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ABSTRACT 

 

Incorporating Rubble Mound Jetties in Elliptic Harbor Wave  

Models. (May 2007) 

 Jianfeng Zhang, B.E., Hohai University  

Co-Chairs of Advisory Committee: Dr. Vijay Panchang 
                                                        Dr.  Patrick Lynett 

  

 

Simulation models based on the elliptic mild or steep slope wave equation are 

frequently used to estimate wave properties needed for the engineering calculations of 

harbors.  To increase the practical applicability of such models, a method is developed to 

include the effects of rubble mound structures that may be present along the sides of 

entrance channels into harbors.   

The results of this method are found to match those of other mathematical models 

(i.e. parabolic approximation & three-dimensional solution) under appropriate conditions, 

but they also deviate from results of parabolic approximations in some cases because 

dissipation can create angular scattering.  Comparison with hydraulic model data also 

shows that this approach is useful for designing pocket wave absorbers that are used to 

reduce wave heights in entrance channels.   
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_________________ 
This thesis follows the style and format of Journal of Waterway, Port, Coastal, and 
Ocean Engineering. 
 

CHAPTER I 

INTRODUCTION 

 

Background 

Engineers frequently utilize computational modeling tools.  These models 

include PHAROS, EMS, STWAVE, SWAN, CGWAVE, REFDIF and BOUSS-2D, 

which are commonly to be used to solve the practical coastal engineering problems.  

Many designers use an elliptic wave model (e.g. EMS, CGWAVE, PHAROS) to 

estimate the desired wave properties when they work on the design or modification of 

harbors.  This model is based on the two-dimensional elliptical mild-slope wave 

equation. Originally, in this elliptical equation, wave properties such as refraction, 

diffraction and reflection were present. These properties are commonly induced by 

coastlines, structures and bathymetry in domains of arbitrary shapes for the entire range 

of practical wave condition.  Later, additional wave properties, such as wave-current   

(Chan et al. 2005), wave breaking (Zhao et al. 2001), floating docks (Li et al. 2005), and 

steep-slope effects (Chandrasekara and Cheung 1997)  have also been considered. Some 

elliptic wave models were developed and applied in many practical harbor problems, e.g. 

Ste. Therese de Gaspe Harbor, Kahului Harbor, Morro Bay Harbor, Venice Lagoon, Los 

Angeles/Long Beach Harbor, Barbers Point Harbor, etc. (Tang et al. 1999; Okihiro and 

Guza 1996; Thompson and Demirbilek, 2002; Thompson et al. 2002; Panchang and 

Demirbilek 2001; Mattioli 1996; Kostense et al. 1988; Bova et al. 2000; Zubier et al. 

2003; and others). 
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As we know, navigation channels are usually constructed to connect small bays 

or lagoons to the ocean. But, the channels are not always satisfactory for navigation 

because they can create some severe wave conditions.  Therefore, the design of these 

channels is important in the field of coastal engineering.  One way commonly used to 

warrant the integrity and navigability of such channels is to protect them with rubble-

mound jetties along their sides.  How do these jetties work on the improvement of the 

channel?  Firstly, they are built to prevent cross-channel sediment transport. Secondly, 

they prevent erosion along the sides when the channel is bounded by land on either side. 

Lastly, since they are rubble-mound structures, they can also partly dissipate high wave 

energy that could adversely affect navigation (e.g. Melo and Guza 1991a; 1991b).  

However, in some cases, we cannot place a rubble-mound structure along the 

channel length.  It is not suitable because it shortens the effective width of the navigable 

waterway which could cause navigation problems.  There are alternative methods of 

wave attenuation to be considered.  One method is to provide local expansions in the 

waterway.  Stones are placed in the expansions to provide a rough, porous sloping 

surface.  This surface is used to dissipate wave energy. And the remainder of the channel 

side is much smoother than the rubble mound boundary (local expansions filled with 

stones).  This configuration has been referred to as “Pocket Wave Absorbers” by  

Thompson et al. (2004; 2005). Similar arrangements are called “Side Porous Caves” by 

Sulisz (2005). The locations of pockets which are installed are variable. In some 

instances they are located at the landward end of the channel, while the other cases they 

are situated more on the ocean side.  Moreover, single or double pockets can be based on 
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practical project requirements. An example of a pair of a symmetric Pocket Wave 

Absorber at Pentwater, Michigan is shown in Figure 1.   

 

 

   Fig. 1. Pocket wave absorber at Pentwater, Michigan 

 

Furthermore, several other configurations of Pocket Wave Absorber are possible 

(Fig. 2), such as two asymmetric pockets, a double-length single pocket, etc. In the 

channel, the properties of the rubble-mound sections, such as the length, the width, or 

the location will affect wave heights.  For some cases, wave reflections can occur and 

the large waves can be found on the up-wave side of the pockets.  This can sometimes 

cause navigation problems. Therefore, proper estimation of the effect of the rubble 

mound on the wave properties is a critical importance in obtaining optimum design.  

Little or no guidance for designing pocket wave absorber is available.  This has been 

noted by Thompson et al. (2005) while they were performing engineering work for 

entrance channels in the Great Lakes region.  
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Fig. 2. Pocket absorber configurations 
 

 

Previous Work 

The mild-slope wave model is frequently used for harbor wave modeling. Melo 

and Guza (1991a; 1991b) made an early step to use it.  They proposed a simplified 

model for wave propagation in the presence of rubble-mound jetties.   Relying on the 

fact that waves approach the side walls at grazing angles, the model assumes the 

existence of a preferred direction of wave propagation and uses dissipative parabolic 

equations to describe the wave field. The jetties were represented simply as energy 

 A B  C  D 

 E  F  G  H 

Rubble Mound 

        30o 15o   0o
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dissipation regions. Two types of dissipation are considered: external (water motion over 

the sloping sides of the jetties) and internal (flow motion within the permeable core of 

the structure). Melo and Guza (1991a; 1991b) used the Lorenz principle to describe the 

dissipation equations. To solve the model equations, they resorted to the parabolic 

approximation (Melo and Guza (1991a; 1991b).  In this approach, the initial potential at 

the first row is given and then used as first estimate for the nonlinear terms in the 

equation. After that, the nonlinear term is used with the parabolic equation to compute 

the potential on the second row in an iterative fashion. Then, the solution obtained from 

the second row is then applied to the third row. This process is repeated until the solution 

of the last row is obtained. Although this approach (parabolic model) is easy to use, it 

does have limitations, such as no reflections and propagation largely along one axis.   

For this reason, the nonlinearity can be treated easily. 

Another disadvantage is that multiple models may have to be used for complex 

geometries, which is inconvenient.  For instance, in the study of the Mission Bay 

entrance channel, Melo and Gobbi (1998) used two parabolic approximation models. 

One model was for the straight channel with Cartesian coordinates and the other one 

based on polar coordinates was for the curved channel.  The output of the “straight” 

model was an input for the “curved” model.  One fact that should be noted is that this 

approach is based on an assumption that back-reflected wave field at the junction is 

negligible.  

More recently, Sulisz (2005) developed a model based on the solution of the 

three-dimensional Laplace equation.  Boundary conditions near the rubble-mound jetty 
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were described by the porosity and appropriate damping coefficients.  In his study of the 

damping of wave propagation, he emphasized the effect of the geometry of the porous 

cave and the properties of the porous material which contributed to his final result. 

Initially, the model domain (channel and caves) was divided into several sub-domains. 

Then, each sub-domain was matched at the interfaces while using boundary-element 

method to solve the Laplace equation.  Although Sulisz model (3D model) has no 

problem solving for the reflected and scattered waves in all directions, this approach has 

to be limited to small regions because it leads to large, full matrices. 

 

Scope of Present Work 

Currently, the elliptic mild-slope wave model is applied to perform simulations 

on the entire harbor domain.  As I mentioned, two methods described above (i.e. the 

parabolic approximation model and the three-dimensional Laplace equation model) can 

only be used to selected portions of the overall domain.  Aided by advances in iterative 

solution methods, in finite element grid generators, and in graphical user interfaces, 

robust codes are now available that can be efficiently applied to large domains of 

complex shape.  See Panchang and Demirbilek (2001) for a review.  The objective of my 

thesis is to explore the incorporation of the dissipative effects of rubble-mound jetties in 

elliptic models, thus extending capabilities of the models for practical engineering 

applications.   
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CHAPTER II 

PERFORMANCE OF ELLIPTIC MODEL IN INLET  

 

Many coastal projects include inlets, but few elliptic model simulations of inlets 

are available.  Here, some analytical studies of inlets are used to test the performance of 

elliptic models.  The analytical results of Dalrymple and Martin (2000) are used for 

comparison. Dalrymple and Martin (2000) also provide a simple suggestion for 

modeling dissipation in inlets, which is examined here. 

In the following, the elliptic model is tested against the solution obtained by 

analytical model for three cases.  The first and second tests consist of wave propagation 

in a rectangular channel with its full-reflecting side walls.  The other walls AB, CD, EF 

and GH are fully reflected in all tests.  The channel connects with the ocean and the bay, 

its length= l, width= 2b. The schematic diagram of inlet in the tests is shown in Fig.3. 
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Fig. 3. Schematic diagram of inlet   
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For our domain, l = 500 m, 2b = 200 m, and depth= 8 m, incident period= 12 s, and 

wavelength= 104.7 m.  A semicircular external area connecting the channel has a radius 

of 600 m and the model domain contained 92,030 triangular elements and 46, 608 nodes. 

The elliptic model solutions are compared with the results of Dalrymple and Martin 

(2000) in Figs. 4 and 5 for incidence wave angle=  0o and 45 o
.   There are no major 

discrepancies between the results from these two models.  

The third test consists of wave propagation in a rectangular channel connected to 

the ocean and bay with its partly-reflecting side walls.  In this test, wave energy is partly 

absorbed by the side walls (reflection coefficient=0.82 was used corresponding to a 

damping factor γ= 1 m-1 used by Dalrymple and Martin (2000)).  The rectangular 

channel in the elliptic model domain is 1000 m long, 200 m wide and 8 m deep, which is 

connected to a semicircular external area with the radius 600 m.  The model domain 

contained 67,250 triangular elements and 34,218 nodes.  The elliptic model solutions are 

compared with the results of Dalrymple and Martin (2000) in Figs. 6 and 7 for incidence 

wave angle= 0o.  The solutions produced nearly identical results. 
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Fig. 4. Wave train normally incident to inlet; kb = 6, kl =30 (Top: analytical method 

(Dalrymple and Martin 2000); bottom: present elliptic model) 
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Fig. 5. Wave train incident at 45 o to inlet; kb = 6, kl= 30 (Top: analytical method 

(Dalrymple and Martin 2000); bottom: present elliptic model) 
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Fig. 6. Plane view of instantaneous water surface elevation in rectangular channel; ocean 

at left, bay at right (Top: analytical method (Dalrymple and Martin 2000); bottom: 

present elliptic model)   

 

 

Fig. 7a. Decay of wave height along channel centerline; γ=1 m-1, kb=7.32, kl= 73.2 

(Analytical method (Dalrymple and Martin 2000)) 
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Fig. 7b. Decay of wave height along channel centerline; γ=1 m-1, kb=7.32, kl= 73.2 

(Present elliptic model) 

 

For these tests, analytical results of Dalrymple and Martin (2000) have been used 

above for validation of the elliptic model.  Those results showed the elliptic model 

worked well for three tests.  From the third test, it seems wave energy was absorbed in 

part by the side wall and the reflection coefficients may be used to simulate wave 

dissipation in the channel.  This idea was suggested by Dalrymple and Martin (2000), 

who compared their solution qualitatively to those obtained by Melo and Guza (1991a; 

1991b) for a case with rubble mound on the sides.  Therefore, this idea was tested.  The 

elliptic model was tested for wave dissipation in the straight channel and curved channel 

studied using parabolic approximation method by Melo and Guza (1991a; 1991b) and 

Melo and Gobi (1998).  Comparisons of the results are shown in Figs. 8 and 9.  The 

solutions show some qualitative similarity of two methods in these cases.  However, 
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there is a quantitive discrepancy in the results of the two methods.  Therefore, using the 

reflection coefficients to produce the dissipation effect may work well for solving some 

but not all cases.  In the following part of this thesis, a more comprehensive approach of 

including wave dissipation in elliptic model will be introduced.  

 

 

Fig. 8. Wave height comparison in the straight channel with dissipation for normally 

incident wave, reflection coefficient=0.55 (Top: parabolic approximation (Melo and 

Guza 1991a); bottom: elliptic model incorporating the reflection coefficients) (Reprinted 

with permission from ASCE.) 
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Fig. 9. Wave height comparison in narrow circular channel, with dissipation for 

normally incident wave, reflection coefficient=0.4 (Top: parabolic approximation (Melo 

and Gobbi 1998); bottom: elliptic model incorporating reflection coefficients) (Reprinted 

with permission from ASCE.) 
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CHAPTER III 

METHODOLOGY 

 

Mathematical Background 

The governing equation for mild-slope wave model is:  

                                  2( ) ( ) 0g gCC CC kφ φ∇ ⋅ ∇ + =                                                        (1) 

In equation (1), ( , )x yφ = 1 2iφ φ+  = complex surface elevation function, from which the 

wave height can be obtained; ( , )C x y = phase velocity; ( , )gC x y = group velocity;      

( , )k x y = wave-number, related to the local depth h(x, y) through the wave dispersion 

relation.  Equation (1) is a two-dimensional, vertically-integrated form of the time-

harmonic complex Laplace equation 

                                    2 ( , , ) 0x y z∇ Φ =                                                                            (2) 

where 

               ( , , ) ( ) ( , )x y z f z x yΦ = Φ  and  ( ) cosh ( ) / cosh( )f z k z h kh= +                          (3) 

The vertical integrated form (1), together with the assumption (3), has been 

demonstrated to be valid for / 1h kh∇ <<  (Berkhoff 1976).  This criterion is usually met 

in most applications.  The elliptic equation (1) represents a boundary-value problem, and 

can have internal depth variations and boundaries.  It is therefore widely used for 

performing wave simulations in regions with arbitrarily-shaped boundaries and arbitrary 
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depth variations.  Unlike the parabolic approximation which has limitations on the angle 

of wave incidence or the degree and direction of wave reflection and scattering, equation 

(1) is more general. 

 In this thesis, one method is explored to solve the elliptic mild-slope equation, 

while simultaneously addressing the effects of rubble-mound jetties.  Several 

investigators (e.g. Booij 1981; Dalrymple et al. 1984; Tsay et al. 1989) have proposed 

that frictional effects can be introduced in the mild-slope equation (1) by using a 

parameterized dissipation term as follows: 

                                 2( ) ( ) 0g gCC CC k i wφ σ φ∇ ⋅ ∇ + + =                                            (4) 

where ( , )x yφ = 1 2iφ φ+  = complex surface elevation function, from which the wave 

height can be obtained; 1i = − ; σ  = wave frequency under consideration; w = friction 

factor. 

 

Mathematical Formulation for Dissipation     

One study of the wave dissipation was made by Dalrymple et al. (1984) and Tsay 

et al. (1989).  They summarized several parameterized forms for the friction factor w .  

Some examples are: 

1. Porous bottom: 

2
2 sinh 2i

k khk
h kh kh
σ

ν
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

                                                                                            (5) 
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in which σ  = wave frequency under consideration, ν = viscosity for water, k= wave 

number, h= water depth; 

2. Viscous mud bottom of thickness d, viscosity mν , and density mρ : 

22 1/ 21/ 2 2 2
2

2

1/ 2 2

2

(2 ) ( ) 1

1 1 1 1

m m

i

m

m m

gkd k d h kh
gk gk

k
gk kh

ρ νν σ σ
σ σ ρ ν

ρρ ν
ρ ν ρ σ

−
⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞⎛ ⎞ + − + + −⎢ ⎥⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭=

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥+ + − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥ ⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

              (6) 

in which ik is the shallow water wave number (for simplicity). 

3. Laminar bottom boundary layer: 

2

2
sinh 2i

k
k

n kh

ν
σ=                                                                                                                  (7) 

4. Densely packed surface film: 

2

2
2 tanh 2i

k
k

kh

ν
σ

π
=                                                                                                               (8) 

5. Natural vegetation (seaweed, trees, etc.) 

302 4sinh 3sinh
3 3sinh (sinh 2 2 )

D aC D kks ks
b b kh kh kh

α
π

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤= +⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦ +⎝ ⎠⎝ ⎠ ⎣ ⎦
                             (9) 

in which α  is a damping factor, 0a  is the initial wave amplitude, s is height above 

bottom, b is spacing of cylinders or plants, D is diameter of cylinders or plants, and DC  

is the representative drag coefficient. For the numerical modeling it is often sufficient, 

for small grid sizes,  
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2

2

in k
kw n
k

σ

σα

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

   for ( , ) .ik kα <<                                                                                     (10) 

The governing equation can be solved with w  specified and boundary conditions 

given. However, the solution of the elliptic equation for a large area and irregular 

bathymetry on damping would require a large finite element or finite difference model.  

Dalrymple et al (1984) found a way to use the parabolic form of the governing equation 

to reduce the computational effort and time. But, this method is not as suitable to the full 

solution for many domains. Moreover, their formulations do not appear to be directly 

applicable to the dissipative effects of rubble-mound jetties. 

However, Melo and Guza (1991a) found a different way to study the wave 

dissipation. They employed a parameterization based on the Lorentz principle. In their 

study, the jetty cross-section was recommended to be divided into two areas: external 

and internal areas. The submerged portion of the jetty is described as an external 

dissipation region, and the part further away from the water is described as an internal 

dissipation region (Fig. 10).  
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                           Jetty      

                                                                               
                                                                                    MSL 
 
 

 

 

 

 

 

     internal dissipation   external dissipation region                        channel 

     region          

Fig. 10. Definition sketch for jetty modeling 

 

Two parameters, fext and fint, are referred to as the dissipation coefficients assigned to 

each region. Both dissipation coefficients may be related to the original friction factor w  

as follows: 

 

                                                  gw f kC= , where f =  fint or fext                             (11)           

The external dissipation coefficient fext depends on the wave energy dissipated per unit 

area over a rough, steep slope. Since this is difficult to estimate, Melo and Guza (1991a) 

have related it to a local reflection coefficient (R) in a simple manner: 

                                                
21

ext
e

Rf
kD
−

=                                                                      (12)   

where eD = width of the external dissipation region of the model jetty.  When R is 

specified by the user, fext is easy to estimate.  On the other hand, the internal dissipation 

water depth 
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fint is more complicated to estimate.  Melo & Guza (1991a) and Sulisz (2005) formulated 

the dissipation in the pores as a combination of laminar and turbulent stresses 

(= q q qα β+ , where q represents flux).  Then they used the Lorentz principle of 

equivalent work to relate fint to α  and β : 

                                           int
1 ( )qf α βλ
σ

= +
                                                             (13) 

In (12), qλ  is a function of the velocity through an elemental porous volume V, 

estimated by Melo & Guza (1990) as: 

                                       *8 ( )
3q q xλ
π

=                                                                          (14) 

where *q  is the amplitude of a representative mean seepage velocity within V, given by 

                                      *

int

1( ) ( , )
( )

c cc c D X

igq x x y dxdy
D X S if

φ
σ

−
= ∇

−∫ ∫                         (15) 

where cD  is small core width, cX  is a suitably small length of core. In accordance with 

the level of approximation used herein, (15) can be further reduced to, 

                                        * *

int

( ) ( )
( )

igkq x A x
S ifσ
−

=
−

                                                     (16) 

then,  

  

                                        *

int

8 ( )
3 ( )q

igk A x
S if

λ
π σ

−
=

−
                                                    (17) 
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where *( )A x  is a characteristic mean wave amplitude within V. For the laminar and 

turbulent stress coefficients α  and β , Melo and Guza (1991a) suggest the following 

descriptions: 

 

                                     
3

0 02

(1 ) (1 ) 1n n
n d n d

να α β β− −
= =                                           (18) 

where n is the porosity (ratio of void to total volume) for rubble-mound structures; v  is 

the kinematic viscosity of water; d is the rock diameter; and 0α and 0β are constants with 

average values of 1,000 and 2.7, respectively. Therefore, the resulting parameterization 

for fint  is a function of the wave properties and renders the model nonlinear.In this thesis, 

the dissipation theory of Melo and Guza (1991a; 1991b) is applied in the elliptic mild-

slope equation. 

 

Solution of the Mild-slope Equation with Dissipation     

To obtain the solution of the mild-slope equation with dissipation, the friction 

factor w  is needed to know.  After w is computed, the solution of the elliptic equation 

(4) can be obtained for any domain of arbitrary shape (Tsay et al. 1989; Demirbilek and 

Panchang 1998). Boundary conditions along coastlines and other closed boundaries (Fig. 

11) can be written in terms of the normal derivative and a user-specified reflection 

coefficient.  
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Open Boundary Conditions 

Along the open boundary (denoted by the semicircle in Fig. 11), the potential φ  

consists of three components: the incident wave ( iφ ) that must be specified to force the 

model, a reflected wave ( rφ )  that would exist in the absence of the harbor, and a 

scattered wave ( sφ ) that results as a consequence of the harbor. With appropriate 

descriptions for these components, a boundary condition can be developed along the 

semicircle.  The procedure can be summarized as follows.  The exterior region is 

represented by two one-dimensional transects denoted by AB and CD (with depths 

varying in the cross-shore direction only). The incident wave is specified at the offshore 

end. A one-dimensional version of equation (4) is used to solve for the combination of 

iφ and rφ  (denoted by oφ ) along the transects.  

                                     

                                     0
0( ) ( ) 0g g

dd CC Ck C k iw
dx dx

φ φ+ + =                                         (19) 

This equation is solved by finite differences, with w specified as described later.  The 

result oφ  is then laterally transposed on to the semicircle.  For the scattered wave, the 

radiation condition is         

                                    

                                              1( )
2

s
sik

n r
φ φ∂

= −
∂

                                                              (20) 

Introducing sφ  = φ - oφ into equation (20) gives the appropriate radiation equation for the 

scattered wave and completes the treatment of the open boundary condition: 
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0

0
1( )( )
2

ik
n n r

φφ φ φ
∂∂

= + − −
∂ ∂                                           (21) 

Closed Boundary Conditions 

Along the coastline and surface-protruding structures, the following boundary 

condition has traditionally been used (e.g. Berkhoff 1976; Tsay & Liu 1983; Tsay et al. 

1989; Oliveira and Anastasiou 1998; Li 1994a): 

                                                     
1
1

r

r

K
ik

n K
φ φ

−∂
=

∂ +                                                      (22) 

where n is the outward normal to the boundary, and the reflection coefficient rK  varies 

between 0 and 1.  
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Fig. 11. Harbor wave model domain; definition sketch 

 
 

 

 

 

 

 

Incident Wave 

X

θι

Y

φext=φi+φr+φs

Ω 

   φ 
r 

y 

   B     D 

 A   C 

Pocket Absorber 
Entrance Channel 

Γ Harbor 

 Jetty 



 

 

26

Numerical Solution 

The finite element method is used for a numerical solution (Demirbilek and 

Panchang 1998).  A typical harbor model grid contains about 250,000 nodes (depending 

on the harbor dimensions and the desired resolution of L/10) and a solution can be 

obtained by the method of conjugate gradients (Li 1994; Panchang et al. 1991; see also 

Bova et al. 2000). The following section presents the detailed procedure first proposed 

by Panchang et al. (1991). After discretization, the governing equation (4) may be 

expressed in matrix form as  

 

                                                     [ ]{ } { }A fφ =                                                          (23) 

where [ ]A  is the system matrix, { }φ  is the unknown vector of the desired grid-point 

values of the wave potential, and { }f  is a vector that contains information from the 

discretized boundary conditions. One method to solve the above equation group is 

Gaussian elimination, which requires storage for the matrix [ ]A . Note that even when 

there are as few as 100 unknowns, [ ]A  contains 100*100 complex elements. Therefore 

computer storage can be one problem, and solution by direct Gaussian elimination is 

practically impossible for big domains. (In this study, the domain contains at least 10 

wave lengths.)   

As an alternative to Gaussian elimination, the resulting discretized system of 

linear equations can be solved by the method of Conjugate Gradients (CG,  Panchang et 

al. 1991). This method does not require the storage of [ ]A , but it converges only when the 



 

 

27

system matrix is symmetric and positive-definite. In order to use the conjugate gradient 

method, the matrix [ ]A  must be modified to be symmetric and positive-definite, or else 

the conjugate gradient method will not converge. A remedy (Panchang et al. 1991) is to 

use the Gauss transformation, i.e. multiply equation (23) by *A⎡ ⎤
⎣ ⎦ , the complex conjugate 

transpose of [ ]A :  

 

                                                [ ]{ } { }* *A A A fφ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦                                           (24) 

The new coefficient matrix [ ]*A A⎡ ⎤
⎣ ⎦ is always symmetric and positive-definite, and the 

modified CG procedure for equation (24) will converge. The algorithm was proposed by 

Panchang et al. (1991) as follows: 

1. Select trial values 0φ (i.e. i=0th iteration) for all grid points where the solution is 

desired. 

2. Compute for all points 0 0r f Aφ= −  and 0 0*p A r= . 

3. Compute for ith iteration:

2

2

* i
i

i

A r

Ap
α = . 

4. Update 1i i i ipφ φ α+ = + . 

5. Check for convergence of solution. 

6. Compute, for each grid point, 1i i i ir r Apα+ = − . 
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7. Compute for ith iteration: 

2
1

2

*

*
i

i
i

A r

A r
β += . 

8. Compute 1 1*i i i ip A r pβ+ += + . 

9. Set i=i+1, and go to step 3. 

 

The above procedure is guaranteed convergence although the speed can be slow. This is 

because the transformed equation (24) is less efficient than the original equation (23). 

Nonlinear Iteration 

Since the dissipation factor w (or, more specifically, fint) is a function of the wave 

amplitude (according to (11) and (12)) and is unknown, (4) must be solved by iteration. 

Each round of the solution for a specified w requires several thousand iterations and the 

overall process is time-intensive. For the first iteration, w is set equal to 0 (i.e. linear 

(frictionless) solutions are obtained). Thereafter, w is updated every nonlinear round 

using the resulting wave heights and (4) is solved again. The process is repeated until the 

solutions converge. In this thesis, the effect of incorporating the wave dissipating model 

into one simulation was examined. This simulation has been performed by Melo and 

Guza (1991a) (shown in Fig.19) in a straight channel, which will be described in a later 

chapter.  The overall problem was assumed to have been solved when the maximum 

difference δ, at any grid point between two successive nonlinear solutions reaches 10-4 or 

less.  Further, the maximum number of non-linear iterations was set to 15. To explore 

the behavior of the solution of this highly nonlinear problem, three locations (x=0; 

x=600; x=1200) inside the model domain were randomly selected to observe local wave 
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fields.  Final results at selected locations are given in Fig 12.  Obviously, the trends of 

wave heights were initially decreasing and converged after about 11 non-linear iterations 

with δ=5.17 × 10-4.  No unusual difficulties occurred during the iterations. Usually, 

successive rounds of nonlinear iterations took fewer CG iterations.  

 

 

Fig. 12. Non-linear convergence of the elliptic model 
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CHAPTER IV 

VALIDATION AGAINST OTHER MATHEMATICAL SOLUTIONS  

 

Elementary Test 

The model described above was first tested against solutions obtained by other 

methods. Two elementary cases, wave propagation over constant-depth regions with two 

friction values (Dalrymple et al. 1984), were  simulated to test the code.   In Fig. 13, the 

first case is shown with a region (610m*305m) of strong damping.  Here w is fixed as 

0.236 and the wave parameters for this and subsequent cases are a wave height of 6.1m, 

a wave period of 20 sec and a water depth of 15.2 m. The depicted region is a semi-

circle area of radius 5000m represented by 80,345 nodes.  The case of a larger region of 

damping (2930m*915m), with lesser values of w (w=0.031) is shown in Fig. 14.  The 

plotted region is a semi-circle domain with a 6000m radius represented by 115,489 

nodes.  The effect of oblique incidence is shown in Fig. 15. The results of two cases 

obtained by the elliptic model match with those obtained by Dalrymple et al. (1984).  
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Fig. 13. Wave field in and around region of strong damping 

 

 

Fig. 14. Wave field in and around region of weaker damping 
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Fig. 15. Wave field in and around region of weaker damping and 300 angle of incidence 

 

Pocket Wave Absorber 

The first simulation shows wave propagation in a rectangular channel with two 

pocket wave absorbers (configuration D in Fig. 2). The geometry consists of a channel 

of depth 1 m and width 4 m.  Two rectangular pocket absorbers of length 8 m (along the 

channel) and width 1 m are placed along the sides.  An incident wave of amplitude 0.5 m 

and period 2.3 s was specified for the simulation.  Rubble mound (stone) was placed in 

the pocket absorber and except this there are not any rubble-mound structures installed 

along the boundaries.  Rubble mound was described by fint = 0.25 and fext = 0. The non-

rubble-mound boundaries  were treated as fully reflective.  The solution of the elliptic 

equation (4) is compared in Fig. 16b to that obtained by Sulisz (2005) using the 3-
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dimensional Laplace equation in Fig. 16a.  Figs. 16a and 16b show only half the domain 

for reasons of symmetry. The results are largely the same. Both solutions show increased 

wave heights on the up-wave side of the pocket wave absorbers and smaller wave on the 

down-wave side.  Fig. 17 shows modeled wave heights (the elliptic model) along three 

transects and reflections on the up-wave side can be as high as 40%.  

 

 

Fig. 16a. Wave amplitude comparison in a channel with two pocket wave absorbers (3D 

model (Sulisz 2005)) (Reprinted with permission from ASCE.) 
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Fig. 16b. Wave amplitude comparison in a channel with two pocket wave absorbers 

(present elliptic model) 
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Fig. 17. Modeled (normalized) wave amplitudes 
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Straight Channel Bounded by Rubble Mound Jetties 

The second simulation consists of wave propagation in a straight channel 

bounded laterally by rubble mound jetties (Fig. 18). The jetty parameters are n = 0.45; d 

= 1.25 m; and fext = 0.5. And the input wave has amplitude of 0.4 m and period 14 s.  A 

solution to this problem has been previously obtained by Melo and Guza (1991a). They 

were using parabolic approximations accurate to different orders. The elliptic equation 

model domain used here consisted of the rectangular region and a semicircular open 

boundary. The semicircular external area is of radius 1140 m and contained 97,761 

triangular elements. The solution converged to a (normalized) tolerance of the order of 

10-6 after about 19 iterations. The elliptic model solutions are compared against the 

results of Melo and Guza (1991a) in Figs. 19 and 20 for incident wave angles = 0o and 

10o. The discrepancies between the two sets of results are small. 

Generally, the 3D Laplace model is a more complete model and the 2D parabolic 

method is an approximation of the elliptic model. Comparing these two solutions with 

the present (2d elliptic model) solution, the similarity suggests the present model is 

reliable.  In the following section, therefore, we explore additional cases with the present 

and develop solutions to them.  
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Fig. 18. Straight channel model domain (after Melo and Guza 1991a) 
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Fig. 19. Wave height comparison for 0oθ = . (Top: parabolic approximation (Melo and 

Guza  1991a); bottom: present elliptic model) (Reprinted with permission from ASCE.) 

 

 

Fig. 20. Wave height comparison for 10oθ = .  (Top: parabolic approximation (Melo and 

Guza  1991a); bottom: present elliptic model) (Reprinted with permission from ASCE.) 
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Other Simulations 

We first consider the case of wave propagation in circular (or curved) channels 

with jettied side walls. Solutions to this problem have been obtained by Melo and Gobbi 

(1998).  They used a parabolic approximation in polar coordinates by way of an 

extension of the straight channel case described above.  Two cases with different radii of 

curvature were examined.  To study the effects of the jetty wall on the solutions, they 

performed simulations with and without the stone rubble along the walls (i.e. with and 

without w).  The results from the present elliptic model are compared with results of 

Melo and Gobbi (1998) in Figures 21 - 24.  Figs 21 & 22 (the no-friction case) show that 

results of the parabolic approximation are similar to the full elliptic model solution.  The 

limitation of the parabolic model lies in the direction of wave scattering, which makes 

the solution inaccurate in some special cases.  However, the similarity of two solutions is 

somewhat surprising.  On the other hand, when the dissipative effects of the jetties are 

introduced the differences become much greater (Figs. 23 & 24).  The wave height 

contours resulting from the elliptic model appear to be shifted towards the inside of the 

curve relative to those resulting from the parabolic model.  Since the parabolic 

approximation can accommodate wave scattering in a limited aperture, one can infer that 

the enhanced wave scattering induced by the jetties is an impediment to the approximate 

model.  But the elliptic model has no such restrictions.  Therefore, the results shown in 

Fig. 24 may be used as the benchmark solutions for future modeling studies. 
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Fig. 21. Wave height comparison in narrow circular channel, no dissipation. (Top: 

parabolic approximation (Melo and Gobbi 1998); bottom: present elliptic model) 

(Reprinted with permission from ASCE.) 
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Fig. 22. Wave height comparison in wide circular channel, no dissipation.  (Top: 

parabolic approximation (Melo and Gobbi 1998); bottom: present elliptic model) 

(Reprinted with permission from ASCE.) 
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Fig. 23. Wave height comparison in narrow circular channel, with dissipation.  (Top: 

parabolic approximation (Melo and Gobbi 1998); bottom: present elliptic model) 

(Reprinted with permission from ASCE.) 
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Fig. 24. Wave height comparison in wide circular channel, with dissipation.  (Top: 

parabolic approximation (Melo and Gobbi 1998); bottom: present elliptic model) 

(Reprinted with permission from ASCE.) 
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CHAPTER V 

SIMULATIONS NEAR POCKET ABSORBER IN PENTWATER HARBOR 

 

In view of the satisfactory results obtained with the modified mild-slope equation 

(4), it is used to demonstrate the effect of dissipation in a field case.  This goal is to 

examine the performance of the model in a non-idealized situation.  A practical harbor 

problem came to our attention.  Pocket wave absorbers (Fig. 1) have been constructed in 

the entrance channel leading to Lake Michigan near Pentwater Harbor (Thompson et al. 

2005) in order to mitigate navigation problems.  What’s more, a physical model  was 

constructed by the US Army Engineer Coastal and Hydraulics Laboratory.  The model 

study provides some data for model validation.  Figs 25 and 26 show the model 

bathymetry which is patterned after the Pentwater Harbor geometry.  In this case, rubble 

mound structures are present seaward of the coastline as well as in the pocket absorbers. 

A numerical model with “Surface Water Modeling System” graphical interface is 

used to develop the grids.  The model domain contains 161,862 nodes. All boundaries 

were specified as fully-reflecting, but the boundary at the end of the channel is fully-

absorbing. To demonstrate the effects of the jetty, we performed simulations with and 

without friction for normally incident waves of height 1 m and period 5 s. (Fig. 27).  It 

can be seen that without dissipation large waves (blue color in Fig. 27) are created. They 

may occur in some areas in the channel, in particular, along the south jetty, along the 

north pocket, and along the north wall down-wave of the pocket absorber (Fig. 27, top 

panel).  However, the rubble mound developed in the channel has dissipative effects and 
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causes attenuation of these large waves. On the contrary, we observe the overall wave 

heights on the down-wave side of the pocket absorber are somewhat smaller (more red, 

less green) when dissipation is applied. A similar reduction in wave heights is also seen 

outside of the north jetty.   

 

 

Fig. 25. Pentwater Harbor entrance channel model (depth in m) 
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Fig. 26. Pentwater entrance channel, hydraulic model gauge locations (numbered dots) 

and bathymetry (depth in m) 
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Fig. 27. Modeled wave height comparison 
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Wave height measurements along four transects (AA, BB, CC, DD) were 

presented by Thompson et al. (2005).  The gauge measurement was employed to record 

wave heights. Totally, 16 gauges were used and denoted by numbers 2-17 in Fig. 26.  

Although the wave-maker generated spectral waves, examination of some of the 

hydraulic model photographs (e.g. Figs.28 and 29) suggested that a monochromatic 

representation was acceptable for efficiency of numerical simulation for our purpose. In 

any case, full details of the incident wave spectrum were not readily available.  

Simulations for the following cases were performed:  (a) incident wave height Hi =1m, T 

= 5s; (b) Hi =2m, T = 8s; and (c) Hi =2m, T = 7s.  Also, incident wave angles of 0o and 

45 o were considered. 

Numerical simulations and hydraulic model photographs are shown for cases (a) 

and (b) in Figures 28 and 29, for incident wave angles of 0o and 45 o respectively.  (For 

case (c), no photographs are available; however, quantitative results are presented later).   



 

 

48

In general, the both modeled wave patterns are very similar (also shown in Figs. 

28 and 29). A comparison of model results with gage data along the 4 transects (Figs. 30 

& 31) suggests the model captures the salient features of the wave patterns reasonably 

well. In general, the data show wave height attenuation as one goes down the channel; 

the reduction in the vicinity of transects CC and DD is of the order of approximately 

80% and 50% in case (a), and 75% and 30% in case (b).  There are some discrepancies, 

which can perhaps be attributed to the following factors.  The overall pattern of the wave 

field seen in Figs. 28 and 29 is fairly complex in the channel and near the structures, 

suggesting that more gage measurements may be needed to properly represent the wave-

field.  Also the incident spectrum was unknown, as was the exact location of the gages. 

The properties of the rubble mound structure such as the exact width, porosity, etc. were 

also unknown and our choice of the parameters may influence the comparison.   
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Fig. 28. Hydraulic and numerical model sea surface snapshot (top two panels) and 

numerical model phase diagram (bottom panel) for normally-incident wave 
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Fig. 29. Hydraulic and numerical model sea surface snapshot (top two panels) and 

numerical model phase diagram (bottom panel) for oblique wave incidence 



 

 

51

  
 

  Fig. 30. Wave height comparison, Hi = 1m, T = 5s 
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Fig. 31. Wave height comparison, Hi = 2 m, T = 7 s 
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Thompson et al. (2005) have noted the absence of guidelines for designing 

pocket absorbers and have noted that several options can be considered by the designer.  

Here we examine, for case (a), the effects of eliminating one pocket and of staggering 

the pockets on either side wall (configurations A and H in Fig. 2).  The results (Fig. 32) 

may be compared with those in Fig. 27 (bottom panel) where two (nearly) symmetric 

pocket absorbers are included.  The wave heights in the entrance channel seem to 

experience much greater reflection when the two pocket absorbers are staggered (Fig. 32, 

bottom panel), and surprisingly, the wave heights in the channel resulting from the use 

of just one pocket are somewhat lower than when two pockets are used. 
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Fig. 32. Modeled wave heights for alternative entrance channel configurations 

 

 

 

 

Single Pocket  

 Two Asymmetric Pockets 



 

 

55

CHAPTER VI 

CONCLUDING REMARKS 

 

The effect of rubble mound structures has been included so far in models based 

on the parabolic approximation of the mild-slope wave equation (Melo and Guza 1991a; 

1991b)  or on the three-dimensional Laplace equation (Sulisz 2005).  Relative to the 

elliptic mild-slope wave equation that is widely used in harbor applications, these 

models have limitations, either in their computational attributes or in their ability to 

simulate angular scattering.  We have therefore explored the incorporation of the related 

dissipation mechanism in the two-dimensional elliptic equation.  Although the 

dissipation formulation used is essentially the same as in earlier models (based on the 

Lorentz principle), the iterative treatment of the nonlinearity is fundamentally different.   

The resulting model was applied to an idealized pocket absorber (studied by 

Sulisz 2005) and to straight and curved channels bounded by rubble mound (studied by 

Melo and Guza (1991a; 1991b) and by Melo and Gobbi (1998)).  The model was also 

applied to a pocket absorber patterned after the Pentwater Harbor entrance (Thompson et 

al. 2005). For the idealized pocket absorber, the solutions of the present 2d elliptic model 

match the 3-d solutions of Sulisz (2005) quite well.  This test provided model validation 

against a more complete (three-dimensional) solution.  It also shows that the pocket 

absorbers can create regions of high wave heights on the up-wave side; these reflected 

waves can potentially be hazardous to small boats.  In the case of the straight channel, 

the results of the parabolic approximation were very similar to the present results.  A 
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good match was also seen in the case of the curved channel when the simulations 

involved no dissipation. However, when dissipation was modeled, the results of the full 

elliptic model deviated from those of the parabolic approximation.  This suggests that 

dissipation can increase the angular scattering of waves and be a further impediment to 

the parabolic models.  The elliptic model results also captured, in a qualitative sense, 

most of the features seen in photographs of hydraulic model simulations of the Pentwater 

Bay entrance channel.  In a quantitative sense, the attenuation measured along transects 

down-wave of the pocket absorber was largely reproduced.  For the Pentwater Bay 

entrance channel, alternative arrangements for the pocket absorbers were considered as 

an illustration.  The results showed that for the incident wave condition examined, the 

configuration with one absorber was the most effective in reducing the wave heights.   

The above results suggest that the incorporation of dissipative effects as 

described here can be an effective method of extending the practical utility of existing 

two-dimensional elliptic harbor wave simulation models.  It could help to address the 

need for design tools as stated by Thompson et al. (2005) in the context of pocket wave 

absorbers in the Great Lakes region. 
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