when transformed into h(x, y) using Eq (4.1).  These differences are 

expected since a Boltzmann inversion of concentrated ρ(x, y) does not distinguish multi-

particle packing effects, but instead yields the interaction of single colloids with the 

underlying potential energy landscape in the presence of nearby colloids.  This 

interaction is the position dependent potential of mean force, w(x, y), which we refer to 
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as a free energy landscape. 

Images of w(x, y) (Figs. 4.5, 4.6) show the importance of multi-particle packing 

effects in how DCP sample energy landscapes with implications for colloidal self-

assembly on patterns.  A single colloid within a ~800nm pattern feature must escape a 

12kT potential energy well to diffuse over the entire surface (Fig. 4.4), but colloids only 

need to escape 5kT and 2kT free energy wells (Figs. 4.6 A,B) for the two concentrated 

cases in Figs. 4.2.  Free energy well depths decrease with increasing ρavg because the 

presence of more colloids within each well elevates some colloids closer to the well 

periphery to more easily overcome the smaller remaining energy difference (Fig. 4.4).  

This process also ensures a uniform equilibrium distribution of colloids on the pattern as 

too many colloids in one feature will be corrected by colloids near the edge escaping and 
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Figure 4.4.  Scaled cross sectional view of 2.2µm SiO2 colloids confined (black) and 
escaping (gray) from a harmonic potential energy well fit to a single AFM measured 
feature (Fig. 4.1 B).  Red lines indicate the electrostatic double layer thickness, ~3κ-

1=250nm, that produces ~500 nm offset between colloids and the surface.  Gravitational 
potential energy scale corresponding to physical surface topography is also shown. 
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falling into nearby depleted features. 

To obtain accounts for multi-particle packing effects in the analysis of DCP 

measured ρ(x, y) (Figs. 4.3), we have developed a 2D IMC simulation method.  The 

IMC algorithm employs iterative forward canonical MC simulations24 with different 
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Figure 4.5.  Free energy landscapes, w(x, y), obtained from a Boltzmann inversion of 
ρ(x, y) for the (A) low and (B) high concentrations in Figs. 4.3 A, B. 
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guesses for u(x, y) until a simulated ρS(x, y) is obtained in agreement with a measured 

ρ(x, y).  MC simulations were performed using (1) the AFM pixel size in Fig. 4.1 B, (2) 

the ρavg in Figs. 4.2 A. B, (3) the measured pair potential,57 and (4) w(x, y) as an initial 

guess (u(x, y)0=-ln[ρ(x, y)]).   
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Figure 4.6.  Energy landscape cross sections from (A) Figs. 4.1 B (solid black), 4.5 A 
(dashed red), 4.7 A (solid red) and (B) Figs. 4.1 B (solid black), 4.5 B (dashed blue), 4.7 
B (solid blue).   
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To ensure rapid convergence to a unique solution, an algorithm was used to generate 

updated guesses for u(x, y)i+1 after each iteration using, 

 ( ) ( ) [ ]1
, , 0.5 ( , ) ( , ) 1s ii i

u x y u x y x y x yρ ρ
+

= + −  (4.2) 

 

until the root-mean-square (rms) error, χ, was minimized using, 
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Figure 4.7.  Potential energy landscapes, u(x, y), and topographical surfaces, h(x, y), 
obtained using the IMC algorithm and ρ(x, y) for the (top) low and (bottom) high 
concentrations in Figs. 4.3 A, B. 
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 ( ) ( ) ( )( )
0.521 , ,s i

XY x y x yχ ρ ρ− ⎡ ⎤= −⎢ ⎥⎣ ⎦∑  (4.3) 

Upon convergence, u(x, y) were transformed to h(x, y) (Figs. 4.7 A, B) based on their 

simple proportional dependence given by Eq (4.1).  Convergence was achieved in ~24 

and ~10 hours in the low and high concentration cases on a single computer processor. 

The resulting DCP generated topographical surfaces (Figs. 4.7 A, B) are 

remarkably similar to the AFM measured surface in Fig. 4.1 B.  After aligning the DCP 

and AFM generated h(x, y) via a rms minimization (as a sort of pattern recognition 

algorithm), global differences between measured h(x, y) are characterized by rms errors 

of 63nm and 45nm in the low and high concentration cases.  Such differences can be 

attributed to optical limitations,58 geometric issues (e.g. probe radius, quasi-2D 

assumption), and non-uniformities (e.g. polydispersity,59 charge heterogeneity).  In any 

case, the rms errors are 5-8% of the ~800nm feature depth indicating the relatively good 

accuracy of the DCP measured h(x, y) (Figs. 4.7 A, B) compared to the AFM measured 

surface topography (Fig. 4.1 B). 

4.4.3 Concentrated diffusing colloidal probe dynamics on energy landscapes 

As part of understanding the dynamic imaging process (and template directed 

self-assembly kinetics), the energy landscapes in Figs. 4.5, 4.6 and 4.7 can be 

quantitatively linked to DCP self-diffusion and density fluctuations on the patterned 

surface.  DCP trajectories from the low and high concentration experiments (Figs. 4.2 A, 

B) are only shown for a portion of the total observation time in Figs. 4.8 A, B to allow 

for visualization of the underlying pattern, although the less confined colloids in the 
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higher concentration case sample the window to a greater extent during this period.  A 

single temporarily deposited colloid in Fig. 4.8 A (x≈52µm, y≈22µm) probably results 

from either colloid or surface non-uniformities but produces minimal net effect on the 

final inverted energy landscapes Figs. 4.5 A, 4.6 A and 4.7 A. 

Analysis of mean square displacements (MSD) reveals the combined effects of 
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Figure 4.8. DCP trajectories for the (A) low (red) and (B) high (blue) concentrations in 
Figs. 1E, F over 35 min.   
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multi-body hydrodynamic interactions and free energy landscapes on self-diffusion (Fig. 

4.9).  Short-time self-diffusivities, DS
S, are about half the Stokes-Einstein value 

(D0=kT/6πµa) due to multi-body hydrodynamic interactions.60  DS
S is smaller in the 

higher concentration case due to the greater number of nearby colloids within the pattern 

features (Fig. 4.2 B).  Long-time self-diffusivities, DS
L, are much smaller in both cases 

than both D0 and DS
S as DCP must jostle past neighbours via cooperative multi-particle 

configurational rearrangement processes61 and escape from crowded free energy wells. 

The greater DS
L in the high concentration case is qualitatively different from the 

monotonically decreasing trend expected for homogeneous, repulsive colloidal fluids.  In 

the long-time limit, the tendency for colloids to more frequently escape pattern features 

and more slowly move past nearby particles at higher concentrations can be modelled as 

parallel resistive mechanisms using,  

 ( ) ( ) 1
exp 2 2L S

S S effD D w kT g aφ
−

⎡ ⎤= ∆ +⎣ ⎦  (4.4) 

where DS
S captures the role of multi-body hydrodynamic interactions, exp(∆w/kT) 

accounts for free energy changes associated with escaping pattern features against 

gravitational forces normal to the surface,62 and 2φg(2aeff) accounts for particles moving 

through their coordination shell within the quasi-2D fluid parallel to the surface.61  By 

using ∆w=5kT and ∆w=2kT directly from measured w(x, y) (Figs. 4.5, 4.6) and 

computing g(2aeff) for effective hard disks using,63  

 ( ) ( ) ( ) 2
2 1 0.436 1eff eff effg a φ φ

−
= − −  (4.5) 
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the expression in Eq (4.4) accurately describes the long-time MSD data (Fig. 4.9).  The  

expression for DS
L is also accurate for limiting cases including infinite dilution on 

patterned surfaces and all sub-monolayer fluid concentrations on homogeneous 

surfaces.60 

As a result, self-diffusion of DCP over pattern features (Figs. 4.8, 4.9) are 

consistent with the "imaged" w(x, y) (Figs. 4.5 A, B) in terms of the ∆w associated with 

escaping pattern features in the presence of multi-particle packing effects (Fig. 4.4).  The 

concentration dependence of DS
L via ∆w also indicates that infinitely dilute DCP will 
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Figure 4.9.  1D mean square displacements, 〈r2〉, vs. time, t, (circles) averaged over x 
and y directions and multiple time origins with short-time (inset) and long-time (main) 
plots.  Dashed lines show predicted Stokes-Einstein diffusion (black), curve-fits to short-
time diffusion data, and predicted long-time diffusion using Eq (4.4) 
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take orders of magnitude longer to image the surface due to an exponentially slower 

escape rate from 12kT potential energy wells compared to 2kT or 5kT free energy wells 

(Figs. 4.6 A, B).  Although it may appear desirable to use a single DCP to image u(x, y) 

since multi-particle packing effects are unimportant in the analysis, the observation time 

required for a single DCP to statistically sample an entire landscape is prohibitively 

long. 

DCP dynamics were also characterized by comparing measured density 

fluctuations with 2D grand canonical Monte Carlo (GCMC) simulations24 using the 

measured u(x, y) (Fig. 4.10).  Although our IMC algorithm uses a canonical ensemble 

based on its simplicity and minimal system size and ensemble related errors (O(1/N) in 
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Figure 4.10.  Measured number fluctuations, N, vs. time, t, (bottom) and histograms 
(top, circles) with GCMC simulated fluctuations on measured u(x, y) (Figs. 4.7 A, B) 
(top, solid) and on homogeneous surfaces (top, dashed). 
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ρS(x, y)), GCMC simulations are required to accurately capture fluctuations in the finite, 

open systems investigated here (Figs. 4.2 A, B).64  The measured and simulated density 

fluctuations are in excellent agreement in the low (σexp=2.8, σsim=3.2) and high 

(σexp=3.5, σsim=4.0) concentration cases.  As expected, the measured inhomogeneous 2D 

fluid fluctuations are also less than GCMC simulated fluctuations in homogeneous 2D 

fluids with the same average concentrations (σsim=5.8 and σsim=4.6 in the low and high 

concentration cases).  Excellent agreement between GCMC simulated fluctuations on the 

inverted u(x, y) and direct measurements (Fig. 4.10) further demonstrates a consistent 

analysis of how energy landscapes modulate DCP dynamics. 

 

4.5. Conclusions 

Our results demonstrate the ability to analyze DCP on energy landscapes as a 

new surface imaging paradigm, which provides essential information to design, control, 

and optimize colloidal self-assembly on patterns.  We have connected the equilibrium 

properties of quasi-2D inhomogeneous fluids of DCP at different concentrations to a 

patterned surface topography via direct measurements and analyses of free energy and 

potential energy landscapes.  Our results also indicate connections between DCP 

dynamics and energetic pattern features, which is important to the temporal imaging 

process and to self-assembly kinetics. 

Our findings suggest a number of extensions of the concepts introduced in this 

work.  Diffusing probe imaging of kT-scale interactions could be adapted to access 
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various length scales using different sized probes (e.g. macromolecules, nanoparticles).  

Use of diffusing probes could also be generalized to interrogate diverse materials (e.g. 

biological, geochemical) and multi-dimensional problems using different probe tracking 

technologies (e.g. confocal microscopy).  Because colloidal assembly on patterns is 

susceptible to dynamic arrest, analyses could also be implemented to detect and interpret 

non-equilibrium distributions of DCP on patterned surfaces.  Finally, manipulation of 

colloids with external fields (e.g. electric, magnetic, optical) could allow them to be 

actively manipulated as "scanning" probes or passively monitored as "diffusing" probes 

to access a broader range of energy scales important to both driven- and self- assembly. 
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5. DIRECTED COLLOIDAL ASSEMBLY ON HOMOGENEOUS AND 

PATTERNED ELECTRODES 

5.1. Synopsis 

Assembly of colloidal particles into ordered structures near an electrode surface 

has been widely reported in the literature 12,65-69. The lateral aggregation of colloidal 

particles has made the precise assembly of two and three dimensional colloidal crystals 

possible.  In this section, we demonstrate the use of external electric fields to sensitively 

tune the interactions between colloidal particles to form ordered structures.  The directed 

assembly of colloidal particles on patterned electrode surfaces is also investigated as a 

means of building three-dimensional nanostructures. 

5.2. Introduction 

The self-assembly of atoms and molecules is a continuous and spontaneous 

process in nature; for example the self-assembly of cells to form the lipid bilayer 

membrane.  However, due to the larger size of colloidal particles and presence of 

hydrodynamic interactions and polydispersity in colloidal systems, their self-assembly 

into ordered structures is very challenging. Also, in the absence of any external forces, 

the colloidal particle motion is dominated by Brownian diffusion.  Thermal energy (kT) 

is the characteristic energy associated with random thermal motion of particles at a given 

temperature that opposes organized self-assembly and instead favors disorder.  These 

interactions are non directional, lack specificity and are difficult to control.  
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Consequently, the assembly time-scales are too slow for use in practical technologies.  It 

is therefore essential to use external fields to provide directionality to the assembly 

process and thus facilitate faster colloidal assembly. 

The arrangement of colloidal particles in a crystalline array has a variety of 

potential applications. Immediate realizable avenues include production of photonic 

band-gap materials, biological and chemical sensors by functionalizing the surfaces of 

the colloidal particles, micro-chip reactors and high density storage devices. The 

assembly of colloidal crystals above a substrate can be achieved by dispersing 

monodisperse colloids into a solvent and then controlling, and sensitively tuning 

particle-particle and particle-wall interaction forces or entropic effects. 

The particle-particle interactions can be governed by gravity, capillary forces, 

electric and magnetic fields.  The assembly of colloidal particles into ordered structures 

(above a charged surface) by the application of an electric field was first reported by 

Richetti et al.65.  More recently conducted experiments on electrophoretic deposition also 

confirmed the lateral transport of colloidal particles towards each other over very large 

distances (even greater than five particle diameters) to form highly ordered two-

dimensional structures in the presence of a DC electric field 12,66,67.  When particles are 

driven by electric fields onto an electrodes surface (simple Coulombic interactions), 

long-range in-plane attractions strong enough to induce two-dimensional crystallization 

are developed.  This phenomenon is unexpected from pure electrostatic considerations as 

we expect like-charged particles to repel each other. Consequently, the attractive 

interaction between particles must be strong enough to overcome electrostatic repulsion 
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to facilitate the assembly. This lateral motion of colloidal particles towards each other 

stems from electrohydrodynamic 12,67 or electroosmotic 70-72 effects. 

In this work, we use external AC/DC electric fields, to enhance the rate and 

manipulate the kinetics of interfacial colloidal assembly. The foundation of this 

approach is to use electric fields in conjunction with gravitational effects (patterned 

electrodes) to control inherent competitive transport mechanisms to produce ordered 

colloidal structures.  The response of colloidal particle motion to external electric fields 

and the effects of electric field strength, AC frequency and electrolyte on interfacial 

colloidal assembly were investigated. We also measure pseudo-potentials between 

colloidal particles and the electrodes that capture the effects of the applied electric field 

using optical microscopy techniques 

5.3. Experimental Section 

Nominal 3 µm silica colloids were purchased from Bangs Laboratories (Fishers, 

IN), and the Polystyrene microspheres (4 µm and 4.9 µm) were purchased from 

Interfacial Dynamics Corporation (Portland, OR) and used without further purification.  

The manufacturer reported particle density is ρSiO2=1.96 g/ml, and ρPS=1.05 g/ml.  All 

the particles used in this work were negatively charged.  In each experiment, particles 

were diluted in 0.15 mM NaHCO3 or KOH made with double deionized water to obtain 

bulk particle concentrations that produced desired interfacial concentrations after 

sedimentation equilibrium was attained.   

Optically transparent Indium-Tin-Oxide (ITO) electrodes were supplied by Delta 
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Technologies and consisted of a 150nm thick layer of ITO deposited on a 1.1 mm thick 

glass slide.  The sheet resistance was reported by the manufacturer to be 10 Ω per 

square.  These electrodes were used in all experiments reported in this work.  The 

electrode surfaces were cleaned thoroughly in 200% proof ethyl alcohol before use. A 

2mm thick polydimethylsiloxane (PDMS, DC 184, Dow Corning) spacer was used to 

produce a small sedimentation batch cell.  To prevent evaporation during the course of 

experiments, cells were sealed using water insoluble vacuum grease. 

An optical microscope (Axioplan 2, Zeiss, Germany) and CCD camera were used 

to dynamically track and monitor particle trajectories of ensembles of levitated colloidal 

particles above the electrode surface. Visualization of the self and directed assembly 

processes on homogenous and patterned electrode surfaces were carried out using a 40X 

objective (NA=0.65) used in conjunction with a 12 bit CCD camera (ORCA-ER, 

Hamamatsu, Japan) operated with 4x binning to produce a capture rate of 28 frames/sec 

with 336x256 resolution (pixel size=607nm).   

In each experiment, the sedimentation cell was first filled with the ionic solution 

containing colloidal particles at the desired concentration and then sealed with vacuum 

grease.  External electric fields were applied only after the colloidal particles sedimented 

onto a two-dimensional plane above the electrode surface where they stay confined by 

gravity.  The sedimentation time is a strong function of the particle concentration; at the 

same particle concentration, PS particles settle slower than the silica colloids because of 

the difference in specific gravities.  
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5.4. Results and Discussion  

5.4.1 Colloidal assembly on homogenous electrodes – DC fields 

In this section, we discuss colloidal particle assembly on homogeneous 

electrodes under steady DC fields.  Figure 5.1a shows a schematic of the experimental 

set up used. The ITO electrodes were separated by a 2 mm thick insulating PDMS spacer 

and the cavity was filled with the colloidal dispersion. Electrical connections to the 

electrode were made using conductive silver epoxy.  

The colloidal suspension of 4.9-micron PS particles in 0.15 mM KOH solution 

was introduced between the electrode surfaces and video microscopy was used to track 

the motion of particles. In the absence of external electric fields, the colloidal particles 

are randomly distributed and undergo Brownian excursions above the electrode surface 

(Fig. 5.1b). At low field strengths, the colloidal particles were seen to move towards one 

another across the electrode surface, to form metastable crystalline structures (Fig. 5.1c). 

The particles diffuse away, breaking up the crystalline structure, when the field is turned 

off or when the polarity is reversed (Fig. 5.1d).  The metastable colloidal structure can 

then be fixated onto the substrate by applying a high voltage, and the ionic solution can 

be removed without disturbing the deposited layer66.  This is consistent with the 

observations made by Bohmer 66 and Trau et al. 67.  As the particles and clusters were 

seen to interact over long ranges, Bohmer 66 suggested hydrodynamic effects resulting 

from electrokinetic flow around each particle were responsible for particle aggregation.. 
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Figure 5.1.  (a) Schematic of the experimental set-up.  Lateral aggregation of 4.9 µm PS 
particles in 0.15 mM KOH in response to a 0.16 V/mm DC field (b) t=0 sec, (c) t=240 
sec, (d) colloidal clusters breaking up, t=60 sec after field is turned off 
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This also ruled out the contribution of short ranged colloidal forces to particle 

aggregation. As described by Solomentsev et al.71, the motion of particles above an 

electrode surface is governed by the relative interplay of electrokinetics, 

electrohydrodynamics and Brownian diffusion, with Brownian diffusion tending to 

randomize the distribution 71.  

The use of DC fields also limits the maximum voltage that can be used during the 

assembly process: strong electrochemical reactions occur at the electrode surfaces at 

higher voltages.  It is important to maintain the pH of the ionic solution during the 

course of the experiment as well.  The electrochemical reactions at the electrode surfaces 

may result in pH fluctuations during the experiment. Also, as the surface charge on the 

ITO surface is a function of the pH (zeta potential~-60 mV at pH > 10, ~-20 mV at pH = 

8-9), it is recommended that the pH of the ionic solution be maintained at around 10 to 

observe particle aggregation in the time scales reported in Fig. 5.1. 

5.4.2 Colloidal assembly on homogenous electrodes – AC fields 

The behavior of colloidal particles in AC electric fields is more interesting.  

Although DC fields can produce 2D colloidal crystals, AC fields will be used to (1) 

avoid electrochemical reactions, (2) enhance the rate of colloidal particle crystallization 

(ordering), (3) produce effective repulsion and attraction for different frequencies and 

electrolytes72,
 
and (4) anneal via oscillatory forces. At low field strengths that do no 

produce dipolar interactions, AC electrophoretic deposition has been shown to form 

metastable 2D crystals at electrode surfaces (Fig 5.2c) as the result of 

electrohydrodynamic flows 71-74 which are ideal precursors for nucleating and growing 
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interfacial colloidal crystals.  It is important to note that the interaction potential between 

particles used in these experiments is purely repulsive; as a consequence, the colloidal 

crystal melts and loses order when the external electric field is turned off.  

The effective interactions between the particles can be tuned from attraction to 

repulsion by varying the frequency of the AC electric field. At very high frequencies (ω 

> 1 kHz), the colloidal particles are essentially Brownian as the particle does not have 

time to respond to the fast changing electric field; interactions between the particles are 

repulsive, and no ordered structures are formed. At lower frequencies, the colloidal 

particle motion was deterministic and a strong function of the amplitude of the applied 

AC field; interactions between the particles are attractive resulting in the formation of 

ordered colloidal structures (Fig 5.2c) from the random configuration in Fig. 5.2b.   

In addition to the amplitude and operating frequency of the electric field, we 

found that the choice of the electrolyte influenced the nature of particle-particle 

interactions. In contrast to the attraction seen between PS particles in 0.15 mM KOH in 

dc fields (Fig. 5.1), lateral repulsion is observed at all frequencies in AC electric fields 

(Fig. 5.2d). The inter-particle spacing in the colloidal array shown in Fig. 5.2d is almost 

uniform. This is contrary to the observations of Nadal et al. 68, where lateral aggregation 

of particles is seen at 100 Hz in 0.1 mM NaOH (see Fagan et al. 72 for more details).  

However, assembly of colloidal particles is found in the case of PS particles in 0.15 mM 

sodium bicarbonate (NaHCO3) (Fig. 5.2c). Also, the crystalline structures formed faster 

in AC fields when compared to DC fields. The strength of electric field, time of 

application of the electric field and the electrolyte are all controllable parameters that can  
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Figure 5.2.  (a) Schematic of the experimental set-up.  Response of 4 µm PS particles to 
external AC electric fields (b) random colloidal configuration at t=0 sec, (c) attractive 
crystals for 30V/cm-30Hz AC in NaHCO3, and (d) repulsive ordered fluid for 30V/cm-
100Hz AC in KOH. 
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be used to tune colloidal particle interactions to make desired structures of colloidal 

arrays. 

With a change in electrolyte from NaHCO3 to KOH, an opposite behavior was 

observed in the equilibrium elevation (height above the electrode) of the particle in a 

recent study 72.  In KOH, the net flow is downward over the particle (pushing it closer to 

the electrode) and the streamlines extend outward close to the electrode surface. 

Entrainment in this outward flow would cause neighboring particles close to the 

electrode surface to move away from each other 72. In NaHCO3, the direction of the 

streamlines are reversed, causing the particle to be pushed away from the electrode and 

consequently the neighboring particles aggregate together.  

We also measured the particle-wall effective potentials in the presence of AC 

electric fields using the ETIRM technique described in Section 2 and 3. Figure 5.3 

shows the ensemble averaged particle-wall pseudo-potential energy profiles between 4.9 

µm polystyrene (PS) particles suspended in a 0.15 mM NaHCO3 ionic solution, and an 

Indium-Tin-Oxide (ITO) electrode surface. In the absence of electric fields, the nature of 

interaction between the PS particles and the ITO surface is purely repulsive (Fig. 5.3). In 

Fig. 5.3a, we fix the frequency of the AC electric field at ω=800 Hz, and increase the 

amplitude of the AC signal (sine wave). The interaction potential changes from pure 

repulsion in the absence of electric field to increasing amounts of attraction as the 

amplitude of the electric field is increased. A similar trend was observed when the 

amplitude was held constant and the frequency was increased to ω=100 Hz, as shown in 

Fig. 5.3b.  Note that the potential energy profiles in Fig. 5.3 are plotted without the 
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gravitational potential.  These results are included here to demonstrate that tunable long-

range interactions exist between colloidal particles and surfaces under the influence of 

AC fields.  These effective or pseudo potentials can be sensitively measured using the 

ETIRM technique.  For a more extensive set of single-particle TIRM measurements on a 

similar system, the reader is referred to Fagan et al.72. These ensemble measurements of 

particle-surface interactions are critical to understanding of how various interfacial 

structures are formed in concentrated systems as a function of electric field amplitude 

and frequency.72,75 

We have demonstrated that interfacial electro-hydrodynamic flows around 

charged colloids near homogeneous electrodes (transparent ITO)71 can be used to form 

crystallites from quasi 2D colloidal fluids (Figs. 5.1, 5.2).  Crystallites form as the result 

of a balance of conservative forces due to particle, surface, and gravitational potentials 

and dissipative forces due to electro-hydrodynamic flows.  Because the crystallites in Fig 

5.2 reach a pseudo equilibrium structure, 2D inverse MC analyses (originally designed 

to analyze equilibrium fluids) can be used to determine effective pseudo potentials74 

between particles from ETIRM/VM measured distribution functions.  These effective-

pseudo potentials will help to understand how conservative and dissipative forces 

contribute to AC electric field mediated interfacial assembly processes.  Although the 

single particle work72 has suggested important microscopic mechanisms, it has not yet 

been directly connected to the processes involved with forming macroscopic 3D 

interfacial crystals.  Inverse MC simulations are required since inverse analyses based on  
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Figure 5.3.  Effective particle-wall interactions between 4.9 µm polystyrene 
particles and an Indium-Tin oxide electrode (a) 0.15 mM NaHCO3, frequency of 
AC electric field held constant at ω=800 Hz, while field amplitude is increased, (b) 
0.15 mM NaHCO3, amplitude of AC field is held constant at 2 V peak to peak, 
ω=100 Hz. The effective particle-wall potential changes from pure repulsion in the 
absence of electric field to attraction when field is turned on. The amount of 
attraction can be tuned by varying the frequency and amplitude of the electric field. 
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liquid structure theory is not  amenable to the study of crystal structures.  This is part of 

on-going work and the results from this effort are not included in this dissertation.  

5.4.3 Self and directed assembly on patterned electrodes 

Standard photolithography techniques described in Section 3 were used to 

fabricate arrays of different size physical features on an Indium-Tin-Oxide (ITO) 

electrode surface. The pattern comprised of alternating regions of conductive (ITO) and 

dielectric (photoresist) surfaces. In preliminary experiments, we studied the self-

assembly and packing of colloidal particles in features of varying sizes in the absence of 

external fields. Because gravity is a steady field that cannot be avoided (on earth), the 

foundation of this approach is based on properly considering the role of sedimentation in 

interfacial assembly processes.76,77  With this understanding, the primary goal is to use 

AC electric fields in conjunction with gravitational effects and patterned electrodes to 

control competitive transport mechanisms either before or after thermodynamic 

assembly processes are initiated.   

The particles sediment onto the templated substrate and the resulting equilibrium 

colloidal configuration is a direct consequence of the particle-wall and particle-particle 

interactions. Figure 5.4a shows an optical micrograph of 3 µm silica particles confined 

in an array of 5 micron features. The particles are still Brownian and sample the 

gravitational potential energy surface landscape as explained in Section 4. The colloids 

were seen to pack in a similar fashion in other size features, subject to geometric 

constraints. Again, the time scales associated with the self assembly process to reach 

equilibrium colloidal configurations is slow.  
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Next, we studied the use of external AC electric fields to guide the assembly of 

colloidal particles on patterned electrodes. The colloidal suspension of 3 µm silica  

particles in 0.1 mM NaHCO3 solution was introduced between the two ITO electrode 

surfaces (anode: templated ITO, cathode: plain ITO surface), separated by a 2 mm 

PDMS spacer. The features on the electrode create a current density gradient on the 

electrode surface and draw the colloidal particles into the features. The inhomogenous 

electrode distorts the electric field lines and facilitates faster colloidal assembly inside 

the patterns. Cycling the frequency of the AC electric field was found to be an effective 

way to anneal equilibrium thermodynamic configurations. Once a closed pack colloidal 

configuration is formed in two dimensions, it is possible to grow structures in three-

dimensions by using it as a template.  

This last approach is distinctly different from the thermodynamic approaches 

used for homogeneous and patterned surfaces and provides an alternative or 

complementary method to modulate reversible interfacial crystallization.  Collectively, 

these results demonstrate how synergistic approaches using energy landscapes and 

electric fields together might be used to control interfacial crystallization of colloidal 

particles.  A general consideration to optimally couple self- and directed- assembly 

methods is that the magnitudes of transport rates and driving forces associated with 

directed-assembly not exceed those associated with self-assembly (or external forces 

will destroy self-assembled structures). 
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Figure 5.4.  (top) 3 µm silica colloids in an array of 5 micron features in the absence of 
external fields (b) crystallite precursors formed on a patterned ITO electrode surface 
when a 5 Vpp, 30 Hz AC field is applied.  The size of the patterned features was 25x25 
µm. 

 
 
 
 



 

 

82

5.5. Conclusions  

In this work, we have demonstrated the use of external electric fields to tune the 

interactions between the colloidal particles and control its assembly. The nature of the 

colloidal interactions was found to be sensitive to the strength, frequency of the AC field 

and the electrolyte used.  Cycling the AC field frequencies was found to be an effective 

way to anneal equilibrium colloidal configurations. We also observed the preferential 

assembly of colloidal particles in gravitational energy landscape features made on the 

electrode surface when an AC field was applied.  The results from this work suggest a 

general strategy to integrate self- and directed- assembly methods to successfully 

navigate free energy landscapes as a means to control nano- and micro- particle structure 

formation. 
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6. COLLOIDAL STRUCTURE, TRANSPORT, AND IMPEDANCE 

PROPERTIES BETWEEN INTERFACIAL MICROELECTRODES 

6.1. Synopsis 

We report in situ measurements of the reversible, directed assembly of colloidal 

gold microstructures and their associated impedance properties on surfaces between 

planar gold film microelectrodes.  Video optical microscopy is used to monitor 

formation of locally concentrated configurations with variable capacitances as well as 

the assembly of wires with variable resistances.  A scaling analysis of dominant 

electrokinetic transport mechanisms at different electric field amplitudes and frequencies 

is consistent with the observed steady-state microstructures.  Finally, impedance spectra 

are fit to equivalent circuits with elements directly connected to physical characteristics 

of the micro- electronic/fluidic device components and different particle microstructures. 

 

6.2. Introduction 

Numerous studies have investigated colloidal dispersions in electric fields as a 

means to characterize particle size and surface charge,78 create electrorheological 

fluids,79 separate biocolloids80 and carbon nanotubes,81 control display devices,82 

understand fundamental phase behavior,83 and assemble irreversible nanowires.84  Such 

studies are often restricted to a range of applied field voltages and frequencies dictated 

by the dominance of a particular transport mechanism in a specific application.  For 
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example, studies of the dielectrophoretic assembly of metal colloids into nanowires are 

naturally limited to high fields where dipolar chain formation occurs.84  In contrast, 

studies aimed at characterizing particle properties via their electrophoretic transport are 

necessarily performed at low fields.78  However, intermediate to these limiting regimes, 

a comprehensive description of the connections between microstructural transitions, 

transport mechanisms, and AC electrical properties is lacking, particularly in the case of 

interfacial and confined geometries important to integrated micro- fluidic/electronic 

devices. 

In this work, we use in situ optical microscopy and impedance measurements to 

systematically measure microstructures and AC electrical properties of metal 

nanoparticles between planar gold electrodes over a broad range of applied electric field 

amplitudes and frequency.  Specifically, we demonstrate the ability to change the 

impedance characteristics in a microelectronic device via electric field mediated 

assembly of different nanoparticle microstructures.  In addition, the reversible nature of 

such colloidal based devices are shown to exhibit unique impedance responses, 

tunability, and scalability not easily obtained from existing solid-state materials or 

microelectromechanical system based devices.  From a more fundamental perspective, 

we gain new insights into the connections between microstructure, transport 

mechanisms, and impedance properties that provide essential information to intelligently 

design and control nanoparticle based integrated micro- fluidic and electronic devices. 
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6.3. Experimental Section 

The experimental arrangement (Fig 6.1) consists of nominal 800 nm diameter 

gold colloids (Alfa Aesar) levitated by electrostatic repulsion above lithographically 

patterned gold electrodes on microscope slides.85  The patterned gold electrodes have a 

uniform thickness of 50nm and an interdigitated configuration with lateral spacing of 

30µm and a finger width of 500µm.  Gold nanoparticles were dispersed in aqueous 0.1 

mM NaHCO3 and confined within a small volume (1mm high x 5mm diameter) on the 

patterned electrode surface by a polydimethylsiloxane batch cell.   

A function generator (Agilent 33120A) and impedance analyzer (Hewlett-

Packard HP4194A) were connected in series to the interdigitated electrodes to 

simultaneously tune nanoparticle assembly and acquire the raw impedance magnitude, 

⏐Z⏐, and phase angle, δ.  The impedance analyzer was tested and calibrated using an 

open/short circuit compensation routine recommended by the manufacturer and was 

interfaced to a laboratory PC using a LAB-VIEW 8.0 program (National Instruments).  

All the impedance measurements were made at a nominal oscillator voltage level of 0.25 

V.  The precision of the analyzer was checked with standard 10Ω, 100Ω resistances and 

a standard 30µF capacitor, and in all cases was better than 1%.  Lead inductance effects 

were minimized by placing the cell assembly on an optical table close to the impedance 

analyzer.  CCD camera (Hamamatsu) images of steady state colloidal configurations in 

Fig 1 were obtained using an inverted microscope (Zeiss) with a 40X objective. 
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Figure 6.1.  (a) Photograph of the interdigitating gold electrode patterned on a glass 
substrate using standard photolithography, (b) Schematic representation of the 
microfluidic cell used in experiments. The two “zoomed-in” views represent the 
phenomena of capacitive changes brought about by assembly within the center of the 
gap that varies the dielectric permittivity of the spanning fluid (left) and the variable 
resistance and switch behavior of metal particles assembling into wires that span the 
electrode gap in the presence of an AC field (right)  
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6.4. Results and Discussion  

6.4.1 Manipulating nanoparticle microstructures using external AC fields 

In the absence of any applied fields, the gold colloids are randomly distributed 

and diffuse laterally above the glass and electrode surfaces via Brownian motion.  The 

colloids remain confined within a quasi-2D layer (~100nm) due to gravity and particle-

surface electrostatic repulsion.    In the presence of electric fields, Fig 6.2 shows a matrix 

of steady-state microstructures assembled in between and above a single electrode pair 

gap as a function of AC voltage (0.5-2.5V) and frequency (10Hz-1MHz).  All colloidal 

microstructures in Fig. 6.2 were assembled in a completely reversible fashion as the 

result of ~100nm electrostatic repulsion (the Debye length is κ-1=30nm) preventing 

intimate contact and irreversible adhesion between colloids and surfaces via van der 

Waals40 and dipolar attraction.86  This reversibility allows dynamic reconfigurability 

between all of the steady-state microstructures in Fig 6.2 by tuning the AC field 

amplitude and frequency, although the rate of dynamic transition depends on the initial 

and final configurations (e.g. wires form more quickly from random configurations than 

an empty gap). 

The results in Fig. 6.2 can be organized based on three distinct steady-state 

microstructures that emerge based primarily upon AC field frequency regimes and a 

lesser dependence on AC field amplitude.  For ω≈1-100Hz, colloids are concentrated 

and centrally oscillate within the electrode gap while tracking the AC field, whereas 

colloids above the electrodes experience lateral aggregation.  For ω≈1-100kHz, colloids  
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Figure 6.2.  Equilibrium steady-state configurations of 800-nm gold colloidal particles 
at various electric field strengths and frequencies. At low forcing frequencies (1~100 
Hz) quasi-steady electrophoretic response is observed, exhibiting increasing capacitance 
with increased field amplitude. At moderate forcing frequencies (~1 kHz) a 3-D flow is 
induced, which removes particles from the electrode gap. At higher frequencies, DP 
overwhelms colloidal motion, and the colloidal circuit exhibits variable resistor 
behavior. Colloidal response time to reach the 2.5 V, 1-MHz equilibrium condition from 
a randomly distributed Brownian configuration was under 4 seconds. All equilibrium 
configurations were reversible and repeatable.  
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are expelled from the electrode gap and concentrate on top of the electrodes with a 

depleted zone near the electrode edges (circulation visible during initial transient but not 

at steady-state).  For ω>100kHz, colloids assemble into wires bridging the electrodes 

and align with the expected field lines in the gap.  In addition, a systematic increase in 

the number of chains and their cross sections (or the degree of lateral chain bundling) is 

observed in Fig 6.2 with increasing AC field amplitude and frequency for the conditions 

investigated.  For each of the three steady-state microstructures observed in Fig. 6.2, 

greater AC field amplitudes do not alter the microstructure type in each frequency 

regime but primarily enhance the assembly time-scale and the structural fidelity (e.g. 

particles become more concentrated within the gap for ω≈1-100Hz or laterally bundle 

into denser wires for ω >100kHz). 

Figure 6.3 shows reversible Au nanowire network formation with DEP in non-

uniform electric fields at 5 V peak-to-peak and 1 MHz. The non-uniform electric fields 

were induced by a pointed electrode next to a flat conducting surface in Fig. 6.3 a,b, and 

conducting islands between planar electrodes in Figs. 6.3 b,d. When the AC signal was 

changed to ω=10 Hz, the colloidal wires melt in Fig. 6.3 b, but shows an interesting 

response in Fig. 6.3 d, where a single looping colloidal wire connecting the intermediate 

gold bridges evolves from the configuration in Fig. 6.3 c in less than 30 seconds. This 

could potentially be useful in engineering colloidal configurations with anisotropic 

electrical properties.  Further electrical property measurements are necessary to assess   
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Figure 6.3.  Reversible Au nanowire network formation with DEP in non-uniform 
electric fields (induced by a pointed electrode next to a planar conducting surface (a), 
and conducting islands between planar electrodes (c)) at 5 V peak-to-peak and 1 MHz . 
When the AC signal is changed to ω=10 Hz, the colloidal wires melt in (b), but shows an 
interesting response in (d) where a looping single wire connecting the intermediate gold 
bridges evolves from the configuration in (c). 
 
 
 
 
 



 

 

91

the utility of non-uniform electric fields in improving the electrical properties otherwise 

obtained with uniform electric fields. 

 

6.4.2 Dominant transport mechanisms 

In the following, we present an analysis of colloidal particle dynamics and 

summarize the type of fluid flow observed in a simplified system consisting of two co-

planar parallel gold electrode strips.  The experimental results discussed in the previous 

sub-section are put in perspective using a general understanding of scaling laws 

governing this simple system.  Preliminary scaling arguments presented here are 

intended to provide some intuition and predictive capabilities for the frequency and 

amplitude dependent behavior of colloidal microstructures and their associated 

electromagnetic properties, and within limits, can be extended to more complicated 

microelectrode shapes.  In addition, these scaling arguments suggest opportunities (and 

limits) for tuning device characteristics over a broad range based on available colloidal 

fluid characteristics (e.g. particle size, shape, dielectric properties; fluid viscosity, 

dielectric properties; other parameters - temperature, micro-channel dimensions, etc.). 

A schematic diagram of the microelectrode system used in this work with the 

electric field lines is shown in Fig. 6.4.  As the spacing between the electrodes is small 

compared to the length and width of the electrodes, the system is essentially two-

dimensional. This simplified set-up serves as an ideal test case to explore the relative 

magnitudes of different forces in play, and the validity of assumptions made in the 
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scaling analysis.  This systematic study is potentially important as we try to extend the 

results to experimentally more complex electrode arrangements.  

The steady-state structures in Figs 6.2 and 6.3 and their transient assembly can be 

explained in terms of a competition between sedimentation, self-diffusion, and several 

AC electric field mediated transport mechanisms including electrophoresis (EP), AC 

electro-osmosis (EO), and dielectrophoresis (DP).87  In all cases, sedimentation 

concentrates particles onto the interdigitated electrode surface, and Brownian motion 

tends to produce laterally homogeneous, random configurations.  To assemble the 

microstructures in Fig 6.2, AC electric field mediated colloidal transport must be 

comparable to, or exceed, the characteristic transport rates associated with sedimentation 

and self-diffusion (Peclet numbers greater than one). 

      
 

 
 
 
Figure 6.4.  Schematic of a simplified co-planar gold electrode system showing the 
electric field lines. The electric field in this arrangement is a function of r andθ. 
 
 
 
 



 

 

93

To understand the relative contributions of these different  transport mechanisms, 

Fig 6.5 indicates the magnitude of the dominant transport mechanism for the AC field 

voltage and frequency conditions investigated in Fig 6.2.  Specifically, particle velocity 

due to EP, EO, and DP are computed using single-particle predictions,87 and the 

maximum velocity (for the three competing mechanisms) is represented as a phase plot 

in Fig 6.5 to produce three distinct regimes.  Other mechanisms such as transport due to 

Joule heating and electrothermal effects are considered to be negligible due to the 

relatively small fields used in this work.  It is useful to realize that particle velocities are 

directly related to mobilities that are commonplace in electrokinetic transport, and 

consequently forces.   

  Understanding how each of these transport processes depend on relevant 

nanoparticle and device parameters provides a basis to design, control, and optimize the 

assembly of the microstructures observe in Figs 6.2 and 6.3.  For the thin electrical 

double layers investigated in the present study (κa>>1), the single-particle, DC 

electrophoretic mobility is given by the Smoluchowski equation as,88   

 ( )( ) 1
EPu r Vεζ µ π −=  (6.1) 

 

where ε is the medium permittivity, µ is the dynamic viscosity, ζ is the particle zeta 

potential, r is the electrode spacing, and V is the applied voltage (which is approximately 

related to the electric field as E=V/πr).  For AC electric fields, the particle mobility is 

oscillatory and tracks the field with a frequency dependent phase lag until minimal net 

displacements occur above a threshold frequency.  The maximum velocity associated  
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Figure 6.5. Voltage vs. frequency diagram indicating magnitudes of dominant transport 
mechanisms for single colloids in the coplanar electrode device shown in Fig 6.2.  
Quasi-steady electrophoresis (EP) is the dominant transport mechanism at low 
frequencies (ω<100 Hz), while AC electroosmosis (AC-EO) is active at moderate 
frequencies (100 Hz<ω<100 kHz) and dielectrophoresis dominates at higher frequencies 
(ω>100 kHz).  Velocity contours are defined by the logarithmic spectrum scale shown in 
the inset with red=2000µm/s and violet=0.01µm/s. 
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with dynamic EP in the presence of external AC fields can be determined from the 

equation of motion for a charged particle to be,89 

 ( ) ( )
0.52 2

EPu mr m Vαεζ πµ α ω
−

⎡ ⎤= +⎣ ⎦  (6.2) 

 

where ω is the applied field frequency, m=ρp(4/3)πa3
 is the mass of the colloidal particle 

and, α=6πηa is the friction factor of the particle in the fluid.  The dynamic 

electrophoretic mobility is complex-valued and is expressed in terms of its modulus in 

Eq. (6.2).  The argument of the complex mobility can be used to determine if the particle 

velocity lags behind or leads the applied electric field.  It is important to note that inertial 

effects will become important when the characteristic momentum relaxation time scale, 

τ=α/m, is comparable to the frequency of the applied AC field.  Interaction of the 

tangential electric field with exposed glass and gold electrode surfaces produces a 

characteristic fluid velocity due to AC EO, also corresponding to the transport rate of 

entrained particles as,87 

 ( ) ( ) 22 2 28 1EOu r Vε µ
−

= Λ Ω + Ω  (6.3) 

 

where Λ=CS/(CS+CD), CS is the Stern layer capacitance, CD is the diffuse layer 

capacitance, Ω=(Λωεκπr/2σ), and σ is the medium conductivity (Λ≈0.2 for gold film 

electrodes with CD=εκ and CS=0.007F/m2 as discussed in Ref. 87).  Dielectrophoretic 

nanoparticle transport arises from the interaction of electric fields with electric field 

induced particle dipoles with a characteristic rate given as, 
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 ( ) ( ) 12 2 3 2 2 23 1DP CMu a r f Vε π µ
−

= Ω + Ω  (6.4) 

 

where fCM=Re[(ε p-ε)/(εp+2ε )] is the real part of the Clausius-Mossotti factor (fCM=1 for 

gold colloids as they are completely polarizable), ε  is the complex permittivity given as 

ε =ε-iσ/ω (subscript "p" refers to particle).  In the presence of other particles, the induced 

dipoles interact not only with the external field but also with corresponding dipoles on 

neighboring particles.  Using an expression for the chaining force between two adjacent 

conducting particles (that is more relevant to this experimental study), The rate of 

colloidal transport and assembly into wires via DP in non-uniform electric fields can be 

collectively characterized using,90 

 ( ) ( ) 12 2 2 2 2 21DP CMu a r f f Vφε πα
−

= Ω + Ω  (6.5) 

 
where fφ is a correction factor accounting for interparticle spacing, chain orientation, and 

effective medium dielectric properties at finite colloid concentrations (fφ≈10 from Ref. 

90).  The chaining force is always attractive, is proportion to the square of fCM and, has a 

weaker dependence on particle size than the direct dielectrophoretic force.  The factor 

Ω2(1+ Ω2)-1 appearing in Eqs. (6.4) and (6.5) takes into account the reduction of the 

voltage in the medium due to electrode polarization.  At low frequencies (Ω≈1), 

polarization of the double layer significantly reduces the effective voltage present in the 

electrolyte.  At higher frequencies, the surface charge accumulated in the double layer is 

negligible and the applied voltage is dropped mainly across the electrolyte. 



 

 

97

Based on Eqs (6.1)-(6.5), Fig 6.5 reports the magnitude of the dominant transport 

mechanisms for the AC amplitudes and frequencies investigated in Fig 6.2 with three 

distinct transport regimes emerging.  For frequencies in the range ~1-100Hz, EP 

transport dominates DP and EO transport by 2 and 6 orders of magnitude in the vicinity 

of ω≈10Hz and then decreases to become comparable to increasing EO transport for 

ω≈100Hz.  For frequencies in the range ~0.1-100kHz, EO first dominates over EP and 

continues to increase up to ~5kHz at which point it begins to diminish until DP 

eventually dominates both EP and EO for ω>100kHz. 

The three dominant transport regimes that emerge in Fig 6.5 obviously correlate 

with the three microstructural regimes observed in Fig 6.2, which allows for direct 

connections to be made between assembly mechanisms and structures.  For ω≈1-100 Hz, 

EP transport dominates EO and DP to produce oscillatory colloidal motion within the 

quasi-2D plane parallel to the substrate (Fig 6.2, column 1), although the colloidal 

localization within a centralized band is probably due to the finite role of recirculating 

EO flows in producing stagnation regions in between and on top of the electrodes.  

Small laterally organized clusters on top of the electrodes probably occur as the result of 

electrophoretic deposition in normal AC fields.75  For 100Hz<ω<100kHz, AC EO 

produces 3D periodic, recirculating flows on the parallel interdigitated electrodes within 

the confined microfluidic geometry,91 which is particularly visible during assembly 

transients.  These EO flows eject colloids from the electrode gaps and in combination 

with sedimentation reconcentrate colloids in stagnation regions on top of the electrodes 

(Fig 6.2, column 2). 
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As with EP transport, EO transport increases with increasing applied voltage and 

decreases with increasing solution ionic strength.  In contrast to EP transport that 

operates in a quasi 2D plane parallel to the electrode gap surface at lower frequencies, 

the three dimensional flows due to EO transport also act in competition with 

gravitational transport of nanoparticles towards the electrode and gap surfaces, which 

results in more particles on the surface at lower applied voltages.  The observed 

concentration of nanoparticles on top of the electrodes is probably a combination of 

sedimentation and EO flow stagnation points acting together, favoring the concentration 

of particles on the electrode surface (as a reminder, Fig 6.2 depicts only one gap in a 

series of parallel electrodes that can be expected to produce periodic EO flows).     

The appearance of linear wire structures for ω>100 kHz (Fig 6.2, 3rd and 4th 

columns) occurs as a result of AC electric fields inducing dipoles in colloids, 

transporting colloids via DP, and assembling colloidal chains via dipolar interactions, 

which is consistent with Fig 6.5.  Because DP transport occurs within the quasi-2D plane 

parallel to the substrate and orthogonal to gravity, sedimentation does not compete with 

dipolar chain assembly, although it does have some influence on confining heavier 

chains near the surface.  As the applied voltage is increased, their is an increase in the 

number of chains, their rate of formation, and their cross sections via lateral dipolar 

chain attraction leading to their bundling.86  In the region on top of the electrodes, there 

is no obvious evidence of dipolar chains oriented normal to the surface, but the presence 

of nanoparticles on the electrodes may indicate the importance of residual EP and EO 

mechanisms that might favor the presence of some nanoparticle near electrodes in 
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normal AC electric fields as well as some irreversible deposition.  It does not appear that 

additional transport mechanisms (e.g. Joule heating) or more rigorous expressions 

accounting for multi-body colloidal57 and hydrodynamic60 interactions are necessary for 

semi-quantitatively understanding the microstructural assembly observed in Fig 6.2. 

6.4.3 Impedance spectra of ordered colloidal configurations between interfacial 

microelectrodes 

With an understanding of the connections between microstructure types and 

dominant transport mechanisms in Figs 6.2 and 6.5 we complete our understanding of 

the behavior and properties of nanoparticles in integrated microelectronic/microfluidic 

devices by measuring impedance characteristics as a function of AC field voltage and 

frequency.  The measured impedance spectra is interpreted as a complex impedance, 

with the real part, Re(Z)=|Z|cos(δ), and the imaginary part, Im(Z)=|Z|sin(δ).  It is 

important to point out that the function generator used to supply the bias voltage that 

drives colloidal assembly, delivers a load to the test fixture that needs to be calibrated 

out of the measurements along with the parasitic inductance and losses in the connecting 

leads.  A schematic of the experimental set-up used to measure the impedance spectra of 

assembled colloidal configurations is shown in Fig. 6.6.  We construct representative 

equivalent circuits to identify the relative contributions of various impedance 

components and remove these systematic experimental biases from the measurements.  
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Figure 6.6.  Schematic of the experimental set-up used to measure the impedance 
properties of the Device under Test (DUT).  The DUT in this work is a microfluidic 
device where colloidal particle microstructures are actively manipulated to control 
electromagnetic properties. 
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Figure 6.7 shows a plot of the measured and modeled complex impedance data 

for the unbiased/off (random distribution of gold particles) and biased/on (formation of 

colloidal wires at 2.5 Vpp and 1 MHz) states of the microelectrode device.  As shown in 

the insets of Fig 6.7, equivalent circuits fit to the measured impedance spectra account 

for contributions of the device components including the substrate, electrodes, 

electrolyte solution, and colloids (function generator and impedance analyzer included in 

calibration).  Based on systematic control measurements, the micropatterned gold film 

electrodes in series with a 500Ω current limiting resistor had an equivalent bias-line 

resistance of RBL=700Ω, the connecting wires had an inductance of LBL=4.69µH, and the 

electrolyte media/unassembled colloids had a resistance of ROFF=29kΩ.   The collective 

capacitance of the electrodes, aqueous media, and gold colloids with and without AC 

fields was CON=COFF=25pF (since wires are only formed between a single set of fingers 

in the device, there is a negligible change in capacitance between states).  Without the 

application of an AC electric field, the corresponding impedance spectrum in Fig 6.7 is 

dominated by the properties of the static gold microelectrode arrangement, glass 

substrate, and aqueous electrolyte media.   

In the presence of an applied AC electric field (2.5V, 1MHz), the equivalent 

circuit components representing the device and aqueous media remain unchanged, but 

the assembled dipolar chains and electrolyte now produce a gap resistance of RON=1.7Ω 

and an inductance of LON=17fH.  With ~20 parallel wires/100µm (from Fig 6.2 image) 

and a 5mm electrode interface, the resistance per wire is estimated to be 1.7kΩ 

(resistance per wire length is 1.7kΩ/30µm≈60Ω/µm).  The cross sectional area per chain  
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Figure 6.7.  Measured real (circles) and imaginary (triangles) impedance spectra for 
(top) no applied field and (bottom) an applied field of 2.5V and 1MHz corresponding to 
the colloidal configuration shown in the upper right corner of Fig 6.2.  Curve fits to the 
measured impedance spectra are based on equivalent circuits shown as insets in each 
case. 
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is not obvious given the "bundling" of many single chains via lateral dipolar chain 

attraction,86 which limits the accuracy of resistivity estimates for comparison with other 

measurements of irreversible nanoparticle wires84 or rods grown by membrane 

electrodeposition.92  In addition, understanding the resistance of such dipolar chains 

involves modeling electronic transport through overlapping double layers on adjacent 

colloids,93 which is beyond the scope of the present work.  In any case, the electrostatic 

repulsion due to overlapping electrical double layers plays a vital role in preventing 

adhesive contacts while still providing a path of low resistance that allows such chains to 

function as "dipolar chain rheostats".  This allows the device to function as an effective 

switch that can reversibly tune the electrical properties between the impedance spectra 

reported in Fig. 6.7a and b.  For reference we provide analytical expressions for the real 

and imaginary parts of the equivalent circuit impedance (OFF and ON states) used to fit 

the measured impedance spectra in Fig. 6.7. 
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For the other configurations and transport mechanisms investigated in Figs 6.2 

and 6.5, the impedance response was relatively trivial in the case of EO transport but 

significantly more complicated when EP transport dominates.  In particular, when 

colloids were flushed from the electrode gap via EO transport, the impedance response 

and equivalent circuit were essentially the same as the unbiased device.  For the 

dominant EP transport at low frequencies, concentrated bands of colloids within the 

electrode gap produced impedance spectra suggestive of an enhanced capacitive 

response consistent with a multi-plate capacitor arrangement with three parallel plates, 

where the middle plate is oscillating at a fixed frequency.  This gives rise to very 

interesting transient impedance properties, but non-trivial measurement instabilities did 

not allow reliable steady-state impedance spectra to be obtained (probably due to the 

measurement hardware configuration).  Although the microstructure formed via EP at 

low applied AC field frequencies needs to be better characterized to understand its 

impedance properties, its apparent increased capacitance might be exploited as a sort of 

microfluidic "electrophoretic varactor" in the future.  Finally in Fig. 6.8 we show a 

schematic illustrating the multiscale nature of the measured impedance properties. The 

macroscopic device-level distributed impedance can be linked to nanoparticle physics 

and microstructure by representing individual dipolar chains using an equivalent circuit 

that identifies contributions by the colloidal particle and the electrical double layer to the 

electrical impedance.  This suggests possible opportunities to improve the device 

response by either changing the particle geometry (nanorods) or medium properties 

(non-aqueous media), in effect altering the microscopic contributions to the equivalent 
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Figure 6.8.  Schematic illustrating the multiscale nature of the measured impedance 
properties. The macroscopic device-level distributed impedance can be linked to 
nanoparticle physics and microstructure by representing individual dipolar chains using 
an equivalent circuit that identifies contributions by the colloidal particle and the 
electrical double layer to the electrical impedance. 
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device-level distributed impedance. 

6.5. Conclusions  

In conclusion, our results demonstrate the directed assembly of various colloidal 

configurations within coplanar microelectrodes via electrokinetic transport, which give 

rise to unique impedance properties.  Predictions of dominant transport mechanisms are 

consistent with observed steady-state microstructures in different AC electric field 

frequency regimes.  The success of these predictions for interpreting results in the 

present study provides a basis to explore new devices involving different (1) colloid 

shapes, sizes, and concentrations, (2) microelectrode geometries and configurations, (3) 

material properties including viscosity, dielectric properties, etc.  The equivalent circuit 

models developed in this work reliably distinguish static device impedance properties 

from resistive, capacitive, and inductive contributions due to colloidal microstructures.  

The general approach developed in this work, which is to directly connect 

microstructure, transport, and impedance via quantitative models, should be broadly 

applicable to the design, control, and optimization of other integrated micro- 

electronic/fluidic devices. 
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7. SYTHESIS OF BOVINE-SERUM-ALBUMIN BASED ENCAPSULATED 

COLLOIDS FOR SELF-HEALING MATERIALS 

7.1. Synopsis 

Encapsulated colloidal particles containing a patented sealant inside a protein 

shell are synthesized for use in directed assembly experiments aimed at engineering self-

healing materials.  A fluid mechanics based correlation for the average size of Bovine 

Serum Albumin (BSA) protein microspheres, prepared using a water-in-oil emulsion 

technique, is presented. The correlation is formulated based on the theory of turbulent 

dispersion and a non-dimensional Weber number. Measured average diameters of the 

BSA microspheres prepared in olive oil at different stirring speeds are used to construct 

the correlation formula. The correlation gives good agreement with experimentally 

measured average diameters for a wide range of Weber numbers. This correlation is 

particularly useful to the pharmaceutical industry for predicting the size of encapsulated 

microspheres used in drug delivery prior to microsphere preparation. The effect of 

additives on microsphere size was also explored. The average diameter of the BSA 

microspheres was doubled by the addition of a bioadherent vitelline protein B solution. 

In addition, a Rosin-Rammler statistical distribution function is shown to accurately 

represent the microsphere size distribution obtained at different stirring speeds. 
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7.2. Introduction 

There is considerable interest from the pharmaceutical industry about the 

entrapment of vaccines and drugs in biodegradable proteinaceous or polymeric micro- 

and nano-spheres. Microencapsulation is a promising method that: (1) increases the shelf 

life of a vaccine or drug when stored at room temperature; (2) offers the flexibility to 

control the release kinetics inside the body and the option for the drug or vaccine to be 

orally administered ; and (3) provides maximum protection with a minimum number of 

doses. In a recent review article, Kumar94 surveyed the attractive properties, methods of 

preparation, and wide applications of a range of microspheres and microcapsules in 

controlled drug release formulations. Some commonly used microspheres in drug 

delivery include (a) Poly(lactide-co-glycolide) [PLG], (b) Albumin, (c) Chitosan, and (d) 

Alginate etc.94. It is important to recognize the distinction between microcapsules and 

microspheres. Microcapsules are essentially spherical particles containing a core 

substance (often the drug to be delivered). Microspheres are spherically empty particles 

(hollow core) 94. Although different, these words are often used interchangeably, as in 

the later sections of this paper.  

Albumin based microspheres, which result from polymerization of a disperse 

phase containing albumin (usually either human, bovine or egg albumin), are attractive 

macromolecular (drugs/vaccines) carriers due to their availability in pure form, 

biodegradability, non-toxicity, and non-immunogenicity 95. Recent research 96,97 has also 

identified albumin microspheres as a potential macromolecular carrier for site-directed 

delivery. The preparation of albumin microspheres is straightforward and cost effective, 
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with much promise for large scale manufacturing. In this paper, we focus on developing 

Bovine Serum Albumin (BSA) based proteinaceous microspheres and, in particular, on 

the characterization of microsphere size. The protocol for BSA microsphere preparation 

used in this work was based on the standard water-in-oil emulsion technique 98-100, and is 

described in the next section. A wide range of different sized spheres can be obtained 

using this method. Here we note that the choice of the material to be encapsulated is 

restricted by the reactivity of the cross-linker or fixative (formaldehyde or 

glutaraldehyde) used. For example, it is difficult to encapsulate viable bacteria vaccines 

using this technique, however, a wide range of other drugs and vaccines can be 

encapsulated. The size of the resulting microspheres, in conjunction with their 

composition, influences the drug release kinetics inside the body. Also, the microsphere 

size plays a crucial role when targeting a particular site in the body; for example, 

bioadherent microspheres from 1-10 mµ  in size are absorbed by the Peyer’s patch found 

in the gut of cattle, while the larger vaccine/drug loaded microspheres just pass through 

without having any effect. It is also desirable to make microspheres with a uniform size 

distribution to reduce the size-induced variability (of release kinetics) in a given 

population of microspheres. Despite the importance of microsphere size, we have not 

found any research in the microencapsulation literature that uses a mathematical 

framework to investigate the mechanism of Albumin based microsphere formation and 

microsphere size. The majority of the existing size characterization studies use a 

Scanning Electron Microscope (SEM) to image the microspheres, and then estimate the 

mean size and size distribution, using qualitative arguments to explain the variation of 
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size with process parameters. It is therefore useful to develop a correlation that is a 

function of the operating variables and provide an engineering approach to estimate the 

microsphere size for design and testing purposes. Inspired by previous work in fluid 

mechanics on droplet sizes in aqueous-oil dispersions 101-103, we develop and validate a 

correlation for the average diameter of BSA microspheres in this work.  

Next we review the literature on turbulent aqueous-oil dispersions. Two-phase 

dispersions play an important role in many industrial processes in the chemical, 

biochemical, food processing, and pharmaceutical industries. The mechanical agitation 

of oil and liquid phases in a stirring vessel results in the formation of a dispersion. The 

dynamic equilibrium between droplet breakdown and coalescence determines the size 

distribution of the droplets (oil droplets in the case of oil-in-water emulsion and liquid 

droplets in the case of water-in-oil emulsions). Droplet size influences heat and mass 

transfer, and chemical reactions in chemical and biochemical processes, but it is a 

critical parameter in the pharmaceutical industry for erodable capsules. The importance 

of droplet size distribution and the dynamics of droplet breakdown have driven a number 

of experimental, numerical, and simulation studies on the phenomenon of droplet 

dispersions, starting from the work of Kolmogorov 101 and Hinze 102. Subsequently, it 

has been customary to relate the mean Sauter diameter and the maximum droplet size to 

a non-dimensional Weber number 104, which represents the balance between inertial 

forces and surface tension forces on the drop. The maximum droplet size can be obtained 

by applying Kolmogorov’s theory of isotropic turbulence as explained in 105-107 and also 

later in this paper. A variety of system variables ranging from physical properties of the 
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liquid, volume fraction of the dispersed phase, temperature, and the type of mechanical 

mixing used, influence the mean droplet size. A number of quantitative correlations for 

droplet size that incorporate system variables have been developed by various 

researchers from theoretical and experimental results (see Zhou and Kresta 103 for a 

review and tabulated list of various correlations for mean drop diameter in liquid-liquid 

mixing tanks). However, recent experimental and theoretical work has revealed 

significant limitations and shortcomings of the classical drop size correlations, especially 

when the turbulence is strongly intermittent 106. For the present work with BSA we 

explore drop size correlations by comparisons with experimentally measured average 

microsphere diameters prepared in olive oil at various stirring speeds. Also, the 

corresponding microsphere size distributions are modeled using the empirical Rosin-

Rammler statistical distribution function.  

This paper is organized as follows: In the next section, we describe the materials 

and experimental methods used in this work. The protocol for BSA based microsphere 

preparation is also outlined. The theory and mechanism of microsphere formation is 

discussed in the following section. An expression for the maximum/average microsphere 

diameter based on a generalized non-dimensional Weber number is derived using 

Kolmogorovs’ theory of isotropic turbulence. The SEM micrographs of BSA 

microspheres and comparison of the correlation with the experimental results is 

presented in the results section. We then comment on the effect of additives on 

microsphere size. Also, the theoretical predictions of the Rosin-Rammler distribution 

function are compared with the experimentally obtained microsphere size distributions. 
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The average diameter and size distributions of microspheres consisting of BSA and a 

recombinant vitelline protein B (vpB) (a known bioadhesive 108) were compared with the 

size of the microspheres containing BSA alone. Finally, we present the conclusions of 

our research and future work.  

7.3. Materials and Methods 

7.3.1 Materials 

The BSA (fraction V, rM  60,000, 96 % pure), formaldehyde, buffers, and other 

miscellaneous items used in this research were purchased from Sigma. Vitelline protein 

B (vpB) was produced recombinantly from an E. coli clone developed in the Department 

of Medical Biochemistry and Genetics at Texas A&M University, and then isolated and 

purified. Commonly available Bertoli classic olive oil with a viscosity of 84 cp at 23ο C 

was used.  

7.3.2 Preparation of microspheres 

The BSA-based microspheres were prepared by a water in oil emulsion technique 

described next. The protocol used to make the BSA microspheres involved 

glutaraldehyde/ formaldehyde cross-linking, as previously described in 98, and more 

recently used by Giletto et al. 99 to prepare microspheres for delivering vaccines. As the 

latter report cannot be easily accessed, we review the protocol in detail:  

1. First, 100 ml of the oil (olive oil, PAO oils) was stirred at a pre-determined 

stirring speed (N) for 30 minutes in a 400 ml Pyrex beaker. A Caframo 
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ultra high torque stirrer (Model BDC1850) with a speed range of 300-1800 

rpm was used to stir the oil.  

2. Then 2 ml of a 125 mg/ml protein solution containing BSA, vpB, and the 

drug to be encapsulated (dispersed phase) was added to the oil and stirring 

was continued for 30 minutes.  

3. The aqueous droplets in the emulsion were polymerized by adding 50 µ l 

of an aqueous formaldehyde solution (37% formaldehyde). The emulsion 

was stirred for an additional 30 minutes.  

4. Finally, 50 µ l of glycine (a capping agent) was added to consume the 

remaining cross-linker and the emulsion was stirred for an additional 15 

minutes.  

5. The microspheres were then collected by centrifugation at 3000 rpm for 20 

minutes. The supernatant oil was then decanted, and the pelleted micro-

spheres were washed in ether to remove the residual oil. The centrifugation 

and ether washes were repeated to remove any oil traces. Very high yields 

of free flowing microspheres ( 90%> ) were obtained using this method.  

The size of the microspheres was determined by a Jeol JSM-6400 scanning electron 

microscope at the Electron Microscopy Center at Texas A&M University. Samples of 

the microspheres were mounted onto aluminum stubs using a double sided carbon 

adhesive tape. A 40 nm gold-palladium coating was sputtered on the microspheres using 

a sputter coater in an atmosphere of argon. Coating was achieved at 10mA for 4 minutes. 

Scanning was performed at ambient temperature and vacuum pressure with a beam 
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voltage of 12 kV. The average microsphere diameter was quantitatively determined by 

measuring the size of around 130-450 microspheres from the SEM micrographs using 

the Scion Image Analysis software. The “Analyze Particles" option in the software 

automatically counts, labels, and measures microspheres in the SEM micrographs. The 

SEM images have to be saved as binary or threshold images. The image is scanned 

across until the boundary of a microsphere is detected. Then an inbuilt outlining tool was 

used to outline the microsphere boundaries. The sizes of the microspheres were 

measured using the measure command that uses a pre-set length scale to compute the 

diameter. The microspheres were then redrawn in a different gray level so they become 

invisible to the scanning process to avoid counting the same sphere twice. The size 

distribution histogram was then constructed from the raw data of measured 

microspheres, by organizing the data into a frequency table with equidistant size 

intervals.  

7.4. Theory and Mechanism of Microsphere Formation  

To develop a fluid mechanics based correlation for the mean diameter of BSA 

microspheres, it is important to understand the physical underpinnings of the water-in-oil 

emulsification technique used to make the spheres. In the following, we briefly review 

the basic principles of emulsification and droplet formation. A substantial literature of 

experimental, theoretical, and numerical work that discusses the stability of emulsions 

and the mechanisms of droplet breakdown are available (see 103,109,110 for details). It is to 

be expected that when an aqueous protein solution is added to oil and agitated, 
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dispersion is formed in which continuous break-up and coalescence of drops occur (Note 

that the protein solution and the oil are immiscible). The droplets are continually broken 

down by turbulent velocity fluctuations (inertial forces). Figure 7.1 shows a simple 

schematic of the stirred tank and the mechanism of droplet break-up across the impeller 

boundary layer. The strong shear across the boundary layer first deforms and then breaks 

down the droplet 111. Most of the droplet breakdown occurs in a zone near the edge of 

the impeller blade. The interfacial tension between the dispersed phase and the 

continuous medium, and the viscous stresses inside the droplet act as restoring and 

damping forces respectively that tends to maintain the shape and size of the droplet. A 

stable droplet size is obtained when the deforming inertial forces are balanced by the 

surface tension forces and can no longer break down the droplets. Coalescence occurs 

when the agitated droplets collide with each other. A dynamic balance is eventually 

established between the drop break up and coalescence processes, and a distribution of 

different sized stable drops are obtained.  
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The solid BSA microspheres are obtained by polymerizing the stable aqueous 

protein droplets formed at the end of step 2 of the microsphere preparation protocol. We 

can approximate the size of the protein droplets to be proportional to the size of the solid 

microspheres they form after polymerization. The average drop size and the final size 

distribution of the microspheres depends on the operating parameters, such as mixer 

geometry, type of impeller used, stirring speed, temperature, physical properties of the 

oil and protein solution (viscosity, surface tension), and the volumetric throughputs of 

the dispersed phase. Based on ideas from previous work about water-in-oil emulsions 

103,106,107, we derive a relation based on a non-dimensional Weber number (We) to 

predict the average size of BSA microspheres.  

 
 

Figure 7.1.  Schematic of the stirring tank and mechanism of droplet breakdown across 
the impeller boundary layer. 
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Two independent non-dimensional numbers were obtained from dimensional 

analysis, which can account for the force balance between inertial, surface tension, and 

viscous forces 102. The first is a generalized Weber number (We) that represents a 

balance between inertial and surface tension forces. The second parameter is a Viscosity 

number (Vi), defined as the ratio of the square of the dispersed phase viscous force and 

the product of the inertial and surface tension forces 102. They can be mathematically 

expressed as:  

 We
d

τ
σ

=
/

 (7.1) 

 d

d

Vi
d

µ
ρ σ

=  (7.2) 

where τ  represents the normal stresses generated by turbulent events, d is the diameter 

of the droplet, σ  is the interfacial tension at the protein-oil interface, and dρ , dµ  are the 

density and viscosity of the dispersed phase, respectively. Here, we consider the case of 

a dilute non-viscous, non-coalescing, dispersed phase, where the viscous stress within a 

protein drop is negligible compared with the interfacial tension at the drop-oil interface 

(i.e., Vi 0→ ). Of significance here is the smallest eddy length scale (η ), commonly 

referred to as the Kolmogorovs’ length scale ( 3 1 4( )ν
εη /= , where ε  is the rate of turbulent 

energy dissipation and ν  is the kinematic viscosity), and the largest eddy length scale L. 

For droplet breakdown in the inertial sub-range ( d Lη < < ), the viscous stresses are 

negligible compared with the turbulent stresses. Also, the turbulent stresses across a 
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droplet of size d can be expressed as 2
c vρ , where cρ  is the density of the continuous 

phase and 2v  represents the root-mean-square value of the turbulent velocity 

fluctuations 103. Also, when the turbulence is isotropic 2 3 2( )v dε /∝ /  103. Consequently, 

the Weber number becomes:  

 
2 2 3 5 3

c c maxv d c dWe ρ ρ ε
σ σ

/ /

= =  (7.3) 

Assuming v ND∝  (where N is the stirring speed and D is the impeller diameter) and the 

turbulence in the tank to be isotropic and fully developed, the turbulence energy 

dissipation (ε) can be shown to be 2 3N D∝ε ) 103,106. Then  

          
2 3
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− / −= =   (7.4) 

where mWe is the Weber number of the mixing tank, and c, α  are constants to be 

uniquely determined for different emulsions. However, the value of the exponent α  has 

been found to be 0.6 for isotropic turbulent drop dispersions 102,103,106. Here we point out 

that a mWe  based on the width of impeller tip instead of the diameter of impeller would 

be a more appropriate parameter as the trailing vortex at the impeller tip is believed to be 

the major mechanism of droplet breakdown in stirred tanks. When viscous energy within 

a drop or coalescence becomes important, Eq. (7.4) can be corrected as 103  
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where dµ  and cµ  are the viscosities of the dispersed and continuous phase, respectively, 

and φ  is the volume fraction of the dispersed phase. We note that in the context of this 

work ( ) 1d

c
f µ

µ φ, = . The Sauter mean diameter ( 32d ) has generally been assumed to be 

proportional to the maximum sphere diameter ( maxd ).  
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       (7.6) 

where i denotes the size range considered, ni is the number of microspheres in size range 

i, and d is the diameter of the microspheres. The generality of this assumption has been 

questioned in recent work by Pacek et. al. 104. However, as the drop size distribution is 

universal, all scales and representative diameters are uniquely related. As a result, the 

average diameter of the microspheres ( aved ) is also proportional to maxd . Then, from Eq. 

(7.5)  

 1( )ave d
m

c

d f c We
D

αµ φ
µ

−= ,   (7.7) 

This correlation forms the basis for our work, and one of our main objectives is to 

determine the values of α  and 1c  for BSA microspheres.  

7.5. Results and Discussion 

7.5.1 Microsphere size and size distributions 

The theory discussed above has been validated against experimentally measured 

average microsphere diameters for a wide range of stirring speeds. All BSA based 



 

 

120

microspheres were prepared using the protocol described in the earlier section. In each 

case, the agitation was provided by a Caframo stirring paddle with a pitched-blade 

impeller (diameter of the impeller blade = 5.8 cm). The impeller was positioned in the 

center of the Pyrex beaker and in the middle of the oil surface and the bottom surface of 

the beaker. Olive oil was used as the continuous phase and BSA acts as the dispersed 

phase. The volume fraction of the BSA used was 2% v/v. An aluminum foil lid was used 

to seal the top of the beaker to avoid splatter of the oil emulsion and reduce air 

entrainment. The entrained air bubbles can damp the turbulence intensity 103 and affect 

the size of microspheres and microsphere formation. So it is necessary to make the 

stirring vessel as air-tight as possible. To remove any residual oil or microspheres, the 

mixing vessel is washed thoroughly in tap water and then rinsed in double distilled water 

prior to each experiment.  

To study the effect of impeller speed on average microsphere size, BSA-based 

microspheres were prepared in olive oil at different stirring speeds (300 - 1800 rpm). 

The lowest stirring speed of 300 rpm corresponds to the minimum stirrer speed required 

to provide homogeneous mixing and completely disperse the BSA in the oil. The choice 

of the highest speed was restricted by the operating speed range of the mixer used. For 

microspheres prepared using each impeller speed, the average microsphere size is 

computed from the SEM micrographs using the Scion Image analysis software as 

described earlier. Figure 7.2 shows the SEM micrographs of BSA microspheres prepared 

in olive oil at (a) N =800 rpm (b) N= 1200 rpm (c) N = 1500 rpm and (d) N = 1800 rpm. 

The corresponding number fraction distribution histograms, plotted against the BSA 
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microsphere diameter, are shown in Fig. 7.3. As expected, smaller microspheres are 

formed as the impeller speed is increased. Microspheres ranging in size from 1 10 mµ−  

can be made using the current preparation method in olive oil, as seen from Fig. 7.3. It 

can be observed from the SEM micrographs that some of the microspheres appear 

wrinkled and rough and there is an apparent problem of clustering or aggregation of 

spheres for speeds lower than 1200 rpm, as evident in Fig. 7.2(a). The spheres look 

wrinkled because of the loss of water from the core of the microspheres through the 

pores on the surface of the microsphere 99. The amount of shrinkage depends on the time 

delay between microsphere preparation and imaging the microspheres. It has been 

observed in previous work 99 that sonicating the wet centrifuged particles for 

approximately two minutes successfully separated the clustered microspheres. It is also 

important to observe that more uniform shaped and sized microspheres were formed 

with increasing stirring speeds. A slightly higher volume of formaldehyde (cross linker) 

and capping agent (glycine) was required to form spheres when the stirring speed N <  

800 rpm. When the volume of formaldehyde and glycine specified in the protocol was 

used to prepare microspheres with lower impeller speeds, the resulting microspheres 

were mostly misformed, as seen in Fig. 7.4. This can be attributed to the greater time 

required for the polymerizing (cross-linking) action at lower impeller speeds. As the 

time of stirring in each preparation step is maintained the same as specified in the 

protocol, immaterial of the stirring speed, an additional volume of formaldehyde is 

added to both facilitate faster cross linking and enable the formation of well defined 

microspheres.  
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7.5.2 Comparison of theoretical predictions with experimental results 

The average microsphere diameter predicted by the theory outlined above was 

tested against experimental data for a wide range of mWe  (i.e., a wide range of stirring 

speeds). The mixing tank Weber number is calculated from Eq. (7.4), using the density 

of continuous medium (olive oil), the impeller diameter, stirring speed in rpm, and the 

interfacial tension at the BSA-olive oil interface ( 0 0229N mσ = . / ). The average 

diameters of the BSA microspheres formed and the corresponding Weber numbers are 

tabulated in Table 7.1. Figure 7.4 shows the theoretical prediction of the average 

      
 

              
 
Figure 7.2.  SEM micrographs of BSA microspheres prepared using the water-in-oil 
emulsion technique in olive oil at a) N=800 rpm, b) N=1200 rpm, c) N=1500 rpm, and 
d) N=1800 rpm. 
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diameter given by Eq. (7.7), for three different sets of coefficients 1c  andα . It is evident 

from Figure 7.5 that the coefficients 1 0 0206c = .  and 0 53α = − . , obtained from a least 

square fit to the experimental data, provides the best fit. The deviation of the Weber 

number exponent from the classical value of -0.6 is to be noted (although the fit is 

reasonable when 0 6α = − . , a better correlated fit is obtained when 0 53α = − . ). However, 

it is important to recognize that if the microspheres were prepared in a different oil (say 

castor oil or PAO oils) at different stirring speeds, the average microsphere diameter can 

still be determined using the correlation given by Eq. (7.7).  

 

      

              
 

Figure 7.3.  SEM micrographs of BSA microspheres prepared in olive oil at (a) N =300 
rpm, and (b) N= 500 rpm when adequate cross-linker is not added. Notice that the 
microspheres are mostly deformed and clustering and aggregation of the still unformed 
microspheres is evident. 
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7.5.3 Effect of additive on microsphere size 

It is important to analyze the effect of additives on microsphere size. By 

additives we mean the drug to be encapsulated or any other material added to alter the 

drug release kinetics or other surface properties of the microspheres. The additives, 

along with BSA in this case, are incorporated in the dispersed phase. The small volume 

fractions of the dispersed phase used in this study does not affect the size of the 

microspheres. Also, as the ratio of the dispersed phase viscosity to the oil viscosity 

( d cµ µ/ ) is small, viscous effects do not influence microsphere formation. Thus, we 

surmise and later show that the size of microspheres can be controlled by using suitably 

chosen additives.  

Table 7.1.  Experimentally obtained average diameters of BSA microspheres prepared in 
olive oil at different stirring speeds 
 

Speed 

Mixing tank 
Weber number 

( mWe ) 

Average 
microsphere 

diameter 

(rpm)  ( mµ ) 

300 7736 10.08 

500 21490 6.12 

800 55014 3.85 

1200 123782 2.03 

1500 193409 1.82 

1800 278509 1.29 
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In the following we study the effect of adding vpB protein (to the dispersed 

phase) on microsphere size. The BSA+vpB microspheres were prepared using the same 

protocol described in Section 2.2, except that 2 ml of 125 mg/ml BSA + 0.015% vpB is 

added in step 2 to form the dispersed phase. Also, as noted by Giletto et al. (1998), it 

was not possible to prepare 100% vpB microspheres because of the very low solubility 

( 20mg ml≈ / ) of the protein at neutral pH.  
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Figure 7.4.  Average diameter of BSA microspheres prepared using the water-in-oil 
emulsion technique in olive oil as a function of Wem. 
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The SEM micrographs of (a) BSA microspheres prepared in olive oil at N = 1200 

rpm and (b) BSA + 0.015% vpB microspheres prepared in olive oil at N = 1200 rpm are 

shown in figure 7.5. The addition of vpB to the dispersed phase alters the interfacial 

tension at the protein/oil interface but negligibly changes the viscosity of the dispersed 

phase. As a result the mWe for BSA + vpB microsphere is different compared with the 

mWe  corresponding to the preparation of just BSA microspheres ( cρ , N and D remain 

the same). As the average diameter scales as mWe α− , we can infer that the addition of vpB 

increased the interfacial tension, thus reducing mWe  and increasing aved . The SEM 

micrographs in figures 7.5 (a), (b) indicate that the BSA+vpB microspheres, besides 

being larger than the BSA microspheres, appear more rigid and rounded with well 

defined boundaries. The vpB is known to be a mechanically tough and chemically 

resistant eggshell protein 108, and its presence makes the microspheres rigid. Some of the 

      

            
 
Figure 7.5.  SEM micrographs of (a) BSA microspheres prepared in olive oil at N = 
1200 rpm, and (b) BSA + 0.015% vpB microspheres prepared in olive oil at N =1200 
rpm. 
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microspheres appear wrinkled because of the water loss. Clustering and aggregation 

effects were less pronounced in the microspheres that contained vpB.  

7.5.4 Microsphere size distribution function 

In this section, we formulate a distribution function ( )Nf x  to represent the 

number fraction distribution of BSA microspheres. A wide variety of mathematical and 

empirical distribution functions, that include normal, log-normal, exponential, Rosin-

Rammler, Nukiyama-Tanasawa etc., have commonly been used to fit experimentally 

measured size distributions 112. As it is difficult to construct a generalized functional 

form to represent all microsphere size distributions, it becomes imperative to try 

different distribution functions to find the best fit. We found that a normal probability 

plot of the experimentally measured microsphere diameters gives a poor fit to the data, 

as did a lognormal distribution.  

In this work, we use the Rosin-Rammler empirical relationship given below to 

model the size distribution. The expression is straightforward 112: 

 1( ) ( ) exp( ( ) )b b
N

a x xf x
b a a

−= −  (7.8) 

where a and b are constants to be determined. The experimentally measured number 

fraction distributions are described in terms of the two parameters a and b. The Rosin-

Rammler distribution has an analytical form for the cumulative distribution ( )NF x , 

given by.  

 
0

( ) ( )
x

NF x f u du= ∫  
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 ( ) 1 exp( ( ) )b
N

xF x
a

= − −  (7.9) 

 
 

Data for the microsphere size is generally presented as a number fraction or a 

cumulative fraction in the literature. The coefficients a and b in Eq. (7.8) are obtained 

from a least square fit to the experimental number fraction data. Table 7.2 contains the 

Rosin-Rammler distribution constants corresponding to size distribution of BSA and  

Table 7.2.  Empirically obtained correlation coefficients for number fraction 
distributions. A Rosin-Rammler distribution function of the form 

1( ) ( ) exp( ( ) )b b
N

a x xf x
b a a

−= − is used to model the cumulative fraction distributions of 

BSA and BSA + 0.015 % vpB microspheres  
 
 

Material Speed Mixing tank 
Weber number 

( mWe ) 

a b 

 (rpm)    

BSA 800 55014 3.974 3.853 

BSA 1200 123782 2.005 5.629 

BSA 1500 193409 1.793 5.212 

BSA 1800 278509 1.281 3.788 

BSA + 0.015 

% vpB 

1200  3.884 4.744 
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BSA+vpB microspheres prepared at different stirring speeds. The mixing tank Weber 

number ( mWe ) is also included in the table for reference. The variation of the constants a 

and b with mWe  is also shown in figure 7.6. While the value of a reduces with 

increasing mWe , b appears to increase till it reaches a maximum and then reduces 

for 150000mWe > . Figure 7.7 shows the number fraction distribution of BSA 

microspheres prepared in olive oil at different speeds. The number fraction predicted by 

the theoretical Rosin-Rammler distribution (Eq. (7.8)) is found to be in good agreement 

with the experimental values. To quantify the uniformity and spread of the BSA  
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Figure 7.6.  Variation of the Rosin-Rammler constants a and b with Wem. 
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Figure 7.7.  Normalized number fraction distributions of BSA microspheres prepared in 
olive oil at N = 800, 1200, 1500, and 1800 rpm. A Rosin-Rammler distribution function 
is used to fit the experimental data. 
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microsphere size distributions, we introduce the distribution mid-span (δmid). This 

parameter represents the width of the size distribution at half the maximum value of the 

number fraction. The δmid of BSA microspheres obtained from the corresponding Rosin-

Rammler size distribution function is plotted as a function of mWe  in figure 7.8. The 

value reduces with increasing mWe , indicating a more uniform size distribution at higher 

stirring speeds. Figure 7.8 shows that there is no significant difference in the relative 

magnitude of δmid for BSA microspheres prepared at 1200, 1500, and 1800 rpm. 

However, a much wider distribution is obtained in the case of BSA microspheres 

prepared at 800 rpm. The larger turbulent kinetic energy available in the system at higher 

speeds results in the rapid breakdown of the protein droplets to their stable diameters. 

For the case of impeller speeds lower than 800 rpm, a longer stirring time is required to 

obtain a distribution of stable protein drops. As the time of stirring is kept constant in the 

protocol, irrespective of stirring speed, the size distribution is wider when 800N rpm≤ .  

The cumulative number fraction computed using Eq. (7.9) is a good fit to the 

experimental data, as seen in figure 7.9. It is useful to plot a universal cumulative 

distribution curve, as shown in figure 7.10, to provide an insight into the size distribution 

characteristics prior to microsphere preparation. A new scaling parameter ( )bd a/  is 

defined to collapse the experimentally obtained cumulative number fraction distributions 

onto a single distribution curve.  
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Figure 7.8.  The distribution mid-span (δmid) for BSA microspheres obtained from the 
corresponding Rosin-Rammler distribution as a function of Wem 
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Figure 7.9.  Cumulative number fraction distributions of BSA microspheres prepared in 
olive oil at N = 800, 1200, 1500, and 1800 rpm. A Rosin-Rammler distribution function 
is used to fit the experimental data. 
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Figures 7.11 and 7.12 compare the number and cumulative fractions of a) BSA 

microspheres prepared in olive oil at 1200 rpm, and b) BSA + 0.015% vpB microspheres 

prepared in olive oil at 1200 rpm, respectively. The Rosin-Rammler distribution also 

accurately models the size distribution of the BSA+vpB microspheres. However, the 

addition of the vpB almost doubles the average microsphere diameter and significantly 

alters the spread of the distribution as seen in figures 7.11 and 7.12, as discussed in the 

previous section. The BSA+vpB microspheres can be seen to have a much higher  
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Figure 7.10.  Universal cumulative number fraction distribution of BSA microspheres 
prepared in olive oil. The cumulative size distributions of BSA microspheres prepared at 
N = 800, 1200, 1500, and 1800 rpm are collapsed onto a single distribution curve. 
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distribution mid-span when compared with the BSA microspheres prepared at the same 

stirring speed.  

7.5.5. Self-healing materials using functional colloids and AC electric fields 

With the increased interest in human missions into space and to inter-stellar 

planets, development of new advanced materials for spacecraft construction has assumed 

high priority. Smart materials along with other technologies are necessary to build a 

spacecraft capable of traveling millions of miles from Earth into hostile environments, 

where repairs will be impossible. The focus has therefore been on developing new  
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Figure 7.11.  Normalized number fraction distributions of (a) BSA microspheres 
prepared in olive oil at N = 1200 rpm, and (b) BSA + 0.015% vpB microspheres 
prepared in olive oil at N = 1200 rpm. A Rosin-Rammler distribution function is used to 
fit the experimental data. 
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composite materials that provides self-healing qualities to the spacecraft (in some sense, 

the composite material mimics the response of the human body to a wound inflicted on 

the skin). In currently available self-healing technologies, a microencapsulated healing-

agent is embedded in a composite matrix containing a catalyst capable of polymerizing 

the healing agent 113. A crack is formed in the material matrix wherever damage occurs. 

The crack ruptures the encapsulated microcapsules along the fracture plane, thereby 

releasing the healing agent into the crack plane through capillary action. When the 

healing agent contacts the catalyst, polymerization is initiated and the crack faces are 

thus bonded together.  
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Figure 7.12.  Cumulative number fraction distributions of (a) BSA microspheres 
prepared in olive oil at N = 1200 rpm, and (b) BSA + 0.015% vpB microspheres 
prepared in olive oil at N = 1200 rpm. A Rosin-Rammler distribution function is used to 
fit the experimental data. 
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Figure 7.13. (a) Schematic of experimental set-up showing electrophoretic deposition of 
colloidal particles on scratched ITO electrodes (b) Functional encapsulated colloidal 
particles synthesized in Chapter 7 (bottom) can be used to mimic blood clotting action 
(top) at the site of the crack, (c,d) 4 µm colloidal particles assemble in 1 µm deep 
grooves patterned on photo-resist/ITO surfaces to mimic material cracks on application 
of  applied electric fields.     
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This approach has several advantages: a) The technology for embedding 

microcapsules in polymers and making encapsulated microspheres (as described in this 

section) already exist and are widely used, b) The introduction of microspheres into the 

material matrix is not known to significantly alter the material properties. However, if 

there are no microspheres in the region of failure the crack continues to propagate into 

larger fissures. The challenge therefore is to homogeneously distribute the microspheres 

in the material matrix and engineer a mechanism that will enable the encapsulated 

microspheres to be transported to the site of the propagating crack. Also, the self healing 

efficiency depends on the concentration of the catalyst. It is also important for the 

microspheres to be weak enough to be ruptured by the growing crack. 

Motivated by their potential importance, we would like to engineer self-healing 

materials that utilize the preferential nucleation of functional colloidal particles 

(embedded in the material matrix) near the region of a crack when an AC electric field is 

applied. The propagating crack will rupture the colloidal particles and release the 

encapsulated sealant (vitelline protein B) at the site of the crack and heal it. An 

experimental set-up similar to the design used by Trau et al.12 shown in Fig. 7.13 (a) can 

be used to demonstrate the self-healing principle described above.  

We would like to understand the mechanism of particle aggregation in the region 

of a crack, and use this understanding to quantify and improve self healing techniques 

based on this idea. As described earlier 12, the crack introduces a region of high current 

density and the colloidal particles tend to migrate towards regions of higher current 

density.  We plan to experimentally investigate this effect by using patterned scratches 
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on electrode surfaces to mimic cracks in materials (Figs 7.13c and d). The scratch makes 

the electrode surface inhomogeneous. The colloidal particles are expected to 

preferentially aggregate in the inhomogeneous regions when an electric field is applied. 

In order to observe the deposition process and track the lateral migration of colloidal 

particles, we use optically transparent Indium tin oxide (ITO) electrodes coupled to an 

optical microscope.  Conventional photolithography techniques were used to pattern 

rectangular and circular grooves on the ITO surface (Figs 7.13c and d). A PDMS spacer 

was used to separate the two ITO electrodes.  Then, a colloidal suspension of 4 µm silica 

colloids was placed between the two parallel plate electrodes. The two electrodes are 

then connected to a function generator and an AC electric field was applied normal to 

the electrode surface.  These preliminary experiments demonstrated the lateral transport 

of randomly distributed Brownian colloids towards and into the patterned grooves when 

2.5 Vpp, 30 Hz electric field was applied.  

We plan to conduct carefully planned experiments using the encapsulated 

colloidal particles synthesized in this section with the inhomogeneous ITO electrodes 

(Figs. 7.13c and d).  The functional colloidal particles will contain a patented protein 

sealant/glue (vitelline protein B) encapsulated within BSA protein microspheres of 

different sizes. We will also monitor the particle trajectories when the electric field is 

applied to compute the characteristic transport rates (electrokinetic mobility). The 

experimental results of particle velocities will provide a better understanding of the flow 

physics as the particle approaches the scratch. The particle velocities are expected to 
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increase as it approaches the scratch because of increased current densities in the region 

of the crack.  

Another potential use of this technique could be to direct colloidal paint droplets 

towards a scratch on painted micro-surfaces. Also, fluorescent colloidal particles can be 

directed towards the region of defect to highlight regions of scratch or failure in 

materials.  In summary, this proposed future work aims to: 

• engineer self-healing materials using encapsulated colloids that can be 

transported to the site of a propagating crack when an external AC electric field 

is applied 

 
 

7.6. Conclusions 

A water-in-oil emulsion technique was used to prepare BSA based 

microspheres with a wide range of sizes (1-10 µm). A correlation, given by Eq. (7.7) 

with 1 0 0206 and 0 53c α= . = − . , was developed based on the theory of turbulent 

dispersions, and validated by comparisons with experimental results for a wide range 

of mWe . The exponent α deviated from the classical value of α=-0.6. The correlation is 

valid for non-coalescing dispersions with a dilute dispersed phase alone. The uniformity 

of the BSA microsphere size distributions was found to increase with stirring speed. 

However, increasing the stirring speed beyond N=1200 rpm did not considerably reduce 

the spread of the size distribution.   
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The average size of the BSA microspheres was doubled with the addition of a 

0 015%.  v/v aqueous solution of Vitelline protein B (vpB) to the dispersed phase. The 

addition of vpB also significantly altered the size distribution of the BSA microspheres, 

resulting in microspheres with a wider distribution when compared with the 

microspheres without vpB.  

A Rosin-Rammler distribution function was found to accurately represent the 

BSA microsphere distribution data. With a better understanding of the physics of 

microsphere formation and with the present correlation, it is now possible to provide a 

good estimate of the average sphere size of colloidal particles synthesized using 

emulsion-polymerization prior to microsphere preparation. This knowledge is necessary 

to produce microspheres of a specified average diameter and size distribution, key for 

controlled drug release kinetics. Development of novel engineering applications for 

these encapsulated microspheres, besides its application in the pharmaceutical industry 

for drug delivery, is planned for future work.  In particular, these functional colloidal 

particles encapsulated with vPB can be actively manipulated using external electric 

fields to engineer self-healing materials that mimic blood clotting. 
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8. CONCLUSIONS 

8.1. Summary of Conclusions 

A prerequisite to assembling nano- and micro- scale particles into ordered 

structures and controllable devices is the ability to sensitively measure and manipulate 

colloidal interactions on the order of thermal energy, kT.  The work in this dissertation 

explores two basic paradigms for manipulating colloidal particles: self- and directed- 

assembly.  Self-assembly of colloidal particles was achieved by patterning synthetic 

energy landscapes on substrates while directed assembly was realized using external 

electric fields.  The ultimate goal of this research is to provide robust engineering 

solutions for manipulating particle structure in materials and device applications.  With 

this goal in mind, this dissertation addressed the following issues 1) develop 

fundamental measurements and models for equilibrium self-assembly on energy 

landscapes that directly connect interfacial colloidal interactions, dynamics and structure 

to energy landscape features, 2) constructively combine electric fields with energy 

landscapes to manipulate colloidal configurations and anneal/ orient colloidal structures, 

3) identify connections between colloidal microstructure, electrokinetic transport 

mechanisms, and electrical impedance properties to design and control nanoparticle 

based integrated micro- fluidic and electronic devices, and 4) synthesize functional 

colloidal particles that can be manipulated using external fields to engineer multi-

functional materials.   The significant conclusions from this work are summarized 

below: 
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• A conceptually new approach to sensitively image energy landscapes on physically 

and chemically patterned surfaces was demonstrated.  This new imaging paradigm 

exploits Brownian probes to naturally interrogate interactions on the order of the 

thermal energy kT and thus overcomes inherent mechanical limitations in scanning 

probe methods 49,50.  Because we monitor particle excursions in concentrated 

colloidal fluids, images of potential energy landscapes were obtained via an inverse 

Monte Carlo analysis that interpret equilibrium colloidal distributions as three 

dimensional position dependent potentials due to conservative forces and rigorously 

connects particle-pattern, particle-particle, and particle-field interactions to 

interfacial structures.  For comparison, inversion of measured distributions with 

Boltzmann's equation provided the particle-surface interaction in the presence of 

many-body packing effects to produce free energy landscapes.  These images 

quantitatively capture colloidal interactions, dynamics, and structure on patterned 

surfaces, which provides essential information to design, control, and optimize 

template directed colloidal self-assembly processes.  The experiments in Section 4 

have imaged height contours on lithographically patterned glass surfaces that display 

quantitative agreement with Atomic Force Microscopy surface images.  Colloidal 

probe concentration was also varied to investigate image resolution and acquisition 

times associated with this technique.  These findings should benefit a broad 

interdisciplinary audience based on applications of Brownian probes to imaging 

multiscale and multidimensional surfaces in synthetic and biomolecular systems.   
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• A consistent analysis of self-diffusion in inhomogeneous fluids of concentrated 

diffusing colloidal probes on energy landscapes was developed.  This is important to 

the temporal imaging process and to self-assembly kinetics.  A simple expression for 

self-diffusion of DCP on landscape features was derived in Section 4 that captures 

the combined effects of multi-body hydrodynamic interactions, particle escape rates 

from free energy wells, and cooperative rearrangements associated with particles 

moving through their coordination shell.  This expression accurately predicts the 

long-time self-diffusion coefficient from the measured short-time diffusion 

coefficient and free-energy well for different average colloidal particle 

concentrations.  In addition, the expression for DS
L is also accurate for limiting cases 

including infinite dilution on patterned surfaces and all sub-monolayer fluid 

concentrations on homogeneous surfaces.  To further demonstrate a consistent 

analysis of how energy landscapes modulate DCP dynamics, measured density 

fluctuations were compared with 2D GCMC simulated fluctuations, and an excellent 

agreement was obtained.  The ability to describe inhomogeneous colloidal fluid 

microstructural dynamics on energy landscapes using the new theoretical framework 

described in Section 4 builds on previous studies investigating colloidal dynamics in 

equilibrium transitions114,115, in non-equilibrium transitions27,116, and in sub-3D 

confinement117.   

• In Section 5, we have demonstrated the use of normal external electric fields to tune 

the interactions between colloidal particles and control assembly into ordered 

structures on homogeneous and patterned electrodes. The nature of the colloidal 
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interactions was found to be sensitive to the strength, frequency of the AC field and 

the electrolyte used.  Cycling the AC field frequencies was found to be an effective 

way to anneal equilibrium colloidal configurations. We also observed the preferential 

assembly of colloidal particles in energy landscape features made on the electrode 

surface when an AC field was applied.  The results from this work suggest a general 

strategy to integrate self- and directed- assembly methods as a means to control 

nano- and micro- particle structure formation and orientation. 

• In Section 6, we have demonstrated the ability to tune the directed assembly of 

different nanoparticle configurations within the gap of coplanar micro- 

electrode/fluidic devices via several electrokinetic transport mechanisms.  

Quantitative predictions of dominant transport mechanisms as a function of AC 

electric field amplitude and frequency were consistent with steady-state 

microstructures of nanoparticles within electrode gaps observed using video 

microscopy.  The electrical impedance spectra associated with each nanoparticle 

configuration was measured and modeled using representative equivalent circuits  

that accounted for the entire measurement system (including parasitics, the function 

generator, etc.) and isolated the contribution of the assembled structures from the 

system impedance.  In particular, a functional electrical switch using colloidal 

particles was realized by reversibly forming and breaking colloidal wires between 

electrode gaps.  The resistance of the switch in the OFF and ON states was 29 kΩ 

and 2 Ω respectively, which translates to three orders of magnitude change in an 

electrical property achieved via colloidal assembly.  These models and more 
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importantly, this methodology, can then be applied directly to the design of multi-

functional and reconfigurable devices that use colloidal materials to tune electrical 

properties. 

• In Section 7, a water-in-oil emulsion technique was used to prepare BSA based 

encapsulated colloids with a wide range of sizes (1-10 µm). A fluid-mechanics based 

correlation inspired by the theory of turbulent dispersions was developed to predict 

the average particle size obtained as a function of stirring speed.  The uniformity of 

the BSA microsphere size distributions was found to increase with stirring speed. 

The average size of the BSA microspheres was doubled with the addition of a 

0 015%.  v/v aqueous solution of a patented adhesive/sealant Vitelline protein B 

(vpB) to the dispersed phase.  A Rosin-Rammler empirical distribution function was 

found to accurately represent the BSA microsphere distribution data.  With a better 

understanding of the physics of microsphere formation and with the present 

correlation, it is now possible to accurately predict the average size of colloidal 

particles synthesized using emulsion-polymerization.  These functional colloidal 

particles encapsulated with vPB can be manipulated using external electric fields to 

engineer self-healing materials as described in Section 7. 
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9. FUTURE RESEARCH 

9.1. Synopsis 

This section briefly summarizes current and future work not presented as part of 

this dissertation.  The ideas discussed below are closely related to Sections 4-7 and are in 

tune with the central research theme of intelligently combining energy landscapes, 

external electric fields and different particle-particle interaction potentials to engineer 

defect free patterned colloidal crystals and multifunctional materials.  

9.2. Imaging Chemical Patterns Using Diffusing Colloidal Probes 

Results presented in Section 4 of this dissertation included experimental 

measurements and theoretical models to understand the quantitative connections 

between colloidal interactions and microstructure in quasi-2D inhomogeneous colloidal 

fluids.  Understanding equilibrium structure of colloidal fluids adjacent to homogeneous 

and patterned surfaces provides a basis to intelligently tune colloidal and external 

potentials to reversibly control interfacial colloidal crystallization from fluids near 

surfaces.  Having successfully demonstrated the use of DCP to image physically 

patterned surfaces, an obvious extension of this work would be to use diffusing colloids 

as probes of energy landscapes associated with chemical templates. 

Chemically patterned substrates can also be used to modulate colloidal assembly, 

quite like the physical patterns used in Section 4.  Thermodynamically, the pattern 

introduces the colloidal dispersion to a free energy landscape, which creates density  
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Figure 9.1.  Lateral density variations in interfacial colloidal fluid of 4 µm PS particles 
on chemically patterned substrates. The lighter regions correspond to glass and the 
darker regions correspond to a 10 nm Au film vapor deposited on the glass substrate 
through a photomask. 
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gradients in the lateral direction.  Preliminary results have been obtained for chemical 

potential energy landscapes produced by patterning 10nm Au films on SiO2 surfaces 

(Fig. 9.1) to produce van der Waals energy wells mimicking the physical landscapes 

used in this dissertation.  The glass slide and gold surfaces were rendered hydrophobic 

with octadecyltrimethylchlorsilane118 and thiol respectively, followed by subsequent 

adsorption of PEO-PPO-PEO brushes onto the substrate and a colloidal dispersion 

containing 4 µm PS colloids to sterically stabilize the system.  The colloidal particles 

were suspended in a 0.4 M NaCl ionic solution so that the electrostatic interactions are 

essentially screened.  The only appreciable interactions to consider in this work are the 

van der Waals interactions between the colloidal particles and the underlying substrate 

and the hard-wall introduced by the interpenetration and compression of the 

macromolecular layers.   

The equilibrium partitioning of colloids seen in Fig. 9.1 is dictated by the higher 

PS-Au van der Waals interaction compared to PS-glass, and to the first approximation 

can be determined using Boltzmann’s equation. Following the general methodology 

presented in Section 4 to analyze inhomogeneous colloidal fluids, we will monitor the 

Brownian trajectories of the DCP over the chemically patterned substrate to construct a 

two-dimensional equilibrium density distribution function.  In contrast to the 

experimental results presented in Section 4, the potential energy landscape u(x,y) in this 

case does not correspond to a spatially varying surface topography.  Instead, u(x,y) 

corresponds to a position dependent van der Waals attractive energy wells associated 
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with the gold and the glass substrate.  The inverse Monte Carlo algorithm developed in 

Section 4 needs to be modified to iteratively tune the van der Waals interaction potential 

at every spatial position until the simulated density distribution matches the measured 

equilibrium distribution function.  We also plan to investigate how particle-particle and 

varying particle-wall interaction affects the lateral self-diffusion of the inhomogeneous 

colloidal fluid.  In particular, we would like to test the expression for self-diffusion of 

DCP on physical landscape features developed in this dissertation to analyze the 

dynamics of colloidal particles diffusing above the chemically patterned substrate in Fig. 

9.1.  This expression accounts for the combined effects of multi-body hydrodynamic 

interactions and the particle escape rates from the free-energy wells associated with the 

chemical pattern. The successful completion of this work in the future will conclusively 

demonstrate the use of statistical mechanical analyses to quantitatively explain 

equilibrium density variations and self-diffusion in quasi 2D colloidal fluids on 

physicochemical patterned surfaces.  In summary, this proposed future work aims to: 

• use chemically patterned substrates to modulate quasi 2D local density via 

free energy landscapes leading to crystallization in interfacial colloidal fluids 

• quantitatively image chemical patterns on surfaces and explain self-diffusion 

using the general statistical mechanics framework described in Section 4 to 

analyze inhomogeneous colloidal fluids 
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9.3. Thermodynamic Control of 2D Colloidal Crystallization 

It is important to understand how particle-particle interactions, homogeneous 

surfaces, and gravity are connected to 2D interfacial colloidal fluid and crystal 

microstructures and dynamic transitions between them.  In the following, experimental 

tasks are described that use optical microscopy techniques to investigate in-situ the 2D 

fluid-crystal coexistence and crystallization dynamics over homogeneous substrates. The 

thermodynamics and kinetics of 2D crystallization on surfaces will be investigated with 

the intention of using a large 2D ordered domain as a template for inhomogeneous 3D 

interfacial crystallization.   

Experiments will use hydrophobically modified silica or PS colloids with 

adsorbed copolymer and unadsorbed polymers, micelles, or nanoparticles to tune both 

van der Waals and depletion attraction and 2D crystallization (see Fig 9.2). This 

experimental system in effect integrates two model potentials extensively characterized 

in the literature in terms of pair interactions and phase behavior (see Fig 9.2 and refs119-

122).  We plan to use micron sized fluorescent silica colloids (fluorescent core-shell and 

core-fluorescent shell, Fig 9.3)123,124,
 
which can be used in both 2D video microscopy 

and 3D confocal microscopy. Silica colloid and glass slide surfaces will be rendered 

hydrophobic with octadecanol125 and octadecyltrimethylchlorsilane118 followed by 

subsequent adsorption of PEO-PPO-PEO brushes that can be tuned to modulate the short 

range van der Waals potential. However, because such short range van der Waals 

potentials are known to often produce dynamic arrest,126 the proposed work aims to 

superimpose an additional, longer range depletion potential, which is well documented 
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in the literature and our preliminary work (Figs 9.2, 9.3) to produce crystals with less 

kinetic arrest problems.127,128 Preliminary results demonstrate our ability to form crystals 

in quasi-2D systems next to homogeneous surfaces (Figs 9.2, 9.3) using 2.2 and 1.4 µm 

silica colloids with sodium dodecyl sulfate (SDS) micellar depletants.  Previous studies 

have investigated depletion crystallization of bulk colloidal fluids on wall surfaces127,128 

and anomalous interactions in confined gaps,129 but none have investigated homogenous 

quasi 2D crystallization near a single wall (and with superimposed short range van der 

Waals potential).  A significant portion of the future work will focus on identifying 

interfacial crystallization conditions (Fig 9.2), measuring particle and surface 

interactions,
 

and quantifying dynamics associated with structural transitions and 

freezing/melting.
 
 

One additional aspect to be explored in greater detail as part of this objective is to 

understand how the particle-wall potential affects 2D crystallization.  This aspect of the 

work has not been systematically addressed in the literature thus far.  Part of this effort 

will focus on decoupling particle-wall and particle-particle van der Waals attraction via 

adsorption of thicker layers on the wall130.
 
(In contrast, the role of naturally greater 

colloid-surface depletion attraction45
 
on 2D crystallization will simply be documented.) 

This objective will explore a potentially useful preliminary result where increased 

colloid-surface van der Waals attraction modulated by interfacial gold films has been 

observed to affect 2D depletion crystals of 1.4 µm colloids: hexagonal domains form on 

bare glass and gold films < ~20nm and square domains form on gold films > ~20nm 

(Fig. 9.3).  We believe that the particle-surface van der Waals interactions influence the   
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Figure 9.2.  (Top-bottom, left-right) Transmitted light CCD images of levitated quasi 
2D phase behavior of 1 micron PS colloids stabilized with F108 interacting via micellar 
(SDS micelles at room temperature) mediated depletion potentials with fluid, fluid-solid, 
solid-gel, and gel microstructures. 
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interfacial energies associated with how different crystal planes wet the surface.  This is 

a potentially powerful method to produce stacking fault free FCC crystals grown from 

100 faces due to interfacial wetting effects131,132
 

instead of microfabricated 

templates1,4,133.  In summary, this proposed future work aims to: 

• understand the equilibrium 2D crystallization on Si02 and Au surfaces due to 

van der Waals and micellar mediated depletion interactions 

• control reversible 2D crystallization via tunable van der Waals and depletion 

potentials to thermodynamically anneal and quench square and hexagonal 

crystals 

     

           
 

 
Figure 9.3. (a) Fluorescent shell-core colloids (1.4 µm) interacting via SDS mediated 
depletion forces for quasi 2D video microscopy and 3D confocal microscopy and, (b) 
square domain crystals on >20nm gold films due to formation of higher energy FCC face 
on attractive substrate. 
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9.4. Kinetic Control of 2D Attractive Colloidal Crystals Using AC Fields 

In this dissertation, directed colloidal assembly using external AC fields (Section 

5 and 6) has been discussed in the context of electrostatically stabilized systems where 

the inter-particle interaction potential is purely repulsive.  As part of our future work, we 

plan to couple AC electric fields and attractive particle-particle interactions due to 

depletion forces to effectively orient and anneal 2D colloidal crystals.  This will allow us 

to overcome 1) melting away of ordered colloidal domains formed in Section 5 when the 

external electric field is turned off and, 3) formation of polycrystalline domains and 

defects in colloidal crystals formed with depletion interactions (Fig 9.2).  As the 

depletion studies described earlier are carried out at high ionic strengths, the 

electrophoretic transport/manipulation of colloidal particles is challenging due to 

sufficiently reduced mobilities as a consequence of charge screening.  However, active 

manipulation of colloidal particles at high ionic strengths (high solution conductivity) is 

possible with dielectrophoresis, which is based on the polarization of colloidal particles 

in a non-uniform electric field as described in Section 6, and will be adapted to this 

study.  The scaling analysis developed in Section 6 will be used to identify regions in the 

voltage-frequency phase space where dielectrophoresis is the dominant mode of 

transport.  

To constructively contribute to 2D crystallization rather than melting existing 

crystals, it will be necessary to investigate a range of AC field amplitudes and 

frequencies that produce different characteristic particle displacements and transport 

rates and possibly cycle between these states. Although the correspondence between 2D 
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crystals formed via depletion interactions in Figs 9.2, 9.3 and via AC electric fields in 

Section 5 suggest obvious conditions where enhanced 2D crystallization might be 

observed, their optimal constructive interplay will be analyzed in terms of a Peclet 

number characterized by the relative field driven transport rate and Brownian rate 

(including hydrodynamic interactions60,134) within fluid and crystal phases. Attempts to 

anneal pre-existing depletion/van der Waals crystals will use AC electric fields that 

modulate effective particle and surface potentials from repulsive to attractive depending 

on frequency and electrolyte.72 

 

 

     

           
 
 
Figure 9.4. Depletion crystals of 2.2 µm SiO2 colloids between gold film electrodes 
with (top) no applied field, and (bottom) 2.5V-1MHz AC field resulting in crystal 
alignment with field via dielectrophoretic forces. 
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Lateral AC electric fields produced via thin gold films on either side of a bare 

glass surface region135 will also be investigated primarily for the purpose of annealing 

crystals but also with the aim of orienting 2D crystals. In preliminary results (Figs 9.4, 

9.5), 2.2 µm SiO2 particles levitated above glass between gold electrode films have been 

shown to display various modes of transport due to electrophoretic, AC electro-osmotic, 

and dielectrophoretic forces, which produce a variety of structures and dynamic 

responses. Lateral fields will be investigated to use oscillatory electrophoretic motion to 

anneal polycrystalline structures (Fig 9.5a) and to use dielectrophoretic forces to form 

linear precursors to oriented, single domain crystals or square lattice structures (Figs 9.4, 

9.5b).  Improvement in ordering of the colloidal crystal with electric field assisted 

annealing will be monitored by tracking the bond order correlation function, which is 

sensitive to local defects and polycrystallinity.  This is the most exploratory task in this 

future work with the aim of understanding how various field configurations and 

     

           
 

 
Figure 9.5.  Depletion crystals of 2.2 µm SiO2 colloids between gold film electrodes 
with (top) no applied field, and (bottom) 2.5V-1MHz AC field resulting in an annealed 
hcp colloidal crystal. 
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transport mechanisms might be used to enhance formation of attractive 2D crystals. In 

summary this proposed objective aims to: 

• employ AC electrophoretic assembly of metastable crystals on Au electrodes 

to manipulate pre-crystallization and depletion pathways in depletion crystals 

• investigate AC electrophoretic and dielectrophoretic forces normal/parallel to 

surface for mechanical annealing and orientational control of 2D crystallites 

 9.5. Attraction Driven Colloidal Crystallization on Patterned Substrates 

The final objective of the proposed future research is to use depletion mediated 

attractive colloidal interactions and potential energy landscape due to the underlying 

patterned substrates to induce the formation of robust, defect free patterned colloidal 

crystals.  By carefully tuning the particle-particle and particle-wall interactions (in effect 

modifying the free-energy landscape), we plan to pattern colloidal crystals on physical 

templates with arbitrary geometry, and on attractive patches on chemically modified 

substrates. The ability to engineer patterned colloidal crystals has immediate applications 

in nanophotonics as optical waveguides. 

We performed preliminary experiments over physically and chemically patterned 

substrates using 1.4 µm SiO2 colloids at SDS depletant concentrations lower than the 

value required for crystallization over homogeneous substrates (Fig 9.6).  We observe a 

crystalline phase within a pattern and a fluid-phase in the region outside the pattern.  

This was also observed in MC simulations performed with measured depletion inter-
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particle potentials.  This encouraging preliminary results calls for a more systematic 

analysis where the particle-particle and particle-wall interactions are carefully varied to 

identify conditions where a crystal phase within the pattern co-exists with a fluid phase 

outside it. 

Physical patterns on glass substrates comprising of a periodic array of harmonic 

wells were fabricated as described in Section 3.  Au films (chemical patterns) in Figure 

9.6 were patterned on glass microscope slides by metal evaporation using TEM grids as 

masks.  The thickness of gold will be varied to obtain the particle-wall van der Waals 

interaction required. In summary, we plan to 

• extend the depletion attraction driven interfacial crystallization studies to 

patterned substrates by studying interfacial phase behavior driven by a 

combination of short-range particle-particle and particle-substrate attractions and 

potential energy landscapes provided by the underlying template. 

     

      

Au SiO2Au SiO2

 
 

 
Figure 9.6.  Colloidal crystals formed on physical patterns (a) and chemical patterns (b) 
using depletion driven attractive particle interactions. 
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• use MC simulations of 2D attractive colloidal fluids over patterned 

substrates to guide further experiments aimed at growing patterned attractive 

colloidal crystals.  

 

 

 

 

 

 

 

 



 

 

160

REFERENCES 

1 A. van Blaaderen, R. Ruel, and P. Wiltzius, Nature 385 (23), 321 (1997). 

2 G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002). 

3 J. Aizenberg, P. V. Braun, and P. Wiltzius, Physical Review Letters 84 (13), 
2997 (2000). 

4 W. Lee, A. Chan, M. A. Bevan, J. A. Lewis, and P. V. Braun, Langmuir 20 (12), 
5262 (2004). 

5 Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001). 

6 P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chemistry of Materials 
11 (8), 2132 (1999). 

7 A. P. Gast and W. B. Russel, Phys. Today 51 (12), 24 (1998). 

8 K.-H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, 
and A. G. Yodh, Phys. Rev. Lett. 85 (8), 1770 (2000). 

9 X. M. Zhao, Y. N. Xia, and G. M. Whitesides, Journal of Materials Chemistry 7 
(7), 1069 (1997). 

10 Y. Sun and G. C. Walker, J. Phys. Chem. B 106, 2217 (2002). 

11 Z. Cheng, W. B. Russel, and P. M. Chaikin, Nature 401, 893 (1999). 

12 M. Trau, S. Sankaran, D. A. Saville, and I. A. Aksay, Nature 374 (6521), 437 
(1995). 

13 T. Gong and D. W. M. Marr, Langmuir 17 (8), 2301 (2001). 



 

 

161

14 S. Yamamuro, D. F. Farrell, and S. A. Majetich, Physcial Review B 65, 224431 
(2002). 

15 C. Mio and D. W. M. Marr, Advanced Materials 12 (12), 917 (2000). 

16 P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, Rev. Sci. Instr. 73, 
1956 (2002). 

17 M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, Science 249, 749 (1990). 

18 S. H. Park and Y. Xia, Langmuir 15, 266 (1999). 

19 B. J. Ackerson and N. A. Clark, Phys. Rev. A 30 (2), 906 (1984). 

20 W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions. 
(Cambridge University Press, New York, 1989). 

21 D. C. Prieve, Adv. Colloid Interface Sci. 82, 93 (1999). 

22 J. C. Crocker and D. G. Grier, J. Colloid. Interface Sci. 179, 298 (1996). 

23 D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms 
to Applications, 2nd ed. (Academic Press, San Diego, CA, 2002). 

24 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. (Oxford 
Science, New York, 1987). 

25 P. N. Pusey, Liquids, Freezing, and Glass Transitions. (Elsevier, Amsterdam, 
1991). 

26 J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 73 (2), 352 (1994). 

27 E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 
287, 627 (2000). 



 

 

162

28 J. A. Lewis, J. Am. Ceram. Soc 83 (10), 2341 (2000). 

29 B. Balzer, M. K. M. Hruschka, and L. J. Gauckler, J. Colloid. Interfac. Sci. 216, 
379 (1999). 

30 M. Cloitre, R. Borrega, F. Monti, and L. Leibler, Phys. Rev. Lett. 90 (6), 068303 
(2003). 

31 A. F. Routh and W. B. Russel, Langmuir 15, 7762 (1999). 

32 B. J. Ash, L. S. Schadler, and R. W. Siegel, Materials Letters 55, 83 (2002). 

33 C. F. Zukoski, Chemical Engineering Science 50 (24), 4073 (1995). 

34 A. M. Kulkarni and C. F. Zukoski, Langmuir 18 (8), 3090 (2002). 

35 J. H. Holtz and S. A. Asher, Nature 389, 829 (1997). 

36 G. S. Pan, R. Kesavamoorthy, and S. A. Asher, Phys. Rev. Lett. 78 (20), 3860 
(1997). 

37 E. Yablonovitch, Physical Review Letters 58, 2059 (1987). 

38 E. M. Lifshitz, J. Exp. Theor. Phys. USSR 29, 94 (1955). 

39 I. E. Dzaloshinskii, E. M. Lifshitz, and L. P. Pitaerskii, Adv. Phys. 10, 165 
(1961). 

40 M. A. Bevan and D. C. Prieve, Langmuir 15 (23), 7925 (1999). 

41 V. A. Parsegian and G. H. Weiss, J. Colloid Interface Sci. 81, 285 (1981). 

42 B. A. Pailthorpe and W. B. Russel, J. Colloid Interface Sci. 89 (2), 563 (1982). 



 

 

163

43 S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954). 

44 A. Vrij, Pure and Appl. Chem. 48, 471 (1976). 

45 D. L. Sober and J. Y. Walz, Langmuir 11 (7), 2352 (1995). 

46 H. J. Wu and M. A. Bevan, Langmuir 21 (4), 1244 (2005). 

47 D. C. Prieve, F. Luo, and F. Lanni, Faraday Disc. 83, 297 (1987). 

48 H. Chew, D. S. Wang, and M. Kerker, Applied Optics 18, 2679 (1979). 

49 G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56 (9), 930 (1986). 

50 W. A. Ducker, T. J. Senden, and R. M. Pashley, Nature 353 (6341), 239 (1991). 

51 J. K. H. Horber and M. J. Miles, Science 302, 1002 (2003). 

52 C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, D. V. Vezenov, and C. 
M. Lieber, Science 265 (5181), 2071 (1994). 

53 E. Kokkoli and C. F. Zukoski, Langmuir 17, 369 (2001). 

54 K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Science 295, 
1702 (2002). 

55 L. T. Mazzola, C. W. Frank, S. P. A. Fodor, C. Mosher, R. Lartius, and E. 
Henderson, Biophysical Journal 76, 2922 (1999). 

56 M. Patra and P. Linse, Nano Lett. 6 (1), 133 (2006). 

57 H.-J. Wu, T. O. Pangburn, R. E. Beckham, and M. A. Bevan, Langmuir 21 (22), 
9879 (2005). 



 

 

164

58 J. Baumgartl and C. Bechinger, Europhys. Lett. 71, 487 (2005). 

59 T. O. Pangburn and M. A. Bevan, J. Chem. Phys. 123, 174904 (2005). 

60 S. Anekal and M. A. Bevan, J. Chem. Phys. 125, 034906 (2006). 

61 J. F. Brady, J. Fluid Mech. 272, 109 (1994). 

62 H. Eyring, J. Chem. Phys. 4, 283 (1936). 

63 M. Baus and J. L. Colot, Phys. Rev. A 36 (8), 3912 (1987). 

64 F. L. Roman, J. A. White, and S. Velasco, Europhys. Lett. 42 (4), 371 (1998). 

65 P. Richetti, J. Prost, and P. Barois, Journal De Physique Lettres 45 (23), 1137 
(1984). 

66 M. Bohmer, Langmuir 12 (24), 5747 (1996). 

67 M. Trau, D. A. Saville, and I. A. Aksay, Langmuir 13 (24) (1997). 

68 F. Nadal, B. Pouligny, C. Ybert, A. Ajdari, and F. Argoul, Abstracts of Papers of 
the American Chemical Society 224, U432 (2002). 

69 W. D. Ristenpart, I. A. Aksay, and D. A. Saville, Physical Review E 69 (2) 
(2004). 

70 Y. Solomentsev, M. Bohmer, and J. L. Anderson, Langmuir 13 (23), 6058 
(1997). 

71 S. A. Guelcher, M. A. Bevan, Y. Solomentsev, and J. L. Anderson, Langmuir 16 
(24), 9208 (2000). 

72 J. A. Fagan, P. J. Sides, and D. C. Prieve, Langmuir 21 (5), 1784 (2005). 



 

 

165

73 J. A. Fagan, P. J. Sides, and D. C. Prieve, Langmuir 22 (24), 9846 (2006). 

74 T. M. Squires, J. Fluid Mech. 443, 403 (2001). 

75 P. J. Sides, Langmuir 17 (19), 5791 (2001). 

76 M. Schmidt, M. Dijkstra, and J.-P. Hansen, J. Phys.: Condens. Matter 16, S4185–
S4194 (2004). 

77 R. S. Saksena and L. V. Woodcock, J. Chem. Phys. 122, 164501 (2005). 

78 R. W. O'Brien, D. W. Cannon, and W. N. Rowlands, J. Colloid Interface Sci. 
173, 406 (1995). 

79 T. C. Halsey, Science 258 (5083), 761 (1992). 

80 H. Morgan, M. P. Hughes, and N. G. Green, Biophys. J. 77, 516 (1999). 

81 R. Krupke, F. Hennrich, H. v. Löhneysen, and M. M. Kappes, Science 301 
(5631), 344 (2003). 

82 B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, Nature 394, 253 
(1998). 

83 A. Yethiraj and A. v. Blaaderen, Nature 421, 513 (2003). 

84 K. Hermanson, S. Lumsdon, J. Williams, E. Kaler, and O. Velev, Science 294, 
1082 (2001). 

85 H.-J. Wu, W. N. Everett, S. G. Anekal, and M. A. Bevan, Langmuir 22, 6826 
(2006). 

86 E. M. Furst and A. P. Gast, Phys. Rev. E 62 (5), 6916 (2000). 



 

 

166

87 A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, J. Phys. D: 
Appl. Phys. 36, 2584–2597 (2003). 

88 R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications. 
(Academic Press, New York, 1981). 

89 R. W. Obrien, Journal of Fluid Mechanics 190, 71 (1988). 

90 T. B. Jones, Electromechanics of Particles. (Cambridge University Press, 
Cambridge, 1995). 

91 J. Wu, Y. Ben, D. Battigelli, and H.-C. Chang, Ind. Eng. Chem. Res. 44, 2815 
(2005). 

92 P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. 
Mbindyo, and T. E. Mallouk, Appl. Phys. Lett. 77 (9), 1399 (2000). 

93 F. Carrique, F. J. Arroyo, M. L. Jimenez, and A. V. Delgado, J. Chem. Phys. 118, 
1945 (2003). 

94 M. N. V. R. Kumar, Journal of Pharmacy and Pharmaceutical Sciences 3 (2), 234 
(2000). 

95 F. Kratz, I. Fichtner, U. Beyer, P. Schumacher, T. Roth, H. H. Fiebig, and C. 
Unger, European Journal of Cancer 33, 784 (1997). 

96 Y. Matsumura and H. Maeda, Cancer Research 46 (12), 6387 (1986). 

97 Y. Takakura, T. Fujita, M. Hashida, and H. Sezaki, Pharmaceutical Research 7 
(4), 339 (1990). 

98 A. F. Yapel, Methods in Enzymology 112, 3 (1985). 

99 A. Giletto, Technical Report, Lynntech Inc., College Station, TX, 1998. 



 

 

167

100 D. Katti and N. Krishnamurti, Journal of Microencapsulation 16 (2), 231 (1999). 

101 A. N. Kolmogorov, DOKLADY AKADEMII NAUK SSSR 66 (5), 825 (1949). 

102 J. O. Hinze, Aiche Journal 1 (3), 289 (1955). 

103 G. W. Zhou and S. M. Kresta, Chemical Engineering Science 53 (11), 2063 
(1998). 

104 A. W. Pacek, C. C. Man, and A. W. Nienow, Chemical Engineering Science 53 
(11), 2005 (1998). 

105 M. Nishikawa, Mori, F., and Fujieda, S., Journal of Chemical Engineering of 
Japan 20, 82–88 (1987). 

106 J. Baldyga, J. R. Bourne, A. W. Pacek, A. Amanullah, and A. W. Nienow, 
Chemical Engineering Science 56 (11), 3377 (2001). 

107 A. W. Pacek, P. Ding, and A. W. Nienow, Chemical Engineering Science 56 
(10), 3247 (2001). 

108 J. H. Waite and A. C. Riceficht, Biochemistry 26 (24), 7819 (1987). 

109 F. Groeneweg, F. Vandieren, and W. G. M. Agterof, Colloids and Surfaces a-
Physicochemical and Engineering Aspects 91, 207 (1994). 

110 W. J. Tjaberinga, A. Boon, and A. K. Chesters, Chemical Engineering Science 
48 (2), 285 (1993). 

111 K. Shimizu, K. Minekawa, T. Hirose, and Y. Kawase, Chemical Engineering 
Journal 72 (2), 117 (1999). 

112 A. H. Lefebvre, Atomization and Sprays (Hemisphere Publishing Corporation, 
Washington D. C., 1989). 



 

 

168

113 S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. 
Sriram, E. N. Brown, and S. Viswanathan, Nature 409 (6822), 794 (2001). 

114 U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science 
292, 258 (2001). 

115 A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, and A. G. Yodh, Science 
309, 1207 (2005). 

116 W. K. Kegel and A. v. Blaaderen, Science 287, 290 (2000). 

117 Q.-H. Wei, C. Bechinger, and P. Leiderer, Science 287, 625 (2000). 

118 A. Ulman, Chem. Rev. 96, 1553 (1996). 

119 M. A. Bevan and P. J. Scales, Langmuir 18 (5), 1474 (2002). 

120 M. A. Bevan, S. N. Petris, and D. Y. C. Chan, Langmuir 18 (21), 7845 (2002). 

121 G. Fernandes and M. A. Bevan, submitted (2005). 

122 K. Hwang, H.-J. Wu, and M. A. Bevan, Langmuir 20 (26), 11393 (2004). 

123 A. van Blaaderen and A. Vrij, Langmuir 8, 2921 (1992). 

124 L. M. Rossi, L. Shi, F. H. Quina, and Z. Rosenzweig, Langmuir 21, 4277 (2005). 

125 A. K. van Helden, J. W. Jansen, and A. Vrij, J. Colloid Interface Sci. 81 (2), 354 
(1981). 

126 K. A. Dawson, Curr. Opin. Colloid In. 7, 218 (2002). 

127 J. R. Savage, D. W. Blair, A. J. Levine, R. A. Guyer, and A. D. Dinsmore, 
Science 314 (5800), 795 (2006). 



 

 

169

128 A. D. Dinsmore, A. G. Yodh, and D. J. Pine, Physical Review E 52 (4), 4045 
(1995). 

129 B. Cui, B. Lin, D. Frydel, and S. A. Rice, Phys. Rev. E 72, 021402 (2005). 

130 M. Bevan, PhD Dissertation, Carnegie Mellon University, 1999. 

131 D. W. Marr and A. P. Gast, J. Chem. Phys. 99 (3), 2024 (1993). 

132 D. W. M. Marr and A. P. Gast, Phys. Rev. E 53 (4), 4058 (1995). 

133 K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, 
and A. G. Yodh, Physical Review Letters 85 (8), 1770 (2000). 

134 S. Anekal, P. Bahukudumbi, and M. A. Bevan, Phys. Rev. E 73, 020403 (2006). 

135 P. Bahukudumbi, W. N. Everett, G. Huff, Z. Ouenies, D. Lagoudas, A. Beskok, 
and M. A. Bevan, in preparation (2007). 

 
 

 

 

 

 

 

 

 

 



 

 

170

VITA 

 
Pradipkumar Bahukudumbi graduated with a Bachelor’s degree in Mechanical 

Engineering degree from the University of Madras, India in May 2000.  He was ranked 

first in a graduating class of 80 students.  In August 2000, he joined the mechanical 

engineering department at Texas A&M University for his graduate studies and received 

his Master of Science degree in Mechanical Engineering in December 2002.  His 

master’s thesis was focused on developing phenomenological models for rarefied gas 

flows in thin film slider bearings.  He enrolled in the doctoral program in mechanical 

engineering at Texas A&M University in January 2003 and graduated in May 2007.  His 

current research interests are in the field of assembly and dynamics of interfacial 

colloidal fluids. 

He can be reached at pradippb@gmail.com or by contacting Dr. Michael Bevan, 

Department of Chemical Engineering, Texas A&M University, College Station, TX 

77843-3122.   

 

 


