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ABSTRACT 

 
Validation/Enhancement of the "Jones-Owens" Technique for the Prediction of Permeability in Low 

Permeability Gas Sands. (May 2007) 

François-André Florence 
 

Dipl., Ecole des Mines de Saint Etienne, France 
 

Chair of Advisory Committee: Dr. Thomas A. Blasingame 
 
 
This work presents the validation and enhancement of existing correlations for estimating and predicting 

the permeability in low permeability gas sands.  The "original" problem of predicting the corrected or 

"liquid equivalent" permeability has been under investigation since the early 1940s — in particular, using 

the application of "gas slippage" theory to petrophysics by Klinkenberg. 
 

In the first part of this work, the viability of the Jones-Owens and Sampath-Keighin correlations for 

estimating the Klinkenberg-corrected (absolute) permeability from single-point, steady-state measure-

ments were investigated.  We also provide an update to these correlations using modern petrophysical 

data. 
 

In the second part of this work we proposed and validated a new "microflow" model for the evaluation of 

an equivalent liquid permeability from gas flow measurements.  This work was based on a more detailed 

application of similar concepts employed by Klinkenberg.  In fact, we obtained the Klinkenberg result as 

an approximate form of this result.  A theoretical "microflow" result was given as a rational polynomial 

(i.e., a polynomial divided by a polynomial) in terms of the Knudsen number (ratio of the mean free path 

of the gas molecules to the characteristic flow length (typically the radius of the capillary)), and this result 

can be applied as an explicit correlation device, or as an implicit prediction model (presuming the model is 

tuned to a particular data set). 
 

The following contributions are derived from this work: 

● Validation and extension of the correlations proposed by Jones-Owens and Sampath-Keighin for low 

permeability samples. 
 

● Development and validation of a new "microflow" model which correctly represents the flow of gases 

in low permeability core samples.  This model is also applied as a correlation for prediction of the 

equivalent liquid permeability in much the same fashion as the Klinkenberg model, although the new 

model is substantially more theoretical (and robust) as compared to the Klinkenberg correction model. 
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CHAPTER I 
 

INTRODUCTION 
 

1.1 Research Problem  

In the last decades, the interest for low permeability reservoirs has grown substantially.  Although costly 

and time-consuming, the coring of a well and the analysis of the extracted sample remains the best way to 

assess the formation, prior to any treatment and economic decision.  Permeability measurements in the 

laboratory can be performed by either steady-state or unsteady-state methods — our work will focus on 

data acquired by steady-state methods.  Steady-state measurements are considered by some to be more 

reliable than unsteady-state measurements, especially for low permeability cores, but these also have a 

major drawback — liquid is used as the flowing fluid, but the lower the permeability of the sample, the 

longer the time to required to achieve steady-state flow.  To reduce this effect, the use of gas as the 

flowing fluid is preferred.  However, the use of gas as the flowing fluid raises a fundamental issue: the 

permeability measured with gas is not the same than the permeability measured with liquid.  More 

problematically, the permeability measured with gas changes with the flowing pressure — this conclusion 

is in conflict with the definition of the permeability as being a property of the porous medium only. 
 

This discrepancy is explained by the gas slippage effect, a phenomenon occurring at relatively low flowing 

pressure (typically the range of pressures reached in the laboratory experiments) and yielding an 

overestimation of the measured permeability to gas.  Klinkenberg1 proposed a correction for this effect and 

later works (Heid et al,2 Jones and Owens3 and Sampath and Keighin4) developed correlations based on 

the Klinkenberg model allowing, with various successes, to estimate/predict the true permeability of the 

porous medium using a single measure of permeability to gas.  These single point steady-state measure-

ments provide a time-saving and cost-effective method to assess the true permeability of the sample.  This 

study presents the most promising of the correlations found in the petroleum engineering literature. 
 

From the theoretical point of view, Klinkenberg developed a first-order slippage correction based on the 

results of the theory of rarefied gases developed by Kundt and Warburg.5  Recent developments in this 

area of study allowed us to develop a new model for gas slippage in porous medium, based on the concept 

of the study of flow regimes. 
 
 

_________________________ 

This thesis follows the style and format of the SPE Journal.  
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1.2. Research Objectives  

The overall objectives of this work are: 

● To validate the correlation proposed by Jones and Owens for individual and mixed sample cases 

of core data obtained from the literature and the industry. 

● To provide enhancements to the Jones-Owens correlation — based on new data, as well as on the 

possibility of employing other correlation models. 

● To consider other mechanisms, correlations or conversions to estimate the absolute (liquid) per-

meability from gas permeability reservoir samples evaluated at various average pressures. 
 

1.3. Previous Work 

Our overall objective is to develop a method based on theoretical equations and/or empirical correlations 

to determine with the maximum accuracy the true liquid permeability of tight sandstone core samples at 

the lowest possible cost.  To achieve this goal, we investigate the theoretical and empirical studies docu-

mented in the literature to date. 
 

The problem of the flow of gases through tubes and porous media has been under investigation since the 

last quarter of the nineteenth century — in particular by Kundt and Warburg5 who developed the 

fundamentals of the theory of gas slippage — based on the work of Maxwell6 (not discussed here) on the 

modeling of the motion of gases molecules.  Klinkenberg1 was the first to apply the results for the theory 

of slippage to the petrophysical domain, addressing the issue of discrepancies between permeabilities to 

air and to water (i.e., the wetting phase liquid).  Such discrepancies are usually more important for lower 

permeability sands. 
 

For reference, the Klinkenberg formulation is derived in complete detail in Appendix A.  Klinkenberg 

derived an approximate linear relationship between the apparent gas permeability (ka) and the reciprocal 

mean pressure ( p ), which is given as: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1 ................................................................................................................................ (1.1) 

 

Where bK is the "gas slippage factor" — which is a "constant" (for a given sample) that relates the mean 

free path ( λ ) of the molecules at the mean pressure ( p ) and the effective pore radius (r).  The definition 

of the pbK / -term is given by:  
 

r
c

p
bK λ4

= , where c ≈ 1 (see ref. 5) ................................................................................................... (1.2) 
 

In Eq. 1.1, k∞ is the "equivalent liquid permeability" (or Klinkenberg-corrected permeability), which is the 

true permeability of the porous medium. 
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From Eqs. 1.1 and 1.2, Klinkenberg drew the following conclusions: 

● The gas permeability can be approximated as a linear function of the reciprocal mean pressure — 
in particular, the apparent permeability (ka) can be extrapolated to infinite pressure (using the ka 
versus p1/  plot, such a plot is known as a Klinkenberg plot) (i.e., as 01/or  →∞→ pp ), which 
should yield the true permeability (k∞). 

● The gas permeability is independent of the pressure drop along the core — provided that the 
mean pressure along the core is constant. 

● The gas slippage factor (bK) is inversely proportional to the radius of the capillaries. 
 

Klinkenberg confirmed his theoretical work with a series of experiments on glass filters and rock samples.  

The steady-state measurement methods consist of collecting several data points (ka, p1/ ) and obtaining the 

Klinkenberg plot from which the Klinkenberg-corrected permeability (k∞) and from which the 

Klinkenberg gas slippage factor (bK) can be extracted. 
 

Taking the Klinkenberg equation as fact, later work in this area focused on the determination of the gas 

slippage (bK) factor.  In the late 1940s Heid et al2 conducted a study including the effect of pressure, pore 

size, and type of porous medium on permeability.  Heid et al determined the gas slippage factor and the 

(extrapolated) true permeability of 11 synthetic cores and 164 natural core samples of representative sands 

from different producing areas of the United States.  Based on the results of their core sample experiments 

shown in Fig. 1.1, Heid et al developed a relationship between the Klinkenberg gas slippage factor (bK) 

and the corresponding equivalent liquid permeability (k∞): 
 

39.0)(419.11 −
∞= kbK .......................................................................................................................... (1.3) 

 

 

With the development of the interest in unconventional resources, and particularly tight gas sands (which 

typically exhibit permeabilities much lower than that of the core samples Heid et al. studied), further 

investigations were conducted in the late 1970s to respond the need for reliable permeability assessments.  

In a paper focused on core analysis for tight gas (or low permeability) sands, Jones and Owens3 studied the 

effects of several phenomena for more than one hundred samples from tight gas sands.  The phenomena by 

Jones and Owens considered are: 

● Confining pressure 
● Gas slippage 
● Pore Volume Compressibility 
● Effect of water on core permeability 
● Effect of partial water saturation on gas permeability 
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Figure 1.1 — Plot of the gas slippage factor (bK) versus Klinkenberg-corrected permeability 
for data and correlation from Heid et al (ref. 2).  The correlation is acceptable 
(i.e., reasonably well-defined) for values of permeability greater than 1 md. 

 
 
 

Unfortunately, the database that Jones and Owens developed for their article is not available (or, more 

aptly, cannot be found).  Jones and Owens provide a formula similar in form to the one presented by Heid 

et al for the relationship between the gas slippage factor (bK) and the equivalent liquid permeability (k∞).  

This formula also confirms that the gas slippage effect is more significant for lower permeability rocks: 
 

33.0)(639.12 −
∞= kbK .......................................................................................................................... (1.4) 

 

Jones and Owens propose the application of Eq. 1.4 to estimate the Klinkenberg-corrected permeability 

(Eq. 1.1) using ordinary, steady-state, gas permeability data:  Jones and Owens also developed a cor-

relation of the Klinkenberg-corrected permeability as a function of the gas permeability (ka) estimated at 

100 psig.  This correlation is given as: (recall that 1μd = 10-3 md) 
 

)0825.0log067.1log398.0( 2
10 −+−

∞ = aa kkk , for md 1md 0001.0 << ak ...................................................... (1.5) 
 

In 1981 (two years after Jones and Owens), Sampath and Keighin4 studied 10 core samples from the Uinta 

County, Utah, and published a formula relating the gas slippage factor (bK) to the ratio of Klinkenberg-

corrected permeability to porosity (i.e., k∞/φ).  The Sampath-Keighin relation is given by: 
 

53.0 
 851.13

−
∞

⎥
⎦

⎤
⎢
⎣

⎡
=

φ
kbK ..................................................................................................................... (1.6) 

 

The data and correlation developed by Sampath-Keighin are shown on Figure 1.2. 
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Figure 1.2 — Plot of the gas slippage factor (bK) versus Klinkenberg-corrected per-
meability/porosity ratio (k∞/φ) for data and correlation from Sampath and 
Keighin (ref. 4).  The correlation is acceptable (i.e., reasonably well-defined). 

 
 
 

1.4 Summary 

This study begins with the comparison of the existing correlations, on both types of data, steady and 

unsteady-state, acquired from the literature or from the industry: these correlations are based on the 

Klinkenberg equation (Eq. 1.1) derived in Appendix A. 
 

In the second part of this study, we investigate the gas slippage effect at a fundamental/theoretical level: 

Klinkenberg derived his result using developments of the theory of slip available in 1941; we look at the 

recent development of this theory and develop a modern equation to model the discrepancies between 

permeability to gas and true permeability for low permeability sample: the microflow model (derived in 

Appendix B). 
 

The last part of this study consists in a comparison between the existing correlations and the microflow 

model. 

 



 

 

6

 

CHAPTER II 
 

OVERVIEW OF THE EXISTING CORRELATIONS 
 

2.1 Inventory of the Existing Correlations 

The first phase of our work consists mainly of reviewing the available literature — as well as gathering 

data from the literature and the industry.  The literature database consists of the data gathered in the 

articles from Klinkenberg, 1 Heid et al2 and Sampath and Keighin.4  The industry database is composed of 

recently acquired datasets obtained from industrial sources — i.e., "Lower Cotton Valley" samples7,8, both 

datasets are steady-state measurements.  We also obtained "older" datasets obtained from a Gas Research 

Institute (GRI) project conducted in the 1980s and early 1990s9-11.  The later datasets are unsteady-state 

measurements. 
 

 
 

Figure 2.1 — Comparison of the "bK vs. k∞" correlations by Heid et al (ref. 2) and Jones-
Owens (ref. 3) with various field and literature data, acquired with unsteady-
state (USS) or steady-state (SS) techniques — although the correlation appears 
accurate, the correlation errors are most significant for low permea-bility data.  
[k∞ is determined at 800 psig confining pressure, except for the data of Sam-
path-Keighin where k∞ is determined at 1000 psig confining pressure and for 
the data of Heid et al (where no confining pressure was specified).] 

 
 
 

The data are correlated in Fig. 2.1 (the bK-parameter and the corresponding equivalent liquid permeability 

(k∞)), and we note a fair fit of the model proposed by Jones-Owens with the experimental data.  The error 
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spread (vertically) is approximately 1 order of magnitude (factor of 10), which, while far from perfect, at 

least validates the concept for a correlation of bK and k∞. 
 

Similarly, a test of the Sampath and Keighin model (ref. 4) using the same data shows an important 

discrepancy between the model and the data (see Fig. 2.2).  The model proposed by Sampath and Keighin 

fits only their data.  The data of Heid et al lie above the model trend due to the petrophysical properties of 

the core samples — porosity data ranges from 0.09 to 0.33 (with a median value of 0.14) while the 

permeability data range from 0.0015 to 2100 md (with a median value of 27.05 md). 
 

Although based on a reduced number of samples, the Sampath-Keighin correlation (Eq. 1.6) is interesting 

at a theoretical level since it is noted in the literature12 that the square root of the Klinkenberg-corrected 

permeability/porosity ratio is considered to be a "characteristic length" (recall that the permeability has the 

dimension of a length-squared).  Eq. 1.2 (repeated below for clarity) shows that the Klinkenberg gas slip-

page factor (bK) is inversely proportional to the capillary radius (r): 
 

r
c

p
bK λ4

= , where c ≈ 1 (see ref. 5) ................................................................................................... (1.2) 
 

A theoretical formulation of the capillary radius as a function of the Klinkenberg-corrected permea-

bility/porosity ratio (or, more generally as a function of the permeability/porosity ratio) is given as: 
 

φ
∞−×=

kr 610886.8 ......................................................................................................................................... (2.1) 
 

Eq. 2.1 is analytically derived in Appendix B.  In Eq. 2.1, the capillary radius (r) is expressed in cm, the 

Klinkenberg-corrected porosity (k∞) is expressed in md and the porosity is a fraction.  With the appro-

priate assumptions, it is possible to rigorously derive a general "square-root" k∞/φ correlation of the form: 
 

5.0
 

−
∞

⎥
⎦

⎤
⎢
⎣

⎡
=

φ
β

kbK ................................................................................................................................. (2.2) 
 

The β-term in Eq. 2.2 is a function of the gas used in the core flow experiment — we present Eq. 2.2 

computed for different gases on various data correlation and the Sampath-Keighin correlation on Fig. 2.2. 
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Figure 2.2 — Comparison of the "bK vs. k∞/φ " correlations by Sampath and Keighin (ref. 5) 
and this work with various field and literature data, acquired with unsteady-
state (USS) or steady-state (SS) techniques.  Note that Sampath-Keighin model 
only correlates with the Sampath-Keighin dataset.  The square-root model 
seems to give better results.  [k∞ is determined at 800 psig confining pressure, 
except for the data of Sampath-Keighin where k∞ is determined at 1000 psig 
confining pressure, as well as the data of Heid et al (where no confining 
pressure was specified).] 

 
 
 

Figs. 2.1 and 2.2 serve to highlight trends in the prescribed data function — as well as to establish that a 

significant vertical spread exists in these data sets — which can lead to errors in permeability estimates for 

low permeability reservoirs. 
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2.2 Comparison for Unsteady-State Data 

The correlation previously presented are not meant to be used with unsteady-state measurement — the 

Klinkenberg-corrected permeability (k∞) being obtained directly and the flowing pressure data are usually 

not given in the lab reports, however we will expose them here for the sake of the demonstration.  The 

comparison of the Jones-Owens correlation and the unsteady-state data is shown on Fig 2.3. 
 

 
 

Figure 2.3 — Comparison of the "bK vs. k∞" correlations by Heid et al (ref. 2) and Jones-
Owens (ref. 3) with unsteady-state data.  The scattering of the data is important 
in the whole range of permeability, especially in the low permeabilities (data 
measured permeabilities below 0.001 md were discarded, as these 
permeabilities are beyond accuracy of the unsteady-state permeameter). 

 
 
 

The Jones-Owens correlation follows the trend given by the cloud, but the accuracy is questionable. 
 

The Sampath-Keighin correlation and the proposed square-root correlations also follow the trend: Fig. 2.4, 

present the measured Klinkenberg gas slippage factor (bK) plotted against the Klinkenberg corrected 

permeability/porosity ratio (k∞/φ).  The vertical scattering is important, and the Sampath-Keighin corre-

lation seems to systematically underestimate the Klinkenberg gas slippage factor, whereas the Square-

Root model curve is well centered in the cloud of data points. 
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Figure 2.4 — Comparison of the "bK vs. k∞/φ " correlations by Sampath and Keighin (ref. 5) 
and this work with unsteady-state data.  The scattering of the data is important 
in the whole range of permeability, especially in the low permeabilities (data 
measured permeabilities below 0.001 md were discarded, as these per-
meabilities are beyond accuracy of the unsteady-state permeameter).  The 
Square-Root model achieves a better fit than Sampath-Keighin correlation. 

 
 
 

The exposed correlations show a reasonable fit with the trend of the data.  The principles used in the 

unsteady-state permeability measurement methods raise fundamental issues (Rushing et al13).  Unsteady-

state data should be viewed with concern — especially for permeabilities below 1 microdarcy (0.001 md), 

as the unsteady-state permeameter tends to overestimate the Klinkenberg-corrected permeabilities. 
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2.3 Comparison for Steady-State Data 

In this section, we compare the Heid et al (ref. 2), Jones-Owens (ref. 3), Sampath-Keighin (ref. 4) and our 

proposed square-root correlation (Eq. 2.2) with the data from the Lower Cotton Valley formation (or 

modern "standard" database).  The first "Cotton Valley" dataset includes 12 core samples; the second has 

18 core samples.  For each sample, we have the porosity (φ) and several measured gas permeabilities (ka) 

at various mean core pressure ( p ).  From these data points, a Klinkenberg plot is constructed and the 

Klinkenberg-corrected permeability (k∞) and Klinkenberg gas slippage factor (bK) are estimated. 
 

The comparison of the Heid et al and Jones-Owens correlations with the (Cotton Valley) steady-state data 

is shown on Fig 2.5 (bK vs. k∞).  The Sampath-Keighin correlation and our proposed "square-root" 

correlation are compared to the steady state data in Fig 2.6 (bK vs. k∞/φ). 
 

 
 

Figure 2.5 — Comparison of the Cotton Valley steady-state data with the Jones-Owens and 
Heid et al correlations.  The Heid et al correlation seems well adapted for these 
datasets, whereas the Jones-Owens correlation generally underestimates the gas 
slippage factor, especially for the first Cotton Valley sample set. 
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Figure 2.6 — Comparison of the Cotton Valley steady-state data with the Sampath-Keighin 
and proposed square-root correlations.  Although the measurements were per-
formed with nitrogen as the flowing gas, we note that the square-root 
correlation for carbon dioxide gives the best match (the best fit is actually 
obtained for a β-value of 34). 

 
 
 

For both of the Cotton Valley datasets, the steady-state permeability measurements were performed using 

nitrogen as the flowing fluid — and we note that the nitrogen curve on Fig. 2.6 overestimates the gas slip-

page factor (bK), whereas the carbon dioxide curve provides a good fit.  Regardless of the "intercept" issue, 

our model matches the data trends well. 
 

The objective of this particular effort is to accurately estimate the bK-term, and then utilize this estimate in 

Eq. 1.1 to yield the Klinkenberg-corrected permeability.  A general procedure for "single-point data" is to 

use any given pair of ka and φ values to estimate bK, and then to use the bK and  p values to estimate k∞.  

In our case, we use a model (i.e., correlation) for bK and substitute this result into Eq. 1.1 to estimate k∞. 
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As an alternative, one could simply establish a correlation of k∞ = f(ka) — this process was proposed by 

Jones and Owens based (ref. 3) on the gas permeability (ka) estimated at 100 psig.  This correlation is 

given by Eq. 1.5, repeated below for clarity: (recall that 1μd = 10-3 md) 
 

md 1    μd 0.1for  ,10 )0825.0log067.1log398.0( 2
<<= −+−

∞ a
kk kk aa ................................................................. (1.5) 

 

The purpose of our work is to establish a relevant correlation of ),...,,( akpfk φ=∞  — we will pursue a 

robust correlation as discussed above (i.e., ),( φ∞= kfbK , substituted into Eq. 1.1).  Recalling the Klinken-

berg equation (Eq. 1.1), the Heid et al correlation (Eq. 1.3), the Jones-Owens correlation (Eq. 1.4), the 

Sampath-Keighin correlation (Eq. 1.6), and our proposed square-root correlation (Eq. 2.2) — we have: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1  (Klinkenberg) ......................................................................................... (1.1) 

 

39.0)(419.11 −
∞= kbK  (Heid et al) ............................................................................................. (1.3) 
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∞= kbK  (Jones-Owens)........................................................................................ (1.4) 
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−

∞
⎥
⎦

⎤
⎢
⎣

⎡
=

φ
kbK  (Sampath-Keighin)................................................................................. (1.6) 

 

5.0
 

−
∞

⎥
⎦

⎤
⎢
⎣

⎡
=

φ
β kbK  (this work)......................................................................................................... (2.2) 

 

Substituting the Heid et al correlation (Eq. 1.3) for bK in Klinkenberg equation (Eq. 1.1) yields: 
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⎡
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−
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39.0)(419.111 ............................................................................................................. (2.3) 

 

Rearranging Eq. 2.3 yields: 
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−
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Substituting Jones-Owens correlation (Eq. 1.4) for bK in Eq. 1.1 and rearranging yields:  
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Substituting Eq. 1.6 for bK in Eq. 1.1 and rearranging yields: 
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Substituting Eq. 2.2 for bK in Eq. 1.1 and rearranging yields:  

01 1
5.0

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎥
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⎤
⎢
⎣

⎡
+−

−
∞

∞ p
kkka φ

β ............................................................................................................. (2.7) 

 

For every steady state measurements (i.e., using a single pair of ka and  p values), Eqs. 2.4, 2.5, 2.6 and 

2.7 (with the appropriate value for the β-term in Eq. 2.7, i.e., β = 43.345 for nitrogen), can be solved for 

the unknown (k∞) — this method is known as single point steady-state measurement and yields the 

"computed equivalent liquid permeability".  Fig 2.7 and Fig 2.8 present the computed equivalent liquid 

permeability plotted against the measured Klinkenberg-corrected permeability on log-log scales for both 

"Cotton Valley" datasets.  In this work we note that the "Klinkenberg-corrected permeability" refers only 

to the value of permeability actually extrapolated from a Klinkenberg plot — the permeability values 

computed from correlations (or computations) are referred as "equivalent liquid permeabilities."  

However, we will use the same symbol (k∞) for either case. 
 
 
 

 
 

Figure 2.7 — Computed equivalent liquid permeability versus Klinkenberg-corrected per-
meability, for the Lower Cotton Valley Sample No.1.  The Jones-Owens and 
Sampath-Keighin correlations overestimate k∞ and the theoretical square-root 
model for nitrogen underestimates k∞.  The Heid et al correlation gives good 
results. 
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Figure 2.8 — Computed equivalent liquid permeability versus Klinkenberg-corrected per-
meability, for the Lower Cotton Valley Sample No.2.  The Heid et al, Jones-
Owens and Sampath-Keighin correlations provide fair results for k∞ > 0.001 
md.  The theoretical square-root model for nitrogen underestimates k∞, but 
performs well for low permeability samples. 

 
 
 

In both cases (Cotton Valley samples 1 and 2), the theoretical square-root model (nitrogen curve) under-

estimates the Klinkenberg-corrected permeability — but the overall performance of the square-root rela-

tion is comparable to the other methods. 
 

In Figs. 2.9 and 2.10 we present the average absolute relative errors for the computed equivalent liquid 

permeability plotted against the measured Klinkenberg-corrected permeability.  This format helps us to 

assess the accuracy of the correlation on a "point-by-point" basis for a particular dataset. 
 

For Cotton Valley Sample No. 1, the Heid et al, Jones-Owens and Sampath-Keighin models generally 

overestimate the permeability.  As shown in Figs. 2.9 and 2.10, all models exhibit a fairly high absolute 

relative error (>50 percent for some cases) — however; the "clustering" for both datasets suggests that 

most samples exhibit less than 25 percent error.  Given the data and the relatively approximate nature of 

the correlations, we consider the performance to be good, perhaps very good. 
 

While it is difficult to discriminate the "best" of the four correlations, based on our results, we believe that 

the Sampath-Keighin correlation and the generalized square-root correlations are more "consistent" with 

the theory — and as such, should be favored for this application. 
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Figure 2.9 — Average absolute relative errors for equivalent liquid permeability versus 
Klinkenberg-corrected permeability, for Lower Cotton Valley Sample No.1.  
Errors are generally less than 30 percent. 

 
 
 

 
 

 

Figure 2.10 — Average absolute relative errors for equivalent liquid permeability versus 
Klinkenberg-corrected permeability, for Lower Cotton Valley Sample No.2.  
Errors are generally less than 25 percent, although there are numerous outliers 
which exhibit greater than 50 percent error. 
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CHAPTER III 
 

KLINKENBERG MODEL REVISITED 
 

3.1. Preliminary Discussion 

Our discussion of the Klinkenberg concept begins with a retreat to the fundamentals — we will utilize the 

same measurements as with the correlations presented in the previous chapter (i.e., ka, p , φ, and back-

pressure (if used)), but we now consider the rigorous mechanisms of flow at the microscopic (and smaller) 

scales.  First, we accept the Klinkenberg approximation as a "first order" type of estimate — Eq. 1.1, 

repeated below for clarity: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1 ................................................................................................................................ (1.1) 

 

We "define" k∞ as the true, equivalent liquid permeability of the system, but we will also use estimates of 

k∞ estimated using the Klinkenberg correction as a standard to correlate against.  That is, we will use the 

Klinkenberg-corrected permeability (k∞) as reported (or calculated) from our data sources as the reference 

permeability. 
 

Obviously, we would prefer to use a more rigorous estimate, but for the present study, we must prove 

concept model (i.e., the microflow model presented in this section) against some standard — and we 

believe that the Klinkenberg-corrected estimates are appropriate for that purpose. 
 

In Fig. 3.1, we present the Klinkenberg-corrected (equivalent liquid) permeability (k∞) plotted against the 

measured gas permeability (ka) on log-log coordinates as a "correlation" to ensure that, at least direction-

ally, Eq. 1 is valid. 
 

As a primer for the development of our microflow model, we consider the phenomenon of gas slippage at 

a fundamental level — as a phenomenon which occurs as a subset of a much larger area of study known as 

the theory of rarefied gases. 
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Figure 3.1 — Initial correlation plot of Klinkenberg-corrected (equivalent liquid) permea-
bility (k∞) plotted against the measured gas permeability (ka) [log-log 
coordinates].  (data from ref. 7 and 8) 

 
 
 

3.2. The Theory of Rarefied Gases (and Surface Phenomena)  

Historically, the theory of rarefied gases started being developed as scientists came to the conclusions that 

some phenomena and equations used for a wide range of pressure, such as the Poiseuille equation for gas 

flow in capillary tubes or the independence of the gaseous viscosity to pressure, were breaking down at 

low pressure14.  These failures were ascribed to the fact that the decrease in the gas pressure yields an 

increase in the mean free path of the gas molecules: the mean free path becomes comparable with the 

dimensions of the apparatus used.  Kundt and Warburg5 first observed a deviation between a measured gas 

flow at low pressure and the flow model predicted by the classical fluid mechanics models (e.g., Navier-

Stokes equations): the no-slip condition on the inside surface of the capillary tube no longer holds and is 

substituted by a slippage condition (the gas molecules have a non-zero velocity at the surface of the 

wall/capillary tube).  Klinkenberg1 applied this condition to the flow of a gas in a porous medium and 

derived a first order correction for the gas slippage equation — using the results of the theory available in 

the late 1930s and early 1940s. 
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With the development of the common interest for aeronautics and aerospace, as well as, more recently, the 

development of the MEMS (Micro Electro-Mechanical Systems), the flow of gas at very low pressure — 

or, more aptly, the flow of gas molecules with a high mean free path (the mean free path (λ) being 

inversely proportional to the absolute pressure (p)) has been thoroughly studied in the last half century. 
 

In the pursuit of a new microflow model it seems then natural to revisit Klinkenberg model, if for no other 

reason than to confirm that our new microflow model reverts to the Klinkenberg model under certain 

conditions (which it does) 
 

The flow regime for a gas flowing in a micro-channel is typically determined by the value of the Knudsen 

number (Kn) — which is defined as:15 

 

charl
Kn λ

= ........................................................................................................................................... (3.1) 
 

In Eq. 3.1, λ is the mean free path of the gas molecules (i.e., the average distance (length) between 2 

consecutive molecular interactions) and lchar is the characteristic length of the flow geometry (e.g., channel 

height, pipe radius).   
 

For our purposes, the Knudsen number is difficult to define rigorously for a porous medium — but for the 

sake of argument, we will presume that such a "characteristic length" can be estimated for a porous 

medium.  More generally, we assume that we can define the Knudsen number based on the properties of 

the porous medium. 
 

The classical definition of the mean free path from thermodynamics is: 
 

)],([    12/),( Tp
M
RT

p
Tp μμμπλ ≡= ........................................................................................ (3.2) 

 

This particular definition (i.e., Eq. 3.2) is based on the kinetic theory for a perfect gas14, 15.  In this defi-

nition, R is the universal gas constant, M is the molecular weight of the considered gas and μ is the 

viscosity of the gas at the corresponding thermodynamic state (i.e., μ is a function of the absolute pressure 

p, absolute temperature T, and composition of the gas).  In the following work, we mostly consider the 

quantity λ defined as the mean free path of the gas molecules at the mean absolute pressure, p . 
 

In addition to the definitions above, we also must consider different flow regimes for this work are as 

follows (See Fig. 3.2): 

● Continuum Flow Regime: For Kn < 0.01, the mean free path of the gas molecules is negligible 

compared to the characteristic dimension of the flow geometry (i.e., the lchar-parameter).  In this 

case the continuum hypothesis of fluid mechanics is applicable (i.e., the system is described by 

the Navier-Stokes equations). 
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● "Slip-Flow" Regime: For 0.01 < Kn < 0.1, the mean free path is no longer negligible, and the 

slippage phenomenon appears in the "Knudsen" layer (layer of gas molecules immediately 

adjacent to the wall, see ref. 14) 

● "Transition" Regime: For 0.1 < Kn < 10. 

● Free Molecular Flow Regime: For Kn > 10, the flow is dominated by diffusive effects. 
 
 
 

 
 

Figure 3.2 — Limits of the different flow regimes, as a function of the characteristic length of 
the geometry (lchar), and the reciprocal mean free path normalized (1 atm, 300 
K).  The lines defining the various flow regimes are based on the flow of air at 
isothermal conditions (Modified from ref. 15). 

 
 
 

3.3. Unified Flow Model for Gas in Pipes 

Karniadakis and Beskok15 developed a unified model for gas micro-flows in pipe (see Appendix B) where 

this model is valid over the entire range of flow regimes.  The volumetric gas flowrate (q) flowing through 

a capillary of radius r and length L under the pressure drop Δp is given by: 
 

L
p

bKn
KnKnKnrq Δ

⎥⎦
⎤

⎢⎣
⎡

−
++=  

1
41 ) )(1( 

4

8
α

μ
π , with 

r
Kn λ

= ................................................................ (3.3) 
 

In Eq. 3.2, b is a generalized slip coefficient (as recommended in ref 15, we apply the condition b = 1 in 

the remainder of this work) and the α(Kn)-term is defined by Karniadakis and Beskok as: (see Appendix 

B) 
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[ ]  4 tan
15
128)( 4.01-

2 KnKn
π

α = ............................................................................................................. (3.4) 

 

Using the same capillary model as Klinkenberg1, we derived the following "microflow" model which 

relates the measured permeability to gas (ka), the equivalent liquid permeability (k∞), and the Knudsen 

number (Kn): 
 

⎥⎦
⎤

⎢⎣
⎡

+
++= ∞ Kn

KnKnKnkka 1
41 ])(1[ α ..................................................................................................... (3.5) 

 

Eq. 3.5 is rigorously derived (See Appendix B) and should be valid for all low pressure/low velocity flow 

regimes which exist for gas flow in porous media.  We have not investigated the application of Eq. 3.5 for 

high pressure and/or high velocity flow. 
 

3.4. Correlation of the Knudsen Number with Porosity, Permeability and Pressure 

The Knudsen number (Kn), unlike the mean pressure ( p ), cannot be measured by direct laboratory mea-

surements.  It is however possible to derive an analytical expression of the Knudsen number (see 

Appendix C), using the restrictive assumptions already used for deriving the analytical square-root 

correlation (see Appendix B).  This analytical formulation is derived using Eqs. 3.1 and 3.2.  In Eq. 3.1, 

the characteristic length of the flow geometry lchar (in our case, lchar is the theoretical capillary radius r) can 

be expressed (in m) as a function of the equivalent liquid permeability/porosity ratio (k∞/φ) with Eq. 2.1 

(repeated below for clarity):  
 

φ/10886.8 6
∞

−×= klchar .............................................................................................................................. (2.1) 
 

The "analytical" Knudsen number is given as: 
 

5.05.0 1 φη −
∞= k

p
Kn ............................................................................................................................. (3.6) 

 

The η-term in Eq. 3.6 is a function of the gas used in the core flow experiment.  When the pressure (p) is 

expressed in psia, and equivalent liquid permeability (k∞) is given in md and the gas used is nitrogen, Eq. 

3.6 becomes: 
 

5.05.0 1 836.10  φ−
∞= k

p
Kn .................................................................................................................... (3.7) 

 

Eq. 3.7 is an analytical expression and may not accurately represent the reality of the actual Knudsen 

number for the specific problem of gas flow in porous media.  Our objective is to design a realistic model 

for estimating the equivalent liquid permeability (k∞) using single-point, steady state measurements (i.e., 

using a single pair of ka and  p values).  To remedy this issue, we propose to define a "pseudo" Knudsen 

number (Knp) — which is defined as a function of the "typically" measured parameters ((i.e., p , φ, ka)). 
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Assuming that the core flow experiments are conducted in isothermal conditions (i.e., the temperature 

gradient inside the core is equal to zero) and that the variations of the viscosity are negligible over the 

range of pressures considered (see Eq. 3.2), the Knudsen number (defined by Eq. 3.1) is inversely propor-

tional to the mean pressure (  p ) and to the length characteristic of the flow geometry lchar.  Typically the 

pore throat radius, or more conveniently, a function (similar to Eq. 2.1) of the equivalent liquid 

permeability (k∞) and the porosity (φ) is used to estimate lchar. 
 

Substituting Eq. 3.4 into Eq. 3-5 yields: 
 

[ ]  
1
4

1  4 tan
15

1281 4.01-
2 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+⎥

⎦

⎤
⎢
⎣

⎡
+= ∞

p

p
ppa Kn

Kn
KnKnkk

π
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In order to utilize Eq. 3.8, we must assume that the mean pressures, porosities, and the gas and equivalent 

liquid permeabilities are available.  To solve for the "pseudo" Knudsen number (Knp) for a particular case, 

we then rearrange Eq. 3.8 into the following "root solution" form: 
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....................................................................... (3.9) 

 

 

3.5 Application of the Pseudo-Knudsen Number Using Field Data 

To demonstrate the application of the "pseudo"-Knudsen number (Knp), we only use the Lower Cotton 

Valley data (No. 2) (ref. 8), from which we derive two correlations for Knp (see Appendix D).  Our first 

correlation relates the pseudo-Knudsen number (Knp) to the reciprocal mean pressure, the porosity, and the 

gas permeability as follows: 
 

25.05654.0 159.0 −−= φap k
p

Kn ............................................................................................................. (3.10) 
 

As implied, Eq. 3.10 was derived for the specific case of the Cotton Valley No. 2 data, in a process where 

Knp (Eq. 3.9) was estimated using known data for ka, p , and k∞.  After Knp was obtained as the root of 

Eq. 3.9, we then correlated these Knp values with the ka, p , and φ data to yield Eq. 3.10. 

At this point, Eq. 3.10 can be substituted into Eq. 3.9 — and this result can be solved directly for the 

equivalent liquid permeability (k∞).  Obviously, k∞ data must be available to "calibrate" Eq. 3.9 (i.e., to 

estimate Knp).  However, we believe that the calibration of Eq. 3.10 may (in future work) be reduced to 

specific coefficients for the intercept term, as well as the ka and φ exponents. 
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As an alternative, we can follow the exact same calibration procedure, but this time substitute k∞ for ka in 

Eq. 3.9 (i.e., the Knp = f(ka, p ,φ ) correlation).  For this case, we obtain: 
 

253.050225.0118.2 φ−
∞= k

p
Knp ........................................................................................................... (3.11) 

 

The equivalent liquid permeability values computed using Eq. 3.9 (based on the values of Knp from Eqs. 

3.10 or 3.11) are correlated with the "given" Klinkenberg-corrected permeability data for this case in Fig. 

3.3.  The equivalent liquid permeability values computed using Eq. 3.9 with the analytical expression of 

the Knudsen number (Eq. 3.7) are also represented on Fig. 3.3. 
 

 
 

Figure 3.3 — Computed (Klinkenberg) equivalent liquid permeability (k∞) versus 
Klinkenberg-corrected (extrapolated) permeability (k∞).  (theoretical Knudsen 
number and pseudo-Knudsen number approaches, implicit and explicit 
relations for Knp) 

 
 
 

We recognize that Klinkenberg-corrected permeability data may not always be available in practice — and 

the process of solving simultaneously for the pseudo-Knudsen number (Knp) and the equivalent liquid 

permeability (k∞) will require an implicit formulation (an analog in the field of phase behavior would be an 

equation-of-state (EOS) which is implicit in fluid density). 
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In such a case, (i.e., an implicit relation) we would have to determine the coefficients for the Knp = 

f(k∞, p ,φ ) simultaneously with the estimation of k∞ using Eq. 3.7.  Writing the correlation for the pseudo-

Knudsen number in general form, we have: 
 

211 0
aa

p k
p

aKn φ∞= ......................................................................................................................... (3.12) 
 

Where Eq. 3.12 provides a "correlation" for the variables in this problem — and this relation allows us, in 

theory, to solve Eq. 3.8 for the equivalent liquid permeability (k∞) in an implicit fashion.  Substituting Eq. 

3.12 into Eq. 3.8 and rearranging yields: 
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The "trick" is to obtain the "calibration" coefficients (a0, a1, and a2) in Eq. 3.13.  As noted above, Eq. 3.13 

can be formulated as an "equation-of-state" and the coefficients (a0, a1, and a2) can be tuned using non-

linear regression — provided that a there are sufficient data measurements, and that such measurements 

are taken for samples from the same depositional sequence. 
 

We must note that we do not in any manner propose that Eq. 3.12 is "universal" (i.e., one set of coefficients 

(a0, a1, and a2) does not apply to all possible data cases).  Eq. 3.12 must be calibrated for each dataset. 
 

For this case, we did formulate Eq. 3.13 as a "fully implicit" solution using non-linear regression and we 

achieved following results: 

a0 = 0.93 
a1 = -0.49 
a2 = 0.13 

 

The results of our "fully implicit" correlation are shown in Fig. 3.4. 
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Figure 3.4 — Computed (Klinkenberg) equivalent liquid permeability (k∞) versus 
Klinkenberg-corrected (extrapolated) permeability (k∞).  (fully implicit formu-
lation for the pseudo-Knudsen number) 

 
 
 

An overall comparison of all the models and correlations presented in this work is proposed in Appendix 

E. 
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CHAPTER IV 
 

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 
 

4.1 Summary 

The development of the microflow model for permeability prediction in low permeability gas sands offers 

an alternative to the classical Klinkenberg model, which is the long time reference for measuring 

permeability.  The Klinkenberg model is the universally accepted standard, but we believe that the 

Klinkenberg model may yield poor results for very low permeability samples. 
 

Our new model has been validated using field data from a low permeability reservoir case, but this "proof" 

is by no means exhaustive — additional validation is warranted. 
 

4.2 Conclusions 

1. The Jones-Owens, Sampath-Keighin, and our square-root correlations may be used satisfactorily 

for single point, steady-state measurements as mechanisms to estimate the equivalent liquid 

permeability.  The Sampath-Keighin and Square-Root correlations should be preferred based on 

the theoretical formulations for these models. 
 

2. The microflow model presented in this work is promising as it provides a second-order correction 

for gas slippage (beyond the "first-order" Klinkenberg formulation).  The use of such a correction 

should be especially relevant for low/ultra low permeability core samples. 
 

4.3 Recommendations, Comments and Future Work 

We note that the theoretical square-root correlation (Appendix B) has a limited accuracy in this work.  

However, the square-root model validates the use of the permeability/porosity ratio in the modeling of the 

gas slippage factor and serves to connect the classical Klinkenberg model with our new "microflow 

model."  Upon further validation, we believe that our microflow model will provide significant impro-

vements for the estimation of equivalent liquid permeability from typical steady-state (gas) permeability 

measurements. 
 

● Continue validation of the analytical model (Eq. 3.8) through the use of more data (i.e., the "explicit" 
calibration approach of Eqs. 3.10 and 3.11). 

 

● Continue validation of the "implicit" microflow model (Eq. 3.13). 
 

● Pursue a unique calibration of Eq. 3.13 as a "universal" relation (i.e., an analog to an equation-of-state 
for fluid phase behavior). 
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NOMENCLATURE 

 
 

b = General slip coefficient 
bK = Klinkenberg gas slippage factor, psi 
c = Proportionality constant 
Kn = Knudsen number, dimensionless. 
Knp = Pseudo-Knudsen number, dimensionless 
ka = Apparent gas permeability, md 
k∞ = Equivalent liquid permeability, or Klinkenberg-corrected permeability, md 
lchar = Length characteristic of the flow geometry, length. 
p  = Mean core pressure, psi 

Δp = Differential pressure, psi 
q = Gas flow rate, volume per unit time 
r = Effective pore radius of the considered porous medium, length 
 α = Parameter of the rarefaction coefficient, dimensionless 
 μ = Gas viscosity, cp 
 λ  = Mean free path of the gas molecules, length 
 φ  = Porosity, fraction 
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APPENDIX A 
 

KLINKENBERG DERIVATION 
 

This appendix presents the derivation of the Klinkenberg equation.1  However, the derivation of the Klin-

kenberg relation uses components that Klinkenberg did not employ (i.e., elements of the literature for the 

kinetic theory of gases).2 
 

A.1 Flow of Gas through a Straight Capillary 

We consider a capillary tube of radius (R0) and length (L) with its axis coincident with the x-axis.  Gas is 

flowing through the capillary as a result of a pressure drop (Δp = (p1 - p2)) across the length (L) of the ca-

pillary tube.  Assume that the velocity of the flowing gas (v) is a function only of the distance r from the x-

axis.  Consider now a cylindrical shell of length (L) comprised between the cylinders of radii r and r+δr.  

The force (F1) acting on the cross-section of this shell is the normal pressure due to the flowing gas: 
 

rprdF δπΔ= 21 ....................................................................................................................................(A-1) 
 

Assuming that the fluid motion is in steady-state, this force is balanced by the viscous drag exerted by the 

flowing gas on the outer and the inner surfaces (along the x-axis) of the cylindrical shell.  The viscous drag 

is defined by: 
 

dr
dvSF   μ= .........................................................................................................................................(A-2) 

 

Where: 
μ = Coefficient of viscosity of the gas. 
S = Surface considered (2πrL for the inner surface, 2π (r+δr)L for the outer surface). 

 

The gas velocity reaches its maximum on the axis of the cylinder (i.e., r=0) and decreases radially towards 

the wall to a velocity of zero — therefore the velocity gradient dv/dr is negative.  The viscous drag exerted 

on the inner surfaces is: 
 

dr
dvLrdF πμ2Surfaceinner −= ..................................................................................................................(A-3) 

 

The component of the viscous drag on the outer surface of the cylindrical shell, where the gas velocity is 

lower, is: 
 

dr

r
dr
dvvd

rrLdF
⎥⎦
⎤

⎢⎣
⎡ +

+−=
δ

δπμ   )(2SurfaceOuter .......................................................................................(A-4) 
 

The resulting viscous drag exerted on the entire shell is given by: 
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ceInnerSurfaceOuterSurfa2 dFdFdF −=  
 

The equilibrium yields dF1 = dF2, hence: 
 

dr

r
dr
dvvd

rrL
dr
dvLrrpr

⎥⎦
⎤

⎢⎣
⎡ +

+−=Δ
δ

δπμπμδπ )(222 .............................................................................(A-5) 
 

Expanding the second term on the right-hand side of Eq. A-5 yields: 
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dr
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r
dr
dvvd

rrL

δδπμ

δ
δπμ

.................................................................... (A-6) 

 

In Eq. A-6, the term δr2(d2v/dr2) is negligible compared to the other terms — neglecting this term and 

substituting Eq. A-6 into Eq. A-5 yields: 
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⎡
++

−=Δ

)( 2                          

 22

2

2

dr
dv

dr
vdrr
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dvrL

dr
dvLrrpr

δπμ

πμδπ

.................................................................................... (A-7) 

 

Expanding and simplifying Eq. A-7 gives: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=Δ

dr
dv

dr
vdrLpr 2

2
μ ......................................................................................................................(A-8) 

 

Dividing Eq. A-8 by (-rμL) yields the following differential equation: 
 

L
p

dr
dv

rdr
vd

μ
Δ

−=+
1

2

2
.............................................................................................................................(A-9) 

 

A particular solution of Eq. A-9 (i.e., a non-linear differential equation) is: 
 

2
0 4

r
L
pAv

μ
Δ

−= ................................................................................................................................(A-10) 
 

Where A0 is a constant fixed by the boundary conditions.  Two different boundary conditions can be used 

— slip-flow at the wall or no slip-flow at the wall. 

If no slip-flow is assumed at the wall, the condition is v = 0 for r = R0; this imposes 2
00 4

R
L
pA

μ
Δ

= . The 

velocity solution to Eq. A-10 is then: 
 

)(
4

22
0 rR

L
pv −

Δ
=

μ
...........................................................................................................................(A-11) 

 

The gas flowrate (qg) is obtained by integrating the gas flow-rate through the considered cylinder shell 

section (v(2πrdr)) over the whole cross-section of the capillary tube, which yields the Poiseuille equation: 
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4
0

22
0

0
  

8
 )( 

4
 20 R

L
pdrrR

L
prq

R
g μ

π
μ

π Δ
=−

Δ
= ∫ ....................................................................................(A-12) 

 

If the gas slippage is considered at the wall, the condition can be written v = v0 for r= R0 (where v0 is non-

zero).  Kundt and Warburg3 proved that the velocity at the wall (v0) is proportional to the velocity gradient 

at the wall ( [ ] 0/ Rrdrdv = ), as given by: 
 

[ ]
0

/0 Rrdrdvcv =−= λ .........................................................................................................................(A-13) 
 

In Eq. A-13, c is a constant with a value slightly less than 1 (as given by Kundt and Warburg) and λ  is the 

average mean free path of the gas molecules (i.e., the mean free path of the gas molecules at the mean 

pressure p (see ref. 14)), defined by [ ] 2/21 ppp += ).  The velocity gradient at the wall is obtained by 

differentiating Eq. A-10: 
 

r
L
p

dr
dv

μ2
Δ

−= .....................................................................................................................................(A-14) 
 

Applying the condition given by Eq. A-13 to Eq. A-14 yields: 
 

00 2
R

L
pcv

μ
λ Δ

= .................................................................................................................................(A-15) 
 

Using Eq. A-12 in Eq. A-9, at r = R0, and rearranging yields: 
 

[ ]0
2

00 2
4

RcR
L
pA λ

μ
+

Δ
= ...................................................................................................................(A-16) 

 

Substituting Eq. A-16 for A0 in Eq. A-10 gives: 
 

[ ]0
22

0 2
4

RcrR
L
pv λ

μ
+−

Δ
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As previously done for Eq. A-12, the gas flowrate (qg) is obtained by integrating v(2πrdr) over the whole 

radius of the capillary: 
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Re-writing Eq. A-18 in terms of superficial velocity (vl): 
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A.2 Flow of Gas through an Idealized Porous Medium 

Klinkenberg's idealized porous medium is composed of solid material through which the capillaries are 

oriented randomly and have all the same radius r.  The direction of flow is parallel to one of the planes of 

the cube, and let there be N capillaries.  The system for Klinkenberg's idealized porous medium is shown 

in Fig. A-1. 

The liquid flowrate (ql) through the capillary is given by Poiseuille's law as: (3 dimensional flow, so 

Klinkenberg used 1/3 of the total flow for a particular direction). 
 

L
pRRNql

Δ
=  1  

8
  

3
1 2

0

2
0

μ
π  ( 2

0Rπ = Atube)...........................................................................................(A-20) 
 

Re-writing Eq. A-20 in terms of superficial velocity (vl): 
 

L
pRN
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Δ
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=

 1 
8

  
3
1    
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μ

  ( 2
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Figure A.1 — System schematic for a tube (Loeb2). 
 
 
 

Darcy's law gives: 
 

  1 )( 2

L
pLkq ll

Δ
=

μ
 (L2 = Acube (i.e., rock sample)) ...........................................................................(A-22) 

 

Re-writing Eq. A-22 in terms of superficial velocity (vl): 
 

  1     

cube

L
pk

A
q

v

l

l
l

Δ
=

=

μ

 (L2 = Acube (i.e., rock sample)) ...........................................................................(A-23) 

 

Where kl is the permeability to liquid of the porous medium — which is also the absolute permeability of 

the porous medium (provided that the saturation is 100 percent — i.e., single-phase flow).  Equating Eqs. 

A-19 and A-20 and simplifying yields: 
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3
1 2

0RNkl = ....................................................................................................................................(A-24) 
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If we assume that that the flowing fluid is a gas, with a gas slippage condition at the wall (v0 ≠ 0), the gas 

flowrate (qg) is given by Eq. A-18: 
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Substituting 
8

  
3
1 2

0RNkl = into Eq. A-19 for yields: 
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For the same gas flowrate, Darcy's law gives: 
 

L
pkv ag

Δ
=  1 

μ
...................................................................................................................................(A-26) 

 

Where ka is the apparent permeability to gas.  Setting Eq. A-25 equal to Eq. A-26 and simplifying, yields: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+=

0

41 
R
ckk la
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As the mean free path ( λ ) is proportional to the reciprocal mean pressure ( p ), we can define: 
 

p
b

r
c K≡
λ4 .........................................................................................................................................(A-28) 

 

Where bK is a coefficient of proportionality, known as the Klinkenberg gas slippage factor. Substituting 

Eq. A-28 for rc /4 λ  in Eq. A-27 gives the Klinkenberg equation: 
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References 

1. Klinkenberg, L.J.: "The Permeability of Porous Media to Liquid and Gases, " paper presented at the 
API 11th Mid Year Meeting, Tulsa, Oklahoma (May 1941); in API Drilling and Production Practice 
(1941), 200-213 

2. Loeb, L.B.: The Kinetic Theory of Gases, second edition, McGraw-Hill Co. Inc., New York City 
(1934). 

3. Kundt, A. and Warburg, E.: "Über Reibung und Wärmeleitung verdünnter Gase, " Poggendorfs 
Annalen der Physik und Chemie (1875), 155, 337. 



 

 

35

 
 

APPENDIX B 
 

DERIVATION OF A THEORETICAL SQUARE-ROOT CORRELATION 
 

B.1 Theoretical Capillary Radius 

Considering the flow of a liquid through a capillary tube of inner radius r and length L, the fluid flowrate 

(q) is given by Poiseuille law as: 
 

4
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8

 r
L
p

L
prrq Δ

=
Δ

=
μ

π
μ
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In Eq. B-1, μ is the viscosity of the fluid and Δp is the pressure drop across the length of the tube.  

Considering a cylinder of idealized porous medium with a radius R0 and a length L, composed of n 

identical capillary tubes (such as described above), with the same orientation — parallel to the axis of the 

cylinder.  We note that for this discussion (as opposed to our previous work in this section), that R0 is now 

defined as the outer radius of the bulk core sample.  By definition, the porosity φ of a porous medium is 

given by: 
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The total volumetric flowrate (qtot) of a fluid flowing through this cylinder is defined by multiplying Eq. 

B-1 by the number of tubes, n.  This gives: 
 

42
2

 1 
8

  )( 1 
8

 r
L
pn

L
prrnqtot

Δ
=

Δ
=

μ
ππ

μ
.............................................................................................. (B-3) 

 

For flow in a porous medium, Darcy's law is defined as: 
 

L
pAkqtot

Δ
=   

μ
..................................................................................................................................... (B-4) 

 

In Eq. B-4, k is the permeability of the porous medium and A is the cross-sectional area of the cylinder. 

Since A = π R0
2, Eq. B-4 yields: 
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Equating Eqs. B-3 and B-5, and rearranging yields: 
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Rearranging Eq. B-6 gives: 
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Substituting Eq. B-2 into the above result, we have: 
 

krkr
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Or, solving Eq. B-7 for the "equivalent capillary" radius, r, we obtain: 
 

φ/2 2 kr ×= ................................................................................................................................. (B-8) 
 

In Eq. B-8, the "units" of permeability depend on the units system.  For consistency, we must apply a 

conversion factor, C0, as a multiplier (e.g., when k is in md and r is in cm — C0 = 3.1415×10-6 md/cm , 

recall that 1 Darcy = 9.86923×10-9 cm2).  The general form of Eq. B-8 with the units conversion factor (C0) 

is: 
 

φ/2 2 0 kCr ××= ......................................................................................................................... (B-9) 
 

Using C0 = 3.1415×10-6, Eq. B-9 becomes: 
 

φ/ 10886.8 6 kr −×= ...................................................................................................................... (B-10) 
 

 

B.2 Theoretical Square-Root Correlation 

To correct for the effects of gas slippage in permeability measurements, Klinkenberg1 derived an 

approximate linear relationship between the measured gas permeability (ka) and the reciprocal mean 

pressure ( p ).  This result is given as: 
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In Eq. B-11, k∞ is the Klinkenberg-corrected permeability and bK is the Klinkenberg gas slippage factor.  

The gas slippage factor (bK) is a "constant" which relates the mean free path of the gas molecules ( λ ) at 

the mean (absolute) pressure ( p ) and the effective pore-throat radius (r), as given by: 
 

p
b

r
c K=
λ4 ......................................................................................................................................... (B-12) 

 

In Eq. B-12, c is a constant very close to unity.2  We will consider c = 1 for the remainder of this 

derivation.  Re-arranging Eq. B-12 yields: 
 

p
r

bK λ 4
= ......................................................................................................................................... (B-13) 

 

Substituting r in Eq. B-13 with Eq. B-10 gives: 
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In Eq. B-14, the mean free path of the gas molecules is defined by:3 
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)],([      1 2/),( Tp
M
RT

p
Tp μμμπλ ≡= ..................................................................................... (B-15) 

 

In this definition, R is the universal gas constant, M is the molecular weight of the gas and μ is the 

viscosity of the gas at the corresponding thermodynamic state (i.e., μ is a function of the absolute (mean) 

pressure, p , absolute temperature, T, and composition of the gas).  For clarity, the subsequent formulae are 

expressed in S.I. units, unless specified otherwise. 
 

The square-root correlation developed in this work conforms to the following assumptions: 

● The temperature in the core sample is uniform during steady-state flow (assumed: T = 298 K). 
● The gas used for the experiments is nitrogen (M = 28.01348 kg/kg-mole). 
● Assuming that, in the range of pressure applied in the laboratory, nitrogen behaves as ideal gas, the 

variation of the nitrogen viscosity with pressure is negligible, hence )(),( atm 1,22
TpT NN μμ ≈ . 

 

Nitrogen viscosity as a function of temperature ( )(atm 1,2
TNμ , expressed in Pa.s) is computed using 

Sutherland's equation:4 
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The value of the universal gas constant R is:  R = 8,314 J/K/kg-mole.  The product pλ  in Eq. B-15 can be 

calculated using Eq. B-15 and B-16: 
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To obtain the radius, r, in meters (recall that the base unit of the mean free path λ is the meter), Eq. B-10 

(expressed in traditional units) becomes; 
 

φ/ 10886.8 8 kr −×= ...................................................................................................................... (B-18) 
 

Using the result from Eq. B-17 and Eq. B-18 in Eq. B-14 yields: 
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Where bK is expressed in Pa.  Converting bK to psi yields: 
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φ
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The significance of Eq. B-20 is that this result establishes the basis for the bK versus φ/k correlation 

given by Sampath and Keighin5.  The exponent (-0.5) is established rigorously from theory as shown 

above. 
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Figure B.1 — Intercept of the square root model versus molecular weight of the gas used in 
the measurements — the viscosity of the different gases except H2 is similar 
(see Table B.1), hence the pλ -term (Eq. B-17) varies approximately with the 
reciprocal square-root of the molecular weight. 

 
 
 

The intercept (43.345) is based on the assumptions of ambient temperature (T = 298 K) and pressure (1 

atm), but these as-assumptions are probably not significant compared to the assumption of nitrogen as the 

reference gas.  The table below summarizes our estimates of the intercept coefficient for hydrogen, 

helium, air, nitrogen, and carbon dioxide. 
 

Table B.1 — Intercept for Eq. B-20, various gases. 
 

Flowing Gas  
Molecular Weight

(kg/kg-mole) 

Gas Viscosity at 
1atm and 298 K 

(Pa.s) 
Eq. B-20 Intercept 

(psi) 
hydrogen  2.0159 8.845x10-6 80.236 

helium  4.0026 1.985x10-5 127.802 
air  28.9586 1.842x10-5 44.106 

nitrogen  28.01348 1.781x10-5 43.345 
carbon dioxide  44.0095 1.503x10-5 29.181 

 
 
 

These estimates are based on the fluid properties of ref. 3 and the NIST correlations6 as appropriate. 
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APPENDIX C 
 

A RIGOROUS MICRO-FLOW MODEL APPLIED 

TO THE PROBLEM OF GAS FLOW THROUGH POROUS MEDIA 
 
C.1 Unified Flow Model for Pipe Flow 

Karniadakis and Beskok1 developed a unified model that predicts volumetric and mass flowrates for gas 

flow in channels and pipes, over the entire Knudsen regime (i.e., all flow regimes).  The Karniadakis-

Beskok "micro-flow" model is given (without derivation) as: 
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Where: 

q = Volumetric flowrate in the conduit, cc/sec 
lchar  = Characteristic length of the flow geometry (e.g., channel height, pipe radius), cm 
L = Length of conduit, cm 
Δp = Pressure drop across the length of the conduit, atm 
μ = Gas viscosity at temperature and pressure, cp 
b = Dimensionless slip coefficient, (b is defined as -1) 
α(Kn) = Dimensionless term in the rarefaction coefficient 

 

In Eq. C-1, the Knudsen number (Kn) is defined by: 
 

charl
Kn λ

= ........................................................................................................................................... (C-2) 
 

Where λ  is the mean free path of the gas molecules (i.e., the average distance (length) between 2 

consecutive molecular interactions at the mean pressure ( p )). 
 

We use a value of -1 for the general slip coefficient (b) as recommended by Karniadakis and Beskok.  The 

role of the rarefaction coefficient [1+α(Kn) Kn] is to account for the transition between the "slip-flow" 

regime (for which Klinkenberg model was developed2) and the "free molecular flow" regime.  In the "slip-

flow" regime (i.e., 0.01 < Kn < 0.1), the rarefaction coefficient is equal to 1 (i.e., α = 0); in the "free 

molecular flow" regime (i.e., Kn > 10), the volumetric flow-rate is independent of the Knudsen number 

and the parameter α tends toward a constant value (for ∞→Kn ). 
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For reference, the "Knudsen" flow regimes are defined as follows below and are illustrated graphically in 
Fig. C.1. 

● Continuum Flow Regime: For Kn < 0.01, the mean free path of the gas molecules is negligible 
compared to the characteristic dimension of the flow geometry (i.e., the lchar -parameter).  In this 
case the continuum hypothesis of fluid mechanics is applicable (i.e., the system is described by the 
Navier-Stokes equations). 

● "Slip-Flow" Regime: For 0.01 < Kn < 0.1, the mean free path is no longer negligible, and the 
slippage phenomenon appears in the "Knudsen" layer (layer of gas molecules immediately adjacent 
to the wall) 

● "Transition" Regime: For 0.1 < Kn < 10. 
● Free Molecular Flow Regime: For Kn > 10, the flow is dominated by diffusive effects. 

 

The variation of the α-parameter as a function of Kn is represented using:1 
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αα = ................................................................................................................ (C-3) 
 

Where α0, c1 and c2 are constants.  The values for the constants c1 and c2 are respectively 4.0 and 0.4 and 

the parameter α0 is given by: 
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Figure C.1 — Limits of the different flow regimes as a function of the length characteristic of the 
geometry, lchar, and the reciprocal mean free path normalized at atmospheric 
conditions and 300 K.  The lines defining the various Knudsen number regimes are 
based on air at isothermal conditions (Modified from ref. 1). 
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C.2 Validation of the Micro-Flow Model Concept 

In order to validate the applicability of the concept of the unified flow model (Eq. C-1) for the problem of 

steady-state gas flow through a porous medium, we computed the Knudsen number for a given data set 

composed of 11 core samples tested at various mean pressures. 
 

The mean free path of gas molecules is defined by:1 
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The mean free path ( λ ) is computed using the following (all terms in S.I. units): 

● The core flow experiments were performed at a constant room temperature (T = 298 K). 
● The gas used for the experiments was nitrogen (M = 28.01348 lb/lbmole). 
● The nitrogen viscosity was computed using Sutherland's equation3: 
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The characteristic length of the conduit (lchar) is required in order to estimate the required Knudsen 

numbers.  The "typical" characteristic length is estimated from capillary pressure data or an equivalent 

single capillary concept — and these "lengths" are typically the capillary radii.  We use this exercise 

simply to evaluate one definition over another — conceptually, there is no perfect definition because we 

are investigating flow in porous media, not uniform capillaries. 
 

The definitions we consider for lchar are: 

● The computed average pore throat radius estimated from capillary pressure data (these data are 
given in the various reports from which the sample data were extracted). 

● The theoretical "capillary radius" given by: 
 

φ/10886.8 6
∞

−×= klchar .............................................................................................................................. (C-7) 
 

The minimum and maximum computed Knudsen numbers (based on mean pressures) for each sample are 

presented in Table C.1.  Since most of the Knudsen numbers are greater than 0.1, the "Transition" Regime 

(0.1 < Kn < 10) is the dominant type of flow regime — therefore, the rarefaction coefficient defined in the 

previous section plays a major role for modeling the volumetric flowrate.  In concept, this observation 

validates the application of the micro-flow model for (steady-state) gas flow in porous media. 
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Table C.1 — Minimum and maximum Knudsen numbers corresponding to the models used to repre-
sent the characteristic length lchar. 

 

 

  Kn Estimated from the 
Average Pore Throat 

Radius 

Kn Estimated from 
Eq. C-7 

Sample ID   min Kn max Kn min Kn max Kn 
1   0.15 0.34 0.64 1.51 
2   0.15 0.36 0.32 0.77 
3   0.43 0.97 0.40 0.91 
4   0.06 0.15 0.72 1.67 
5   0.15 0.34 0.12 0.27 
6   0.37 0.72 0.41 0.80 
7   0.15 0.34 0.22 0.50 
8   0.05 0.09 0.16 0.26 
9   0.15 0.33 0.28 0.63 

10   0.18 0.34 0.28 0.52 
12   0.18 0.34 0.31 0.57 

 
 
 

C.3 Derivation of a Theoretical Knudsen Number as a Function of Pressure, Permeability and 

Porosity. 

It is possible to derive analytically an expression of the Knudsen number (Kn) as a function of the pressure 

(p), equivalent liquid permeability (k∞) and porosity (φ) only, using Eqs. C-2, C-5 and C-7.  It is assumed 

in the following section that nitrogen behaves as an ideal gas over the range of pressure considered: 

nitrogen viscosity is then a constant.  Substituting Eqs. C-5 and C-7 in Eq. C-2 yields: 
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The units in Eq. C-8 are as follows: the pressure is expressed in Pa, the viscosity (μ) in Pa.s, R in J/K/kg-

mole, T in K, M in kg/kg-mole and k∞ in md.  The Knudsen number formulation developed in this work 

conforms to the following assumptions: 

● The temperature in the core sample is uniform during steady-state flow (assumed: T = 298 K). 
● The gas used for the experiments is nitrogen (M = 28.01348 kg/kg-mole). 
● Assuming that, in the range of pressure applied in the laboratory, nitrogen behaves as ideal gas, the 

variation of the nitrogen viscosity with pressure is negligible, hence )(),( atm 1,22
TpT NN μμ ≈ . 

 

Nitrogen viscosity as a function of temperature ( )(atm 1,2
TNμ , expressed in Pa.s) is computed using 

Sutherland's equation:3 
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The value of the universal gas constant R is:  R = 8,314 J/K/kg-mole. 
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With the afore mentioned assumptions, Kn is written as: 
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In Eq. C-10, the absolute pressure (p) is given in Pa.  For p given in psia, Eq. C-10 becomes: 
 

5.05.0

 1836.10000145038.0 1 713,74
−

∞
−

∞
⎥
⎦

⎤
⎢
⎣

⎡
=×⎥

⎦

⎤
⎢
⎣

⎡
=

φφ
k

p
k

p
Kn  

........................................................................................................................................................... (C-11) 
 

This expression (Eq. C-11), although derived theoretically using restrictive assumptions, establishes the 

basis for expressing Kn as a function of p, k∞ and φ. 
 

C.4 A Rigorous Micro-Flow Model for Gas Flow in an Idealized Porous Medium. 

The "micro-flow" model is defined in the previous section as: 
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Poiseuille's law for fluid flow in a pipe (or tube) is given by: 
 

L
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Δ
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μ
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Darcy's law for fluid flow in a porous media: 
 

L
pAkq Δ

=  1  core μ
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In Eq. C-13, A is the cross-sectional area of the porous medium (perpendicular to the direction of the 

flow).  Following the procedure given by Klinkenberg,2 we can equate Poiseuille's and Darcy's laws to 

yield an expression for the permeability (k).  This procedure requires us to equate Eqs. C-12 and C-13, 

which yields: 
 

core

4
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Substituting Eq. C-14 into Eq. C-1, we have: 
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Where: 

k = Permeability, D 
q = Volumetric flowrate in the conduit, cc/sec 
lchar = The characteristic length of the flow geometry (e.g., channel height, pipe radius), cm 
L = Length of conduit, cm 
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Δp = Pressure drop across the length of the conduit, atm 
μ = Gas viscosity at temperature and pressure, cp 
b = Dimensionless slip coefficient (b is defined as -1) 
α(Kn) = Dimensionless rarefaction coefficient 
Kn = Knudsen number, dimensionless 

 

Multiplying through Eq. C-15 by 
p

L
A Δ
μ  and using b=-1, we obtain: 

 

 
1

41 ] )(1[   ⎥⎦
⎤

⎢⎣
⎡

−
++=

Δ ∞ bKn
KnKnKnk

p
L

A
q αμ ...................................................................................... (C-16) 

 

Where we note that the left-hand-side of Eq. C-16 is simply the "gas" permeability (ka) as defined by 

Darcy's law (i.e., the "uncorrected" permeability).  Making this reduction, we have our base form: 
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Eq. C-17 provides an independent relation between the apparent gas permeability (ka) the slip-corrected 

permeability (or Klinkenberg-corrected permeability) (k∞) and the Knudsen number (Kn).  We now need 

to finalize Eq. C-17 by substitution of the relations for α(Kn).  We substitute Eq. C-3 into Eq. C-1 (and 

assume that c1 = 4.0 and c2 = 0.4 in Eq. C-3), which yields a direct relation for α(Kn) of the form of: 
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We now substitute Eq. C-18 into Eq. C-17 to yield our formal (or complete) result for this work: 
 

[ ]  
1
41     4 tan

15
1281 4.01-

2 ⎥⎦
⎤

⎢⎣
⎡

+
+⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡+= ∞ Kn

KnKnKnkka π
...................................................................... (C-19) 

 

 

C.5 Klinkenberg Model as a Simplified Microflow Model for Slip-Flow Regime 

We can prove "mathematically" (using rigorous assumptions) that the model developed by Klinkenberg is 

actually a simplification of the microflow model for the case of the slip-flow regime (0.01 < Kn < 0.1).  

Recalling the Klinkenberg equation: 
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Where: 

k∞ = Klinkenberg-corrected permeability, D 
ka = Apparent gas permeability, D 
bK = Klinkenberg gas slippage factor, atm 
p  = Mean core pressure, atm 
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The Klinkenberg gas slippage factor (bK) is defined by Klinkenberg as a coefficient of proportionality: 
 

p
b

r
c K=
λ4 ......................................................................................................................................... (C-21) 

 

Where c is a constant close to 1 (see ref. 4) and r is the effective pore throat radius (in our case r is the 

characteristic length lchar). 
 

Applying Eq. C-21 to Eq. C-20 yields: 
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Recall the base form of our microflow model (Eq. C-17): 
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We assume that we are in a slip-flow regime, then by definition, α(Kn) = 0.  Hence Eq. C-17 becomes: 
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Also, for 0.01 < Kn < 0.1, we have: 
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By definition of the Knudsen number (Eq. C-2): 
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Eq. C-23 now yields: 
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Eq. C-26 is very similar (and almost identical) to Eq. C-22, provided that the constant c in Eq. C-22 is 

equal to one and the mean free path of the gas molecules used in the microflow model ( λ ) is defined as 

the average mean free path of the gas molecules ( λ  in the Klinkenberg model, evaluated at the mean core 

pressure).  We can consider that the Klinkenberg model is an approximation of the microflow model. 
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APPENDIX D 
 

CORRELATIONS FOR THE "PSEUDO-KNUDSEN" NUMBER —  

APPLICATION TO A TIGHT GAS EXAMPLE (LOUISIANA, USA) 
 

D.1 Definitions 

The Knudsen number is a dimensionless variable that is used to characterize the flow regime of a gas 

flowing through a conduit — and is defined as:1 
 

charl
Kn λ

= ...........................................................................................................................................(D-1) 
 

Where: 

λ = The mean free path of the gas molecules (i.e., the average distance (length) between 
2 consecutive molecular interactions). 

lchar = The characteristic length of the conduit (e.g., channel height, pipe radius). 
 

The mean free path of gas molecules is defined by: 
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This particular definition (i.e., Eq. D-2) is based on the kinetic theory for a perfect gas1,2.  In this 

definition, R is the universal gas constant, M is the molecular weight of the considered gas and μ is the 

viscosity of the gas at the corresponding thermodynamic state (i.e., μ is a function of the pressure p, 

absolute temperature T (in degrees Rankine), and composition of the gas).  Our objective is to validate our 

new model for equivalent liquid permeability: (see Appendix C for derivation) 
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Where: 

ka = Permeability to gas (units must be consistent with k∞) 
k∞ = Equivalent liquid permeability (units must be consistent with ka) 
Kn = Knudsen number, dimensionless 

 

D.2 Determination of the Pseudo-Knudsen Numbers 

This data set (ref. 3) includes 18 core samples where the Klinkenberg analysis (ref. 4) was performed in 

order to estimate the liquid equivalent permeability (k∞).  The measured mean pressure, the permeability to 

gas, and the porosity are given for each sample — and using the mean pressure and permeability to gas 

data, a Klinkenberg plot is constructed, and the gas slippage factor (bK) and the Klinkenberg-corrected 

permeability (k∞) are estimated. 
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As noted, the porosity of the sample is also given, but no reference conditions were given, so we assumed 

300 K (80 Deg F) and 1 atm.  The data summary is given in Table D.1. 
 

Table D.1 — Summary of the core data (given data and computed results). 
 

Sample 
ID 

k∞ 
(md) 

bK 
(psi) 

φ 
(fraction)

1-8 0.0001 565.3 0.023 
2-10 0.1322 14.2 0.063 
2-22 0.0168 32.5 0.056 
3-8 0.0439 32.8 0.078 
3-48 0.0035 83.6 0.07 
1-1 0.00007 753.5 0.029 
1-5 0.00004 801.0 0.02 
1-7 0.00003 771.0 0.017 
2-2 0.0004 165.1 0.036 
2-7 0.0124 26.8 0.06 
2-8 0.0025 77.1 0.051 
2-12 0.0025 215.1 0.055 
2-28 0.0052 58.6 0.037 
3-4 0.0002 303.1 0.04 
3-6 0.0999 26.4 0.066 
3-10 0.0067 84.8 0.071 
3-36 0.0168 39.2 0.057 
3-55 0.0013 183.7 0.066 

 
 
 

Since we cannot compute the Knudsen number explicitly, the goal of this step is to evaluate a "pseudo 

Knudsen" number (Knp) using the relation below: 
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It is easily proven that for any pair of values for ka and k∞, Eq. D-4 has a unique positive solution: we refer 

to this solution as the "pseudo Knudsen" number. 
 

Analytical Considerations 

For each Klinkenberg-corrected permeability (k∞) value, we can define the following function
∞kf : 
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In this particular example case, we have 8 data measurements per sample which are used to construct a 

plot of ka versus 1/p — and from which a single k∞-value is obtained.  We also note that the Knudsen 

number is a real number, strictly positive — therefore 
∞kf  is then defined on ]0,+∞[.  The first step of our 

approach is to find a root of the equation ak kxf =
∞

)( . 
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It is easily proven that, for each and every value of k∞, 
∞kf  is a strictly increasing function.  The limits of 

the )(xfk∞
are given as: 

 

+∞⎯⎯ →⎯

⎯⎯ →⎯

+∞→

∞→

∞

∞

xk

xk

f

kf 0  

 

Since the Klinkenberg-corrected permeability (k∞) of a sample is always lower than any measured 

permeability to gas (ka) value for the same sample, the equation ak kxf =
∞

)(  (which is strictly equivalent to 

Eq.D-1) has a unique solution on [0,+∞[.  The solutions of the equations ( ak kxf =
∞

)( ) for the different 

samples and for each value of ka have been computed using both MS Excel and MATLAB (the same results 

were obtained).  This process yields the "pseudo-Knudsen" numbers presented in Table D.2. 
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Table D.2 — Data and Knp solutions computed using Eq. D-5. 
 

  ka, md k∞, md p , psia  φ, fraction Knp 

 1.27E-03 1.25E-04 60.0 0.023 1.6309 
 1.27E-03 1.25E-04 60.0 0.023 1.6314 
 1.03E-03 1.25E-04 75.4 0.023 1.3121 
 1.03E-03 1.25E-04 75.4 0.023 1.3135 
 8.77E-04 1.25E-04 90.1 0.023 1.1024 
 8.78E-04 1.25E-04 90.0 0.023 1.1039 
 7.95E-04 1.25E-04 104.9 0.023 0.9897 

Sa
m

pl
e_

1_
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 7.95E-04 1.25E-04 104.9 0.023 0.9904 

 1.80E-01 1.32E-01 39.6 0.063 0.0760 
 1.80E-01 1.32E-01 39.6 0.063 0.0756 
 1.66E-01 1.32E-01 54.9 0.063 0.0535 
 1.66E-01 1.32E-01 54.9 0.063 0.0537 
 1.59E-01 1.32E-01 69.7 0.063 0.0437 
 1.58E-01 1.32E-01 69.7 0.063 0.0420 
 1.55E-01 1.32E-01 84.7 0.063 0.0371 

Sa
m

pl
e_

2_
10

 

 1.55E-01 1.32E-01 84.7 0.063 0.0371 

 2.57E-02 1.68E-02 59.7 0.056 0.1095 
 2.60E-02 1.68E-02 59.7 0.056 0.1132 
 2.41E-02 1.68E-02 74.6 0.056 0.0903 
 2.41E-02 1.68E-02 74.5 0.056 0.0910 
 2.28E-02 1.68E-02 89.9 0.056 0.0753 
 2.29E-02 1.68E-02 89.9 0.056 0.0762 
 2.19E-02 1.68E-02 104.8 0.056 0.0638 

Sa
m

pl
e_

2_
22

 

 2.20E-02 1.68E-02 104.7 0.056 0.0649 

 8.05E-02 4.40E-02 39.5 0.078 0.1685 
 8.05E-02 4.40E-02 39.5 0.078 0.1686 
 6.89E-02 4.40E-02 54.8 0.078 0.1166 
 6.89E-02 4.40E-02 54.8 0.078 0.1167 
 6.47E-02 4.40E-02 69.8 0.078 0.0977 
 6.48E-02 4.40E-02 69.8 0.078 0.0980 
 6.10E-02 4.40E-02 84.8 0.078 0.0807 

Sa
m

pl
e_

3_
8 

 6.09E-02 4.40E-02 84.8 0.078 0.0804 

 8.28E-03 3.45E-03 59.6 0.070 0.2778 
 8.27E-03 3.45E-03 59.6 0.070 0.2773 
 7.35E-03 3.45E-03 74.7 0.070 0.2265 
 7.35E-03 3.45E-03 74.7 0.070 0.2264 
 6.69E-03 3.45E-03 90.0 0.070 0.1899 
 6.69E-03 3.45E-03 90.0 0.070 0.1897 
 6.19E-03 3.45E-03 104.7 0.070 0.1616 

Sa
m

pl
e_

3_
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 6.19E-03 3.45E-03 104.7 0.070 0.1616 
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Table D.2 — Continued 
 

  ka, md k∞, md p , psia  φ, fraction Knp 

 9.71E-04 7.29E-05 59.2 0.029 2.1436 
 9.71E-04 7.29E-05 59.2 0.029 2.1436 
 7.80E-04 7.29E-05 74.6 0.029 1.7142 
 7.80E-04 7.29E-05 74.5 0.029 1.7151 
 6.61E-04 7.29E-05 89.3 0.029 1.4440 
 6.62E-04 7.29E-05 89.3 0.029 1.4460 
 5.95E-04 7.29E-05 104.4 0.029 1.2921 

Sa
m

pl
e_

1_
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 5.97E-04 7.29E-05 104.4 0.029 1.2980 
 6.95E-04 4.37E-05 59.9 0.020 2.5613 
 6.94E-04 4.37E-05 59.9 0.020 2.5589 
 5.10E-04 4.37E-05 75.1 0.020 1.8738 
 5.11E-04 4.37E-05 75.1 0.020 1.8776 
 4.22E-04 4.37E-05 89.7 0.020 1.5438 
 4.23E-04 4.37E-05 89.7 0.020 1.5471 
 3.79E-04 4.37E-05 104.6 0.020 1.3795 

Sa
m

pl
e_

1_
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 3.78E-04 4.37E-05 104.6 0.020 1.3757 
 5.28E-04 3.80E-05 59.8 0.017 2.2379 
 5.28E-04 3.80E-05 59.8 0.017 2.2379 
 4.03E-04 3.80E-05 76.0 0.017 1.6975 
 4.03E-04 3.80E-05 76.0 0.017 1.6967 
 3.63E-04 3.80E-05 89.9 0.017 1.5239 
 3.64E-04 3.80E-05 89.9 0.017 1.5293 
 3.30E-04 3.80E-05 104.8 0.017 1.3776 

Sa
m

pl
e_

1_
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 3.30E-04 3.80E-05 104.8 0.017 1.3795 
 1.57E-03 4.24E-04 59.6 0.036 0.5209 
 1.58E-03 4.24E-04 59.6 0.036 0.5240 
 1.32E-03 4.24E-04 75.0 0.036 0.4137 
 1.33E-03 4.24E-04 75.0 0.036 0.4144 
 1.21E-03 4.24E-04 90.1 0.036 0.3621 
 1.21E-03 4.24E-04 90.1 0.036 0.3645 
 1.12E-03 4.24E-04 104.8 0.036 0.3255 

Sa
m

pl
e_

2_
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 1.12E-03 4.24E-04 104.8 0.036 0.3261 
 1.80E-02 1.24E-02 59.5 0.060 0.0932 
 1.80E-02 1.24E-02 59.5 0.060 0.0929 
 1.67E-02 1.24E-02 75.0 0.060 0.0723 
 1.67E-02 1.24E-02 75.0 0.060 0.0719 
 1.61E-02 1.24E-02 89.9 0.060 0.0626 
 1.60E-02 1.24E-02 89.9 0.060 0.0617 
 1.57E-02 1.24E-02 104.8 0.060 0.0556 

Sa
m

pl
e_
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 1.57E-02 1.24E-02 104.8 0.060 0.0558 
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Table D.2 — Continued 
 

  ka, md k∞, md p , psia  φ, fraction Knp 

 5.76E-03 2.53E-03 59.5 0.051 0.2555 
 5.76E-03 2.53E-03 59.5 0.051 0.2554 
 5.06E-03 2.53E-03 74.7 0.051 0.2024 
 5.06E-03 2.53E-03 74.7 0.051 0.2024 
 4.67E-03 2.53E-03 89.7 0.051 0.1723 
 4.67E-03 2.53E-03 89.7 0.051 0.1718 
 4.38E-03 2.53E-03 104.8 0.051 0.1499 

Sa
m

pl
e_

2_
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 4.39E-03 2.53E-03 104.8 0.051 0.1502 
 1.15E-02 2.50E-03 59.7 0.055 0.6790 
 1.15E-02 2.50E-03 59.7 0.055 0.6790 
 9.58E-03 2.50E-03 74.7 0.055 0.5429 
 9.57E-03 2.50E-03 74.6 0.055 0.5422 
 8.55E-03 2.50E-03 89.8 0.055 0.4679 
 8.55E-03 2.50E-03 89.8 0.055 0.4679 
 7.87E-03 2.50E-03 104.9 0.055 0.4180 

Sa
m
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e_

2_
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 7.88E-03 2.50E-03 104.9 0.055 0.4184 
 1.03E-02 5.19E-03 59.7 0.037 0.2006 
 1.03E-02 5.19E-03 59.7 0.037 0.2001 
 9.24E-03 5.19E-03 75.3 0.037 0.1591 
 9.23E-03 5.19E-03 75.3 0.037 0.1586 
 8.52E-03 5.19E-03 89.8 0.037 0.1319 
 8.53E-03 5.19E-03 89.8 0.037 0.1320 
 8.15E-03 5.19E-03 105.0 0.037 0.1177 
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 8.14E-03 5.19E-03 104.9 0.037 0.1174 
 1.44E-03 2.28E-04 59.1 0.040 0.9795 
 1.46E-03 2.28E-04 59.1 0.040 0.9918 
 1.14E-03 2.28E-04 74.7 0.040 0.7513 
 1.15E-03 2.28E-04 74.7 0.040 0.7567 
 9.80E-04 2.28E-04 89.4 0.040 0.6254 
 9.86E-04 2.28E-04 89.4 0.040 0.6303 
 8.52E-04 2.28E-04 104.5 0.040 0.5251 

Sa
m
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 8.45E-04 2.28E-04 104.5 0.040 0.5191 
 1.45E-01 9.99E-02 59.8 0.066 0.0930 
 1.44E-01 9.99E-02 59.8 0.066 0.0918 
 1.35E-01 9.99E-02 74.8 0.066 0.0726 
 1.34E-01 9.99E-02 74.8 0.066 0.0725 
 1.29E-01 9.99E-02 89.8 0.066 0.0619 
 1.29E-01 9.99E-02 89.8 0.066 0.0620 
 1.26E-01 9.99E-02 104.5 0.066 0.0560 

Sa
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 1.26E-01 9.99E-02 104.5 0.066 0.0556 
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Table D.2 — Continued 
 

  ka, md k∞, md p , psia  φ, fraction Knp 

 2.13E-02 6.78E-03 39.6 0.071 0.4162 
 2.14E-02 6.78E-03 39.6 0.071 0.4200 
 1.69E-02 6.78E-03 55.0 0.071 0.2964 
 1.69E-02 6.78E-03 55.0 0.071 0.2964 
 1.49E-02 6.78E-03 69.9 0.071 0.2398 
 1.50E-02 6.78E-03 69.9 0.071 0.2413 
 1.39E-02 6.78E-03 84.8 0.071 0.2100 

Sa
m

pl
e_

3_
10

 

 1.39E-02 6.78E-03 84.8 0.071 0.2107 
 2.80E-02 1.68E-02 60.3 0.057 0.1353 
 2.78E-02 1.68E-02 60.3 0.057 0.1335 
 2.55E-02 1.68E-02 75.4 0.057 0.1067 
 2.56E-02 1.68E-02 75.4 0.057 0.1079 
 2.40E-02 1.68E-02 90.3 0.057 0.0884 
 2.40E-02 1.68E-02 90.3 0.057 0.0887 
 2.32E-02 1.68E-02 105.1 0.057 0.0790 

Sa
m
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e_

3_
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 2.33E-02 1.68E-02 105.1 0.057 0.0796 
 5.18E-03 1.28E-03 60.1 0.066 0.5795 
 5.18E-03 1.28E-03 60.1 0.066 0.5796 
 4.37E-03 1.28E-03 74.8 0.066 0.4656 
 4.38E-03 1.28E-03 74.8 0.066 0.4657 
 3.91E-03 1.28E-03 90.1 0.066 0.3990 
 3.91E-03 1.28E-03 90.1 0.066 0.3984 
 3.63E-03 1.28E-03 105.2 0.066 0.3587 

Sa
m
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 3.63E-03 1.28E-03 105.2 0.066 0.3589 
 



 

 

55

 

D.3 Correlation of the Pseudo-Knudsen Number with Pressure, Permeability and Porosity. 

Using the data in Table D.2, we developed two correlations to relate the "pseudo-Knudsen" numbers (Knp) 

and the available data (ka, k∞, φ, p).  The first correlation given below relates the "pseudo-Knudsen" 

number (Knp) to the reciprocal mean pressure, the porosity (φ), and the gas permeability (ka): 
 

25.05654.0 159.0 −−= φap k
p

Kn ..............................................................................................................(D-6) 
 

Applying Eq. D-6 to Eq. D-4 yields: 
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The equivalent liquid permeability can then be easily computed by: 
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For the second correlation we replaced the gas permeability with the equivalent liquid permeability: 
 

253.050225.01 18.2 φ−
∞= k

p
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Substitution of Eq. D-9 into Eq. D-4 yields: 
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Rearranging Eq. D-10 yields: 
 

0
1 18.21

1 18.24
1  1 18.2 ]1 18.2[4tan

15
1281

253.050225.0

253.050225.0

253.050225.04.0253.050225.01
2 =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎦

⎤
⎢
⎣

⎡

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−

−
∞

−
∞

−
∞

−
∞

−
∞

φ

φ
φφ

π k
p

k
p

k
p

k
p

kka

 

...........................................................................................................................................................(D-11) 
 

Eq. D-10 is an implicit relation where the k∞ value is solved as a root of this relation.  Fig. D.1 presents the 

"pseudo-Knudsen" numbers obtained with Eq. D-6 and Eq. D-9 plotted against the reference "pseudo-

Knudsen" numbers (recall that we defined the reference "pseudo-Knudsen" number as solution of Eq. D-
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4).  In Fig. D.2 presents the equivalent liquid permeabilities computed with Eq. D-8 and Eq. D-10 plotted 

against the reference Klinkenberg-corrected permeability.  Figs. D.3 and D.4 show the behavior of the 

following function of k∞ for a given data point (Sample 1-8, ka = 0.0012699 md, p = 45.27 psig, φ = 

0.023): 
 

 
 

Figure D.1 — Correlated "pseudo-Knudsen" number (Eq. D-6 and Eq. D-9) versus reference 
"pseudo-Knudsen" number (solution of Eq. D-4) — the implicit model (Eq. D-9) 
achieves a better estimation of Knp than the explicit model (Eq. D-6). 
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Figure D.2 — Computed equivalent liquid permeability versus the reference Klinkenberg-
corrected permeability (extrapolated from a Klinkenberg plot (ka versus reciprocal 
mean pressure)) — both models present reasonably good results. 

 

 
 

Figure D.3 — Plot of the residuals computed with Eq. D.11 against the equivalent liquid 
permeability (k∞) for a particular point of our data set — Sample 1-8, ka = 
0.0012699 md, p = 45.27 psig, φ = 0.023.  The Klinkenberg-corrected permeability 
for this sample is k∞ = 0.000125 md.  The root solution for this case yields k∞ = 
0.00018 md, which implies an absolute relative error of 30.56 percent (compared to 
the "Klinkenberg" permeability). 
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Figure D.4 — Plot of the absolute value of residuals computed with Eq. D.11 against the 
equivalent liquid permeability (k∞) for a particular point of our data set — Sample 
1-8, ka = 0.0012699 md, p = 45.27 psig, φ = 0.023 (same point than Fig D.3).  This 
plot gives a clearer view of the root solution. 

 

We recognize that this correlation is only valid for this data set, but we hope that this formulation inspires 

others to utilize the generic form of Eq. D-4, coupled with a model for Knp (e.g., Eq. D-6 or Eq. D-9). 
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APPENDIX E 
 

COMPARISON OF ALL MODELS FOR STEADY-STATE MEASUREMENTS  
 

The following section provides a summary and an overall comparison of the existing correlations as well 

as the "microflow" model (calibrated on data acquired by steady-state method) for the prediction of 

permeability from core experiments. 
 

E.1 Direct Correlation between the Klinkenberg-Corrected Permeability and Porosity, Pressure and 

Permeability to Gas. 

Using the datasets acquired under steady-state conditions (Lower Cotton Valley Nos. 1 and 2, see ref. 1 

and 2, the data are presented in Table E.1 below), it is possible to correlate the Klinkenberg-corrected 

permeability (k∞) (see ref. 3) with the mean absolute core pressure ( p ), the porosity (φ) and the measured 

gas permeability (ka).  This relation is expressed as: 
 

321 )()()( 0
ccc

a pkck φ=∞ ................................................................................................................... (E-1) 
 

For this case, we obtained by regression the following coefficients: 

c0 = 0.05188 
c1 = 1.365 
c2 = -0.0099 
c3 = 00.83768 

 

Fig. E.1 below represents the equivalent liquid permeability computed using Eq. E-1 computed against the 

reference Klinkenberg-corrected permeability (extrapolated by multipoint-Klinkenberg analysis) 
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Figure E.1 — Equivalent liquid permeability computed using the direct correlation (Eq. E-1) 
versus Klinkenberg-corrected permeability — this correlation gives a very good 
fit. 

 
 
 

Table E.1 — Data used in the comparison study — datasets from the Lower Cotton Valley 
Formation (refs. 1 and 2). 

 

   p ,psia ka, md k∞, md bK, psia  φ, fraction 
 56.05 8.51E-03 1.42E-03 278.0 0.089 
 56.05 8.47E-03 1.42E-03 278.0 0.089 
 81.4 6.25E-03 1.42E-03 278.0 0.089 
 81.4 6.25E-03 1.42E-03 278.0 0.089 
 105.95 5.13E-03 1.42E-03 278.0 0.089 
 105.9 5.15E-03 1.42E-03 278.0 0.089 
 131.55 4.57E-03 1.42E-03 278.0 0.089 
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 131.55 4.57E-03 1.42E-03 278.0 0.089 
 54.05 1.87E-02 5.36E-03 133.8 0.08 
 54.1 1.86E-02 5.36E-03 133.8 0.08 
 79.3 1.40E-02 5.36E-03 133.8 0.08 
 79.25 1.40E-02 5.36E-03 133.8 0.08 
 103.55 1.23E-02 5.36E-03 133.8 0.08 
 103.55 1.22E-02 5.36E-03 133.8 0.08 
 129.7 1.11E-02 5.36E-03 133.8 0.08 
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 129.65 1.11E-02 5.36E-03 133.8 0.08 
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Table E.1 — Continued 
 

   p ,psia ka, md k∞, md bK, psia  φ, fraction 
 60.35 9.82E-03 2.61E-03 166.8 0.067 
 60.35 9.83E-03 2.61E-03 166.8 0.067 
 77.85 8.02E-03 2.61E-03 166.8 0.067 
 77.7 8.07E-03 2.61E-03 166.8 0.067 
 105.4 6.71E-03 2.61E-03 166.8 0.067 
 105.35 6.74E-03 2.61E-03 166.8 0.067 
 137.1 5.84E-03 2.61E-03 166.8 0.067 

SA
M
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E 

3 

 137 5.97E-03 2.61E-03 166.8 0.067 
 56.65 7.84E-03 1.10E-03 345.8 0.085 
 56.65 7.85E-03 1.10E-03 345.8 0.085 
 82.2 5.63E-03 1.10E-03 345.8 0.085 
 82.25 5.64E-03 1.10E-03 345.8 0.085 
 108.65 4.60E-03 1.10E-03 345.8 0.085 
 108.5 4.62E-03 1.10E-03 345.8 0.085 
 132 4.09E-03 1.10E-03 345.8 0.085 

SA
M
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E 
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 132 4.09E-03 1.10E-03 345.8 0.085 
 57 7.73E-02 3.84E-02 57.7 0.077 
 57.15 7.74E-02 3.84E-02 57.7 0.077 
 81.35 6.51E-02 3.84E-02 57.7 0.077 
 81.3 6.52E-02 3.84E-02 57.7 0.077 
 105.75 5.96E-02 3.84E-02 57.7 0.077 
 105.7 5.96E-02 3.84E-02 57.7 0.077 
 132.8 5.51E-02 3.84E-02 57.7 0.077 
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 132.8 5.51E-02 3.84E-02 57.7 0.077 
 81.45 3.00E-03 1.16E-03 125.5 0.043 
 81.45 2.94E-03 1.16E-03 125.5 0.043 
 105.95 2.47E-03 1.16E-03 125.5 0.043 
 105.9 2.48E-03 1.16E-03 125.5 0.043 
 138.25 2.21E-03 1.16E-03 125.5 0.043 
 138.2 2.21E-03 1.16E-03 125.5 0.043 
 159.1 2.07E-03 1.16E-03 125.5 0.043 
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 159.1 2.07E-03 1.16E-03 125.5 0.043 
 56.7 2.44E-02 8.30E-03 109.8 0.075 
 56.7 2.44E-02 8.30E-03 109.8 0.075 
 82.4 1.90E-02 8.30E-03 109.8 0.075 
 82.4 1.90E-02 8.30E-03 109.8 0.075 
 105 1.70E-02 8.30E-03 109.8 0.075 
 105 1.70E-02 8.30E-03 109.8 0.075 
 130.95 1.54E-02 8.30E-03 109.8 0.075 
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 130.95 1.55E-02 8.30E-03 109.8 0.075 
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Table E.1 — Continued 
 

   p ,psia ka, md k∞, md bK, psia  φ, fraction 
 48.1 1.64E-01 7.04E-02 63.6 0.101 
 48.1 1.64E-01 7.04E-02 63.6 0.101 
 56.15 1.49E-01 7.04E-02 63.6 0.101 
 56.15 1.49E-01 7.04E-02 63.6 0.101 
 67.35 1.37E-01 7.04E-02 63.6 0.101 
 67.35 1.37E-01 7.04E-02 63.6 0.101 
 78.7 1.29E-01 7.04E-02 63.6 0.101 

SA
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 78.7 1.29E-01 7.04E-02 63.6 0.101 
 58 1.84E-02 6.17E-03 114.7 0.069 
 58 1.84E-02 6.17E-03 114.7 0.069 
 82.55 1.45E-02 6.17E-03 114.7 0.069 
 82.55 1.45E-02 6.17E-03 114.7 0.069 
 105.15 1.29E-02 6.17E-03 114.7 0.069 
 105.15 1.29E-02 6.17E-03 114.7 0.069 
 129.8 1.17E-02 6.17E-03 114.7 0.069 

SA
M

PL
E 

9 

 129.8 1.18E-02 6.17E-03 114.7 0.069 
 56.75 3.65E-02 1.20E-02 115.6 0.087 
 56.5 3.68E-02 1.20E-02 115.6 0.087 
 80.1 2.87E-02 1.20E-02 115.6 0.087 
 80.05 2.86E-02 1.20E-02 115.6 0.087 
 105.6 2.52E-02 1.20E-02 115.6 0.087 SA

M
PL

E 
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 105.45 2.52E-02 1.20E-02 115.6 0.087 
 57.25 3.03E-02 1.11E-02 98.3 0.1 
 57.7 2.97E-02 1.11E-02 98.3 0.1 
 66.165 2.73E-02 1.11E-02 98.3 0.1 
 65.9 2.78E-02 1.11E-02 98.3 0.1 
 106.2 2.13E-02 1.11E-02 98.3 0.1 
 106.2 2.13E-02 1.11E-02 98.3 0.1 
 84.05 2.41E-02 1.11E-02 98.3 0.1 
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 84.05 2.38E-02 1.11E-02 98.3 0.1 
 59.97 1.27E-03 1.25E-04 565.3 0.023 
 59.965 1.27E-03 1.25E-04 565.3 0.023 
 75.405 1.03E-03 1.25E-04 565.3 0.023 
 75.4 1.03E-03 1.25E-04 565.3 0.023 
 90.095 8.77E-04 1.25E-04 565.3 0.023 
 90.045 8.78E-04 1.25E-04 565.3 0.023 
 104.885 7.95E-04 1.25E-04 565.3 0.023 
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 104.88 7.95E-04 1.25E-04 565.3 0.023 
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Table E.1 — Continued 
 

   p ,psia ka, md k∞, md bK, psia  φ, fraction 
 39.56 1.80E-01 1.32E-01 14.2 0.063 
 39.555 1.80E-01 1.32E-01 14.2 0.063 
 54.92 1.66E-01 1.32E-01 14.2 0.063 
 54.915 1.66E-01 1.32E-01 14.2 0.063 
 69.745 1.59E-01 1.32E-01 14.2 0.063 
 69.74 1.58E-01 1.32E-01 14.2 0.063 
 84.72 1.55E-01 1.32E-01 14.2 0.063 
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 84.72 1.55E-01 1.32E-01 14.2 0.063 
 59.69 2.57E-02 1.68E-02 32.5 0.056 
 59.665 2.60E-02 1.68E-02 32.5 0.056 
 74.57 2.41E-02 1.68E-02 32.5 0.056 
 74.505 2.41E-02 1.68E-02 32.5 0.056 
 89.94 2.28E-02 1.68E-02 32.5 0.056 
 89.885 2.29E-02 1.68E-02 32.5 0.056 
 104.785 2.19E-02 1.68E-02 32.5 0.056 
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 104.74 2.20E-02 1.68E-02 32.5 0.056 
 39.54 8.05E-02 4.40E-02 32.8 0.078 
 39.54 8.05E-02 4.40E-02 32.8 0.078 
 54.785 6.89E-02 4.40E-02 32.8 0.078 
 54.785 6.89E-02 4.40E-02 32.8 0.078 
 69.79 6.47E-02 4.40E-02 32.8 0.078 
 69.785 6.48E-02 4.40E-02 32.8 0.078 
 84.755 6.10E-02 4.40E-02 32.8 0.078 
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 84.755 6.09E-02 4.40E-02 32.8 0.078 
 59.61 8.28E-03 3.45E-03 83.6 0.07 
 59.605 8.27E-03 3.45E-03 83.6 0.07 
 74.73 7.35E-03 3.45E-03 83.6 0.07 
 74.725 7.35E-03 3.45E-03 83.6 0.07 
 89.98 6.69E-03 3.45E-03 83.6 0.07 
 89.98 6.69E-03 3.45E-03 83.6 0.07 
 104.745 6.19E-03 3.45E-03 83.6 0.07 
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 104.745 6.19E-03 3.45E-03 83.6 0.07 
 59.23 9.71E-04 7.29E-05 753.5 0.029 
 59.22 9.71E-04 7.29E-05 753.5 0.029 
 74.565 7.80E-04 7.29E-05 753.5 0.029 
 74.52 7.80E-04 7.29E-05 753.5 0.029 
 89.335 6.61E-04 7.29E-05 753.5 0.029 
 89.335 6.62E-04 7.29E-05 753.5 0.029 
 104.415 5.95E-04 7.29E-05 753.5 0.029 
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 104.405 5.97E-04 7.29E-05 753.5 0.029 
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Table E.1 — Continued 
 

   p ,psia ka, md k∞, md bK, psia  φ, fraction 
 59.9 6.95E-04 4.37E-05 801.0 0.02 
 59.9 6.94E-04 4.37E-05 801.0 0.02 
 75.06 5.10E-04 4.37E-05 801.0 0.02 
 75.06 5.11E-04 4.37E-05 801.0 0.02 
 89.71 4.22E-04 4.37E-05 801.0 0.02 
 89.705 4.23E-04 4.37E-05 801.0 0.02 
 104.58 3.79E-04 4.37E-05 801.0 0.02 

SA
M

PL
E 

1_
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 104.57 3.78E-04 4.37E-05 801.0 0.02 
 59.76 5.28E-04 3.80E-05 771.0 0.017 
 59.76 5.28E-04 3.80E-05 771.0 0.017 
 75.965 4.03E-04 3.80E-05 771.0 0.017 
 75.965 4.03E-04 3.80E-05 771.0 0.017 
 89.87 3.63E-04 3.80E-05 771.0 0.017 
 89.865 3.64E-04 3.80E-05 771.0 0.017 
 104.77 3.30E-04 3.80E-05 771.0 0.017 

SA
M
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E 
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 104.76 3.30E-04 3.80E-05 771.0 0.017 
 59.605 1.57E-03 4.24E-04 165.1 0.036 
 59.585 1.58E-03 4.24E-04 165.1 0.036 
 75.01 1.32E-03 4.24E-04 165.1 0.036 
 75 1.33E-03 4.24E-04 165.1 0.036 
 90.09 1.21E-03 4.24E-04 165.1 0.036 
 90.085 1.21E-03 4.24E-04 165.1 0.036 
 104.785 1.12E-03 4.24E-04 165.1 0.036 

SA
M
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E 
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 104.785 1.12E-03 4.24E-04 165.1 0.036 
 59.51 1.80E-02 1.24E-02 26.8 0.06 
 59.505 1.80E-02 1.24E-02 26.8 0.06 
 74.955 1.67E-02 1.24E-02 26.8 0.06 
 74.95 1.67E-02 1.24E-02 26.8 0.06 
 89.915 1.61E-02 1.24E-02 26.8 0.06 
 89.915 1.60E-02 1.24E-02 26.8 0.06 
 104.77 1.57E-02 1.24E-02 26.8 0.06 
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M
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E 
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 104.77 1.57E-02 1.24E-02 26.8 0.06 
 59.51 5.76E-03 2.53E-03 77.1 0.051 
 59.505 5.76E-03 2.53E-03 77.1 0.051 
 74.68 5.06E-03 2.53E-03 77.1 0.051 
 74.675 5.06E-03 2.53E-03 77.1 0.051 
 89.68 4.67E-03 2.53E-03 77.1 0.051 
 89.68 4.67E-03 2.53E-03 77.1 0.051 
 104.815 4.38E-03 2.53E-03 77.1 0.051 

Lo
w

er
 C

ot
to

n 
V

al
le

y 
N

o.
2 

SA
M

PL
E 

2_
8 

 104.815 4.39E-03 2.53E-03 77.1 0.051 
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Table E.1 — Continued 
 

   p ,psia ka, md k∞, md bK, psia  φ, fraction 
 59.665 1.15E-02 2.50E-03 215.1 0.055 
 59.665 1.15E-02 2.50E-03 215.1 0.055 
 74.66 9.58E-03 2.50E-03 215.1 0.055 
 74.645 9.57E-03 2.50E-03 215.1 0.055 
 89.845 8.55E-03 2.50E-03 215.1 0.055 
 89.845 8.55E-03 2.50E-03 215.1 0.055 
 104.875 7.87E-03 2.50E-03 215.1 0.055 

SA
M
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E 
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 104.865 7.88E-03 2.50E-03 215.1 0.055 
 59.66 1.03E-02 5.19E-03 58.6 0.037 
 59.66 1.03E-02 5.19E-03 58.6 0.037 
 75.32 9.24E-03 5.19E-03 58.6 0.037 
 75.315 9.23E-03 5.19E-03 58.6 0.037 
 89.78 8.52E-03 5.19E-03 58.6 0.037 
 89.77 8.53E-03 5.19E-03 58.6 0.037 
 104.95 8.15E-03 5.19E-03 58.6 0.037 

SA
M
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E 

 2
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 104.945 8.14E-03 5.19E-03 58.6 0.037 
 59.1 1.44E-03 2.28E-04 303.1 0.04 
 59.055 1.46E-03 2.28E-04 303.1 0.04 
 74.675 1.14E-03 2.28E-04 303.1 0.04 
 74.675 1.15E-03 2.28E-04 303.1 0.04 
 89.42 9.80E-04 2.28E-04 303.1 0.04 
 89.41 9.86E-04 2.28E-04 303.1 0.04 
 104.51 8.52E-04 2.28E-04 303.1 0.04 

SA
M
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E 

3_
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 104.51 8.45E-04 2.28E-04 303.1 0.04 
 59.76 1.45E-01 9.99E-02 26.4 0.066 
 59.76 1.44E-01 9.99E-02 26.4 0.066 
 74.78 1.35E-01 9.99E-02 26.4 0.066 
 74.775 1.34E-01 9.99E-02 26.4 0.066 
 89.755 1.29E-01 9.99E-02 26.4 0.066 
 89.75 1.29E-01 9.99E-02 26.4 0.066 
 104.51 1.26E-01 9.99E-02 26.4 0.066 

SA
M
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E 
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 104.515 1.26E-01 9.99E-02 26.4 0.066 
 39.645 2.13E-02 6.78E-03 84.8 0.071 
 39.61 2.14E-02 6.78E-03 84.8 0.071 
 54.99 1.69E-02 6.78E-03 84.8 0.071 
 54.985 1.69E-02 6.78E-03 84.8 0.071 
 69.86 1.49E-02 6.78E-03 84.8 0.071 
 69.86 1.50E-02 6.78E-03 84.8 0.071 
 84.83 1.39E-02 6.78E-03 84.8 0.071 
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 84.825 1.39E-02 6.78E-03 84.8 0.071 
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Table E.1 — Continued 
 

   p ,psia ka, md k∞, md bK, psia  φ, fraction 
 60.345 2.80E-02 1.68E-02 39.2 0.057 
 60.33 2.78E-02 1.68E-02 39.2 0.057 
 75.365 2.55E-02 1.68E-02 39.2 0.057 
 75.35 2.56E-02 1.68E-02 39.2 0.057 
 90.27 2.40E-02 1.68E-02 39.2 0.057 
 90.26 2.40E-02 1.68E-02 39.2 0.057 
 105.115 2.32E-02 1.68E-02 39.2 0.057 

SA
M

PL
E 

3_
36

 

 105.105 2.33E-02 1.68E-02 39.2 0.057 
 60.14 5.18E-03 1.28E-03 183.7 0.066 
 60.125 5.18E-03 1.28E-03 183.7 0.066 
 74.84 4.37E-03 1.28E-03 183.7 0.066 
 74.835 4.38E-03 1.28E-03 183.7 0.066 
 90.09 3.91E-03 1.28E-03 183.7 0.066 
 90.09 3.91E-03 1.28E-03 183.7 0.066 
 105.24 3.63E-03 1.28E-03 183.7 0.066 
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 105.245 3.63E-03 1.28E-03 183.7 0.066 
 
 
 
 

E.2 Existing Correlations for Use in Single-Point Steady-State Measurement. 

The existing correlations are based on the Klinkenberg model,3 relating the measured gas permeability (ka) 

to the reciprocal mean pressure ( p ) by the following equation: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1 ................................................................................................................................. (E-2) 

 

The existing correlations relate the gas slippage factor (bK) with the available petrophysical data such as 

Klinkenberg-corrected permeability (k∞) and porosity (φ).  The correlations are presented in Table E.2 for 

clarity: 
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Table E.2 — Summary of the "bK versus petrophysical data" correlations used in the 
comparison study. 

 

Models  Relations Eq. 

Heid et al4 
⎥
⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1 , with 39.0)(419.11 −

∞= kbK  (E-2) 
(E-3) 

Jones-Owens5 
⎥
⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1 , with 33.0)(639.12 −

∞= kbK  (E-2) 
(E-4) 

Sampath-Keighin6 
⎥
⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1 , with 

53.0

851.13
−

∞
⎥
⎦

⎤
⎢
⎣

⎡
=

φ
kbK  (E-2) 

(E-5) 

 
Square-root ⎥

⎦

⎤
⎢
⎣

⎡
+= ∞ p

bkk K
a 1 , with 

5.0−
∞

⎥
⎦

⎤
⎢
⎣

⎡
=

φ
β kbK  

(the β-term depends on the nature of the gas used for the core 
flow experiments, in the case of nitrogen, β = 43.345) 

 

(E-2) 
(E-6) 

 

Direct correlation 321 )()()( 0
ccc

a pkck φ=∞ , with: 
c0 = 0.05188 
c1 = 1.365 
c2 = -0.0099 
c3 = 00.83768 

 

 

(E-1) 

 
 
 
 

E.2 Microflow Model — Theoretical Formulation. 

The different microflow models developed in the following are derived from the work of Karniadakis and 

Beskok.7  The following correlations are based on the microflow model, relating the measured gas per-

meability (ka) to the Knudsen (or pseudo Knudsen) number by the following equation: 
 

[ ]  
1
41     4 tan

15
1281 4.01-

2 ⎥⎦
⎤

⎢⎣
⎡

+
+⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡+= ∞ Kn

KnKnKnkka π
........................................................................ (E-7) 

 

In Eq. E-7, the Knudsen number (Kn) is defined by: 
 

charl
Kn λ

= ........................................................................................................................................... (E-8) 
 

Where λ  is the mean free path of the gas molecules (i.e., the average distance (length) between 2 

consecutive molecular interactions at the mean pressure ( p )) is defined by:3 

 

)],([      1 2/),( Tp
M
RT

p
Tp μμμπλ ≡= ....................................................................................... (E-9) 
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It is possible to give a theoretical formulation of Kn as a function of the mean pressure ( p ), the porosity 

(φ) and the Klinkenberg-corrected permeability (k∞) for the particular case where nitrogen is the flowing 

gas during the core flow experiments, This formulation is given as follows: 
 

5.0

 1836.10
−

∞
⎥
⎦

⎤
⎢
⎣

⎡
=

φ
k

p
Kn .................................................................................................................. (E-10) 

 

E.3 Microflow Model — Explicit and Implicit Formulations 

The Knudsen number (Kn) cannot by measured by direct laboratory measurements, however we can de-

fine the "pseudo" Knudsen number (Knp) as the solution of the following equation for a given pair of 

values of (ka, k∞): 
 

[ ] 0 
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4

1     4 tan
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p

p
ppa Kn

Kn
KnKnkk

π
........................................................... (E-11) 

 

The "pseudo" Knudsen numbers (Knp) can be then correlated with the available data ( p , φ, and ka or k∞,); 

two types of correlations can be obtained from this process: 

 "Implicit" correlations, using the following form: pkaKn aa
p / 21

0 φ∞= .  In the preceding formu-
lation, the coefficients (a0, a1, a2) depend on the dataset/combination of datasets used for the 
calibration of the model. 
 "Explicit" correlations, using the following form: pkbKn bb

ap / 21
0 φ= .  In the preceding formu-

lation, the coefficients (b0, b1, b2) depend on the dataset/combination of datasets used for the 
calibration of the model. 

 

The table below (Table E.3) presents the different sets of coefficient obtained by considering the datasets 

individually or as a combination for the calibration of the model: 
 

Figs E.2 to E.30 present the absolute relative error profiles using the equivalent liquid permeabilities 

computed for each sample using the models presented in Table E.2 and Table E.3. 
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Table E.3 — Detail of the different explicit and implicit microflow models, based on various 
calibrations. 

 

Datasets Used for 
Calibration 

 Correlations Eq. 

Lower Cotton 
Valley No. 1 

Explicit: 609.15916.0 186.113 φ−= ap k
p

Kn  

Implicit: 0825.14667.01 07.32 φ−
∞= k

p
Knp  

(E-12)
 
 
 
 
 
 
 
 
 

(E-13)

Lower Cotton 
Valley No. 2 

Explicit: 25.05654.0 15904.0 −−= φap k
p

Kn  

Implicit: 253.05023.01 18.2 φ−
∞= k

p
Knp  

(E-14)
 
 
 
 
 
 
 
 
 
 

(E-15)

Lower Cotton 
Valley Nos. 1 ans 2 

Explicit: 4822.06434.0 1278.4 φ−= ap k
p

Kn  

Implicit: 6830.05425.01 0697.7 φ−
∞= k

p
Knp  

(E-16)
 
 
 
 
 
 
 
 
( 

(E-17)
 
 

 
 

Figure E.2 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 1. 
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Figure E.3 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 2 

 
 
 

 
 

Figure E.4 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 3 

 
 



 

 

71

 

 
 

Figure E.5 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 4 

 
 
 

 
 

Figure E.6 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 5 
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Figure E.7 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 6 

 
 
 

 
 

Figure E.8 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 7 
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Figure E.9 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 8 

 
 
 

 
 

Figure E.10 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 9 
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Figure E.11 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 10 

 
 
 

 
 

Figure E.12 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.1 Sample 12 
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Figure E.13 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 1-8 

 
 
 

 
 

Figure E.14 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 2-10 
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Figure E.15 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 2-22 

 
 
 

 
 

Figure E.16 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 3-8 
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Figure E.17 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 3-48 

 
 
 

 
 

Figure E.18 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 1-1 

 
 
 



 

 

78

 

 
 

Figure E.19 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 1-5 

 
 
 

 
 

Figure E.20 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 1-7 
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Figure E.21 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 2-2 

 
 
 

 
 

Figure E.22 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 2-7 
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Figure E.23 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 2-8 

 
 
 

 
 

Figure E.24 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 2-12 
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Figure E.25 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 2-28 

 
 
 

 
 

Figure E.26 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 3-4 
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Figure E.27 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 3-6 

 
 
 

 
 

Figure E.28 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 3-10 
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Figure E.29 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 3-36 

 
 
 

 
 

Figure E.30 — Comparison of the absolute relative errors for the computed equivalent liquid 
permeabilities versus mean pressure — Lower Cotton Valley No.2 Sample 3-55 
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