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ABSTRACT 

 

Investigation of an Electrooptic Tunable Filter in Lithium Niobate. (May 2006) 

Hsin-Hui Kuo, B.S., National Tsing Hua University; 

M.S., Columbia University 

Chair of Advisory Committee: Dr. Henry F. Taylor 

 

A polarization independent electrooptic add/drop tunable filter fabricated on a 

LiNbO3 substrate with a narrow -3 dB bandwidth (FWHM) of 1.56 nm operating in the 

1.55 μm wavelength regime has been developed to meet the demands of fast tuning 

speed and increased channel capacity for dense wavelength division multiplexed 

(WDM) networks. The operation of the filter is based on passive polarization beam 

splitters and strain-induced phase-matched TE↔TM polarization mode converters. 

Extinction ratios as high as 20 dB for polarization beam splitters were achieved using 

zero-gap two-mode interference directional couplers with an opening angle of 0.55°. A 

tunable TE↔TM polarization mode converter with 98.2 % conversion efficiency was 

obtained using a strain-induced refractive index grating consisting of 765 parallel strips 

10.5 μm wide in a strained SiO2 surface film with a spatial period of 21 μm. Thermal and 

electrooptic tuning of the polarization mode converters were examined. A polarization 

independent electrooptic add/drop tunable filter in which the fabrication parameters of 

the splitter and the mode converter were optimized was produced. Fiber-to-fiber 

insertion loss less than 6.3 dB was measured on a 62 mm long filter device. The spectral 
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characteristics reveal a -3 dB bandwidth of 1.56 nm and nearest sidelobes about 12 dB 

below the center peak. A thermal tuning rate of -0.903 nm/°C was realized. Electrooptic 

tuning was also demonstrated. A tuning range of 14.08 nm with applied DC voltages 

from -80 V to +80 V was achieved indicating an electrooptic tuning rate of 0.086 nm/V. 

The filter performance for both TE and TM modes was examined and polarization 

independence of the spectral characteristics was confirmed. 
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CHAPTER I  

INTRODUCTION 

 

In recent years the use of personal computers and telecommunication networking 

has expanded tremendously. To support the increasing bandwidth demands of 

applications such as access to internet, World Wide Web browsing, and video 

conferencing, further advances in optical fiber networks are needed. A key attribute of 

the optical fiber is its large accessible spectral bandwidth. The bandwidth is around 30 

THz between the transmission windows in the 1.3 μm and 1.5 μm spectral regimes in 

which most optical fiber networks operate. One way to exploit the huge bandwidth of an 

optical fiber is wavelength-division multiplexing (WDM) [1]. In WDM, the transmission 

spectrum of a single mode fiber is divided into non-overlapping communication 

channels. In present WDM networks the ability to route each individual wavelength is 

very limited, but dynamic wavelength routing is expected to be widely used in future 

network generations. Thus, high-speed devices will be required for packet- and cell- 

switched network in IP and asynchronous transfer mode (ATM) applications [2].   

An optical tunable filter is a key device in dynamic WDM. From a system 

viewpoint, critical parameters of tunable filters are the number of accessible channels, 

the channel spacing, spectral tuning range, tuning speed, optical insertion loss, 

interchannel  crosstalk,  complexity,  power consumption, and cost. The tuning range and 

 

________________ 
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channel spacing determine the number of wavelength channels that can be used in the 

network. The tuning speed specifies the time needed to switch from one wavelength to 

another. Figure 1 shows the scheme of multi-channel spectrum of dynamic tuning [3]. 

The maximum number of channels is determined by the ratio of tuning range to channel 

spacing, and the bandwidth of the tunable filter is ~channel bandwidth B. 

 

Tuning Range

B

Channel
Spacing

Tunable Filter

Wavelength

O
ut

pu
t

 

 
Figure 1. Multi-channel spectrum of a tunable filter. 

 

Generally speaking, tunable filters can be divided into two main categories:  

 Slow-speed tunable filters, with a few milliseconds tuning time, are used for circuit-

switched networks. The tuning mechanism is mainly based on heat, thermo-optics, 

or piezo-electric (PZT) technologies, such as fiber Fabry-Perot interferometer 

(FFP), fiber Bragg grating (FBG), and arrayed waveguide grating (AWG) tunable 

filters [4-6]. 
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 High-speed tunable filters, with microsecond and nanosecond tuning times, are 

used for packet- and cell- switched networks. The tuning mechanism is usually 

based on micro-machined, acousto-optic, or electro-optic, such as micromachined 

FP, cascaded Mach-Zehnder interferometer (MZI), acousto-optic, and electro-optic 

tunable filters (AOTF and EOTF) [7-10]. 

Most techniques and devices in the first category are already commercially 

available. However, in the high-speed category devices are in different research stages. 

The microsecond devices already had significant progress like acousto-optic tunable 

filters, whereas the nanosecond devices are still in the preliminary stage. Table 1 

summaries the important characteristics of various reported technologies [11]. 

 

Table 1. Characteristics of various tunable filters. 

 

Filter Category -3 dB Bandwidth Tuning Range Tuning Time 

FFP < 0.5 nm ~ 10 nm 1 ~ 10 ms 

FBG < 0.2 nm < 10 nm 1 ~ 10 ms 

AWG < 0.2 nm ~ 40 nm 10 ms 

Micromachined FP < 0.5 nm ~ 60 nm 100 μs 

AOTF ~ 1.5 nm 250 nm 10 μs 

Cascaded MZI < 0.2 nm ~ 4 nm 50 ns 

EOTF ~ 1.5 nm ~ 16 nm 1 ~ 10 ns 
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At Texas A&M University the electro-optic tunable filter has been demonstrated 

with Ti-indiffused waveguides in a lithium niobate (LiNbO3) substrate with a bandwidth 

of 2.3 nm [10].  

The objective of this research is to develop a polarization independent electro-

optic add/drop tunable filter in Ti:LiNbO3 with a narrow bandwidth of 1.56 nm 

operating in the 1.55 μm wavelength regime, and input/output port separation suitable 

for optical fiber pigtailing. 
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CHAPTER II  

THEORETICAL REVIEW 

 

In this chapter optical wave propagation in dielectric waveguides and anisotropic 

crystals is treated, starting from Maxwell’s equations. The electrooptic and photoelastic 

effects are presented. On the basis of coupled-mode theory, polarization mode 

conversion is explained.    

 

A. Wave Propagation 

The electric and magnetic fields in a homogeneous, non-dispersive, and source-

free medium satisfy the following partial differential equations, known as Maxwell’s 

equations.    

 
t

∂
∇× = −

∂
BE  (1) 

 
t

∂
∇× =

∂
DH  (2) 

 0∇⋅ =D  (3) 

 0∇⋅ =B  (4) 

where E (V/m) and H (A/m) represent electric and magnetic field vectors, D (C/m2) is 

the electric flux density, and B (Wb/m2) is the magnetic flux density.  

The relation between E and D depends on the electric properties of the medium 

and similarly the relation between H and B depends on the magnetic properties of the 

medium. Two equations define these relations:  
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 0ε ε= + =D E P E  (5) 

 0 0μ μ= +B H M  (6) 

in which P (C/m2) is the dielectric polarization density, M (A/m) is the magnetization 

density, 0rε ε ε=  where ε (F/m) is the dielectric permittivity of the medium, 0ε (F/m) is 

the dielectric permittivity of free space, and rε  is the relative permittivity (or dielectric 

constant). 0μ (H/m) is the magnetic permeability of free space and 0M =  in a non-

magnetic medium. In this research 0μ=B H . 

Taking the curl of equation (1), substituting in equation (2) by employing 

equations (3), (4), (5), and (6), and using vector identity ( ) ( )× × = ⋅ − ⋅A B C B A C C A B  

gives us the wave equation  

 
2

2
0 2 0

t
εμ ∂

∇ − =
∂

EE . (7) 

When the electromagnetic wave is monochromatic, all components of electric and 

magnetic fields are harmonic functions of time. The electric field vector E is given by

 ( , ) ( ) jwtt e=E r E r . (8) 

Substituting equation (8) into (7), equation (7) becomes 

 2 2 2
0( ) ( ) 0n k∇ + =E r E r  (9) 

where 0
wk
c

= is the propagation constant in free space, 
0 0

1c
μ ε

=  is the light speed in 

free space, and rn ε=  is the refractive index of the medium. 

  



 7

B. Optical Waveguides 

Light can be guided within a high refractive index region surrounded by lower 

refractive index material through total internal reflection (TIR). A simple planar 

waveguide shown in Figure 2 is introduced to explain wave propagation. At the 

boundary between two dielectric media the tangential components of electric field E and 

magnetic field H, and the normal components of electric flux density D and magnetic 

flux density B should be continuous.   

 

Region 1: n1

Region 2: n2

Region 3: n3

t

x

z

y

 

 
Figure 2. Planar dielectric waveguide. 

 

In a planar waveguide the wave propagates along z-direction with propagation 

constant β , and electric field vector E can be taken as  

 ( )( , ) ( , ) j wt zt x y e β−=E r E . (10) 
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Since there is no variation along y-direction in the planar waveguide, / 0y∂ ∂ = . 

Applying this and equation (10) in equation (9), the results for the three regions yield 

[12] 

 

2
2 2 2
0 12

2
2 2 2
0 22

2
2 2 2
0 32

Region 1: E( ) ( )E( ) 0

Region 2 : E( ) ( )E( ) 0

Region 3: E( ) ( )E( ) 0

d x k n x
dx
d x k n x
dx
d x k n x
dx

β

β

β

+ − =

+ − =

+ − =

 (11) 

where E(x) is a Cartesian component of E(x). 

Assuming 2 3 1n n n> > , the characteristics of waveguide modes can be analyzed 

by various values of the waveguide propagation constant β. For 0 1k nβ < , the solutions of 

E(x) in equation (11) are sinusoidal in all three regions. These are radiation modes and 

the lightwave is not guided. For 0 1 0 3k n k nβ< < , the solutions of E(x) correspond to 

exponential behavior in region 1 and sinusoidal behavior in region 2 and 3. This is 

referred as the substrate radiation mode. For 0 3 0 2k n k nβ< < , the solutions of E(x) show 

exponential decay in region 1 and 3, and sinusoidal in region 2. This makes the 

propagating wave possible to satisfy the boundary conditions mentioned earlier. In this 

case, the optical wave is confined within the middle layer (region 2) and these are 

considered as guided modes. For 0 2k nβ > , the solutions of E(x) are exponential in all 

three regions. Because the field increases without bound away from the waveguide, the 

solution is not physically realizable. The electric field distributions of the above cases 

are illustrated in Figure 3. 
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n1

n2

n3

t

k0n2k0n3k0n1

 

 

Figure 3. Electric field distributions of the planar waveguide corresponding to different 

values of the propagation constant β with 2 3 1n n n> > .  

 

From the above analysis, the condition to have confined propagation modes in a 

waveguide is 0 3 0 2k n k nβ< <  with discrete values of β. The middle layer must have the 

higher refractive index than the surrounding media, i.e., 2 3 1n n , n> .  

The planar waveguide shown in Figure 2 can support a finite number of guided 

modes depending on the thickness t of the middle layer and the value of β. These modes 

can be divided into two groups corresponding to two orthogonal polarization states. One 

is transverse electric (TE) mode with the electric field polarized in y-direction. The field 
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components of TE mode are Ey, Hx, and Hz. The other is transverse magnetic (TM) mode 

with the magnetic field polarized in y-direction. The field components of TM mode are 

Hy, Ex, and Ez. In practical application, the waveguide must be able to support at least 

the lowest order mode called the fundamental mode, and the waveguide supporting only 

the fundamental mode is a single mode waveguide.  

 

C. Optical Indicatrix in Uniaxial Crystals   

In isotropic media, the relation between polarization density P and electric field 

E is independent of the direction of the field vector E so that the medium looks the same 

from all directions. The vectors P and E are parallel to each other. 

 0ε χ=P E  (12) 

where χ  is a scalar constant called the electric susceptibility. However, in the case of 

anisotropic media the relation between vectors P and E does depend on the direction of 

electric field vector E, and the electric susceptibility χ  is no longer a constant. 

 0ε χ=P E%  (13) 

where χ%  is a 3 3×  array known as the susceptibility tensor. 

Applying equation (13) into (5), the relation between the electric flux density 

vector D and the electric field vector E becomes  

 ε=D E%  (14) 

where ε%  is a 3 3×  array called the dielectric permittivity tensor. To simplify the analysis 

the orthogonal coordinate axes are transformed to the principal axes so that all off-

diagonal components of the tensor ε%  are zero. 
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2
11 1

2
22 0 2

2
33 3

0 0 0 0
0 0 0 0
0 0 0 0

n
n

n

ε
ε ε ε

ε

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

%  (15) 

where 11ε , 22ε , and 33ε  are principal permittivities. 

The stored electric energy density in the crystal is  

 1
2eU = ⋅E D . (16) 

Substituting equations (14) and (15) into equation (16), 

 
22 2

11 22 33

1
2

yx z
e

DD DU
ε ε ε
⎡ ⎤

= + +⎢ ⎥
⎢ ⎥⎣ ⎦

. (17) 

Replacing 
02
i

e

D
Uε

 with i , where i =x, y, z, equation (17) is abbreviated by  

 
2 2 2

2 2 2 1
x y z

x y z
n n n

+ + = . (18) 

Equation (18) represents the index ellipsoid or indicatrix with principal axes x, y, and z 

[13]. 

Optical properties of a crystal are determined by its crystal structure. For uniaxial 

crystals the index ellipsoid is rotationary symmetric with respect to z-axis, also known as 

optic axis, and x y zn n n= ≠  such as LiNbO3 and LiTaO3; nx = ny ≡ no and nz ≡ ne where 

no and ne are referred to ordinary and extraordinary refractive indices, respectively. 

Figure 4 shows the index ellipsoid of an uniaxial crystal. 
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Figure 4. The index ellipsoid of an uniaxial crystal.  

 

Considering light propagation in an uniaxial crystal k denotes an arbitrary 

propagating lightwave having an angle θ with respect to z-axis. Because of the rotational 

symmetry around z-axis, the projection of the vector k on the x-y plane is chosen to 

coincide with the y-axis without loss of generality. The intersection ellipse normal to the 

propagation vector k is shaded in Figure 4. Two orthogonal linear-polarized lightwaves 

exist for the propagating lightwave. One is referred to as ordinary wave polarized along 

OB direction and it sees the refractive index on  regardless of the incident angle θ. The 

other is called extraordinary wave polarized along OA direction and it sees the refractive 
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index en (θ) , thus depends on the propagation direction. The existence of these two 

linearly polarized waves, ordinary and extraordinary, causes the birefringence in the 

crystal. The length of OA, en (θ) , is given by  

 

2 2 2( )
( ) cos
( )sin

e

e

e

n y z
y n
z n

θ
θ θ
θ θ

= +
=
=

. (19) 

Substituting equation (19) into (18), gives 

 
2 2 2 2

( )
cos sin

e o
e

e o

n nn
n n

θ
θ θ

=
+

. (20) 

Equation (20) shows that the refractive index of the extraordinary wave varies from 

o
e on (0 ) n=  to o

e en (90 ) n= . Particularly when oθ 0= , the crystal will act as optically 

isotropic. 

 

D. Electrooptic Effect 

In the following sections D and E, optical waves propagation in a crystal in the 

presence of an applied electric field or a mechanical strain will be discussed. In section 

C we found given an arbitrary propagating wave in an uniaxial crystal two orthogonal 

linear-polarized waves exist. The ordinary and extraordinary refractive indices can be 

changed with an applied electric field. This is known as the electrooptic effect. The 

linear relation between the refractive index and the applied electric field is called 

Pockels effect, and the quadratic relation between the refractive index and the electric 

field is called Kerr effect. Since the Pockels effect is commonly used in integrated optics 
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and also induces larger refractive index changes, the discussion here is focused on 

Pockels effect. Pockels effect occurs only in crystals without inversion symmetry, so the 

sign of the index change depends on the polarity of the voltage applied to the crystal. 

Electrooptically induced index changes can be characterized by specifying changes in 

the index ellipsoid equation (18). In the presence of an applied electric field, the index 

ellipsoid equation is expressed by   

 2 2 2
2 2 2 2 2 2

1 2 3 4 5 6

1 1 1 1 1 12 2 2 1x y z yz xz xy
n n n n n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (21) 

If x, y, and z are chosen to be parallel to the crystal principal axes without an applied 

electric field, equation (21) will reduce to equation (18). Therefore 

 2
2

0

1 , 1,2,31

0 , 4,5,6
j

i E

i
n

n
i=

⎧ =⎪⎛ ⎞ = ⎨⎜ ⎟
⎝ ⎠ ⎪ =⎩

 (22) 

where j = 1, 2, 3 denotes x, y, z, respectively. With the presence of an electric field, the 

inverse of indices in equation (21) are expressed as  

 
2 2

2
0

2

1 1 , 1,2,3
1

10 , 4,5,6

ij

i E

i

i
n n

n
i

n
≠

⎧ ⎛ ⎞+ Δ =⎜ ⎟⎪ ⎝ ⎠⎪⎛ ⎞ = ⎨⎜ ⎟
⎝ ⎠ ⎛ ⎞⎪ + Δ =⎜ ⎟⎪ ⎝ ⎠⎩

. (23) 

The induced refractive index change 2

1

in
⎛ ⎞Δ⎜ ⎟
⎝ ⎠

 due to an applied electric field is defined 

by  

 
3

2
1

1
ij j

ji

r E
n =

⎛ ⎞Δ =⎜ ⎟
⎝ ⎠

∑  (24) 
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where i=1, 2, …, 6. Ej is the component of the applied electric field, and rij is a 6 3×  

electrooptic coefficient tensor. In a LiNbO3 crystal, x y on n n= =  and z en n= , the 

electrooptic tensor is [13] 

 

22 13

22 13

33

51

51

22

0
0
0 0
0 0

0 0
0 0

r r
r r

r
r

r
r

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 (25) 

where 33r = 30.8×10-12 m/V, 13r = 8.6×10-12 m/V, 22r = 3.4×10-12 m/V, and 51r = 26×10-12 

m/V. 

Assuming the applied electric field E is along the z-direction of a LiNbO3 

crystal, with equations (21), (24), and (25) the index ellipsoid equation becomes  

 2 2 2
13 13 332 2 2

1 1 1 1z z z
o o e

r E x r E y r E z
n n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (26) 

According to equation (26), new refractive indices with principal axes can be found as  

 

132 2

132 2

332 2

1 1

1 1

1 1

z
x o

z
y o

z
z e

r E
n n

r E
n n

r E
n n

= +

= +

= +

. (27) 

Since the electrooptic coefficients are very small, then 2
o 13 zn r E 1<<  and 2

e 33 zn r E 1<< . 

Therefore a(1 x) 1 ax+ ≈ + can applied, and new refractive indices obtained as 
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3
13

3
13

3
33

1
2
1
2
1
2

x o o z

y o o z

z e e z

n n n r E

n n n r E

n n n r E

= −

= −

= −

. (28) 

In case the applied electric field is not parallel to the z-direction, there will be 

mixed terms showing in the index ellipsoid equation (21). The major axes of the 

ellipsoid are no longer corresponding to the principal axes (x, y, and z), and due to the 

rotation of new principal axes of index ellipsoid the new refractive indices need to be 

recalculated.  

 

E. Photoelastic Effect 

The photoelastic effect couples the mechanical strain to the optical refractive 

index and induces index changes. This effect can be described in the same manner as the 

linear electrooptic effect shown in equation (24) as [12] 

 2

1
ijkl kl

ij

P S
n

⎛ ⎞Δ =⎜ ⎟
⎝ ⎠

 (29) 

where i, j, k, l = 1, 2, 3 and 2
ij

1
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the constant of the index ellipsoid equation (21). 

Pijkl is the photoelastic fourth-order tensor [14], and Skl is the strain component defined 

as 

 ( ) ( )1( )
2

k l
kl

l k

u uS
x x

⎡ ⎤∂ ∂
= +⎢ ⎥∂ ∂⎣ ⎦

r rr  (30) 
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where ku ( )r  is the displacement of a point r in the crystal projected along the direction 

k.  

To find out the relation between 2

1

ijn
⎛ ⎞Δ⎜ ⎟
⎝ ⎠

 and the dielectric tensor ε% , equation 

(14) becomes   

 i ij jE g D=  (31) 

where -1g (ε)=% %  is the inverse of the matrix ε% . Because of ij iiε ε (i j)<< ≠ , the rule of 

matrix inversion is applied. 

 

1

,

( )ii ii

ijji
ij i j

ii jj ii jj

g

g

ε
εε

ε ε ε ε

−

≠

=

≅ − = −
. (32) 

Using equations (31), (32) and defining 
0

ij
ij

ε
ε

ε
′ = , equation (16) results in 

 
22 2

32 31 21
0

11 22 33 33 22 33 11 22 11

2 2 2 2yx z
e z y z x y x

DD DU D D D D D Dε ε εε
ε ε ε ε ε ε ε ε ε

′ ′ ′
= + + − − −

′ ′ ′ ′ ′ ′ ′ ′ ′
. (33) 

Replacing 0 e2ε U=D r , where r = (x, y, z), equation (33) yields 

 
2 2 2

32 31 21

11 22 33 33 22 33 11 22 11

2 2 2 1x y z zy zx yxε ε ε
ε ε ε ε ε ε ε ε ε

′ ′ ′
+ + − − − =

′ ′ ′ ′ ′ ′ ′ ′ ′
. (34) 

This is the index ellipsoid equation. The constant of each term in equation (34) can be 

defined as  
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2

2
,

1 1

1
ii ii

ij

ij i j ii jj

n

n

ε
ε
ε ε≠

⎧⎛ ⎞ =⎜ ⎟⎪ ′⎝ ⎠⎪
⎨ ′⎛ ⎞⎪ = −⎜ ⎟⎪ ′ ′⎝ ⎠⎩

 (35) 

with i, j = 1, 2, 3. Using equation (35), equation (29) can be expressed as  

 ij ii jj ijkl klP Sε ε ε′ ′ ′Δ = − . (36) 

As mentioned in section A, iiε′  is equal to 2
iin  for the diagonal components, and 

ii ii iiΔε 2n Δn′ =  can be derived. Extending this to the off-diagonal components leads to  

 
1
21 ( )

2ij ii jj ijn n n ε
−

′Δ = Δ . (37) 

Substituting equation (36) into (37), it becomes 

 3 31
2ij ii jj ijkl kln n n P SΔ = − . (38) 

The strain tensor Skl and the photoelastic tensor Pijkl can be expressed as a six-component 

vector and a second-order tensor having 6 6×  components, respectively by correlating α 

= 1, 2, 3, 4, 5, 6 to ij = 11, 22, 33, 23, 31, 12 and β = 1, 2, 3, 4, 5, 6 to kl = 11, 22, 33, 23, 

31, 12. Therefore, equation (38) yields  

 31
2

n n P Sα α αβ βΔ = −  (39) 

where nα = ii jjn n , Pαβ = Pijkl, and Sβ = Skl. Based on the definition of equation (30), the 

six-component vector Sβ is given by [15] 
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1

1

2

2
1

3
2

3
3

324

3 25

6 31

3 1

1 2

2 1

1
2

1
2

1
2

u
x
u
xS
uS
xS

uuS
x xS

S uu
x x

u u
x x

∂⎛ ⎞
⎜ ⎟∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟∂⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ ∂
⎜ ⎟⎜ ⎟ ∂⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟ ⎛ ⎞∂∂⎜ ⎟⎜ ⎟ +⎜ ⎟⎜ ⎟∂ ∂⎜ ⎟ ⎝ ⎠
⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞∂∂⎜ ⎟⎝ ⎠ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞∂ ∂
⎜ ⎟+⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 (40) 

where 1, 2, and 3 indicate x, y, and z, respectively. S1, S2, and S3 are longitudinal strain 

components and S4, S5, and S6 are shear strain components.  

 

F. TE↔TM Mode Conversion  

By means of a refractive index perturbation in a waveguide, TE-polarized input 

light can be converted into TM-polarized output light and vice versa. The basic idea of 

TE ↔ TM conversion can be described by a small perturbation of the dielectric 

polarization density P, and examining this perturbation effect with the time dependent 

wave equation. The wave equation in a dielectric medium is  

 
2

2
0 2

( , )( , ) ( ) E rE r r tt
t

ε μ ∂
∇ =

∂
. (41) 

Substituting equation (5) into (41), yields 

 
2 2

2
0 0 02 2

( , ) ( , )( , ) E r P rE r t tt
t t

ε μ μ∂ ∂
∇ = +

∂ ∂
. (42) 
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Assuming the wave propagates through a perturbed medium with index gratings, 

the dielectric polarization P can be considered as the sum of two terms, unperturbed and 

perturbed polarizations, 

 ( , ) ( , ) ( , )o pertt t t= +P r P r P r  (43) 

with 

 [ ]0( , ) ( ) ( , )P r r E ro t tε ε= − . (44) 

Using equations (43) and (44), equation (42) becomes  

 
2 2

2
0 02 2

( , )( , ) ( ) ( , )rr r P ri
i pert i

E tE t t
t t

μ ε μ∂ ∂ ⎡ ⎤∇ − = ⎣ ⎦∂ ∂
 (45) 

where i indicates x, y, or z and iE ( ,t)r  is a component of ( ,t)E r .  

 

 

z

y

x

TM

TE

channel 
waveguide

 

 

Figure 5. Polarization directions of TE and TM modes propagation along y-direction in 

an optical channel waveguide on an x-cut substrate. 
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In an x-cut y-propagating channel waveguide as shown in Figure 5, the TE-

polarized wave has its transverse electric field along z-direction ( xE 0= , zE 0≠ ) while 

the TM-polarized wave has its transverse electric field along x-direction ( zE 0= , 

xE 0≠ ). Equation (45) shows that to achieve coupling from a TE-mode into a TM-

mode, an x-directed induced perturbation polarization Px is needed while for coupling a 

TM-mode into a TE-mode, a z-directed induced perturbation polarization Pz is required. 

Based on equation (5), 

 0i ij j i iD E E Pε ε= = + . (46) 

The solution to the polarization Pi is 

 0( )i ij ij jP Eε ε δ= − . (47) 

Thus, the perturbation of medium polarization Ppert can be expressed as 

 0 ( )pert i i ij j ij jP P E Eε ε ε ′⎡ ⎤ = Δ = Δ = Δ⎣ ⎦ . (48) 

Applying equations (29) and (36) into equation (48), Ppert yields 

 0 2

1
pert i i ii jj j

ij

P P E
n

ε ε ε ⎛ ⎞′ ′⎡ ⎤ = Δ = − Δ⎜ ⎟⎣ ⎦ ⎝ ⎠
. (49) 

Based on the above analysis, two cases are considered here. First TE→TM mode 

conversion occurs with TE-polarized input along z-direction indicated as 3. In equation 

(49) the perturbation polarization xΔP  along x-direction indicated as 1 is  

 1 0 11 33 32
13

1P E
n

ε ε ε ⎛ ⎞′ ′Δ = − Δ⎜ ⎟
⎝ ⎠

 (50) 

where 2
11 onε ′ =  and 2

33 enε ′ = . Using reduced notation, equation (50) becomes 
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 2 2
1 0 32

5

1
o eP n n E

n
ε ⎛ ⎞Δ = − Δ⎜ ⎟

⎝ ⎠
. (51) 

Second case is TM→TE mode conversion with TM-polarized input along x-direction. 

Following the same argument the perturbation polarization zΔP  along z-direction is  

 2 2
3 0 12

5

1
o eP n n E

n
ε ⎛ ⎞Δ = − Δ⎜ ⎟

⎝ ⎠
. (52) 

Equations (51) and (52) show that TE↔TM mode conversion can be realized through 

the induced refractive index change 5Δn  via the photoelastic effect. 

Based on coupled-mode theory [12] TE↔TM mode conversion can be analyzed. 

The following equations describe the coupling relation between these two orthogonal 

modes.  

 

( )

( )

( ) ( )

( ) ( )

TM TE
m m

TM TE
m m

j ym
m

j ym
m

dA y j B y e
dy

dB y j A y e
dy

β β

β β

κ

κ

− −

+ −

⎧ = −⎪⎪
⎨
⎪ = −
⎪⎩

 (53) 

where Am and Bm are the amplitudes of TE and TM mth mode; TE
mβ  and TM

mβ  are the 

propagating constants of TE and TM mth mode; κ  is the coupling coefficient, and y is 

the propagation direction. The solutions to equation (53) with the initial conditions 

m 0B (y 0) B= =  and mA (y 0) 0= =  are 

 0

0

( )

( )

j y
m

j y
m

A y aB e

B y bB e

δ

δ

−

+

⎧ =⎪
⎨

=⎪⎩
 (54) 

where  
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2 2 1 2
2 2 1 2

2 2 1 2 2 2 1 2
2 2 1 2

sin ( )
( )

cos ( ) sin ( )
( )

1 ( )
2

TM TE
m m

a j y

b y j y

κ κ δ
κ δ

δκ δ κ δ
κ δ

δ β β

⎡ ⎤= − +⎣ ⎦+

⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦+

= −

. (55) 

A plot of TE and TM mode power exchange normalized to input intensity 2
0B  

is shown in Figure 6. With the phase-matched condition δ 0= , TE and TM modes are 

coupled into each other completely, whereas with δ 0≠  only partial power exchange 

happens because of phase mismatch between TE and TM modes and δ is called the 

phase-mismatch factor. 
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Figure 6. Power exchange between TE and TM modes with δ=0 and δ=2κ. 
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Since TM o
o

2πβ n
λ

= , TE e
o

2πβ n
λ

= , and o en n≠ , practically the phase-mismatch 

factor δ 0≠ . A deliberate period variation with a period Λ is introduced to neutralize 

this phase mismatch and the phase-mismatch factor δ can be described as [16] 

 
2

TM TEβ β πδ −
= −

Λ
. (56) 

To satisfy the phase-matched condition, δ 0= ,   

 2 2
(2 )

o

TM TE o TM TE TM TEn n n n
λπ π

β β π λ
Λ = = =

− − −
. (57) 

Since the period Λ is a fixed value, according to the result shown in equation (57) the 

coupling between TE and TM modes is highly wavelength selective and the selected 

wavelength λo can be tuned by changing the birefringence |nTM-nTE|. 
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CHAPTER III 

DEVICE STRUCTURE AND ANALYSIS 

 

In this chapter the structure of a tunable add/drop filter is presented, and its 

overall principle of operation is explained. The design and properties of each individual 

component required to form an integrated optical tunable filter are discussed.  

 

A. Filter Structure and Principle of Operation 

The structure of an integrated optical add/drop tunable filter formed by Ti-

indiffused waveguides on a LiNbO3 substrate is illustrated in Figure 7.  

 

Electrodes Grating

I1
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z
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Polarization Mode
Converter 

LiNbO3 substrate
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λ1, λ2, …λn
except λj

λj

 

 

Figure 7. The structure of an integrated optical add/drop tunable filter. 
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The integrated tunable filter consists of two input single mode waveguides, one 

input polarization beam splitter (PBS), two tunable static strain-induced phase-matched 

polarization mode converters with one pair of electrodes, one output polarization beam 

splitter (PBS), and two output single mode waveguides. Incoming multiplexed signals 

are split into two output branches by the first polarization beam splitter based on their 

state of polarization (SOP). The transverse magnetic (TM) polarized modes are routed 

into the bar-state output while the transverse electric (TE) polarized modes are directed 

to the cross-state output of the splitter. 

Assuming a light with wavelength components λ1, λ2…, λn entering into the input 

port I1, the TM- and TE-polarized modes are directed into the upper (bar-state) and 

lower (cross-state) arms of the first polarization beam splitter, respectively. When the 

separated polarized modes travel into the polarization mode converters, within each arm 

of the converters the polarization of one selected wavelength λj, which satisfies the 

phase-matched condition of strain-induced index gratings, is converted into its 

orthogonal polarization, i.e. 
jλ

TM → 
jλ

TE  in the upper arm, and 
jλ

TE → 
jλ

TM  in the 

lower arm. The second polarization beam splitter connected to the converter is identical 

to the first one. For those phase-mismatched signals λ1, λ2…, λn except λj, ideally no 

polarization conversion takes place in the arms of the converter; therefore without 

changing the states of their polarizations as they entered into the input port I1, 

wavelengths λ1, λ2…, λn except λj are directed towards to the output port O1 (express 

port). The phase-matched wavelength λj which experiences the mode conversion in both 

arms as mentioned earlier is routed towards the output port O2 (drop port). 
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The phase-matched wavelength λj can be tuned by applying a DC voltage on 

electrode pads since the birefringence indices change with an applied electric field via 

the linear electrooptic effect. Because of the symmetric device structure the phase-

matched wavelength λj could be added back to the rest of signals by coupling the signal 

λj into the input port I2 (add port), and the signal λj emerges at the express output port 

O1. Based on this configuration, the key components of this tunable filter are the 

polarization beam splitters (PBS), the polarization mode converters, and the tuning 

electrodes.  

  

B. Polarization Beam Splitters 

The principle of operation of a polarization beam splitter (PBS) is based on two-

mode interference in a zero-gap optical directional coupler. The basic scheme of a zero-

gap directional coupler is sketched in Figure 8. 

 

Pin
P1

P2

Lc

y=0 y=L  

 

Figure 8. Basic scheme of a zero-gap directional coupler. Two lowest order local normal 

modes are shown. 
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Due to the consequence of completeness and orthogonolity, a given electric field 

distribution E corresponding to multi-modes can be expressed as [17] 

 ( )( , , ) ( ) ( , ) mj y
m m

m
x y z C y E x z e φ−= ∑E  (58) 

where Cm is the amplitude, mE  is the normalized field of  the local normal mode, m is a 

mode label and the phase function ( )m yφ is given by 

 ( )m my yφ β=  (59) 

where mβ  is the propagation constant of mode m. Assuming the mode propagation is 

adiabatic [17], based on two-mode interference the symmetric fundamental mode and 

the asymmetric lowest-order mode are excited simultaneously when the light couples 

into the central interaction region from one input port as shown in Figure 8 and the field 

distribution E is 

 ( ) ( )( , , ) ( , ) ( , )s aj y j y
s s a ax y z C E x z e C E x z eφ φ− −= +E  (60) 

with mode label s and a indicating the symmetric fundamental mode and the asymmetric 

lowest-order mode, respectively. The field contribution localized at each branch of the 

directional coupler can be described by the coupling between those two excited modes. 

 
[ ]
[ ]

1
1 2

1
2 2

( , ) ( ) ( , ) ( , )

( , ) ( ) ( , ) ( , )
s a

s a

E x z E x z E x z

E x z E x z E x z

⎧ = +⎪
⎨

= −⎪⎩
 (61) 

and mode fields of sE  and aE  can be represented with respect to 1E  and 2E  as 

 
[ ]
[ ]

1
1 22

1
1 22

( , ) ( ) ( , ) ( , )

( , ) ( ) ( , ) ( , )
s

a

E x z E x z E x z

E x z E x z E x z

⎧ = +⎪
⎨

= −⎪⎩
. (62) 

Substituting equation (62) into (60), it yields 
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 1 1 2 2( , , ) ( ) ( , ) ( ) ( , )x y z C y E x z C y E x z= +E  (63) 

with 

 
( ) ( )1

1 2

( ) ( )1
2 2

( ) ( )

( ) ( )

s a

s a

j y j y
s a

j y j y
s a

C y C e C e

C y C e C e

φ φ

φ φ

− −

− −

⎧ ⎡ ⎤= +⎪ ⎣ ⎦
⎨

⎡ ⎤= −⎪ ⎣ ⎦⎩
. (64) 

The power within each branch of the splitter is given by 

 2( ) ( )i iP y C y=  (65) 

with i = 1,2. According to the initial conditions the input light is only launched in one 

branch; P1(0)=Pin and P2(0)=0, as shown in Figure 8. Thus, 

 
2
in

s a
PC C= = . (66) 

Substituting equations (64) and (66) into (65), it shows 

 

2
1

2
2

( )( ) cos
2
( )( ) sin
2

in

in

yP y P

yP y P

φ

φ

⎧ Δ⎛ ⎞= ⎜ ⎟⎪⎪ ⎝ ⎠
⎨

Δ⎛ ⎞⎪ = ⎜ ⎟⎪ ⎝ ⎠⎩

 (67) 

with 

 
( ) ( )
( ) ( ) ( )

s a

s a

y y y
y y y

φ φ φ β
β β β

Δ = − = Δ
Δ = −

. (68) 

The splitting ratio is defined as 

 2

1 2

PR
P P

=
+

. (69) 
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The output will be localized into either branch at y = L if the total phase 

difference φΔ (L) is an integer multiple of π; therefore, a light propagates towards the 

bar-state output for even multiples of π, and a light couples into the cross-state output for 

odd multiples of π. As such, a zero-gap directional coupler can act as a polarization 

beam splitter (PBS) if φΔ (L) is even multiples of π for one polarization and odd 

multiples of π for the other polarization. A polarization beam splitter can be decomposed 

into two v-junction waveguides with an opening angle α and a central two-mode 

interaction region of length Lc, as shown in Figure 9.  
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Figure 9. The structure of a polarization beam splitter based on two-mode interference. 

 

The conditions of a polarization beam splitter are defined as [17, 18] 

 
( ) 2 ( ) 2
( ) 2 ( ) (2 1)

TM TM c TM

TE TE c TE

L L m
L L n

φ β ϕ α π
φ β ϕ α π

Δ = Δ + Δ =⎧
⎨Δ = Δ + Δ = −⎩

 (70) 
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where m and n are positive integers. Here TMβΔ  is the propagation constant difference 

between the symmetric fundamental mode and the asymmetric lowest-order mode and 

( )TMϕ αΔ  is the generated phase difference of two excited modes in the v-junction 

transition region for the TM-polarized component of an input light. TEβΔ  and ( )TEϕ αΔ  

are the corresponding parameters for the TE-polarized component of an input light. The 

conditions expressed in equation (70) can be satisfied by a careful design of the central 

interaction length Lc and the opening angle α, through proper fabrication parameters 

(i.e., initial Ti film thickness, diffusion temperature, and diffusion time). Assuming a 

light entering into the input port P1, as shown in Figure 9, the splitting ratio in decibels, 

also called extinction ratio (ER), is defined as follows for TE- and TM-polarized modes 

and more than 20 dB is desirable.  

 

4

3 4

3

3 4

( ) 10 log

( ) 10 log
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TM TM TM

TE

TE TE TE

PER
P P

PER
P P

⎛ ⎞
= − × ⎜ ⎟+⎝ ⎠

⎛ ⎞
= − × ⎜ ⎟+⎝ ⎠

. (71) 

 

C. Spatially Periodic Strain-Induced Grating 

The mode conversion has been discussed in the last chapter. To realize the 

conversion on a channel waveguide via photoelastic effect a spatially periodic strain-

induced index grating is required. The periodic index grating in this study is made by a 

strain inducing SiO2 film on the top of LiNbO3 substrate. The SiO2 film is deposited on 

the surface of LiNbO3 substrate at an elevated temperature, and according to their 
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thermal expansion coefficients the LiNbO3 substrate tends to expand much more than 

the deposited SiO2 film. The thermal expansion coefficients of LiNbO3 and SiO2 are 

1.59 × 10-5 [19] and 5.5 × 10-7 [20], respectively. After cooling down to room 

temperature, a compressive strain is induced because the SiO2 film is compressed by the 

LiNbO3 substrate. Then a periodic grating is delineated as shown in Figure 10. 

 

LiNbO3 substrate

channel waveguide 

SiO2 grating

y

x

Λ

 

 

Figure 10. Longitudinal view of the periodic index grating. 

 

The polarization coupling between TE and TM modes can be examined with this 

compressed strain induced between a periodic SiO2 film and the LiNbO3 substrate. Only 

the displacement along the y-direction from (x, y, z) to (x, y+ yu , z) is relevant. The 

displacement yu  varies continuously with the position x. Therefore, only the shear-strain 

component S6 exists and contributes to polarization conversion, and S6 is given by [21] 

 6
1
2

yu
S

x
∂

=
∂

. (72) 

The photoelastic tensor Pαβ of a LiNbO3 substrate is [14]  
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Based on the earlier analysis results shown in equations (51) and (52), the 

induced refractive index change 5nΔ  caused by the photoelastic effect leads to the 

polarization conversion. By substituting equation (73) into (39) with only shear strain 

component S6, 5nΔ  is obtained as 

 3
5 41 6

1
2

n n P SΔ = −  (74) 

with o en n n= , where no and ne are ordinary and extraordinary refractive indices, 

respectively. The strain component S6 can be calculated based on relaxation theory [22], 

and from an earlier report [23] the maximum calculated 6S  is 2.6 × 10-4 under the 

condition that a 1.45 μm thick SiO2 film is deposited at 360°C and the periodic pattern 

with Λ = 21 μm is delineated at the room temperature. The induced index change 5nΔ  

on a LiNbO3 substrate with a strain-induced grating can be obtained with the 

photoelastic coefficient P41 = -0.15 [24] and  n ~ 2.17. (no ~ 2.21 and ne ~ 2.14 at 24.5°C 

for 1550 nm wavelength [25]) The calculated index change  5nΔ  is ~ 2.0×10-4. 
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D. TE↔TM Polarization Mode Converters 

A polarization mode converter can be produced in a single-mode Ti-indiffused 

channel waveguide with a spatially periodic strain-induced index grating on a LiNbO3 

substrate, as illustrated in Figure 11. 
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Figure 11. The basic structure of a polarization mode converter. 

 

Assuming a TM-polarized light is coupled into the channel waveguide, due to 

coupled-mode theory [12] as discussed in the previous chapter with initial conditions 

ATM(0) = oa  and ATE(0) = 0, the normalized transmitted TE-polarized power of  the 

converter is given by   
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κ δ
⎡ ⎤= = +⎣ ⎦+

 (75) 
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where L = NΛ with N the total number of periodic uniform gratings; κ is the coupling 

coefficient and κL = π/2 for the complete TM→TE mode conversion. In the conversion 

process, the wavelength deviation λΔ  from the phase-matched wavelength λo introduces 

a phase-mismatch factor δ which can be expressed as [26] 
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with  
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where Δnp(λo) and Δng(λo) denote the phase and group effective index difference, 

respectively between TE and TM modes at design wavelength λo. Neglecting the first 

order of Δng(λo) for simplicity, the factor δ becomes 

 ( )
o

λ πδ λ
λ
Δ

Δ = −
Λ

. (78) 

Substituting equation (78) into (75) and κL = π/2 for the complete conversion, the 

converted output power Iout dependence on the wavelength deviation Δλ is obtained as  

 
[ ]

[ ]
2

22 2
22

1( ) sin 2 ( )
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. (79) 

The output transmission is highly wavelength-dependent, as shown in Figure 12. 

The -3 dB bandwidth (FWHM) of a polarization mode converter can be obtained by 

substituting equation (78) into (79) as [27] 
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 ( ) ~ 0.8 0.8 o
FWHM oL N

λλ λΛ
Δ = . (80) 

An important parameter for the characterization of a TE↔TM polarization mode 

converter is the conversion efficiency defined as  

 ( )
( ) ( )

out TM
TE

out TE out TM

P
P P

η =
+

 (81) 

with TE-polarized input, and  

 ( )
( ) ( )

out TE
TM

out TE out TM

P
P P

η =
+

 (82) 

with TM-polarized input where (Pout)TE and (Pout)TM are TE- and TM-polarized output 

powers, respectively. The conversion efficiency is ideally equal to one if the complete 

conversion occurs at the phase-matched wavelength. 
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Figure 12. Normalized converted power transmission with wavelength deviation from 

center wavelength 1530 nm for N = 765 periodic uniform gratings. 
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E. Electrooptic Tuning  

To make a tunable polarization mode converter a pair of electrodes is placed on 

either side of a channel waveguide. According to the linear electrooptic effect, refractive 

indices can be changed via an applied DC voltage to the electrodes along the optic axis 

(z-direction). Since neither the applied electric field nor the optical mode field is 

uniform, an overlap factor Γ is introduced, which is defined as the overlap integral 

between the applied electric field and the optical field [28]. Equation (28) becomes  

 

3
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3
33

1
2

1
2

T
TM x o TM o

T
TE z e TE e

Vn n n n r
g

Vn n n n r
g

= = − Γ

= = − Γ
 (83) 

where TV
g

= Ez and g is the gap between electrodes; ΓTM and ΓTE are overlap factors for 

TM- and TE-polarized modes, respectively. The refractive index difference ∆n between 

two polarizations yields  

 ( ) ( )3 3
13 33

1
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T
TM TE o e TM o TE e

Vn n n n n n r n r
g

Δ = − = − − Γ −Γ  (84) 

Substituting equation (84) into (57), and taking the derivative of λo with the applied DC 

tuning voltage VT, the electrooptic tuning rate is expressed by  

 ( )3 3
13 33

1
2

o
TM o TE e

T

d n r n r
dV g
λ Λ

= Γ −Γ . (85) 

From the above analysis, a tunable TE↔TM polarization mode converter is regarded as 

the key mechanism for a tunable add/drop filter.   
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CHAPTER IV 

DEVICE FABRICATION 

 

The fabrication process of the integrated tunable add/drop filter is presented in 

this chapter. The tunable filter consists of two main components: a polarization beam 

splitter (PBS) and a tunable TE↔TM polarization mode converter. The fabrication 

procedure and physical configuration of those two devices will be described in following 

sections. 

 

A. Ti-Indiffused Channel Waveguides and Polarization Beam Splitters 

There are different ways to make optical waveguides on a LiNbO3 substrate. Ti-

indiffused waveguides are adapted here for simplicity and low insertion loss. Individual 

components can be integrated easily on one chip with thermal indiffusion of a Ti film. 

The fabrication of straight channel waveguides and polarization beam splitters 

began with dicing a 1 mm thick, 3 inch diameter, x-cut LiNbO3 crystal wafer supplied by 

Crystal Technology Inc. (Palo Alto, CA) into appropriate sizes (Appendix 1) for making 

devices with the lightwave propagation along y-direction. The wafer was diced into 9 

mm (z-direction) by 14 mm (y-direction) for channel waveguides and 9 mm by 25 mm 

for polarization beam splitters. The diced samples were cleaned with liquid solvents 

(Appendix 2) and a Ti film (~ 1050 Å Ti thickness for channel waveguides and ~1330 Å 

Ti thickness for splitters) was deposited over the substrate surface using a DC Sputtering 

process (Appendix 3). After Ti-film deposition, the patterns of channel waveguides and 
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splitters were delineated with AZ-5214 photoresist made by Clariant via positive 

photolithography (Appendix 4). The photoresist-coated sample was physically contacted 

with a mask, known as contact printing, and the photoresist was exposed to a nearly 

collimated ultraviolet (UV) beam for a fixed time. The photoresist-coated patterns were 

formed after developing in a diluted Shipley MF312 developer. The samples were 

inspected with a microscope for the quality of photoresist-coated patterns.  

To ensure that there was no residue of exposed photoresist left after developing, 

the samples were further cleaned in a barrel asher with O2 plasma (Appendix 6) for 2 

minutes, and hard baked under vacuum at 135°C for 5 minutes to harden the photoresist 

so that it could sustain later etching processes. The non-patterned Ti film was mainly 

etched away using reactive ion etching (RIE) (Appendix 7). Since the gases (CHF3: 75 

sccm, Argon: 2 sccm, and Helium: 7.5 sccm) used in RIE could also slightly etch 

through the LiNbO3 substrate if over-etched, it was important to etch the Ti film 

carefully until only a very thin Ti layer was left to protect the substrate. For Ti film 

thickness of 1350 Å it took ~ 12 minutes under RIE at 350 watts plasma power. The 

residual Ti film was etched away using diluted hydrofluoric acid (HF). Since the wet-

etching process is isotropic, the appropriate acid solution and etching time were required 

to produce straight patterns. A light could not be confined in a channel waveguide and 

causes planar surface-guiding if under-etched, while a guided light would scatter away 

from a rough surface edges if over-etched. The acid solution used here was HF:H2O = 

1:25 etched for 10 ~ 12 seconds to produce satisfactory patterns. The photoresist was 

then completely removed by leaving samples in a heated 90°C photoresist stripper 
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(Clariant AZ 300T) for 15 minutes and the samples were cleaned with liquid solvents 

(Appendix 2).  

The patterns for channel waveguides were designed with various waveguide 

widths ranging from 5 μm to 10 μm and the delineated patterns for polarization beam 

splitters consisted of two v-junction waveguides with a splitting angle α and a central 

interaction region of width h and length Lc (ranging from 200 μm to 280 μm), as shown 

in Figure 13. Further details are given in Appendix 8. The width of Ti strip was 

inspected with a high magnification microscope and the thickness of Ti film was 

measured using Dektak3 Surface Profile Measuring System (Appendix 9). 

 

P1

P4

P3

P2

α

Lc

w

h 2 μm 50 μm

 

 

Figure 13. The structure of a polarization beam splitter with a splitting angle α and a 

central interaction length Lc. 

 

The samples were then put inside a furnace for diffusion under wet air ambient at 

certain fixed temperatures ranging between 1025°C to 1055°C for 9 to 11 hours 
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depending on the deposited Ti film thickness (Appendix 10). The initial Ti thickness τ, 

diffusion temperature T, and diffusion time t are three key parameters for making good 

quality waveguides with single mode propagation, low propagation loss, well confined 

mode profiles for both TE and TM polarizations, and high extinction (splitting) ratios for 

polarization beam splitters. The diffusion depth d is described by the diffusion 

temperature T and time t as [29] 

 2d Dt=  (86) 

with the diffusion coefficient D given by  

 
oT

T
oD D e

−
=  (87) 

where Do is the bulk diffusivity and To is the activation temperature depending on the 

composition of a LiNbO3 crystal [30]. Profiles of electric field distributions on a diffused 

channel waveguide are illustrated in Figure 14 [31] where σ1 and σ2 are 1/e of the 

maximum intensity of the asymmetric depth profile Ex employing two half–Gaussian; σ3 

is half width of 1/e of the maximum intensity of the symmetric Gaussian lateral profile 

Ey. 

During diffusion care must be taken to avoid surface guiding that could occur for 

the z-direction polarized mode i.e., the TE-polarized mode with the extraordinary 

refractive index. Surface guiding is induced by Li2O out-diffusion in dry ambient and 

leads to significant propagation loss. To eliminate out-diffusion the option adapted here 

was bubbling air through a room temperature water column before it flows into the 

furnace to create the wet atmosphere [32]. At last both ends of the samples were 
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polished (Appendix 11) to produce smooth xz-transverse end faces perpendicular to the 

light propagating direction (y-axis) for optical testing. 
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Figure 14. The schematic profile of field distributions for a diffused channel waveguide.  

 

B. Tunable TE↔TM Polarization Mode Converters 

A tunable polarization mode converter consists of three parts: a single-mode Ti-

indiffused channel waveguide, one pair of electrodes for electrooptic tuning, and a 

spatially periodic strain-induced index grating for TE↔TM polarization conversion on a 

LiNbO3 substrate. The structure of a tunable TE↔TM polarization mode converter is 

sketched in Figure 15. 
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Figure 15. The diagram of a tunable TE↔TM polarization mode converter. 

 

First the straight channel waveguides of 7 μm width were obtained as described 

in section A and tested to ensure single-mode propagation, low insertion loss, and good 

confinement for both polarization modes. Next one pair of electrodes was placed on 

either side of the channel waveguide. To make the electrodes, patterns were delineated 

first using image reversal photolithography process (Appendix 12). The dimension 

details are given in Appendix 15. The samples were then further cleaned using a barrel 

asher under O2 descum for 2 minutes. Once the patterns were made, three different metal 

layers were deposited in order of Cr/Au/Ti with the thickness of 650Å/800Å/650Å, 

respectively using e-beam evaporation (Appendix 13). The Cr layer was used to improve 

the adhesion between the metal layers and the LiNbO3 substrate, and the Ti layer was 

used to prevent Au from diffusing into SiO2 film of later deposition processes. The 

Cr/Au/Ti electrodes were produced by a lift-off process in acetone.  
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The final step is to create a spatially periodic strain-induced index grating. The 

LiNbO3 substrate with Ti-indiffused waveguides and electrodes was heated up slowly 

until stabilized at 360°C, and a thick layer of SiO2 film of 1.45 μm was deposited by e-

beam evaporation at this elevated temperature with O2 flowing inside the chamber. After 

completing the SiO2 deposition, the sample was kept inside the chamber with O2 

continuously flowing until cooling down to the room temperature. The O2 flowing 

during the SiO2 deposition and the cooling time was to avoid O2 out-diffusion from the 

LiNbO3 substrate. A uniform periodic grating of the SiO2 film was delineated using 

positive photolithography with longer dehydration time and higher soft-bake temperature 

(Appendix 5) than the channel waveguides patterned process. The sample was then 

vacuum hard-baked at 135°C for 11 minutes and dry etched under RIE system for 20 

minutes with 300 watts plasma power. The non-patterned SiO2-film residue after RIE 

was completely removed by wet-etching in buffered oxide etch (BOE) for 25~30 

seconds. The photoresist on top of SiO2 grating patterns was cleaned by leaving the 

sample in heated 90°C photoresist stripper for 10 minutes. A total number of 765 

uniform index gratings with a spatial period Λ of 21 μm was obtained. Then the sample 

was ready for optical testing. 

 

C. Electrooptically Tunable Add/Drop Filters 

The electrooptically tunable add/drop filter was made on an x-cut y-propagating 

LiNbO3 substrate with the size of 16.5 mm (z-axis) by 62 mm (y-axis). The principle of 
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operation has been discussed earlier and the schematic of a complete filter structure is 

illustrated in figure 16. The details of the filter design are given in Appendix 14. 
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Figure 16. The schematic of the complete tunable add/drop integrated filter structure. 

 

The complete filter consisting of three layers in a sequence of Ti-indiffused 

waveguides, electrooptic tuning electrodes, and SiO2 gratings was fabricated using 

similar procedures as making the tunable polarization mode converter. First, the Ti-

indiffused waveguides including input and output single-mode waveguides, two 

polarization beam splitters and channel waveguides of the tunable polarization mode 

converters were integrated on a LiNbO3 substrate made with 1350 Å deposited Ti film 
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thickness and diffused at 1055°C for 9 hours. Once the first layer was produced, the 

overall splitting ratio was measured using fiber coupling before proceeding to the next 

fabrication step. Second, Cr/Au/Ti metal layers of the corresponding thickness 

650Å/800Å/650Å were deposited on the substrate of delineated photoresist electrode 

patterns, and the electrode pairs were formed after lift-off process in acetone. Third, the 

765 uniform periodic strain-induced index gratings made from a 1.41 μm thick SiO2 film 

was fabricated on top of the electrode pairs using e-beam evaporation system to deposit 

a SiO2 film at 360°C, and positive photolithography to produce the grating patterns. 

Finally, the characterizations of the complete tunable add/drop optical filter were 

performed under fiber coupling. 
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CHAPTER V 

OPTICAL TESTING AND RESULT ANALYSIS 

 

In this chapter the optical testing performance of channel waveguides, 

polarization beam splitters, and tunable TE↔TM Polarization mode converters are 

presented. The characteristics of an optical tunable add/drop filter with respect to overall 

extinction ratio, field distribution profiles, electrooptic tuning, temperature and 

polarization dependence are analyzed. 

 

A. Channel Waveguides 

To achieve good performance from an integrated optical filter, high quality 

channel waveguides are required. A high quality channel waveguide should have single 

mode propagation, low insertion loss, and strong confinement of near field distributions 

for both TE and TM polarizations. Those qualities can be optimized by controlling 

fabrication parameters which consist of initial thickness of Ti strip, the width of a 

channel waveguide, diffusion temperature, and diffusion time. The insertion loss of a 

waveguide is the total amount of lost intensity after placing a waveguide in-between an 

optical path, and it is defined in dB as    

 ( ) 10log out

in

PInsertion Loss dB
P

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (88) 

where Pin and Pout are input and output powers to the waveguide, respectively. The test 

arrangement for the insertion loss measurement is shown in Figure 17. A pigtailed 1.55 



 48

μm distributed feedback (DFB) laser diode (AT&T, Model 225) driven by a current 

source (ILX Lightwave, Model LDX-3412) at 32 mA was used as an optical source. The 

pigtail fiber was spliced to a single mode fiber (Corning SMF-28TM) and the fiber was 

routed into a fiber polarization controller (Thorlabs Inc., Model FDC010) to switch the 

polarization state of an input light. The sample was placed on a high resolution x-y-z 

translation stage (Line Tool Co., Allentown, PA), and the light was butt coupled into the 

waveguide via a flat-polished edge. A 20×  objective lens was placed at the output to 

collect the light and focus it onto a Ge photodetector (Newport, Model 818-IR) and the 

output power was measured with a power meter (Newport, Model 1825-c). 
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Figure 17. The test arrangement of the insertion loss measurement. 

 

Several samples with different Ti film thicknesses, waveguide widths, and 

diffusion conditions were fabricated. The sample k106 with Ti film thickness of 1089 Å 

diffused at 1025°C for 11 hours was tested. The size of sample k106 is 14 mm long and 

the waveguide widths ranged from 5 μm to 10 μm. Table 2 shows the insertion loss with 

respect to various waveguide widths. 
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Table 2. Insertion loss of channel waveguides for TE and TM polarizations with various 

widths on sample k106 diffused at 1025ºC for 11 hours. 

 
Waveguide width (μm) 5 6 7 8 9 10 

TM mode loss (dB) 30 10.36 3.81 3.05 3.02 3.0 

TE mode loss (dB) 6.02 3.65 3.43 3.13 3.46 3.60 

 
 

Waveguide widths of 7 μm and 8 μm with Ti film thickness of 1000 ~ 1300 Å are 

commonly used for maintaining single mode propagation. The wider width may excite 

asymmetric mode simultaneously and cause multi-mode propagation. The dependence of 

the insertion loss for 7 μm and 8 μm waveguide widths on diffusion time is given in 

Table 3, and it shows the insertion loss decreases with longer diffusion time due to 

greater refractive index change.  

 

Table 3. Insertion loss of 7 μm and 8 μm wide waveguide widths on sample k106 with 

different diffusion time for TE and TM polarizations. 

 
Diffusion time (hours) 9 9+1 9+1+1 

TM mode loss (dB) 6.52 4.54 3.81 
7 μm  

TE mode loss (dB) 4.85 3.92 3.43 

TM mode loss (dB) 3.42 3.16 3.05 
8 μm 

TE mode loss (dB) 4.81 3.46 3.13 
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There are three primary loss components contributing to the fiber-waveguide 

insertion loss: 1) Fresnel loss, 2) mode mismatch loss, and 3) propagation loss [33]. The 

Fresnel loss results from the reflections of an optical field at both ends of a waveguide 

and can be estimated by assuming the effective indices seen by TE and TM modes in a 

waveguide are equal to the extraordinary index ne and the ordinary index no, 

respectively. An estimation of Fresnel loss is given by 

 2 10log(1 )fFresnel loss(dB) Loss R= = − × −  (89) 

with  

 
2

1
1

i

i

nR
n

⎛ ⎞−
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 (90) 

where ni = no or ne depending on the polarization state of the propagating mode. The 

Fresnel loss can be reduced with an index-matched fluid or an antireflection coating at 

the edges of a waveguide [34]. The mode mismatch loss is caused by the different field 

profiles between an optical fiber and the propagation mode of a waveguide, and it can be 

determined by evaluating the overlap integral between the electric field profile of an 

optical fiber and the channel waveguide. Assuming circular Gaussian profile of the fiber 

mode and employing two half-Gaussian profiles of a waveguide as depicted in Figure 

14, the mode mismatch is expressed as [31, 33] 

 ( ) 10logmmode mismatchloss dB Loss η= = −  (91) 

with the coupling efficiency η, given as 
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where a  is the mode diameter of fiber; σ1 and σ2 are 1/e of maximum intensity of the 

asymmetric depth profile and σ3 is half width of 1/e of maximum intensity of the 

symmetric lateral profile of the waveguide. Once the insertion loss, Fresnel loss, and 

mode mismatch loss are known, the propagation loss for the waveguide can be obtained 

in the unit of dB/cm as  

 ( ) ( )f minsertion loss Loss LossdBPropagationloss cm L
− +

=  (93) 

where L is the propagation length. 

Another feature to inspect in a channel waveguide is the near field intensity 

profile. A setup for the mode profile measurement is illustrated in Figure 18.  
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Figure 18. The test setup of the mode profile measurement. 
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(a) Horizontal scan of TM mode                    (b) Vertical scan of TM mode 
 
 
 
 
 

 

 

(c) Horizontal scan of TE mode                    (d) Vertical scan of TE mode 

 
Figure 19. Mode Profiles of the 7 μm wide channel waveguide on sample k106. 

Horizontal scale is 10.37 μm/div and vertical scale is 100 mV/div. 

 

The arrangement is the same as the one used for the insertion loss measurement, but 

before the light is launched onto the photodetector, a vibrating mirror and a 100 μm wide 

slit are placed in the optical path to deflect light for the profile test. The vibrating mirror 

was driven by a circuit for a beam scanning horizontally or vertically across the 

waveguide edge. The slit was inserted in front of the photodetector for improving the 

spatial resolution, and it was oriented vertically for horizontal scans and horizontally for 

vertical scans to obtain transverse lateral and transverse depth near field intensity 
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profiles, respectively. The optical power meter was connected to an oscilloscope for 

direct display, or a computer via a NI-DAQ board (National Instruments – Data 

Acquisition) for storage. The storage data can be acquired with the LabVIEW program.  

Figure 19 shows the measured mode profiles of transverse lateral and depth 

distributions for both TE and TM polarizations on a 7 μm wide waveguide of sample 

k106. The mode profile display clearly exhibits the waveguide supporting only single 

mode propagation for both TE and TM polarizations since there is only one peak 

showing in the profile display. The transverse lateral profile of horizontal scans reveals a 

symmetric Gaussian shape while the transverse depth profile of vertical scans shows an 

asymmetric shape corresponding to the field distributions depicted in Figure 14. Full 

Width at Half Maximum (FWHM) was used to evaluate the mode confinement. To 

measure FWHM a directional coupler with two output branches separated at 68 μm was 

used as a scale. The measured FWHM of 7 μm and 8 μm wide channel waveguides of 

sample k106 for both TE and TM polarizations are given in Table 4. It shows the TE-

polarized mode has stronger confinement than the TM-polarized mode. 

 

Table 4. Measured FWHM of 7 μm and 8 μm wide channel waveguides on sample k106 

with 1089 Å Ti thickness and diffused at 1025 ºC for 9 hours. 

 
7 μm 8 μm Waveguide 

width  TM mode TE mode TM mode TE mode 
FWHM (μm) of 
horizontal scan 8.30 6.06 7.85 5.83 

FWHM (μm) of 
vertical scan 8.30 7.18 8.75 6.73 
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B. Polarization Beam Splitters 

For an optical element, the state of polarization is an important factor. To have a 

compact and versatile optical tunable filter device, polarization independence is needed 

and a polarization beam splitter as shown in Figure 20 is introduced for this purpose 

based on two-mode interference phenomenon in the central interaction region. The 

splitter can be integrated with other elements on the same chip to form a polarization 

independent optical filter. 
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Figure 20. The schematic diagram of a polarization beam splitter. 

 

The performance of a polarization beam splitter can be evaluated from its 

extinction ratio (ER), as defined in equation (71). Assuming a TE- or TM-polarized light 

is coupled into port P1, the intensity profiles of output ports P3 and P4 are scanned with a 

vibrating mirror using the same setup as Figure 18. Figure 21 shows the measured mode 

profile of a polarization beam splitter on sample ks28 indicating extinction ratio of 9.06 

dB for the TE polarization. The tested splitter on sample ks28 was made using 1327 Å Ti 
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film thickness with 1055°C diffusion temperature for 9 hours, and had a 7 μm wide 

waveguide width with a 240 μm long central interaction length.  

 

 

 
Figure 21. Measured mode profile of the polarization beam splitter tested with 240 μm 

long interaction length of sample ks28 with extinction ratio 9.06 dB for the 

TE polarization. Horizontal scale is 10.37 μm/div and vertical scale is 100 

mV/div. 

 

The extinction ratio was obtained by measuring the power from two output ports of a 

splitter using the arrangement depicted in Figure 22. Amplified Spontaneous Emission 

(ASE) light from an Erbium-Doped Fiber Amplifier (EDFA) was used as a broadband 

input source. The reason for using a broadband light source was to ensure proper 

operation when integrated with polarization mode converters in the formation of a 

tunable filter. The ASE light was connected to a polarizing single mode fiber (PZ fiber) 

P3 

P4 



 56

that can be rotated to select either TE- or TM-polarized input. The output light was 

coupled into a single mode fiber and detected by a Ge photodetector connected to a 

power meter. 
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Figure 22. The test arrangement for measuring extinction ratio. 
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Figure 23. The measured ER of samples ks15, ks9, and ks8 with Ti film thicknesses 

corresponding to 1199 Å, 1227 Å, and 1228 Å diffused at three different 

temperatures of 1040°C, 1045°C, and 1050°C, respectively for 9 hours for 

both TE and TM modes. 
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Numerous samples with polarization beam splitters that were produced under 

various fabrication parameters have been tested. The mask design of polarization beam 

splitters is given in Appendix 8. The extinction ratio (ER) is determined with three 

critical fabrication parameters: 1) initial Ti film thickness, 2) diffusion temperature, and 

3) diffusion time. In what follows, test results regarding those parameters are presented. 

The ER of three samples ks15, ks9, and ks8 with close Ti film thicknesses corresponding 

to 1199 Å, 1227 Å, and 1228 Å, diffused at three different temperatures of 1040°C, 

1045°C, and 1050°C, respectively for 9 hours is shown in Figure 23 for both TE and TM 

modes. Figure 24 shows the ER of various deposited Ti film thicknesses, all diffused at 

1050°C for 9 hours, for both TE and TM modes. 
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Figure 24. The ER of samples ks22, ks4, ks8, ks7, and ks12 with corresponding Ti film 

thicknesses of 1111Å, 1177Å, 1228Å, 1242Å, and 1261Å all diffused at 

1050°C for 9 hours for TM and TE modes. 
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Since the TM polarization produced much better extinction ratios than the TE 

polarization for all the different diffusion temperatures and Ti film thicknesses, as shown 

in Figure 23 and 24, the use of thicker Ti film was explored to improve the extinction 

ratio of the TE polarization. Figure 25 shows the optimized results of the TE mode with 

much thicker Ti film thicknesses diffused at a higher temperature of 1055°C, and all for 

9 hours. The ER values shown in Figure 23, 24, and 25 were all measured on splitters 

having a 280 μm long central interaction length due to their better splitting performance. 
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Figure 25. The ER of samples ks17, ks24, ks23, ks28, and ks29 with corresponding Ti 

film thicknesses of 1263Å, 1287Å, 1299Å, 1327Å, and 1359Å all diffused at 

1055°C for 9 hours for the TE-polarized input. 

 

These three figures indicate that the initial Ti film thicknesses along with 

diffusion temperature and time are controlling factors for achieving high extinction 

ratios. For a thin Ti film diffused at a low temperature the index difference between the 
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two simultaneously excited modes (symmetric fundamental mode and asymmetric 

lowest-order mode) in the central region was not large enough to satisfy the phase 

conditions for acceptable polarization splitting, especially for the TE-polarized mode and 

that caused the low splitting ratios. With the thicker Ti film thickness (> 1300 Å) and the 

compatible high diffusion temperature, the ER of TE mode improved significantly as 

shown in Figure 25, and the waveguide maintained the single mode propagation. 

Extinction ratios of 16.8 dB and 20.5 dB for TE and TM modes, respectively was 

measured on sample ks28 and 15.9 dB and 24.8 dB for TE and TM modes was measured 

on sample ks29. The ER for various central interaction length Lc on sample ks28 and 

ks29 are shown in Figure 26 and 27.  
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Figure 26. The ER of various central interaction length Lc for TM- and TE-polarized 

inputs on sample ks28 with Ti film thickness of 1327 Å diffused at 1055°C 

for 9 hours. 
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Figure 27. The ER of various central interaction length Lc for TM- and TE-polarized 

inputs on sample ks29 with Ti film thickness of 1359 Å diffused at 1055°C 

for 9 hours. 

 

The behaviors in Figure 26 and 27 suggest that the ER of TE and TM 

polarizations varies considerably with the interaction region length, the ER of the TM 

polarization is better than of the TE polarization, and the best extinction ratio for the TE 

polarization is obtained with the longest available central region length [35]. Figure 28 

shows the ER variation with diffusion time at 1055°C tested with the splitter of 280 μm 

long interaction length on sample ks28 for TE and TM modes and it reveals the ER of 

both TM and TE modes degrades with longer diffusion time. Another sample ks25 with 

Ti film thickness of 1336 Å that was diffused at the same temperature of 1055°C but for 

a shorter diffusion time of 8 hours showed lower ER, and with additional diffusion time 
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the ER of sample ks25 did not improve. Thus, it was concluded that a polarization beam 

splitter with more than 1300 Å Ti film thickness diffused at 1055°C for 9 hours would 

provide acceptable extinction ratios. 
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Figure 28. The ER with different diffusion time at 1055°C tested with the splitter of 280 

μm long interaction length on sample ks28 for TE and TM modes.  

 

C. Tunable TE↔TM Polarization Mode Converters 

Based on earlier analysis, a tunable TE↔TM polarization mode converter is a 

key element of an optical tunable filter and consists of three parts: a single-mode Ti-

indiffused channel waveguide, one pair of electrodes, and a phase-matched periodic 

strain-induced index grating, as depicted in Figure 15. To evaluate the performance of a 

tunable TE↔TM polarization mode converter the test setup, illustrated in Figure 29, was 

used. 
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Figure 29. The test setup for a polarization mode converter. 

 

To test wavelength selectivity and electrooptic tuning in the polarization mode 

converter, a broadband source is needed. The Amplified Spontaneous Emission (ASE) 

light from an Erbium-Doped Fiber Amplifier (EDFA) in the 1.55 μm wavelength regime 

was used as a broadband light source. The broadband ASE source was assembled with a 

backward pumping configuration, as illustrated in Figure 29. A 5m long erbium-doped 

fiber (EDF) was pumped by a 980 nm laser diode (LD) (SDL Optics Inc. Model: SDLO-

2400-090) through a 980/1550 nm WDM coupler. An optical isolator (Kaifa 

Technology, Model: IS-A-55-B-A-11) with more than 38 dB isolation was placed at the 

output of the coupler to prevent self-oscillation (lasing). The broadband ASE light was 

butt coupled into a flat-polished end-edge of a channel waveguide through a single mode 

polarizing fiber (PZ fiber) which can be rotated to select either TE or TM polarization. 

The polarization extinction ratio > 35 dB was achieved for both TE- and TM-polarized 
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inputs. The test sample placed on a Cu plate with a thermoelectric cooler (TEC) below it 

was mounted on a high resolution x-y-z translation stage. The thermoelectric cooler was 

used to control the substrate temperature for thermal tuning. A thermistor (Omega 

Model: 44030) placed on the Cu plate was used to measure the temperature. The output 

light was collimated by a 20×  objective lens and passed through a polarization analyzer 

to select the output polarization for characterization. A second 20×  objective lens was 

used to focus and couple the light into a cleaved single mode fiber and monitor the 

output spectrum on an Optical Spectrum Analyzer (OSA) (Anritsu, Model MS9710C). 

The ASE output power as a function of the LD pump current is shown in Figure 30. An 

ASE power of 1 mw at a pump current of 75 mA was coupled into the waveguide. The 

spectrum of ASE light is shown in Figure 31. 
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Figure 30. ASE output power variation with the pump LD current. 



 64

1520 1528 1536 1544 1552 1560
-55

-50

-45

-40

-35

-30

-25

-20
 

 

AS
E 

O
ut

pu
t P

ow
er

 (d
Bm

)

Wavelength (nm)

 
Figure 31. ASE output spectrum at the pump LD current of 75mA. 

 

To characterize the polarization mode converter, the polarization state of the 

input light has to be either TE or TM polarization. From the analysis of a converter the 

strain-induced index change Δn5, given in equation (74), is responsible for the 

polarization conversion and it depends on the thickness of SiO2 film and the elevated 

temperature during the SiO2 deposition. It was found that converters with a SiO2 film 

thickness between 1.40 ~ 1.60 μm deposited at 360°C provide the best conversion. The 

output spectra of a mode converter with a total of 765 strain-induced index gratings of a 

21 μm spatial period on sample k77 for TE- and TM-polarized inputs are shown in 

Figure 32. The 7 μm wide channel waveguide of sample k77 was produced from a 1210 

Å thick Ti film diffused at 1050°C for 12 hours, and the strain inducing pads were 

produced from a 1.60 μm thick SiO2 film deposited at 360°C. Figures 32(b) and (d) 

show the TM→TE conversion and TE→TM conversion, respectively, and both reveal 
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very comparable converted profiles at the phase-matched wavelength of 1530.88 nm 

with a -3 dB bandwidth (FWHM) of 1.56 nm at 30°C substrate temperature. The -3dB 

bandwidth is in close agreement with the expected value from Δλ = 0.8(λo / N) with λo = 

1530.88 nm and N = 765. 

 

        
(a) Unconverted TM mode output                     (b) TM→TE conversion  

        
(c) Unconverted TE mode output                      (d) TE→TM conversion  

 
Figure 32. Output spectra of a polarization mode converter for TE and TM polarizations 

on sample k77 at 30ºC substrate temperature. (a) and (b) are for TM-

polarized input. (c) and (d) are for TE-polarized input. 
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The simulated conversion profiles with various number of grating N predicted 

from equation (79) are shown in Figure 33, and the experimental results of 

corresponding number of gratings with the -3 dB bandwidth measurements are 

illustrated in Figure 34. The data in Figures 34(a) and (b) are for mode converters with 

300 and 500 gratings of 21 μm spatial periods fabricated on 7 μm wide waveguides 

(sample k106) with a 1.45 μm thick SiO2 film, and the 765 gratings with 21 μm spatial 

periods (Figure 34(c)) were produced on sample k77. Figure 33 and 34 show the close 

agreement.  
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Figure 33. Normalized converted power profiles with various number N of uniform 

gratings. N = 300 (o), 500 (+), and 765 (―). 
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(a) N = 300, FWHM = 3.12nm.   

 
(b) N = 500, FWHM = 2.08nm. 

 
(c) N = 765, FWHM = 1.60nm. 

 

Figure 34. The output spectra of converters with various grating number N for the TM-

polarized input at 23ºC substrate temperature without applying a DC voltage. 
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Conversion efficiency, as defined in equations (81) and (82), is another feature to 

evaluate the performance of a mode converter. The ideal conversion efficiency is equal 

to one. Figure 35 shows the measured conversion efficiency as a function of the 

wavelength for both TE- and TM-polarized inputs tested with a 765-grating mode 

converter on sample k77 at 23°C. It reveals 98.2% conversion efficiency at the phase-

matched wavelength of 1536.64 nm, and corresponds to a birefringence value Δn of 

0.0732.  

1530 1532 1534 1536 1538 1540 1542
0.0

0.2

0.4

0.6

0.8

1.0

 

 

1536.64nm, 98.2%
      @ 23oC

C
on

ve
rs

io
n 

E
ffi

ci
en

cy

Wavelength (nm)

 TM->TE
 TE->TM

 
Figure 35. Conversion efficiency as a function of wavelength tested on sample k77 at 

23°C for both TE- and TM-polarized inputs. 

 

Since the refractive indices in LiNbO3 vary with the temperature (d(ne-no)/dT ~ -

2.9091×10-5 /°C at wavelength 1.40 μm) [36], from λo = ΔnΛ with fixed Λ = 21 μm the 

converted wavelength can be tuned by changing the substrate temperature via a 

thermoelectric cooler. With thermal tuning, the phase-matched wavelength shifted from 
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1530.88 nm at 30°C to 1542.72 nm at 16°C on sample k77 as shown in Figure 36, 

indicating a thermal tuning rate of -0.846 nm/°C.  
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Figure 36. Normalized converted power as a function of wavelength for both TE- and 

TM-polarized inputs tested on sample k77 with thermal tuning. 

 

Another tuning mechanism is using the electrooptic effect to change the refractive 

indices via an applied DC voltage on the substrate along the optic axis. Figure 37 shows 

the linear tuning behavior of the converted peak wavelength on sample k77 for TE- and 

TM-polarized inputs. The wavelength shifted by 9.76 nm with a DC voltage tuning from 

-100 V to +60 V corresponding to a tuning rate of 0.061 nm/V with the electrode gap of 

17 μm. Assuming the overlap factors between the applied electric field and the optical 

field  for TE and TM polarizations are equal, ΓTE =  ΓTM, the overlap factor is calculated 

from equation (85) as 0.47, for the electrode gap of 17 μm. 
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Figure 37. Electrooptic tuning of the center wavelength for TE- and TM-polarized inputs 

with the electrode gap of 17 μm tested on sample k77 at 23°C. 

 

D. Electrooptically Tunable Add Drop Filters 

A tunable add/drop filter has two main elements: a polarization beam splitter and a 

tunable TE↔TM polarization mode converter. The performance of both has been 

optimized to produce high extinction ratio for the polarization beam splitter, and high 

conversion efficiency with a narrow -3 dB bandwidth (FWHM) for the polarization 

mode converter. Using the optimized fabrication parameters, first Ti-indiffused 

waveguides including the input and output single mode channel waveguides, the two 

polarization beam splitters, and the two single mode channel waveguides of polarization 

mode converters were integrated on an x-cut y-propagating LiNbO3 substrate, as 

illustrated in Figure 38. After both edges were finely polished for fiber coupling, the 

overall extinction ratio (ER) was measured using the same test arrangement shown in 
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Figure 22. The test results and analysis are discussed later in this section. Then electrode 

pads made with Cr/Au/Ti were produced on the surface along the sides of the 

polarization mode converter regions for electrooptic tuning. Finally 765 periodic strain-

induced index gratings were formed using a SiO2 film on top of the electrode pads for 

TE↔TM mode conversion. The output profile of a complete tunable add/drop filter was 

examined using the setup shown in Figure 39.  
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Figure 38. The first layer of Ti-indiffused waveguides for a tunable add/drop filter. 
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Figure 39. The test setup for a tunable add/drop filter. 
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The setup is similar to that of Figure 29. The broadband ASE light was butted coupled 

into the input port of a tunable filter through a single mode polarizing fiber (PZ fiber). 

The tested filter device was places on an x-y-z stage. The output spectra of the express 

port (O1) and the drop port (O2) were viewed with an optical spectrum analyzer (OSA). 

The observed characteristics of tunable add/drop filters are presented next. 

 

D-1. Overall extinction ratio 

After the first layer of Ti-indiffused waveguides formation, as illustrated in Figure 

38, the overall extinction ratio (ER) of the filter device was tested before forming the 

second and third layers. The configuration could be treated as two polarization beam 

splitters jointed together. For either input state of polarization, signals entering into the 

input port I1 should ideally emerge from the express port O1 of the interferometer 

configuration, and the overall extinction ratio, R, could be evaluated using   
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The interferometer configuration was tested with the setup shown in Figure 22. 

The overall ER obtained with different initial Ti film thicknesses for TE and TM inputs 

is shown in Figures 40 and 41 for devices which had 280 μm long central interaction 

length. The results for samples k211, k209, k208, k210, and M6 with corresponding Ti 

thicknesses of 1166 Å, 1190 Å, 1208 Å, 1226 Å, and 1250 Å are shown in Figure 40. 
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(Appendix 16 for device details) Samples k209, k208, and k210 were diffused at 1050°C 

for 11 hours. Samples k211 and M6 were diffused at 1035°C for 11 hours and at 1060°C 

for 10 hours, respectively. Compared with the ER of a single splitter, the thinner Ti film 

produced much worse overall ER. Figure 41 reveals the overall ER of samples K17, 

K11, K14, K13, and K10 with thicker Ti film of 1347 Å, 1350 Å, 1360 Å, 1362 Å, and 

1395 Å, respectively. (Appendix 16 for device details)  Both figures indicate the opening 

window of the Ti film thickness for achieving the comparable overall ER for TE and TM 

inputs is very limited. It gives a strict tolerance range of fabrication parameters to attain 

the high and comparable overall ER for both polarizations. The highest and most 

comparable overall ER from the tested samples are 16.0 dB for the TE input and 18.8 dB 

for the TM input, and were obtained for 280 μm central interaction region length on 

sample K11. 
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Figure 40. The overall ER variation with Ti film thickness tested on filter device #6C of 

different samples, k211, k209, k208, k210, and M6. 
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Figure 41. The overall ER variation with Ti film thickness tested on filter device #6C of 

different samples, K17, K11, K14, K13, and K10, all diffused at 1055°C for 9 

hours.  

 

Figure 42 shows the overall ER as a function of central interaction region length Lc 

for sample K11 produced from a 1350 Å thick and 7 μm wide Ti strip at a diffusion 

temperature of 1055°C for 9 hours. According to the phase conditions given in equation 

(70), three factors: 1) propagation constant difference Δβ between fundamental mode 

and asymmetric mode, 2) central interaction length Lc, and 3) generated phase difference 

Δφ(α) in the transition region need to be matched well to produce high splitting ratio. Δβ 

is strongly related to fabrication parameters including initial Ti film thickness, diffusion 

temperature, and diffusion time. Δφ(α) is affected by the confinement of mode profiles 

and the opening angle of α. Optimization of these three factors is needed to produce 

polarization beam splitters with high extinction ratio for the desired filter application.  
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Figure 42. The overall ER as a function of central interaction length Lc on tested sample 

K11 with Ti film thickness of 1350 Å diffused at 1055°C for 9 hours. 

 

D-2. Spectral characteristics 

Once the overall extinction ratio was measured, the second layer of electrode pads 

and third layer of 765 uniform index gratings were fabricated on top of the substrate and 

a tunable add/drop filter was produced, as shown in Figure 16. The spectral 

characteristics were examined with the arrangement given in Figure 39. Figure 43 shows 

the output spectra of the express port O1 and the drop port O2 for the filter which has 280 

μm central interaction length on sample K11 at 25.5°C substrate temperature without 

applying a DC voltage. Figure 43(b) indicates the peak wavelength of the drop port is at 

1530.24 nm with a -3 dB bandwidth (FWHM) of 1.56 nm in close agreement with the 

expected value from Δλ = 0.8(λo/N) with λo = 1530.24 nm and N = 765. 
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(a) Spectrum of express port 

 
(b) Spectrum of drop port 

 
Figure 43. Output spectra of the filter device #6C on sample K11 at 25.5ºC substrate 

temperature for the TM-polarized input without applying a DC voltage. 

 

To evaluate the transmission performance of the add port I2 the transmitted profile 

of at the express port O1 was examined by coupling the ASE light into the add port I2 at 

25.5°C substrate temperature without applying voltages. Figure 44 compares the 

performance of the drop port O2 and the express port O1. They reveal nearly identical 
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spectra with a -3 dB bandwidth of 1.56 nm at the same phase match wavelength of ~ 

1530 nm, and the nearest sidelobe of both is about 12 dB below the central main peak, 

which is somewhat better than the theoretical value of ~ 9.5 dB for uniform gratings. 

 

 
(a) Output spectrum at drop port O2 

 
(b) Transmitted spectrum at express port O1 

 
Figure 44. Comparison of output spectra between the drop port and the express port 

tested on filter device #6C of sample K11 at 25.5°C for the TM-polarized 

input without applying a DC voltage. 



 78

D-3. Temperature dependence  

Since the refractive index in a LiNbO3 crystal depends on the temperature [36], the 

phase-matched condition, Λ = λo/Δn, could be adjusted by thermal tuning the substrate 

temperature Ts via a thermoelectric cooler. Figure 45 shows the normalized drop port 

spectrum of the filter with 280 μm interaction region length on sample K11 at two 

substrate temperature values for the TM-polarized input. The phase-matched wavelength 

shifted from 1526.96 nm at 29°C to 1539.60 nm at 15°C, indicating a thermal tuning rate 

of -0.903 nm/°C. 
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Figure 45. Normalized thermal tuning performance of filter device #6C on sample K11 

for the TM-polarized input without applying a DC voltage. 

 

D-4. Electrooptic tuning  

Another tuning mechanism is by applying a DC voltage on the LiNbO3 substrate 

along optic axis to induce refractive index changes via the linear electrooptic effect. 
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Figure 46 shows the phase-matched wavelength shift of the filter for two devices, each 

of 280 μm interaction region length (#6C and #14C, in Appendix 14), on sample K11 for 

TM-polarized input. Filter devices #6C and #14C correspond to the electrode gap of 17 

μm and 13 μm, respectively and reveal maximum tuning range of 11.36 nm and 14.08 

nm achieved by applying a DC voltage ranging from -80 V to +80 V. The tuning range 

is mainly limited by the electric field breakdown of LiNbO3 crystal (nearly 10 V/ μm) 

[13], and also depends on the gap between electrode pads, and the quality of electrode 

metal deposition. The narrower electrode gap provides a larger tuning range. The 

electrooptic tuning rate is 0.07 nm/V for the 17 μm electrode gap and 0.086 nm/V for the 

13 μm electrode gap.  
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Figure 46. Electrooptic tuning performance of filter devices #6C and #14C on sample 

K11 at 23°C for the TM-polarized input. 
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Figure 47 shows the normalized spectral response of the filter with 280 μm interaction 

region length (device #6C in Appendix 14) with applying DC voltages from -80 V to 

+80 V on sample K11 at 23°C for TM-polarized input, and it gives tuning range of 11.36 

nm for the 17 μm electrode gap. 
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Figure 47. Normalized spectral characteristics of electrooptic tuning for the filter device 

#6C on sample K11 at 23°C for the TM-polarized input. 

 

Two different tuning mechanism have been demonstrated, thermal tuning and 

electrooptic tuning, although thermal tuning can provide wider tuning range, it requires 

longer time to stabilize, thus it is slow. The advantage of electrooptic tuning is in its 

rapid tuning response. 
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D-5. Polarization dependence 

The polarization dependence of the transmitted spectra was also examined on the 

same filter device with TE-polarized and TM-polarized inputs, individually. Figure 48 

shows the drop port performance of the filter device #6C on sample K11 at 25.5°C 

without applying a DC voltage for the TE-polarized input. 

 

 

 
Figure 48. The drop port performance of the filter device #6C on sample K11 at 25.5°C 

without applying a DC voltage for the TE-polarized input. 

 

Compared with Figure 44(a), it indicates close spectral characteristics with a -3 dB 

bandwidth (FWHM) of 1.56 nm at peak wavelength 1530.24 nm. For the TE-polarized 

input the nearest sidelobe is slightly higher than for the TM-polarized input; and this 

maybe because the overall extinction ratio of the TM-polarized input is somewhat better 
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than that of the TE-polarized input. The fiber-to-fiber insertion loss at wavelength 

1530.24 nm is 5.7 dB and 6.3 dB for TE- and TM-polarized input, respectively, on the 

62 mm long filter device. Figure 49 shows the electrooptic tuning performance of filter 

devices #6C and #14C with corresponding electrode gaps of 17 μm and 13 μm on 

sample K11 at 23°C for both polarizations, and Figure 50 shows the normalized thermal 

tuning characteristics of the drop port tested with the filter device #6C of sample K11 for 

both TE- and TM-polarized inputs without applying a DC voltage. The results shown in 

those figures confirm that the tunable add/drop filter is polarization independent.  
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Figure 49. Electrooptic tuning performance of the filter device #6C and #14C on sample 

K11 at 23°C for TE- and TM-polarized inputs. 
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Figure 50. Normalized thermal tuning characteristics of the filter device #6C on sample 

K11 without applying a DC voltage for TE- and TM-polarized inputs. 
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CHAPTER VI  

CONCLUSION 

 

To satisfy the demands of fast tuning speed and an increased number of 

communication channels for dense WDM networks, a polarization independent 

electrooptic add/drop tunable filter on a LiNbO3 substrate with a narrow -3 dB 

bandwidth (FWHM) of 1.56 nm operating in the 1.55 μm wavelength regime has been 

developed. The performance of the filter is based on passive polarization beam splitters 

and strain-induced phase-matched polarization mode converters. The principle of 

operation of a tunable filter and its key elements were discussed. 

Channel waveguides of various widths and fabrication parameters were fabricated 

using Ti indiffusion technology on x-cut y-propagating LiNbO3 substrates.  A 7 μm wide 

channel waveguide with Ti film thickness of 1350 Å diffused at 1055°C for 9 hours 

indicated single mode propagation and fiber-to-fiber insertion loss of 2.99 dB and 2.60 

dB for TE- and TM-polarized inputs, respectively, on a 62 mm long substrate. 

Polarization beam splitters with an opening angle of 0.55° and a central interaction 

region length Lc ranging from 200 μm to 280 μm were produced on x-cut y-propagating 

LiNbO3 substrates with different fabrication parameters. Extinction ratios of 16.8 dB for 

TE and 20.5 dB for TM were measured on the 280 μm long interaction region length for 

a polarization splitter produced with Ti film thickness of 1327 Å diffused at 1055°C for 

9 hours in wet ambient. To satisfy the phase conditions for both polarizations and 
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produce high extinction ratio splitters, all fabrication parameters and the interaction 

length Lc must be tightly controlled with strict tolerances. 

Tunable TE↔TM polarization mode converters with uniform strain-induced index 

gratings made from a SiO2 film have been produced and tested. The results confirmed 

that the -3 dB spectral bandwidth depends on the total number of index gratings. A 

polarization mode converter with a 765 strip index grating and a spatial period of 21 μm 

made from a 1.60 μm thick SiO2 strain film produced a conversion efficiency of 98.2 % 

and a -3 dB bandwidth of 1.56 nm at the phase-matched wavelength of 1536.64 nm at 

the room temperature for both TE and TM input polarizations. Thermal tuning was used 

to shift the peak wavelength, and a thermal tuning rate of -0.846 nm/°C was achieved. 

Electrooptic tuning was also demonstrated to shift the phase-matched peak wavelength 

by 9.76 nm with voltage ranging from -100 V to +60 V and revealed an electrooptic 

tuning rate of 0.061 nm/V for an electrode gap of 17 μm. 

A polarization independent electrooptic add/drop tunable filter was produced by 

the same process as the tunable TE↔TM polarization mode converter. The phase-

matched wavelength at 1530.24 nm was directed towards the drop port at a 25.5°C 

substrate temperature. The transmission performance of the add port was also evaluated 

at that temperature and showed spectral characteristics very close to that of the drop port. 

Both reveal a -3 dB bandwidth of 1.56 μm and nearest sidelobes about 12 dB below the 

center peak. The fiber-to-fiber insertion loss at 1530.24 nm wavelength was less than 6.3 

dB for both polarizations, measured on a 62 mm long filter device. Thermal tuning was 

used to shift the peak wavelength from 1526.96 nm at 29°C to 1539.60 nm at 15°C 
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giving a thermal tuning rate of -0.903 nm/°C. Another tuning mechanism based on the 

electrooptic effect was also demonstrated. A maximum tuning range of 14.08 nm was 

achieved with an electrode gap of 13 μm indicating an electrooptic tuning rate of 0.086 

nm/V. Thermal tuning and electrooptic tuning were examined for both TE and TM input 

polarizations and showed very comparable results, confirming that the tunable filter is 

polarization independent. 
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CHAPTER VII  

SUGGESTIONS FOR FUTURE WORK 

 

According to the obtained results the tunable filter with polarization beam splitters, 

shows a very strict tolerance range of fabrication parameters to satisfy the phase 

requirements of a polarization beam splitter for both TE- and TM-polarized inputs, 

simultaneously. New designs of an electrooptic tunable filter using Mach-Zehnder 

configuration with relaxed beam-splitter requirements have been proposed by Dr. H. F 

Taylor and Dr. O. Eknoyan [37]. The new electrooptic tunable filter (EOTF) design is 

illustrated in Figure 51. 
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Figure 51. New design of an electrooptic tunable filter [37].  
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The new design differs from the investigated electrooptic tunable filter in this 

research study in following respects: 1) polarization beam splitters are not required and 

are replaced by finite gap directional couplers, 2) the optical path difference for the 

waveguides between two couplers for both TE and TM polarizations is a half-

wavelength, or an odd integral multiple, and 3) the relative positions of the polarization 

coupling regions in two channel waveguides are displaced in the propagation direction 

by half of the spatial period of the perturbation responsible for the coupling. In this 

configuration, the directional couplers must satisfy one condition: 

 ( ) ( ) 1TE TMii ii
f f+ =  (95) 

with i = 1 or 2, where (fp)ij is the fraction of incident power at port i with the polarization 

p exiting at port j. In this configuration the coupling length, the waveguide width, and 

the opening angle are fixed, and only the separation gap is varied. By measuring (fTE)ii 

and (fTM)ii for various separation gaps, the condition of equation (95) can be satisfied. 

The new design relaxes the requirements for ideal polarization splitting and makes it 

easier to fabricate tunable add/drop wavelength filters. 
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APPENDIX 1 

DICING WAFERS  

 

1. Mount a blue tape to an o-ring and place a LiNbO3 wafer on the tape. 

2. R Turn on 5 knobs/switches for dicing: water valve behind the sink (yellow), air 

knob under bench (black), vacuum pump power switch under saw (silver), vacuum 

line switch under saw (black), water line valve under saw (yellow). 

3. R Turn on saw power. 

4. Select PROGRAM and program 300 was used. Confirm parameters. 

5. Check two parameters of Height = 0.6 mm and Thickness = 1.2 mm for 1 mm thick 

wafer. Select PROGRAM again to finish setting. 

6. R Turn on spindle and wait until indicated light was stabilized.  

7. Select ZERO CHUCK. Be prepared to RESET if the blade cuts into chuck. 

8. Place the wafer mount on the chuck, and select WAFER LOCK. 

9. Select ALIGN. Align the wafer with crosshairs using controlling panels on right. 

10. Press SINGLE CUT to start cutting. 

11. Do a test run before cutting into the wafer. 

12. When finished, select WAFER RELEASE. 

13. Do steps marked R in reverse order to shut down system. 

14. Take out diced substrates.  
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APPENDIX 2 

SUBSTRATE CLEANING PROCEDURE 

 

1. Brush a substrate gently with a Q-tip under soapy water.  

2. Rinse thoroughly with D.I. water. 

3. Sonicate in Acetone for 10 minutes. 

4. Rinse with Methanol. 

5. Sonicate in Methanol for 10 minutes. 

6. Rinse with D.I. water. 

7. Sonicate in soap water for 10 minutes. 

8. Rinse with D.I. water. 

9. Sonicate in D.I. for 10 minutes. 

10. Rinse with Methanol. 

11. Brush a substrate gently with a Q-tip under Methanol. 

12. Blow dry with N2. 
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APPENDIX 3 

DC SPUTTERING PROCEDURE 

 

1. Vent the chamber and load samples. 

2. Close bell jar and turn on mechanical pump switch. 

3. Turn on chamber roughing valve and wait until chamber pressure is below 50 μmHg. 

4. Close roughing valve and open high vacuum valve all the way. 

5. Wait until chamber pressure drops below 2×10-6 Torr. 

6. Turn on cooling system for thickness monitor and set the cooling temperature at 

10°C. 

7. Turn on Argon gas valve and set the flow rate at 140sccm. 

8. Adjust high vacuum valve until Hastings vacuum gauge reads 20 μmHg. 

9. Set parameters of thickness monitor. 

10. Turn on power supply and select the red button. 

11. Turn on the current dial slowly to 40 mA. 

12. Pre-sputtering for 15 minutes. 

13. Rotate to the sample position and start deposition. 

14. After finish deposition, turn off the current dial, power supply, and Argon gas valve. 

15. Reset the cooling temperature to 25°C and turn off the system. 

16. Wait for more than two hours and take out samples. 
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APPENDIX 4 

POSITIVE PHOTOLITHOGRAPHY PROCESS 

 

1. Dehydrate samples at 135°C for 5 minutes. 

2. Let samples cool down for 10 minutes. 

3. Spin Clariant AZ 5214 photoresist at 5000 rpm for 30 seconds. 

4. Soft bake samples at 99°C for 2 minutes. 

5. Cool down samples for 10 minutes. 

6. Expose samples under UV light with 11.0 mw/cm2 power density for 3.75 seconds 

without filter. 

7. Develop samples in a Shipley MF312:H2O = 1:1.2 solution for 55 seconds. 

8. Rinse samples thoroughly with D.I. water. 

9. Blow dry samples gently with N2. 
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APPENDIX 5 

POSITIVE PHOTOLITHOGRAPHY PROCESS ON SiO2 FILM 

 

1. Dehydrate samples with SiO2 film at 135°C for 30 minutes. 

2. Wait until samples cools down to room temperature. 

3. Spin promotor first at 3000 rpm for 30 seconds for improving the adhesion between 

SiO2 film and photoresist.  

4. Spin Clariant AZ 5214 photoresist at 3000 rpm for 30 seconds. 

5. Soft bake samples at 105°C for 2 minutes. 

6. Cool down to room temperature. 

7. Expose samples under UV light with 11.0 mw/cm2 power density for 3.75 seconds 

without filter. 

8. Develop samples in a Shipley MF312:H2O = 1:1.2 solution for 60 seconds. 

9. Rinse samples thoroughly with D.I. water. 

10. Blow dry gently with N2. 
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APPENDIX 6 

O2 PLASMA ASHING 

 

1. Turn on power supply and vacuum pump. 

2. Vent and load samples into barrel asher. 

3. Pump down the chamber and O2 line below 50 μmHg. 

4. Turn on O2 valves and adjust flow rate until chamber pressure reaches 500 μmHg. 

5. Turn on forward power to 100 watts and keep reflected power below 5 watts. 

6. Run RF for 2 minutes. 

7. When finished, vent and take out samples. 

8. Turn off valves, O2 gas, and power supply. 
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APPENDIX 7 

REACTIVE ION ETCHING (RIE) 

 

1. Turn on main power. 

2. Vent and load samples into the chamber. 

3. Turn on power switches of mechanical pump and high vacuum pump. (Not the 

valves) 

4. Open roughing valve until chamber pressure drops below 7000 μmHg. 

5. Close roughing valve. 

6. Turn on high vacuum valve and blower switch. 

7. Until chamber pressure drops to 20 μmHg or below, switch throttle valve to auto. 

8. Turn on gases and adjust the flow rate. CHF3 ~ 30 sccm, Argon ~ 3 sccm, and 

Helium ~ 7.5 sccm.  

9. Wait until chamber pressure stabilized at 70 μmHg. 

10. Turn on RF power. Adjust forward power to 350 watts and reflected power to 0 watt. 

11. Start etching and timing. 

12. After finished etching, turn off RF power, close gases, and switch throttle valve to 

open. 

13. Wait for few minutes and turn off high vacuum valve and blower switch. 

14. Vent and take out samples. 

15. Turn off the mechanical pump and high vacuum pump. 

16. Turn off main power. 
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APPENDIX 8 

LAYOUT DIMENSION OF A POLARIZATION BEAM SPLITTER 
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Figure 52. The mask layout of a polarization beam splitter. 

 

Table 5. The dimension of a polarization beam splitter with α = 0.55° and d = 208 μm. 

 

Device # 3C 4C 5C 6C 7C 8C 11C 12C 13C 

w (μm) 7 7 7 7 7 7 8 8 8 

Lc (μm) 200 220 230 240 260 280 210 230 250 

h (μm) 14 14 14 14 14 14 16 16 16 
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APPENDIX 9 

DEKTAK3 SURFACE PROFILE MEASURING SYSTEM 

 

1. Start the program. 

2. Load a sample on the platform and turn on the light. 

3. In program: SETUP→STYLUS→ALIGN, adjust the focus and alignment. 

4. In program: SCAN PROGRAM→SCAN ROUTINE, set the scanning length and 

profile mode. 

5. Select F4 key to start scanning. 

6. Move R and M markers to proper position to level the scanned profile. 

7. Move R and M markers again to right position to measure the thickness. 

8. In program: ANALYSIS→ANALY FUNCTIONS→AVE HEIGHT→COMPUTE, 

the thickness is given. 

9. After measurement, exit program and turn off the light. 
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APPENDIX 10 

TITANIUM IN-DIFFUSION PROCESS 

 

1. Load well cleaned samples on an alumina (Al2O3) D-tube, and put the D-tube in the 

center of an alumina long tube. 

2. Use a glass rod to adjust the alumina tube to the center of a quartz tube of the 

furnace. 

3. Seal the quartz tube with a quartz cap at front and connect to a bubbler. 

4. Turn on compressed air valve and adjust air flow rate at the back of the furnace. 

5. Adjust settings at front panel for desired diffusion temperature. 

6. Wait until air flow rate stabilizes at 4 bubbles/second.  

7. Turn on control switch. 

8. Until current meters stabilize; turn on element switch. 

9.  It takes 45~60 minutes to heat up to the set temperature. 

10. When current meters swing on/off, start counting diffusion time. 

11. Frequently check the bubbling rate at front during diffusion. 

12. Until reaching the total diffusion time, turn off the element and control switches right 

away. 

13. Wait for 3~4 hours until the furnace temperature drops below 200°C.  

14. Detach the bubbler. Then turn off compressed air valve. 

15. Take out alumina tube and samples next day. 
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APPENDIX 11 

POLISHING PROCESS 

 

1. Apply one or two small drops of UV epoxy (Norland optical adhesive P/N 8101) on 

the clean waveguide surface of one sample. 

2. Place the second sample with the waveguide surface faced down on top of the first 

sample. 

3. Cure epoxy under UV light for 10 minutes each side. 

4. Place samples into a polishing mount and secure the mount to a polish jig. 

5. Start rough polishing with polish grit mixed in lapping oil. 

6. Polish at 6 rpm speed for approximately 15~20 minutes. 

7. Clean thoroughly the polishing mount and fixture before next step of fine polishing. 

8. Mix 3μm diamond polishing grit with soap, water, and suspendex according to 

certain ratio. 

9. Pour the mixed solution on the polishing plate and tray. 

10. Turn on the pump for circulating the mixture. 

11. Place the polishing jig on the plate gently, and very slowly increase the rotating 

speed of the plate to 16 rpm. 

12. After polishing for one hour, inspect the end face with microscope. If not satisfied, 

do 20 minutes polishing interval and check again. 

13. Clean all parts for finer polishing with the 0.3 μm diamond polishing grit. 

14. Repeat the same procedure as polishing with 3 μm grit mixture. 
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15. Polish for 15~20 minutes at 16 rpm. 

16. Take out samples and soak in MF312 until separate. 

17. Clean the sample surface with methanol. 

18. Inspect edge quality under microscope before optical testing. 
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APPENDIX 12 

IMAGE REVERSAL PROCESS 

 

1. Dehydrate samples at 135°C for 15 minutes. 

2. Wait until samples cool down to room temperature. 

3. Spin Clariant AZ 5214 photoresist at 3500 rpm for 30 seconds. 

4. Pre soft-baked at 100°C for 1 minute. 

5. Cool down for 5 minutes. 

6. Fast exposed under 10.8 mw/cm2 UV light for 1.25 seconds with a filter. 

7. Second soft-baked at 110°C for 3 minutes. 

8. Cool down for 10 minutes. 

9. Flood exposed under 10.8 mw/cm2 UV light for 1.75 minutes without a filter. 

10. Develop samples in a Shipley MF312:H2O = 1:1.2 solution for 22 seconds. 

11. Rinse samples well with D.I. water. 

12. Blow dry samples gently with N2. 
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APPENDIX 13 

E-BEAM EVAPORATION PROCEDURE 

 

1. Turn on the thickness monitor and the indicated light should flash twice. If light 

keeps flashing, the thickness crystal sensor needs to be replaced. Then turn it off. 

2. Before venting the chamber, make sure the roughing valve and high vacuum valve 

are closed. 

3. Vent the system. 

4. Place crucibles with deposited materials and load samples. 

5. Close the lid and turn on the mechanical pump and roughing valve to pump down the 

system. 

6. Wait until the chamber pressure drops below 50 μmHg. 

7. Close the roughing valve. 

8. Turn on the high vacuum valve. 

9. Turn off the mechanical pump. 

10. Wait until system pressure is below 7×10-6 torr. 

11. Turn on the cooling system. 

12. For SiO2 deposition, start to heat up samples slowly until 360°C. Open the O2 valve 

and adjust O2 flow rate at 1 sccm when the sample temperature reaches 200°C. Keep 

the chamber pressure below 1.0×10-5 torr. 

13. Turn on the thickness monitor and set parameters of the density and z-ratio for 

deposited materials. 
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14. Start deposition. 

15. For Cr/Au/Ti electrode deposition, wait for 15~20 minutes before depositing another 

metal layer. 

16. After the deposition is complete, turn off the thickness monitor. 

17. For deposited SiO2 film, turn off the heating variac and open O2 control knob all the 

way until the sample temperature drops below 50°C. 

18. Leave the cooling system on for at least one hour. 

19. Close the O2 valve. 

20. Turn off the cooling system. 

21. Close the high vacuum valve. 

22. Vent the system and take out samples. 
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APPENDIX 14 

LAYOUT DIMENSION OF A TUNABLE ADD/DROP FILTER 

 

 

PBS PBS

LcLc
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Figure 53. The waveguide layout diagram of a tunable add/drop filter. 

 

Table 6. The mask layout of devices with different interaction length Lc for tunable 

add/drop filters. 

 

Device # 2C 4C 6C 8C 10C 12C 14C 16C 

Lc (μm) 240 260 280 300 240 260 280 300 
 

 



 110

APPENDIX 15 

LAYOUT DIMENSION OF ELECTRODES 
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Figure 54. The layout of the electrode pattern. 

 

Table 7. The layout dimension with different electrode gaps. 

 

Device # 2C 4C 6C 8C 10C 12C 14C 16C 

d (μm) 15 15 15 15 13 13 13 13 

g (μm) 13 13 13 13 17 17 17 17 
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APPENDIX 16 

FABRICATION PARAMETERS OF DEVICES 

 

Table 8. Fabrication parameters of various devices. 

 

Device # Ti Film Thickness 
(Å)  

Diffusion 
Temperature (°C) 

Diffusion Time 
(hours) 

k106 1089 1025 9 

k77 1210 1050 12 

ks28 1327 1055 9 

ks29 1359 1055 9 

k211 1166 1035 11 

k209 1190 1050 11 

k208 1208 1050 11 

k210 1226 1050 11 

M6 1250 1060 10 

K17 1347 1055 9 

K11 1350 1055 9 

K14 1360 1055 9 

K13 1362 1055 9 

K10 1395 1055 9 
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