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ABSTRACT

Heuristic Approaches for the No-Depot k-Traveling

Salesmen Problem with a Minmax Objective. (May 2006)

Byungsoo Na, B.S., Pohang University of Science & Technology

Chair of Advisory Committee: Dr. Sergiy Butenko

This thesis deals with the no-depot minmax Multiple Traveling Salesmen Problem

(MTSP), which can be formulated as follows. Given a set of n cities and k salesmen,

find k disjoint tours (one for each salesmen) such that each city belongs to exactly one

tour and the length of the longest of k tours is minimized. The no-depot assumption

means that the salesmen do not start from and return to one fixed depot. The no-

depot model can be applied in designing patrolling routes, as well as in business

situations, especially where salesmen work from home or the company has no central

office. This model can be also applied to the job scheduling problem with n jobs and

k identical machines.

Despite its potential applicability to a number of important situations, the re-

search literature on the no-depot minmax k-TSP has been limited, with no reports

on computational experiments. The previously published results included the proof

of NP-hardness of the problem of interest, which motivates using heuristics for its

solution. This thesis proposes several construction heuristic algorithms, including

greedy algorithms, cluster first and route second algorithms, and route first and clus-

ter second algorithms. As a local search method for a single tour, 2-opt search and

Lin-Kernighan were used, and for a local search method between multiple tours,

relocation and exchange (edge heuristics) were used. Furthermore, to prevent the

drawback of trapping in the local minima, the simulated annealing method is used.
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Extensive computational experiments were carried out using TSPLIB instances.

Among construction algorithms, route first and cluster second algorithms including

removing two edges method performed best. In terms of running time, clustering

first and routing second algorithms took shorter time on large-scale instances. The

simulated annealing could produce better solutions than the descent method, but did

not always perform well in terms of average solution. To evaluate the performance

of the proposed heuristic methods, their solutions were compared with the optimal

solutions obtained using a mixed-integer programming formulation of the problem.

For small-scale problems, heuristic solutions were equal to the optimal solution output

by CPLEX.
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CHAPTER I

INTRODUCTION

The Traveling Salesman Problem (TSP) is a classical combinatorial optimization

problem, which seeks to minimize the distance that a salesman travels while visiting

each city in a given set exactly once and then returning to the original city. Its

various extensions have also been considered in the literature. For example, the

Multiple Traveling Salesman Problem (MTSP) is used to model a situation where

more than one salesmen need to be routed. In MTSP with k salesmen, or k-TSP, a

feasible solution is given by k disjoint tours, such that each city belongs to exactly

one tour. The objective of the minsum MTSP is to minimize the sum of distances

traveled by all salesmen.

The minsum MTSP model may be useful in some situations, however, it has some

drawbacks that limit its applicability. In particular, the lengths of tours traveled by

different salesmen may be significantly different, which results in unfair workload

distribution. On the other hand, the minmax MTSP model, whose objective is to

minimize the length of the longest tour traveled by a salesman, is expected to dis-

tribute workloads more uniformly. Moreover, it minimizes the “makespan” of visiting

all the cities if travel time is used instead of distances. Thus, the minmax criterion

is especially useful in situations when the distance traveled by a salesman should not

exceed a given limit. In this regard, the minmax MTSP is similar to the Capacitated

Vehicle Routing Problem (CVRP) studied in [1, 2]. Figure 1 and Table I illustrate

the difference between variations of MTSP.

This thesis deals with the no-depot minmax Multiple Traveling Salesmen Prob-

This thesis follows the style of IEEE Transactions on Automatic Control.
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Fig. 1. Variations of k-TSP.

Table I. Variations of k-TSP
Single One Fixed No-depot No-depot
TSP Depot TSP Minsum TSP Minmax TSP

Number of Salesmen 1 k k k

objective min min sum of min sum of min length
tour length tour lengths tour lengths of longest tour

depot - one fixed not fixed not fixed

lem (MTSP). The no-depot assumption means that there is no requirement that all

salesmen should start from and return to one fixed depot, which is often used in other

MTSP models. The no-depot model can be applied in designing patrolling routes,

as well as in business situations, especially where salesmen work from home or the

company has no central office. This model can be also applied to the job scheduling

problem with n jobs and k identical machines.

Despite its potential applicability to a number of important situations, the re-

search literature on the no-depot minmax k-TSP has been very limited, with no

reports on computational experiments. The previously published results included the

proof of NP-hardness of the problem of interest, which motivates using heuristics for

its solution. This thesis proposes several construction heuristic algorithms, includ-

ing greedy algorithms, cluster first and route second algorithms, and route first and
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cluster second algorithms. As a local search method for a single tour, 2-opt search

and Lin-Kernighan were used, and for a local search method between multiple tours,

relocation and exchange (edge heuristics) were used. Furthermore, to prevent the

drawback of trapping in the local minima, the Simulated Annealing method is used.

Extensive computational experiments were carried out using TSPLIB instances.

Among construction algorithms, route first and cluster second algorithms including

removing two edges method performed best. In terms of running time, clustering first

and routing second algorithms took shorter time on large-scale instances. And the

Simulated Annealing could produce better solutions than the descent method, but

didn’t always perform well in terms of average solution. To evaluate the performance

of the proposed heuristic methods, their solutions were compared with the optimal

solutions obtained using a mixed-integer programming formulation of the problem.

For small-scale problems, heuristic solutions were equal to the optimal solution output

by CPLEX.

The chapters of this thesis are organized as follows. The reminder of the cur-

rent chapter is used to introduce the definitions and notations used throughout the

thesis and to review the existing research literature concerning the minmax MTSP.

Chapter II describes the proposed construction heuristics for the problem of interest.

Tour improvement strategies are introduced in Chapter III. Chapter IV reports the

results of numerical experiments performed, and Chapter V concludes the thesis with

a discussion of the obtained results and directions for future work.

A. Definitions and Notations

Let G = (V, E) be a complete undirected graph, where V = {v1, . . . , vn} is the set

of vertices and E = {(vi, vj) : vi 6= vj} is the set of edges. Every edge (vi, vj) has
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an associated weight c(i, j), and all the weights form a matrix C = [c(i, j)]ni,j=1. In

the TSP context, a vertex can be interpreted as a city and the edge weight can be

the distance between the cities or the time of travel between the two cities. With

these notations, the classical Traveling Salesman Problem (TSP), which is to find a

minimum-weight tour T that visits each city exactly once and returns to the starting

point (depot), can be formulated as follows:

min c(T (n), T (1)) +
n−1
∑

i=1

c(T (i), T (i + 1))

where

T (i) is the ith city in the tour;

c(T (i), T (i + 1)) is the distance from the ith city to the (i + 1)th city.

As motivated above, this thesis considers the minmax optimization criterion for

the MTSP. This problem can be formulated as follows:

min max
1≤j≤k

{ c(Tj(nj), Tj(1)) +
nj−1
∑

i=1

c(Tj(i), Tj(i + 1)), }

where

Tj(i) is the ith city in the jth tour;

c(Tj(i), Tj(i + 1)) is the distance from the ith city to the (i + 1)th city in the jth

tour;

nj is the number of cities in the jth tour;

k is the number of salesmen;

n =
∑k

j=1 nj is the total number of cities.
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B. Integer Programming Formulation

In general, most combinatorial problems can be represented as the integer program-

ming formulation. We modified Miller-Tucker-Zemlin (MTZ) formulation of the TSP

[3] and proposed IP formulation for a no-depot k-TSP with minmax objective. This

formulation will be used to compute the exact solution of small test instances and to

examine the performance of heuristic algorithms.

1. IP Formulation for the TSP

The Miller-Tucker-Zemlin (MTZ) formulation of the TSP [3] is given by:

min
n

∑

i=1

n
∑

j=1

cijxij (1.1)

s.t.
n

∑

j=1

xij = 1, ∀i (1.2)

n
∑

i=1

xij = 1, ∀j (1.3)

u1 = 1, (1.4)

2 ≤ ui ≤ n, ∀i 6= 1 (1.5)

ui − uj + 1 ≤ (n − 1)(1 − xij), ∀i 6= 1, ∀j 6= 1 (1.6)

xij ∈ {0, 1} ∀i, j (1.7)

• Indices and Parameters

i: departing city, i ∈ {1, . . . , n};

j: destination city, j ∈ {1, . . . , n};

n: total number of cities;

• Decision variables

xij : xij =















1, if the arc from city i to city j is on the tour, i, j ∈ {1, . . . , n}

0, otherwise
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ui: extra variables to exclude sub tours, i ∈ {1, . . . , n}.

The constraints of (1.2) and (1.3) are called the degree constraints, which enforce

that every vertex is entered and left exactly once. The constraints of (1.4), (1.5) and

(1.6) are subtour elimination constraints, which prohibit the formation of subtours

having less than n vertices.

2. IP Formulation for No-depot k-TSP with Minmax Objective

min y (1.8)

s.t. y ≥
n

∑

i=1

n
∑

j=1

cijxijk, ∀k (1.9)

K
∑

k=1

n
∑

j=1

xijk = 1, ∀i (1.10)

K
∑

k=1

n
∑

i=1

xijk = 1, ∀j (1.11)

n
∑

i=1

xijk =
n

∑

i=1

xjik, ∀j, k (1.12)

n
∑

i=1

vi = K (1.13)

2 − vi ≤ ui ≤ n, ∀i (1.14)

ui − uj − n(vi + vj) + 1 ≤ (n − 1)(1 −
K

∑

k=1

xijk), ∀i, j (1.15)

vi, xijk ∈ {0, 1} ∀i, j, k (1.16)

• Additional Indices and Parameters

k: the number of assigned salesmen, k ∈ {1, . . . , K};

K: total number of salesmen.

• Decision variables

y : objective value, the distance of longest traveled salesman’s tour;
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xijk: xijk =















1, if the trip from city i to city j is assigned to the salesman k

0, otherwise

vi : extra variables to generate sub tours, i ∈ {1, . . . , n};

ui : extra variables to generate sub tours, i ∈ {1, . . . , n}.

C. Applications

The no-depot multiple traveling salesmen problem can be applied in a number of

scenarios. If some cities are located far away from the headquarters of the company,

it may be expensive to return to there. In this case, the company may have the policy

that salesmen do not need to return to the headquarter office or even can choose the

location of his office among his touring cities. On the other hand, if the company has

the policy that all salesmen should start at and return to the fixed depot, different

problem formulation should be used.

This problem can also be applied to patrol routing. Bugera [4] mentioned Sub-

marine Routing Problem as one possible application. If there are limited submarines

that should monitor several specific locations, no-depot k-TSP can assign the patrol

route to each submarine to have every location covered by one submarine. Likewise,

it can be applied to rescue operations and border patrolling.

Another application is the job scheduling problem. If there are n jobs and k

identical parallel machines, the objective is to minimize the makespan. A salesman

in the minmax k-TSP can represent a machine, then the tour of a salesman can be

the job sequence of a machine. Additionally, the distance matrix of TSP corresponds

to the setup time from one job to another job processed by the machine. A weighted

vertex in TSP can represent a stay time or working time of a salesman in that city.

In the job scheduling, the weighted vertex is the processing time of a job by a machine.
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Table II. Application minmax k-TSP to job scheduling

Graph Expression Minmax k-TSP Job Scheduling

vertex city job
weighted vertex staying time of salesman processing time by machine

edge distance between two cities setup time between two jobs
– salesman machine
– tour of salesman job sequence of machine
– min longest tour min makespan

city1city3 city6 city3

city7city2 city5 city2

city8city4 city4

Salesman 1 

- 90 miles

Salesman 2 

- 75 miles

Salesman 3

- 100 miles

job1job3 job6

job7job2 job5

job8job4

Machine 1 

- 90 min

Machine 2 

- 75 min

Machine 3

- 100 min

distance setup time
staying time processing time

Minimize longest traveled 

salesman s tour distance
Minimize makespan

(a) no-depot  k -TSP with minmax objective (b) parallel machine scheduling

Fig. 2. Graphic comparison with job scheduling.

Table II shows the corresponding relation when k-TSP is applied to the job schedul-

ing problem. And Figure 2 represents a graphical comparison between k-TSP and

job scheduling problem.

D. Literature Review

The research of MTSP can be traced back to the idea of Bellmore and Hong [5]. They

proved that a multiple TSP with n cities and k salesmen can be transformed to a
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TSP with n + k − 1 cities and single salesman. They applied the minsum criterion.

However, this idea holds only when all salesmen have same fixed depot.

Frederickson et al. [6] were the first to study the minmax k-TSP with a sin-

gle starting vertex (depot). They suggested two approximation algorithms. The first

method produces k subtours simultaneously using the nearest neighbor and nearest in-

sertion algorithms. The approximation ratio of the nearest neighbor is k+(k/2) log n,

and that of the nearest insertion is two. The second method builds single salesman

tour first, then splits it into k subtours. Its approximation ratio is e+1− 1/k, where

e is the bound of approximation factor for the single traveling salesman problem.

Franka et al. [1] proposed a tabu search heuristic and two exact algorithms for

the minmax k-TSP with a single fixed depot. They used randomly generated points

as test instances and showed that their result derived by tabu heuristic is better than

that of nearest neighbor algorithm.

Golden et al. [2] presented the tabu search heuristic based on Adaptive Memory

Procedure for the minmax k-TSP with a single depot. The authors reported compu-

tational results on several test instances from VRPLIB, including running time and

solution value, but it was restricted to the case of a single fixed depot.

Spriggs [7] proved that the k-TSP is NP-hard and presented several approxi-

mation algorithms based on Minimum Spanning Tree for the minmax k-TSP with a

single unfixed depot. Unlike other versions of TSP, the author allowed to visit each

vertex multiple times. Its approximation ratio is at best close to either 4/(1 + 1/k)

or 2δ, where δ is the bound of approximation factor for the single traveling salesman

problem.

Sofge et al. [8] proposed two level optimization, Cluster First then Route, and

compared several evolutionary computation algorithms for minmax k-TSP with no-

depot. They used a neighborhood attractor schema, a variation of k-means clustering
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in clustering phase, and a shrink-wrap algorithm in local search phase. Computational

results were generated by the following evolutionary algorithms: Genetic algorithm,

evolutionary strategy, particle swarm optimization and generational Monte-Carlo op-

timization.
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CHAPTER II

CONSTRUCTION PHASE

In general, there are two main types of heuristics for the classical TSP. First one is

the Tour Construction Heuristics, which construct an initial solution using Nearest

neighbor, Nearest insertion, and so on. Another one is the Tour Improvement Heuris-

tics, which improve a previously obtained solution using two-opt, Lin-Kernighan [9],

and so on. The advanced, meta heuristic, search strategies, such as TABU search [10],

Simulated Annealing [11], and so on, are used to escape local minima of poor quality.

The multiple traveling salesmen problem is more complicated than the classical single

TSP in terms of constructing an initial solution and improving the tour. These two

phases sometimes can be divided distinctly; however, such a distinction sometimes is

not necessary in order to get a better solution. Although local search within a single

tour belongs to tour improvement phase, it can be used in the construction phase for

the MTSP.

In the construction phase, we tried three kinds of construction heuristics: greedy,

cluster first and route second, and route first and cluster second. Each approach

considers two different algorithms as seen in Table III.

Table III. Construction phase algorithms

Greedy algorithm
First select k pairs of closest cities
First select k cities located farthest

Cluster first and Route second
k-center clustering
k-means clustering

Route first and Cluster second
k dividing algorithm

Removing two edges algorithm
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Table IV. Operations for the set of cities

Operation Effect

init(V ) Initialize the set V as an empty set
insert(V, c1) Insert a city c1 to the set V

remove(V, c1) Remove a city c1 from the set V

pop(V ) Return one member of the set and remove it from the set V

is empty(V ) If the set V is empty, then return TRUE else FALSE

Table V. Usage of set operations

Usage Result

V = init(V ) V = {}
V = insert(V, 4) V = {4}
V = insert(V, 1) V = {1, 4}
V = insert(V, 7) V = {1, 4, 7}
V = insert(V, 5) V = {1, 4, 5, 7}
V = remove(V, 7) V = {1, 4, 5}
c = pop(V ) c = 1, V = {4, 5}
bool = is empty(V ) bool = FALSE

Before we explain the detail of algorithms, we introduce some notations and

terms used throughout this thesis. Recall that V represents the set of cities, V =

{1, 2, . . . , n}. We define several operations using the set of cities in Table IV and give

examples of their usage in Table V. Sj represents the list of cities visited by salesman

j, j ∈ {1, . . . , k}. Table VI and Table VII show the operations and usage of the list

of cities.
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Table VI. Operations for the list of cities

Operation Effect

init(Sj) Initialize the list Sj as an empty list
insert(Sj, ci) Insert a city ci to the back of the list Sj

remove(Sj , ci) Remove a city ci from the list Sj

num cities(Sj) Returns the number of cities in the tour Sj

tour length(Sj) Return the length of the tour
get city(Sj , i) Return the ith city in the list Sj

local search(Sj , A) Perform the local search within the tour
if A = LK, apply Lin-Kernighan
if A = TW , apply Two-Opt search

get from to(Sj, p1, p2) Get the partial list of Sj from the city in the position p1
to the city in the position p2 in the list

merge(Si, Sj) Return the merged list between list Si and list Sj

if Si =< Si1 − Si2 − . . . − Sik >

and Sj =< Sj1 − Sj2 − . . . − Sjl >,
then merge(Si, Sj) =< Si1 − . . . − Sik − Sj1 − . . . − Sjl >

Table VII. Usage of list operations

Usage Result

S1 = init(S1) S1 = φ

S1 = insert(S1, 4) S1 = < 4 >

S1 = insert(S1, 1) S1 = < 4 − 1 >

S1 = insert(S1, 7) S1 = < 4 − 1 − 7 >

S1 = insert(S1, 5) S1 = < 4 − 1 − 7 − 5 >

S1 = insert(S1, 3) S1 = < 4 − 1 − 7 − 5 − 3 >

S1 = insert(S1, 8) S1 = < 4 − 1 − 7 − 5 − 3 − 8 >

S1 = insert(S1, 9) S1 = < 4 − 1 − 7 − 5 − 3 − 8 − 9 >

c1 = get city(S1, 2) c1 = 1
c2 = get city(S1, 3) c2 = 7
S2 = get from to(S1, 1, 3) S2 = < 4 − 1 − 7 >

S3 = get from to(S1, 6, 7) S3 = < 8 − 9 >

S4 = merge(S2, S3) S4 = < 4 − 1 − 7 − 8 − 9 >

S5 = remove(S4, 8) S5 = < 4 − 1 − 7 − 9 >

n = num cities(S5) n = 4
dist = tour length(S5) dist = (the tour length of S5)
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Fig. 3. Construction phase: k pairs of closest cities greedy.

A. Greedy Algorithms

We tried two kinds of greedy algorithms according to initial city-selection for k sales-

men. After that, remaining cities are assigned to a proper salesman according to the

greedy rule.

1. First Select k Pairs of Closest Cities

This algorithm is based on the idea that as the distance between two cities is shorter,

these two cities are more likely to be assigned to the same salesman. Hence, it first

connects all cities, then finds the shortest k pair of cities. Based on these k pairs of

cities, we can construct k salesmen’s tour, each of which has two cities initially. Next

step is to attempt allocating each of the remaining cities to a salesman so that the

resulting longest tour length is minimized. Figure 3 illustrates k pairs of closest cities

greedy algorithm and the overall procedure of this algorithm is shown in Algorithm 1.
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Data: V is the set of cities

V = {1, 2, . . . , n };

for j = 1 to k do

Sj = init(Sj);

Sj = insert(Sj, k), Sj = insert(Sj, l), where(k, l) ∈ {(k, l) | dkl =

min dpq, p, q ∈ V };

V = remove(V, k), V = remove(V, l);

end

Smin = init(Smin);

while is empty(V ) is FALSE do

next city = pop(V );

Stemp = init(Stemp);

for j = 1 to k do

Stemp = insert(Sj, next city), Stemp = local search(Stemp);

if tour length(Stemp) < tour length(Smin) then

Smin = Stemp;

min index = j;

end

end

Smin index = Smin;

end

return S = {S1, S2, S3, . . . , Sk};

Algorithm 1: First select k pairs of closest cities
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Fig. 4. Construction phase: k-farthest cities greedy.

2. First Select k Cities Located Farthest

In the previous greedy algorithm, if the initial k pairs of cities are very closely located

to each other, it might not give a reasonable solution. To overcome this problem,

we propose to use another greedy algorithm by modifying the way of generating the

initial k salesmen tours. Instead of the shortest k pairs of cities, we try to find k cities

located farthest from each other as the initial cities of the k salesmen tours. Figure 4

illustrates k-farthest cities greedy algorithm and the procedure of this algorithm is

shown in Algorithm 2.
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Data: C is the set of center cities in each cluster

V = {1, 2, . . . , n};

C = init(C);

Randomly select one city c1, c1 ∈ V ;

C = insert(C, c1), V = remove(V, c1);

S1 = init(S1), S1 = insert(S1, c1);

for j = 2 : k do

Select city k farthest from center set C, k ∈ V , where

k ∈ {k | dkl = max min dpq, p ∈ V, q ∈ C};

C = insert(C, k), V = remove(V, k);

Sj = init(Sj), Sj = insert(Sj, k);

end

while is empty(V ) is FALSE do

next city = pop(V );

Stemp = init(Stemp);

Smin = insert(S1, next city), Smin = local search(Smin);

min index = 1;

for j = 2 to k do

Stemp = insert(Sj, next city), Stemp = local search(Stemp);

if tour length(Stemp) < tour length(Smin) then

Smin = Stemp;

min index = j;

end

end

Smin index = Smin;

end

return S = {S1, S2, S3, . . . , Sk};

Algorithm 2: First select k cities located farthest
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B. Cluster First and Route Second

Since a lot of research have been conducted to find a reasonable solution of single TSP,

it makes sense to reduce the multiple TSP to several single TSPs, and then apply

algorithms available for the single TSP. The Cluster first and Route Second algorithm

starts with this idea. First we partition all cities, and assign them to each salesman,

then find a (sub)optimal route within a single tour. The number of clusters, k, is the

same as the number of salesmen.

1. k-center Clustering

The k-center clustering for k-TSP is very straightforward. First we pick one city

randomly and make it the center of the first cluster, and we keep picking new cities

that are farthest from all the currently chosen cities until k cities are selected. Each

city is the center of one cluster. For the remaining cities, we assign each of them to the

cluster, whose center is closest to the city to be assigned. Figure 5 illustrates k-center

clustering algorithm and the procedure of this algorithm is shown in Algorithm 3.

2. k-means Clustering

The k-means clustering is one of the widely used methods to partition some data

when the number of clusters, k, is predefined. First, randomly generate the initial
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Data: C is the set of center cities in each cluster

V = {1, 2, . . . , n};

C = init(C);

Randomly select one city c1, c1 ∈ V ;

C = insert(C, c1), V = remove(V, c1);

S1 = init(S1), S1 = insert(S1, c1);

for j = 2 : k do

Select city m farthest from center set C, m ∈ V , where

m ∈ {m | dml = max min dpq, p ∈ V, q ∈ C};

C = insert(C, m), V = remove(V, m);

Sj = init(Sj), Sj = insert(Sj, m);

end

while is empty(V ) is FALSE do

v = pop(V );

Find the center city p where p ∈ {p | dvp = min dvq, p, q ∈ C};

Sj = insert(Sj, v), where p ∈ Sj, j ∈ {1, 2, . . . , k};

end

return S = {S1, S2, S3, . . . , Sk};

Algorithm 3: k-center clustering
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Data: Cj(x, y) are the coordinates (x, y) of the cluster j’s center

C sumj(x, y) is the sum of coordinates (x, y) of the cities in cluster j

cj(x) and cj(y) are x and y coordinates of city j, respectively

V = {1, 2, . . . , n}, C = init(C);

Randomly select one city c1, where c1 ∈ V ;

C = insert(C, c1);

C1(x) = c1(x), C1(y) = c1(y);

for j = 2 : k do

Select city m farthest from center set C, m ∈ V , where

m ∈ {m | dml = max min dpq, p ∈ V, q ∈ C};

Cj(x) = cm(x), Cj(y) = cm(y);

end

sum dist = inf;

while sum dist < ε do

sum dist = 0;

for v = 1 : n , v ∈ V do

for j = 1 : k do

Sj = init(Sj), C sumj(x, y) = (0, 0);

end

Find the center p where p ∈ {p | dvp = min dvq, p, q ∈ C};

sum dist = sum dist + dvp;

Sp = insert(Sp, v), where p ∈ {1, 2, . . . , m};

C sump(x) = C sump(x) + cv(x);

C sump(y) = C sump(y) + cv(y);

end

for j = 1 : k do

Cj(x) = C sumj(x)/|Sj|;

Cj(y) = C sumj(y)/|Sj|;

end

end

return S = {S1, S2, S3, . . . , Sk};

Algorithm 4: k-means clustering
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centers of cluster, then assign each data point to the closest cluster center. That

data point is now a member of that cluster. Next, calculate the new cluster center

to be the average coordinate of all the members of a certain cluster (this step is

applicable only for instances, in which each city is given by its coordinates on the

plane). And calculate error function to be the sum of within-cluster sum-of-squares.

If this value has not significantly changed over a certain number of iterations or cluster

membership no longer changes, we consider such clustering final. Algorithm 4 shows

the procedure of k-means clustering.

C. Route First and Cluster Second

The Route First and Cluster Second algorithm performs reversely to the Cluster First

and Route Second algorithm. First, considering a single TSP, we find locally optimal

tour using the local search such as two-opt and Lin-Kernighan. Then, we partition

the whole tour into k sub tours. In this paper, two algorithms are proposed according

to the partition method.

1. k Dividing Algorithm

This algorithm divides the whole tour into k segments with approximately equal

lengths. By connecting the two ends of each segment we can obtain the initial solution

with k tours. However, depending on the starting point, we may have different initial

solutions. Hence, we compare all the solutions and select the one whose longest tour

is the shortest. Figure 6 illustrates k dividing algorithm and the procedure of this

algorithm is shown in Algorithm 5.
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Data: Sall is the list of all cities visited by a single salesman;

Sall = local search(Sall);

total dist = tour length(Sall);

dividing dist = total dist/k;

current opt = inf;

for h = 1 to n do

tour1 = get from to(Sall, h, n), tour2 = get from to(Sall, 1, h);

tour = merge(tour1, tour2);

start = 1;

for i = 1 to k − 1 do

for j = start to n do

sum dist = sum dist + dist(tour(j), tour(j + 1));

if sum dist > dividing dist then

Si = get from to(tour, start, j);

sum dist = 0, start = j + 1;

break;

end

end

end

Sm = get from to(tour, start, n);

for i = 1 to k do

Si = local search(Si);

end

max dist = max tour length(Si), i ∈ {1, 2, . . . , k};

if max dist < current opt then

Sopt = {S1, S2, S3, . . . , Sk };

current opt = max dist;

end

end

return Sopt;

Algorithm 5: k dividing algorithm
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2. Removing Two Edges Algorithm

The removing two edges algorithm generates locally optimal tour and splits the whole

tour into two sub-tours as equally as possible by removing two edges and connecting

two ends of each tour. We keep splitting the longest tour into two sub tours until we

obtain k tours. Figure 7 illustrates removing two edges algorithm and Algorithm 6

shows the procedure of the removing two edges algorithm.
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Data: Sall is the list of all cities visited by a single salesman;

Sall = local search(Sall);

S1 = Sall;

for h = 2 to k do

max index = {l | tour length(Sl) ≥ tour length(Sk), ∀k ∈

{1, 2, . . . , h − 1} };

num city = num cities(Smax index);

for i = 1 to num city do

temp1 = get from to(Smax index, i, num city);

temp2 = get from to(Smax index, 1, i);

max tour = merge(temp1, temp2);

min dist = ∞;

for j = 1 to num city − 1 do

tour1 = get from to(max tour, 1, j);

tour2 = get from to(max tour, j + 1, num city);

if tour length(tour1) > tour length(tour2) then

longer tour = tour1, shorter tour = tour2;

else

longer tour = tour2, shorter tour = tour1;

end

if tour length(longer tour) < min dist then

min tour1 = longer tour, min tour2 = shorter tour;

min dist = tour length(longer tour);

end

end

end

Smax index = min tour1; Sh = min tour2;

end

return S = {S1, S2, S3, . . . , Sk};

Algorithm 6: Removing two edges algorithm
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CHAPTER III

TOUR IMPROVEMENT PHASE

Exchange heuristics are used to improve the current tour. A typical exchange heuristic

performs operations (exchanges or moves) that reduce the length of the current tour

until a tour is reached for which no operation yields an improvement. According to

the scope of exchange, tour improvement phase can be classified into: local search

within a single tour and local search between tours. Local search within a single

tour is similar to that of classical TSP and hence search methods such as two-opt

search and Lin-Kernighan search can be used. Local search between different tours

has been used in vehicle routing problem (VRP) to deal with multiple vehicles. The

edge-exchange neighborhood [16] is a well known method to deal with multiple routes.

A. Local Search Within a Single Tour

The objective of local search within a single tour is to minimize the length of the tour

by modifying the tour sequence.

1. 2-Opt Search

The 2-opt algorithm [14] is the simplest among exchange heuristics. From the current

tour, it removes two edges (not adjacent) to get two paths. To generate a tour, these

paths are connected using edges different from the ones removed. Figure 8 shows

typical 2-opt iterations. After applying 2-opt exchange on two non-adjacent edges

selected at random from the current tour (Figure 8-b) we get another tour (Figure 8-

b’). Suppose the tour distance is larger than the previous tour, this new tour is

not stored as the best tour. Two other edges are removed (Figure 8-c) to generate

another tour (Figure 8-c’). Suppose this new tour’s distance is less than the previous
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Fig. 8. 2-opt search.

tour, this tour is stored as the best tour. This procedure is repeated until there is no

further improvement, say (Figure 8-e) which represents a locally optimal tour.

2. Lin-Kernighan

The Lin-Kernighan heuristic [9] (LK search) is generally considered to be one of

the most effective tour improvement methods for the TSP. LK search is similar to

k-opt method, but allows for k to be changed. Several versions of Lin-Kernighan

algorithm exist and the implementation used here is based on [9, 15]. Figure 9

illustrates typical LK search iterations. Starting at one vertex v1 of current best

tour T (Figure 9-a), we remove one edge v1u0 and add another edge from u0w0 such

that dist(u0w0) < dist(v1u0) (Figure 9-b). This new graph is called a δ-path due to

its resemblance to the Greek letter δ. This is not a complete tour (a Hamiltonian

circuit), just an incomplete path. Tours are now constructed from this δ-path, P0.

Vertex w0 has three incident edges, w0u1, w0u2 and w0u3. Removing one edge (w0u1 or

w0u2) and adding another edge (v1u1 or v1u2) results in complete tours (Figure 9-b’).

If a new tour has smaller length than the previous tour, that new tour is stored as
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the best tour. Note that removing an edge w0u3 cannot make a Hamiltonian circuit.

The next step is to construct another δ-path P1 by removing u1w0 from the previous

δ-path P0. These steps are repeated until no δ-path starting at vertex v1 is found

(Figure 9-c,c’,d,d’). Once a vertex is fully explored, we move to the next vertex v2

from v1 (Figure 9-e) and repeat the above steps. When all vertices have been scanned,

LK search is terminated returning the current best tour.

B. Local Search Between Tours

The objective of local search between multiple tours is not only to minimize the length

of each salesman’s tour, but also to distribute cities among salesman as equally as

possible.
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1. Relocation

Consider two salesmen, S1 and S2, having the following tour sequences to visit as-

signed cities; S1 =< S11 − · · · − S1(i−1) − S1i − S1(i+1) − · · · > and S2 =< S21 −

· · · − S2j − S2(j+1) − · · · >. Assume that S1 has longer distance than S2 and define

diff as ( dist(S1) − dist(S2). Suppose salesman S1 gives one city, S1i to salesman

S2. The tour of salesman S1 becomes S ′
1 =< S11 − · · · − S1(i−1) − S1(i+1) − · · · >.

Clearly, the tour distance of S1 decreases. On the other hand, S2 accepts city

S1i so that his tour now becomes S ′
2 =< S21 − · · · − S2j − S1i − S2(j+1) − · · · >

which is longer than S2. If the amount of the increase(i.e. dist(S ′
2) − dist(S2) ) is

less than diff (previous difference in total distance between S1 and S2 ), we have

max(dist(S ′
1), dist(S ′

2)) < max(dist(S1), dist(S2)). Under this assumption, relo-

cation decreases the distance of the longer tour among S1 and S2. However, if the

amount of the increase(i.e. dist(S ′
2) − dist(S2) ) is not less than diff , relocation

operation is not executed. Figure 10 illustrates relocation procedure.
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trialN = 0; failN = 0;

while trialN < maxTrial & failN < maxFail do

Select two salesmen Ssrc and Stgt randomly such that

tour length(Ssrc) ≥ tour length(Stgt) ;

diff = tour length(Ssrc) − tour length(Stgt);

for i = 1 to num cities(Ssrc) do

break flag = 0;

for j = 1 to num cities(Stgt) do

new dist = dist(vjvi) + dist(vivj+1);

increase = new dist − dist(vjvj+1);

if increase < diff then

Relocate the city i to Stgt located between j and j + 1;

failN = 0;

break flag = 1;

break;

end

end

if break flag = 1 then

break;

end

end

trialN = trialN + 1;

failN = failN + 1;

end

Algorithm 7: Local search between tours : Relocation
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2. Exchange

Similar to relocation, assume that salesmen S1 and S2 have the following tour se-

quences to visit assigned cities: S1 =< S11 − · · · − S1(i−1) − S1i − S1(i+1) − · · · >

and S2 =< S21 − · · · − S2(j−1) − S2j − S2(j+1) − · · · >. Exchange operation makes

the salesmen exchange cities S1i and S2j with each other. The result of exchange

operation will be as follows: S ′
1 =< S11 − · · · − S1(i−1) − S2j − S1(i+1) − · · · > and

S ′
2 =< S21 − · · · − S2(j−1) − S1i − S2(j+1) − · · · >. If max(dist(S ′

1), dist(S ′
2)) is less

than max(dist(S1), dist(S2)), the distance of the longer tour among S1, S2 decreases.

Otherwise, the exchange operation is not executed. Figure 11 illustrates exchange

procedure.

C. Advanced Search Strategies

Local search algorithms are based on the descent property. But they are likely to

be trapped in a local optimum failing to reach global optimum. Hence, advanced

search methods such as Tabu Search [10], Simulated Annealing and GRASP (Greedy

Randomized Adaptive Search Procedure) [12] try to overcome this drawback. In this

thesis, results from Simulated Annealing approach will be compared with the descent
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trialN = 0; failN = 0;

while trialN < maxTrial & failN < maxFail do

Select two salesmen Ssrc and Stgt randomly such that

tour length(Ssrc) ≥ tour length(Stgt) ;

for i = 1 to num cities(Ssrc) do

break flag = 0;

for j = 1 to num cities(Stgt) do

new src dist = tour length(Ssrc) − dist(vi−1vi) − dist(vivi+1) +

dist(vi−1vj) + dist(vjvi+1);

new tgt dist = tour length(Stgt) − dist(vj−1vj) − dist(vjvj+1) +

dist(vj−1vi) + dist(vivj+1);

max dist = max( new src dist, new tgt dist );

if max dist < tour length(Ssrc) then

Exchange the city i and the city j;

failN = 0;

break flag = 1;

break;

end

end

if break flag = 1 then

break;

end

end

trialN = trialN + 1;

failN = failN + 1;

end

Algorithm 8: Local search between tours : Exchange
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method.

1. Descent Method

General descent method accepts a solution in the neighborhood of the current solution

that provides the best improvement over the current solution. It is terminated when

no improving solution exists. It is simpler compared to Tabu Search and Simulated

Annealing. Tabu Search has high memory requirements and both Tabu Search and

Simulated Annealing take significantly longer time than the general descent method.

However, general descent is prone to be trapped in a local optima. Following is is a

descent method for finding a local minimum value of a real-valued function f . N(i)

denotes the neighborhood of solution i.

1. Choose an initial solution i;

2. Find a best j ∈ N(i), i.e., f(j) ≤ f(k) for any k ∈ N(i);

3. If f(j) ≥ f(i), then stop, and return solution i;

Else set i = j, and go to Step2;

Algorithm 9: Descent Method

2. Simulated Annealing

Simulated Annealing (SA) is a “threshold” algorithm. It is motivated by the physics

of the annealing process, the way in which a metal cools and freezes into a mini-

mum energy crystalline structure. Kirkpatrick et al. [13] proposed the basis of this

optimization technique for combinatorial problems. The basic idea of Simulated An-

nealing is to accept all improving solutions while probabilistically accepting worse

solutions based on a control parameter that is analogous to temperature in physical

annealing. Cooling schedule is a vital component of the Simulated Annealing algo-
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rithm. It determines the upper and lower limits of the temperature parameter and

the rate at which the temperature is reduced. The algorithm begins at a high temper-

ature, which corresponds to a high probability of accepting worse solutions. As the

search progresses, the temperature is gradually decreased, consequently reducing the

probability of accepting non-improving solutions. At temperature zero, the algorithm

only accepts improving solutions. The algorithm ends when a pre-specified stopping

condition is met. By allowing uphill moves (i.e. accepting worse solution) Simulated

Annealing attempts to avoid local minima. The pseudo code below gives a simple

example of Simulated Annealing.

Generate an initial solution S;

Determine the initial temperature T and decrement ratio dT ;

while Not meet the Stop Criterion do

for m = 1 to max trial num do

Choose one solution J from the neighborhood of S;

if random number < exp( [f(S) − f(J)]/T ) then

S = J ;

end

T = T × dT ;

end

end

return optimal solution S;

Algorithm 10: Simulated Annealing
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CHAPTER IV

COMPUTATIONAL RESULT

This chapter describes the instances used for testing our algorithms and reports com-

putational results.

• Test Environment

Tools : C++ with STL (Standard Template Library), CPLEX 9.0, AMPL 8.0

Computer specs : Intel Pentium 4 3.06GHz Processor, 512MB RAM

Time unit : Seconds

• Test Instances

Two dimensional Euclidian TSP instances from TSPLIB [18] were used for

testing. Number of cities in the instances are as follows: 48, 52, 100, 127, 264,

and 575. Table VIII provides names of test instances, number of cities in each

instance and the number of salesmen.

• Test Scenario

Local search between multiple tours involves randomness. It is likely that

different solutions are generated for each run. Hence, for each test instance,

10 runs are conducted to compute the average solution and the best solution.

Figure 12 illustrates the test scenario. Six different construction algorithms are

used following which both local search methods - local search in a single tour

and local search between multiple tours are applied. As an advanced search

strategy, we compared the solution of Simulated Annealing with that of the

descent method. In Simulated Annealing method, we examine the effect on

solution quality as we change control parameters such as initial temperate and

temperature decrement ratio.
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Fig. 12. Test scenario.

Table VIII. Test problems

Problem Name Number of cities(n) Number of Salesmen(K)

att48 48 4, 5, 6
berlin52 52 4, 5, 6
kroa100 100 4, 5, 6
bier127 127 4, 6
pr264 264 4, 6
rat575 575 4, 6

The tables in the appendix show the computational result of descent method and

simulated annealing.

A. Comparison of Construction Algorithms

A comparison of running times and solution quality of construction algorithms are

presented in Figure 13 and Figure 14 respectively for test instance bier127 with

four salesmen. Local search uses Lin-Kernighan neighborhood in a general descent

method. In the Figures 13 and 14: Gr2City, Greedy, Kcenter, KMeans, RmvTwo

and Rt1st stand for greedy selecting k pairs of closest cities algorithm, greedy selecting

k cities located farthest algorithm, k-center clustering, k-means clustering, removing
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Init method Running Time

Gr2City 5.611
Greedy 5.504
Kcenter 2.308
KMeans 1.949
RmvTwo 5.262

Rt1st 15.438

Fig. 13. Construction algorithms vs running time (bier127).

Init method Init Solution L.S. Solution

Gr2City 45,298 38,584
Greedy 42,797 35,552
Kcenter 44,570 36,704
KMeans 39,781 35,218
RmvTwo 35,173 32,758

Rt1st 34,597 33,266

Fig. 14. Construction algorithms vs solution (bier127).

two edges algorithm and k dividing algorithm respectively.

Cluster first and route second algorithms such as k-center clustering and k-means

clustering took shorter time while k dividing algorithm took the longest time. On the

other hand, k dividing algorithm produced the best initial solution and removing two

edges algorithm generated best local search solution. The solution of greedy selecting

k pairs of closest cities algorithm was worst both in the initial solution and local

search solution.

B. Comparison Between Descent Method And SA

Table IX presents a comparison between descent method and simulated annealing in

terms of solution quality and running time on att48 test instance with four salesmen.

When the initial temperature was 50 and the temperature decrement ratio was 0.7,
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Table IX. Comparison between descent method and SA (att48)

init
method

avg running time average solution best solution

DC SA DC SA DC SA

Gr2City 0.574 1.130 10298.4 9988.5 9315 9103
greedy 0.383 0.614 9249.8 9316.6 9103 9103
Kcenter 0.128 0.363 9389.7 9384.6 9318 9103
KMeans 0.122 0.348 9140.3 9352 9103 9103
RmvTwo 0.403 0.650 9129.7 9222.5 9103 9103

Rt1st 0.809 1.049 9702.8 9487.2 9521 9103

Table X. Comparison between descent method and SA (berlin52)

init
method

avg running time average solution best solution

DC SA DC SA DC SA (initT, Tratio)

Gr2City 0.595 1.140 2,463.0 2,470.5 2359 2107(100,0.9)
greedy 0.492 0.903 2,311.0 2,321.0 2221 2137(100,0.9)
Kcenter 0.334 0.888 2,302.5 2,367.7 2221 2161(3000,0.8)
KMeans 0.250 0.590 2,254.9 2,281.7 2161 2126(60,0.8)
RmvTwo 0.509 0.904 2,204.3 2,229.2 2182 2118(50,0.6)

Rt1st 1.128 1.461 2,299.6 2,310.8 2231 2118(100, 0.6)

all construction solutions of simulated annealing were better than those of the descent

method. But, the average solutions were not always better than those of the descent

method. In general, Simulated Annealing took longer time than the descent method.

Table X presents a comparison between descent method and simulated anneal-

ing in terms of solution quality and running time on berlin52 test instance with four

salesmen. Under certain specific control parameters, Simulated Annealing failed to

generate better solutions than the descent method. However, changing the control

parameters, enabled Simulated Annealing to produce better solutions than the de-

scent method. The average solutions were still worse than those of descent method.

Figure 15 and Figure 16 are graphical representations of berlin52 ’s comparison.
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Fig. 15. Solution comparison between SA and descent (berlin52).

Fig. 16. Time comparison between SA and descent (berlin52).

C. Number of Cities Vs Running Time of Construction Algorithms

The running time of construction algorithms vary with the number of cities in an

instance. Table XI and Figure 17 demonstrate this effect when the number of salesmen

was four. The running time of k dividing algorithm significantly increased as the

number of cities increased, whereas the increase in running time of k-center clustering

and k-means clustering was slower. The growth in running time of the two greedy

algorithms was in between.
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Table XI. The number of cities vs the running time of construction

Init Method 48 52 100 127 264 575

Gr2City 0.36 0.35 1.93 4.16 37.73 501.52
Greedy 0.29 0.35 1.91 3.97 47.65 502.97
Kcenter 0.04 0.07 0.17 0.40 1.11 9.15
KMeans 0.02 0.03 0.11 0.25 0.60 4.75
RmvTwo 0.33 0.37 2.45 4.13 22.38 180.69

Rt1st 0.70 0.90 6.08 14.15 128.90 2,071.35

Fig. 17. The number of cities vs the running time of construction.
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TRatio Avg Solution Best Solution

0.50 2,255.5 2,221
0.60 2,240.5 2,161
0.70 2,255.5 2,161
0.80 2,276.2 2,161
0.90 2,279.2 2,161

Fig. 18. Comparison by SA’s temperature decrement ratio.

D. Comparison of SA’s Cooling Schedules

The performance of Simulated Annealing method depends heavily on the choice of

cooling schedule and tuning the associated parameters is an important task. The

effect of the cooling schedule on solution quality was studied on berlin52 instance

with four salesman and k-means clustering as the construction algorithm. First,

the initial temperature was fixed at 1000 and the temperature decrement ratio was

varied. Figure 18 shows that the average solution was the best when decrement ratio

was 0.6. The average solution tends to increase after 0.6. The best solution obtained

was consistently the best for 0.6, 0.7, 0.8 and 0.9. Next, the temperature decrement

ratio was fixed at 0.70 and the initial temperature was varied. Figure 19 shows that

when initial temperature was 1000, the average solution and the best solution were

the best.
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Initial T Avg Solution Best Solution

50 2,306.6 2,235
100 2,295.8 2,235

1,000 2,255.5 2,161
3,000 2,289.5 2,235

Fig. 19. Comparison by SA’s initial temperature.

Table XII. Heuristic solutions vs optimal solutions by CPLEX

Time Solution

Heuristic CPLEX Heuristic CPLEX

node10 0.053 163.034 3417 3417
node12 0.062 213.452 1496 1496
node15 0.073 7903.394 7264 7264
node20 0.068 out of memory - -

E. Optimal Solution by CPLEX

To evaluate the performance of the proposed heuristic algorithms, we compare with

the optimal solution obtained by CPLEX in Table XII. Instances with small number

of cities were generated. When the number of cities were 10, 12, and 15, the heuristic

solutions and CPLEX solutions were same. But CPLEX took longer time than the

heuristic run. When the number of cities were more than 20, CPLEX was unable to

terminate optimally and due to lack of memory. APPENDIX D shows the no-depot

minmax k-TSP AMPL code for solution by CPLEX.
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CHAPTER V

DISCUSSION AND CONCLUSION

The proposed algorithms have shown a good performance in terms of running time.

When the number of cities is less than 100, it took less than one second. Though the

solution and running time varied depending on the construction heuristics and test

instances, in general removing two edges algorithm generated best initial and local

search solution. A kind of route first and cluster second algorithm, k dividing method

also exhibited good performance. Whereas, greedy algorithms and cluster first and

route second algorithms did not work as well.

For a larger number of cities, the running time of k dividing algorithm signifi-

cantly increased and the greedy algorithms took longer time. Since these algorithms

include the local search for a single tour in the construction phase, this caused the in-

crease in running time. Meanwhile, k-center clustering and k-means clustering have

fast running time even when the number of cities is large. In the aspect of running

time, these cluster first and route second algorithms will be effective for the instances

of large number of cities.

The Simulated Annealing can produce better solution than descent method if

we properly set the control parameters. For some instances like att48, simulated an-

nealing yielded the best solution in all construction algorithms. For other instances

like berlin52, only if we set the appropriate control parameters, we can get a better

solution than for the descent method. Also, in terms of average solution, Simulated

Annealing did not have better performance than the descent method. In the cooling

schedule experiment of Simulated Annealing, the solution can be affected by control

parameters, such as the initial temperature, temperature decrement ratio, and stop-

ping criterion. Hence, it is hard to say which condition results in the best schedule.
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More experiments need to be executed by changing the control parameters, so that

the effects of changes on the solutions can be observed.

Since no computational results on instances available in public domain were

previously published in the literature for the studied problem, it was difficult to

compare the proposed approaches to those by other authors. There are two other

ways to evaluate the performance of the proposed heuristic algorithms. First is to

compare the obtained solutions to lower bounds on optimal solution, such as the

Held and Karp lower bound [17] for the single TSP. However, tight lower bounds for

the minmax k-TSP are not easy to obtain and further investigation of this issue is

required. Second, the heuristic solutions can be compared directly with the optimal

solution. Since the minmax k-TSP is an NP-hard problem, in general, it is feasible to

find the optimal solutions only for small-size instances of the problem. For instances

with up to 20 vertices considered in this thesis, the heuristic approach produced the

exact solution. However, CPLEX could not handle instances with more than 20 cities.

To solve larger instances to optimality, cutting plane techniques and branch-and-cut

algorithms could be used. Thus, a detailed polyhedral study of the problem of interest

is an interesting direction in future research of the minmax k-TSP.
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APPENDIX A

Table XIII. Result of descent method

test
instance

K
init
method

running time(average) solution

init L.S. total init L.S. best

att48 4 Gr2City 0.358 0.216 0.574 17254 10298.4 9315
Greedy 0.287 0.095 0.383 10216 9249.8 9103
Kcenter 0.036 0.092 0.128 10524 9389.7 9318
KMeans 0.022 0.100 0.122 10407 9140.3 9103
RmvTwo 0.328 0.075 0.403 9321 9129.7 9103

Rt1st 0.697 0.113 0.809 10416 9702.8 9521

5 Gr2City 0.887 0.164 1.051 12810 8164.4 7766
Greedy 0.274 0.072 0.345 8271 7689.5 7652
Kcenter 0.030 0.117 0.147 9497 7738.3 7454
KMeans 0.022 0.101 0.123 10407 7903.4 7621
RmvTwo 0.336 0.184 0.520 9103 8127.3 7621

Rt1st 0.606 0.105 0.711 8507 7690.3 7454

6 Gr2City 0.245 0.155 0.400 10216 6769.7 6220
RmvTwo 0.351 0.121 0.472 8820 6591.1 6220
Greedy 0.250 0.073 0.323 7026 7026 7026
Kcenter 0.025 0.298 0.323 8598 6510.3 6226
KMeans 0.014 0.084 0.099 7452 6862.1 6456
Rt1st 0.567 0.102 0.669 6999 6286.9 6226

berlin52 4 Gr2City 0.350 0.246 0.595 3369 2463 2359
Greedy 0.352 0.141 0.492 2321 2311 2221
Kcenter 0.075 0.260 0.334 3650 2302.5 2221
KMeans 0.031 0.219 0.250 2500 2254.9 2161
RmvTwo 0.372 0.138 0.509 2251 2204.3 2182

Rt1st 0.904 0.224 1.128 2482 2299.6 2231

5 Gr2City 0.320 0.216 0.536 2711 1913.9 1807
Greedy 0.317 0.172 0.489 2229 1943.1 1910
Kcenter 0.076 0.237 0.314 2828 1933.7 1815
KMeans 0.041 0.141 0.181 2500 1944.2 1884
RmvTwo 0.388 0.153 0.541 2197 1878.2 1814

Rt1st 0.814 0.162 0.976 2048 1739.7 1713

6 Gr2City 0.294 0.177 0.470 2478 1624.1 1547
Greedy 0.327 0.133 0.459 1751 1585 1531
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Table XIII. Continued

test
instance

K
init
method

running time(average) solution

init L.S. total init L.S. best

Kcenter 0.047 0.467 0.514 2350 1616.7 1573
KMeans 0.028 0.342 0.370 2207 1604.6 1569
RmvTwo 0.397 0.450 0.847 2089 1643.1 1476

Rt1st 0.744 0.347 1.091 2034 1644.1 1586

kroa100 4 Gr2City 1.934 0.581 2.515 6799 6225 5979
Greedy 1.914 0.584 2.498 6578 6096.7 5955
Kcenter 0.167 0.908 1.075 9133 6899.4 6475
KMeans 0.108 0.995 1.103 7418 6377.4 6085
RmvTwo 2.455 0.619 3.073 6835 6164.9 6042

Rt1st 6.079 0.670 6.750 6617 6133.6 5990

5 Gr2City 1.676 0.367 2.044 5442 5281.8 5231
Greedy 1.619 0.513 2.131 5239 5044.3 4959
Kcenter 0.136 0.831 0.967 6690 5064.4 4688
KMeans 0.078 0.497 0.575 5558 5208.4 4947
RmvTwo 2.467 0.734 3.201 6157 5051.7 4790

Rt1st 4.998 0.463 5.461 5612 5025.9 4629

6 Gr2City 1.506 0.572 2.078 4976 4383.1 4242
Greedy 1.439 0.472 1.911 4675 4394.8 4268
Kcenter 0.103 0.640 0.744 6009 4429.4 4200
KMeans 0.063 0.284 0.347 4480 4234.6 4230
RmvTwo 2.500 0.691 3.190 6062 4578.2 4158

Rt1st 4.425 0.325 4.750 4631 4285.7 4235

bier127 4 Gr2City 4.156 1.454 5.611 45298 38584.3 37174
Greedy 3.965 1.539 5.504 42797 35552.3 34677
Kcenter 0.401 1.907 2.308 44570 36703.6 34081
KMeans 0.246 1.703 1.949 39781 35217.7 33352
RmvTwo 4.135 1.127 5.262 35173 32757.5 32423

Rt1st 14.150 1.288 15.438 34597 33265.7 32712

6 Gr2City 2.676 2.128 4.805 36305 24567.8 23244
Greedy 4.754 1.558 6.312 29195 23667.3 23169
Kcenter 1.052 3.366 4.417 62489 25343.9 23736
KMeans 0.238 3.833 4.070 36441 24431.5 23244
RmvTwo 3.853 3.153 7.006 31990 24602.2 22884

Rt1st 9.638 0.570 10.208 24089 23071.7 22815

pr264 4 Gr2City 37.732 9.956 47.688 27558 23476.6 23189
Greedy 47.655 11.699 59.354 20914 13705.5 13009
Kcenter 1.113 7.026 8.139 16461 14792 14792
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Table XIII. Continued

test
instance

K
init
method

running time(average) solution

init L.S. total init L.S. best

KMeans 0.605 6.986 7.590 17550 15000 15000
RmvTwo 22.378 3.266 25.644 12875 12705 12705

Rt1st 128.898 7.308 136.206 14182 13693 13693

6 Gr2City 26.533 8.530 35.063 23742 19522.2 18733
Greedy 28.509 10.436 38.945 13758 10095.7 9295
Kcenter 0.544 7.767 8.311 10579 9392.5 8568
KMeans 0.316 6.371 6.686 10140 9131.6 8526
RmvTwo 23.305 7.258 30.563 12531 9051.6 8739

Rt1st 75.305 6.399 81.704 10663 9613.5 9208

rat575 4 Gr2City 501.522 35.656 537.178 2240 2034.8 2016
Greedy 502.972 36.772 539.744 2140 2015.4 1971
Kcenter 9.153 61.947 71.100 2448 1991.2 1918
KMeans 4.750 47.206 51.957 2239 1924.2 1876
RmvTwo 180.685 16.907 197.592 1890 1867.8 1865

Rt1st 2,071.351 32.097 2,103.448 1889 1852.4 1849

6 Gr2City 300.549 39.231 339.780 1586 1438.8 1407
Greedy 286.350 36.768 323.118 1520 1393.4 1371
Kcenter 5.242 41.425 46.667 1831 1428.5 1374
KMeans 2.305 17.480 19.784 1286 1245.1 1232
RmvTwo 175.215 49.759 224.973 1868 1436.8 1389

Rt1st 1,027.612 16.386 1,043.998 1283 1251.4 1247
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APPENDIX B

Table XIV. Result of simulated annealing - berlin52 (k=4,
Lin-Kernighan)

Init Method Initial T Tratio Time Avg Soln Best Soln Overall Best

Gr2City 50 0.50 1.333 2,502.7 2,321 2,107
0.60 1.083 2,455.5 2,288
0.70 0.972 2,442.6 2,274
0.80 1.619 2,441.3 2,210

100 0.50 1.384 2,438.6 2,288
0.60 1.064 2,416.4 2,321
0.70 0.916 2,415.9 2,321
0.80 1.202 2,472.6 2,321
0.90 0.995 2,375.0 2,107

1,000 0.50 1.097 2,445.0 2,189
0.60 1.108 2,446.4 2,221
0.70 1.073 2,494.8 2,285
0.80 0.930 2,510.5 2,429
0.90 0.941 2,477.4 2,321

3,000 0.50 0.925 2,479.7 2,299
0.60 1.008 2,521.2 2,321
0.70 1.450 2,530.6 2,281
0.80 1.172 2,588.2 2,375
0.90 1.398 2,485.3 2,362

Greedy 50 0.50 0.855 2,362.2 2,321 2,137
0.60 0.855 2,302.6 2,207
0.70 0.850 2,312.4 2,235
0.80 1.181 2,313.6 2,211

100 0.50 0.841 2,308.5 2,229
0.60 0.852 2,308.0 2,191
0.70 0.845 2,319.2 2,229
0.80 0.956 2,321.0 2,321
0.90 1.063 2,349.8 2,137

1,000 0.50 0.845 2,321.0 2,321
0.60 0.841 2,321.0 2,321
0.70 0.853 2,321.0 2,321
0.80 0.837 2,321.0 2,321
0.90 0.831 2,312.4 2,235
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Table XIV. Continued

Init Method Initial T Tratio Time Avg Soln Best Soln Overall Best

3,000 0.50 0.947 2,321.0 2,321
0.60 0.962 2,321.0 2,321
0.70 0.900 2,321.0 2,321
0.80 0.992 2,321.0 2,321
0.90 0.844 2,321.0 2,321

Kcenter 50 0.50 0.614 2,412.4 2,174 2,161
0.60 0.636 2,466.8 2,161
0.70 0.800 2,363.9 2,235
0.80 0.630 2,382.8 2,202

100 0.50 0.755 2,412.4 2,163
0.60 0.648 2,463.2 2,228
0.70 0.606 2,354.8 2,161
0.80 3.675 2,320.3 2,161
0.90 0.872 2,297.5 2,181

1,000 0.50 0.616 2,311.5 2,186
0.60 0.616 2,295.2 2,186
0.70 1.134 2,403.5 2,304
0.80 0.606 2,360.9 2,321
0.90 0.809 2,351.1 2,161

3,000 0.50 0.623 2,353.8 2,271
0.60 1.211 2,431.1 2,215
0.70 0.700 2,315.7 2,161
0.80 0.694 2,318.9 2,161
0.90 0.628 2,371.0 2,186

KMeans 50 0.50 0.553 2,302.4 2,235 2,126
0.60 0.558 2,295.5 2,235
0.70 0.564 2,306.6 2,235
0.80 0.566 2,287.8 2,126

100 0.50 0.564 2,304.6 2,245
0.60 0.581 2,297.4 2,235
0.70 0.566 2,295.8 2,235
0.80 0.577 2,290.8 2,224
0.90 0.569 2,304.7 2,235

1,000 0.50 0.573 2,255.5 2,221
0.60 0.581 2,240.5 2,161
0.70 0.584 2,255.5 2,161
0.80 0.572 2,276.2 2,161
0.90 0.575 2,279.2 2,161
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Table XIV. Continued

Init Method Initial T Tratio Time Avg Soln Best Soln Overall Best

3,000 0.50 0.669 2,256.5 2,161
0.60 0.611 2,256.7 2,161
0.70 0.594 2,289.5 2,235
0.80 0.791 2,275.3 2,161
0.90 0.563 2,281.1 2,163

RmvTwo 50 0.50 0.884 2,310.4 2,182 2,118
0.60 0.889 2,306.5 2,118
0.70 0.887 2,299.9 2,197
0.80 0.930 2,314.6 2,204

100 0.50 0.877 2,230.9 2,182
0.60 0.870 2,204.7 2,182
0.70 0.881 2,237.4 2,182
0.80 0.903 2,258.8 2,183
0.90 0.888 2,225.8 2,135

1,000 0.50 0.870 2,194.3 2,182
0.60 0.870 2,197.0 2,182
0.70 0.870 2,198.2 2,182
0.80 0.877 2,202.4 2,182
0.90 0.873 2,197.8 2,182

3,000 0.50 0.911 2,193.8 2,182
0.60 0.913 2,198.2 2,182
0.70 1.002 2,194.8 2,182
0.80 1.123 2,194.8 2,182
0.90 0.865 2,195.2 2,182

Rt1st 50 0.50 1.434 2,344.6 2,211 2,118
0.60 1.434 2,304.4 2,123
0.70 1.424 2,334.9 2,157
0.80 1.531 2,324.3 2,157

100 0.50 1.417 2,312.8 2,198
0.60 1.428 2,292.6 2,118
0.70 1.425 2,286.7 2,157
0.80 1.448 2,313.3 2,161
0.90 1.434 2,285.8 2,221

1,000 0.50 1.416 2,345.8 2,221
0.60 1.422 2,302.5 2,157
0.70 1.419 2,281.3 2,182
0.80 1.424 2,318.1 2,208
0.90 1.406 2,301.3 2,157
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Table XIV. Continued

Init Method Initial T Tratio Time Avg Soln Best Soln Overall Best

3,000 0.50 1.536 2,346.8 2,251
0.60 1.550 2,296.2 2,157
0.70 1.608 2,286.0 2,198
0.80 1.586 2,302.3 2,157
0.90 1.416 2,326.3 2,251
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APPENDIX C

Table XV. Result of simulated annealing - att48 (k=4, Lin-
Kernighan)

Init Method Initial T Tratio Time Avg Soln Best Soln Overall Best

Gr2City 50 0.7 1.130 9988.5 9103 9103
0.8 0.969 10035.9 9103
0.9 1.356 9928.3 9103

100 0.8 1.125 10309.9 9355

300 0.8 1.706 10741.3 9103

1000 0.8 1.814 10429.2 9103

3000 0.5 1.439 10613.6 9103
0.6 1.805 10648.7 9798
0.7 3.894 11040.6 9515
0.8 1.278 10310 9555
0.9 1.995 10861 9827

Greedy 50 0.7 0.614 9316.6 9103 9103
0.8 0.614 9247.9 9103
0.9 0.623 9576.2 9103

100 0.8 0.613 9305.2 9103

300 0.8 0.659 9230.7 9103

1000 0.8 0.803 9267.7 9103

3000 0.5 0.799 9276.5 9103
0.6 0.745 9347.3 9176
0.7 0.753 9249.3 9103
0.8 0.773 9261.9 9103
0.9 0.642 9308.5 9103

Kcenter 50 0.7 0.363 9384.6 9103 9103
0.8 0.356 9414.5 9103
0.9 0.362 9489.9 9103

100 0.8 0.352 9466.4 9222

300 0.8 0.388 9502.6 9222

1000 0.8 0.436 9431.7 9385
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Table XV. Continued

Init Method Initial T Tratio Time Avg Soln Best Soln Overall Best

3000 0.5 0.491 9428.7 9222
0.6 0.489 9378.6 9318
0.7 0.492 9415.4 9318
0.8 0.459 9407 9222
0.9 0.380 9432.8 9385

KMeans 50 0.7 0.348 9352 9103 9103
0.8 0.345 9294 9103
0.9 0.350 9331.7 9103

100 0.8 0.341 9188.8 9103

300 0.8 0.375 9240.4 9103

1000 0.8 0.434 9198.9 9103

3000 0.5 0.472 9219.1 9103
0.6 0.472 9144.7 9103
0.7 0.477 9199.3 9103
0.8 0.472 9158.5 9103
0.9 0.355 9261.9 9103

RmvTwo 50 0.7 0.650 9222.5 9103 9103
0.8 0.645 9180.4 9103
0.9 0.847 9418.5 9103

100 0.8 0.650 9162.3 9103

300 0.8 0.734 9120.8 9103

1000 0.8 0.903 9120.8 9103

3000 0.5 0.791 9160.3 9103
0.6 0.781 9155.3 9103
0.7 0.808 9142.5 9103
0.8 0.873 9156.4 9103
0.9 0.764 9120.8 9103

Rt1st 50 0.7 1.049 9487.2 9103 9103
0.8 1.278 9533.4 9103
0.9 1.058 9390.1 9103

100 0.8 1.049 9597.7 9103

300 0.8 1.131 9701.3 9481

1000 0.8 1.411 9732.5 9521

3000 0.5 1.197 9793.7 9521
0.6 1.186 9700.4 9521



57

Table XV. Continued

Init Method Initial T Tratio Time Avg Soln Best Soln Overall Best

0.7 1.189 9736.9 9521
0.8 1.345 9724.6 9521
0.9 1.078 9669.5 9521
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APPENDIX D

AMPL modeling

set I;

set K;

param C{I,I} >= 0;

param N>=0;

param KK>=0;

var X{I,I,K} binary;

var V{I} binary;

var U{I};

var Y;

minimize longest_dist: Y;

subject to constraint0 {k in K}:

sum{i in I, j in I} C[i,j]* X[i,j,k] <= Y;

subject to constraint1 {j in I}:

sum {k in K} sum {i in I} X[i,j,k] = 1;

subject to constraint2 {i in I}:

sum {k in K} sum {j in I} X[i,j,k] = 1;

subject to constraint3 {i in I, k in K}:

sum {j in I} X[i,j,k] = sum {j in I} X[j,i,k];

subject to constraint4 :

sum{ i in I} V[i] = KK-1;

subject to constraint5 {i in 1..N-1} :

2 <= U[i]+ V[i] ;

subject to constraint6 {i in 1..N-1} :

U[i] <= N ;

subject to constraint7 {i in 1..N-1, j in 1..N-1} :

U[i]-U[j]-N*(V[i]+V[j])+1<=(N-1)*(1-sum{k in K} X[i,j,k] );

subject to constraint8 {i in I, k in K}:

X[i,i,k] = 0;
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